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ABSTRACT

We propose indexes of queries, a novel mechanism for supporting
efficient, expressive, and information-theoretically private single-
round queries over multi-server PIR databases. Our approach de-
couples the way that users construct their requests for data from
the physical layout of the remote data store, thereby enabling users
to fetch data using “contextual” queries that specify which data
they seek, as opposed to “positional” queries that specify where
those data happen to reside. For example, an open-access eprint
repository could employ indexes of queries to let researchers fetch
academic articles via PIR queries such as for “this year’s 5 most
cited papers about PIR” or “the 3 most recently posted papers about
PIR”. Our basic approach is compatible with any PIR protocol in
the ubiquitous “vector-matrix” model for PIR, though the most
sophisticated and useful of our constructions rely on some nice
algebraic properties of Goldberg’s IT-PIR protocol (Oakland 2007).
We have implemented our techniques as an extension to Percy++,
an open-source implementation of Goldberg’s IT-PIR protocol. Our
experiments indicate that the new techniques can greatly improve
not only utility for private information retrievers but also efficiency
for private information retrievers and servers alike.
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1 INTRODUCTION

Private information retrieval (PIR) is a cryptographic technique
that enables users to fetch records from untrusted and remote
database servers without revealing to those servers which particular
records are being fetched. This paper proposes a new technique
for conducting efficient, expressive, and information-theoretically
private PIR queries over structured or semi-structured (i.e., tagged)
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data. Conceptually, the new approach involves building a layer of
indirection (realized using a special kind of sparse “database” we
call an index of queries) atop existing PIR protocols.

With only a few exceptions, existing PIR constructions require
users to indicate which records they wish to fetch via the indices
of those records—that is, via the physical locations of those records
relative to others in the data store. Our indexes of queries decouple
the way that users construct their requests for data from the physi-
cal layout of the remote data store, thereby enabling users to fetch
data using “contextual” PIR queries that specify which data they
seek, as opposed to “positional” PIR queries that specify where in
the database those data happen to reside.

Database operators can construct many distinct indexes of que-
ries for a given data set, thus providing many distinct views through
which users can interact with the underlying data. Abstractly, each
index of queries facilitates requests for “the best k matches for z”,
where the precise meaning of ‘best’, an upper bound on the number
of matches to return k, and a domain of possible search criteria z are
all determined by the database operator and fixed for the particular
index of queries under consideration. Queries of the above form
arise naturally in a plethora of online and mobile applications. In
many such applications, the query term z reveals a great deal of
identifiable and potentially sensitive information about the habits,
interests, and affiliations of the querier [20]. The index-of-queries
approach we propose herein provides significant improvements to
both the efficiency and expressiveness of the most performant and
well studied PIR techniques in the literature, exposing intuitive APIs
through which applications can safely, easily, and efficiently inter-
act with the underlying PIR. We therefore believe (and certainly
hope) that indexes of queries will prove to be a useful building block
in the construction of efficient, privacy-preserving alternatives to
many widely deployed products and services.

Relationship with prior work. The research literature on PIR is
vast; for over two decades, the cryptography, privacy, and theory re-
search communities have studied PIR intensively and from a variety
of perspectives. However, this considerable attention notwithstand-
ing, apart from a few notable exceptions, existing work focuses
exclusively on an oversimplified model in which users request fixed-
length blocks—or even individual bits!—of data by specifying the
physical locations of those data within the database.

A small body of existing work constructs PIR queries whose
expressiveness extends beyond the ability to fetch records by index,
including techniques that enable keyword-based [3-5, 7] and sim-
ple SQL-based [21, 22, 27] PIR queries. Although our techniques
bare a superficial resemblance to these prior efforts, the precise
problem we solve and the technical machinery we use to solve it are
fundamentally new. Indeed, our approach offers several distinct ad-
vantages (and a few limitations) compared with existing techniques,
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and we therefore view indexes of queries as being complementary
to—as opposed to an alternative to—existing techniques for expres-
sive PIR. A later section compares and contrasts indexes of queries
with competing approaches.

Motivation. The primary objective of this paper is to introduce
and analyze indexes of queries as a new PIR technique in the cryp-
tographic engineers’ toolkit, rather than to explore the nuances
of any particular system that one might use indexes of queries
to build. Nevertheless, to both motivate and ground our proposal,
we briefly consider three natural use cases that showcase the im-
mediate applicability of indexes of queries to the construction of
privacy-respecting technologies. We reiterate that these use cases
are merely intended to illustrate a high-level idea; indeed, it is
beyond the scope of this paper to present the full architecture of —
let alone to treat all the minutiae of implementing full, workable
systems from—any of these motivating examples.

Use case 1: Maps and location-based recommendation systems. A
mapping service like Google Maps or a recommendation service
like Yelp could instantiate indexes of queries over a Points of
Interest (POI) database to satisfy PIR requests such as for “the 10
cafés nearest my current location” or “the 5 highest rated Italian
restaurants in Manhattan”.

Use case 2: Social networks and microblogging platforms. A Twitter-
like microblogging service could instantiate indexes of queries
over its database of tweets to satisfy PIR requests such as for
“the 10 most recent tweets by @realDonaldTrump” or “the 15 top
trending tweets for hashtag #ccs17”.

Use case 3: Streaming audio and video services. Streaming media ser-
vices like Youtube or Spotify could instantiate indexes of queries
over their respective media catalogs to satisfy PIR requests such
as for “the most recent episode of Last Week Tonight with John
Oliver” or “the 10 songs topping the latest Billboard Hot 100”.

Countless use cases beyond those just listed are possible; e.g.,
throughout our technical discussions we will use the running exam-
ple of privately fetching emails from a remote inbox. One could use
this idea to, say, hide users’ email access patterns from a web mail
service like Gmail or, more interestingly, to build a next-generation
Pynchon Gate [24] for pseudonymous mail retrieval.

Outline. The remainder of the paper is structured as follows.
SECTION 2 describes the abstract PIR framework in which all of
the indexes-of-queries constructions reside. SEcTION 3 introduces
simple indexes of queries, the most basic (and least interesting) form
of our construction, while SECTION 4 describes a more sophisticated
construction for batch indexes of queries, which leverage ideas from
coding theory to reduce costs and improve privacy compared to
simple indexes of queries. SECTION 5 further extends this idea to con-
struct indexes of batch queries, which allow users to fetch a batch of
several related blocks using a single, fixed-length query. (The latter
‘indexes of batch queries’ are what is needed to realize the queries
arising in the above motivating examples.) SECTION 6 reviews prior
work on expressive PIR queries—SQL- and keyword-based PIR que-
ries and PIR from function secret sharing—and comments on the
synergistic relationship between our work and those techniques.
We present some findings from our proof-of-concept implementa-
tion in SEcTION 7 before concluding in SEcTION 8.
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2 THE “VECTOR-MATRIX” PIR MODEL

Our constructions are in the ubiquitous vector-matrix model for
PIR. Vector-matrix PIR is a special case of linear PIR where the
database is represented as an 7 x s matrix D over a finite field F
in which each of the 7 rows is a fetchable unit of data (called a
block in typical PIR parlance). Users encode requests for blocks as
vectors from the so-called standard basis for F": a user desiring
the ith block (i.e., the ith row of D) represents its request with the
length-7 vector €; having a 1 in its ith coordinate and 0s elsewhere.
The response to request ¢; is defined as the vector-matrix product
¢; - D, which is easily seen to equal the desired ith row of D. We
refer to such vector-based requests as positional queries in order to
highlight the fact that they require queriers to know the physical
positions (i.e., the row numbers) within D of whatever blocks they
seek to fetch.

PIR protocols in the literature obtain privacy in the vector-matrix
model through a variety of different means. Of particular interest to
us is the information-theoretically private (IT-PIR) approach based
on linear secret sharing. Here, the user “shares” its query vector ¢€;
component-wise using a linear secret sharing scheme, and then it
sends each of the resulting vectors of shares to a different server
from a pool of (non-colluding, but otherwise untrusted) servers
who each hold a replica of D. Upon receiving a share vector from
the user, each server independently computes and returns to the
user the product with D of the share vector it just received. As an
immediate consequence of linearity, the servers’ responses are each
component-wise secret sharings of the vector-matrix product €; - D.
Thus, to recover its requested block, the user performs a component-
wise secret reconstruction over the responses it collects from the
various servers.

Goldberg’s IT-PIR protocol. One natural and attractive choice
for the secret sharing scheme, the use of which for vector-matrix
IT-PIR was first advocated by Goldberg [13], is Shamir’s (¢ + 1,{)-
threshold scheme [25]. To share a basis vector ¢; with Shamir’s
(t+1, £)-threshold scheme, the user selects pairwise distinct scalars
X1, ...,xp € F\ {0} and a uniform random vector of polynomials
Fe (F[x])", subject to the conditions that (i) each polynomial in F
has degree at most ¢, and (ii) a component-wise evaluation of F at
x = 0 gives ;. The jth server recgives (%), Qj), where éj = l_f(xj) is
a component-wise evaluation of F at x; = j. We refer to a sequence
(%1,Q1), - - -, (x2,Qp) of £ > t such ordered pairs (computed from a
common F and pairwise distinct x;) as a component-wise (t + 1,£) -
threshold sharing of €;.

Shamir’s threshold scheme provides the requisite linearity and
a useful Byzantine robustness property, owing to its relationship
with (indeed, equivalence to) Reed-Solomon codes [23] and related
multiple-polynomial error-correcting codes [8]. The protocol ob-
tained by using Shamir’s (¢ + 1, £)-threshold scheme in the vector-
matrix model realizes t-private (m, {) -server IT-PIR for any m > t+1:
the user retrieves its desired block provided m > t + 1 out of £
servers respond, yet no coalition of ¢ or fewer malicious servers can
use the share vectors its members receive to learn any information
about which blocks the user has requested. (It is also v-Byzantine
robust for any v < m—t—2: the user retrieves its desired block even
if up to m — ¢ — 2 servers return incorrect responses [10].)
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subject sender
Re: ccs2017 submission Bob
definitely not a virus Dave

D :=| UK-LOTTO sweepstake! Alice
Fwd: Re: Fwd: roflmao Carol
cash4gold!!!1 Edward
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date size body

2017-02-17 7.7KB ox2ff1elal...
2017-02-1f1 13.0KB 0xbo5f d7a1l...
2017-02-04 336KB 0x0365 ce0o...
2017-01-07 2.5KB @x7e7a36b7...
2016-12-23 4.0KB 0xd96d faff...

Figure 1: Toy example of an email inbox database comprising five emails and associated metadata.

The above intuitive notion of ¢-privacy is formalized by requiring
statistical independence between the pair (I, Q) of random variables
respectively describing (i) which particular block the querier is
requesting, and (ii) the joint view of any coalition of up to ¢ servers
involved in the request. We refer the reader to Henry [16, end of §2]
for a detailed formal definition for t-private k-batch (m, €) -server IT-
PIR in the vector-matrix model. Our discussion of the Shamir-based
PIR protocol up to this point corresponds to Henry’s definition
with a fixed batching parameter of k = 1; looking forward, the
construction we present in SECTION 5 returns several related blocks
for each query and, therefore, corresponds to Henry’s definition
for some k > 1.

In their most basic form, our indexes of queries are compatible
with any PIR protocol in the vector-matrix model, although our
exposition assumes—and our more sophisticated and useful indexes-
of-queries constructions rely on some nice algebraic properties
of—(a scheme [16] that builds upon a scheme [18] that builds upon)
Goldberg’s Shamir-based IT-PIR; thus, although we have attempted
to make our exposition of the new constructions as self-contained
as possible, readers unfamiliar with the various building blocks may
wish to peruse Goldberg’s paper [13]—and the follow up papers by
Henry [16] and by Henry, Huang, and Goldberg [18] —for an initial
‘lay of the land’.

3 QUERYING FOR QUERIES

At the heart of our approach is a simple observation regarding the
use of (0,1)-matrices as PIR databases. We begin with the most
simplistic possible version of our idea, restricting our attention to
r X r permutation matrices and building up to more general and
interesting cases as the paper progresses.

Recall that an r x r permutation matrix is just an r x r matrix
having exactly one 1 in each row and each column, and 0s elsewhere
(equivalently, it is a matrix obtained by permuting the rows of
an 7 x r identity matrix). Each such matrix represents a specific
permutation on 7 elements: given a length-r vector ¥ and an r x r
permutation matrix II, the vector-matrix product ¥ - II yields a
length-r vector with the same components as ¥, but in a permuted
order.

For example, given ¥ = {(a b ¢) and a permutation matrix

100
001],
010

II =

itis easy to check that ¥-I1 = {a ¢ b); i.e., Il permutes ¥ by transposing
its second and third components.
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The following observation is exceedingly obvious, and yet it
is sufficiently central to our approach as to nonetheless warrant
formal explication.

OBSERVATION 3.1. If € € F" is a standard basis vector and IT €
F™" is a permutation matrix, then é - IT is a (possibly different)
standard basis vector.

For example, given the above-defined 3 X 3 permutation matrix
IT and the standard basis {El, e, é}} for F°, we have that &, - II = &,
that ¢, - IT = &, and that &, - II = ¢&,. In the context of IT-PIR,
we are actually interested in the following immediate corollary to
OBSERVATION 3.1.

COROLLARY 3.2. Let é € F” be a standard basic vector and let
1€ F*" be a permutation matrix. If (xl,él), s (xp, é(e) is a com-
ponent-wise (t + 1,€)-threshold sharing of e, then (xl,él -0, ..,
(¢, ég -T) is a component-wise (¢ + 1,{)-threshold sharing of a
(possibly different) standard basis vector €’ € F’; namely, of &" =
é-IL

Colloquially, one can think of COROLLARY 3.2 as stating that a
t-private IT-PIR query issued against a permutation matrix yields
another t-private IT-PIR query (possibly for some other block) or,
put another way, that a permutation matrix is, in a sense, just a
“database of positional PIR queries”.

Despite the naivety of our discussion up to this point, we are
already well positioned to demonstrate a novel application of per-
mutation matrices to PIR queries.

3.1 Example application: Private queries over a
remote email inbox

Consider the toy example of an email inbox depicted in Figure 1.
The inbox D in the figure contains five emails, which are physically
stored, naturally, in the same order that they were received.

Each row of D represents one email and is structured around a
schema that includes—in addition to the body of the email—fields
for metadata about the email including its subject, its sender, the
date it was received, and its size. Of course, the schema for a real
email inbox would include several additional fields.

Suppose we wish to set up a PIR protocol to facilitate retrieval
of emails from the inbox D. In a typical PIR setting, the user would
fetch an email from D using a positional PIR query. Doing so would
require the user to know (or, at least, to learn) quite a lot about
the physical layout of D, as the row number of the desired email
corresponds to its chronological order among all of the other emails.
By contrast, a typical non-private email client would provide a
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convenient interface to help the user locate emails of interest, for
instance by imposing a user-selected logical order on the emails
and allowing the user to browse through them in this sorted order.
As a concrete example, the email client might present the user
with a view of the inbox in which emails are sorted numerically
by size, or lexicographically by subject or sender, among other
possibilities.

OBSERVATION 3.3. Each of the above-mentioned views of D (i.e.,
sorted by size, by subject, or by sender) corresponds to a partic-
ular 5 X 5 permutation matrix.

For example, referring back to D, we observe that the permuta-
tion matrices

I_Isender = and 1-Isize =

(= =
(= = - -]
SO O O O
S O R O O
- O O O
S O Rk O O
SO O O =k O
S O O O
-0 O O O
O = O O O

respectively map a query encoding the ith standard basis vector of
F® to a query for the ith email in a lexicographic ordering of the
inbox by sender or a numerical (decreasing) ordering of the inbox
by size. Thus, the user could request, say, the largest email in D by
sending a vector of shares of the basis vector ¢, € I, along with the
hint “size”, to each of the PIR servers hosting D. We emphasize that
the user can construct this query knowing only the total number of
rows in I, in particular, the user need not know anything about
which emails occupy which rows of D.

Upon receiving the share vector éj and hint “size” from the
user, server j first permutes the components of Q; via multiplication
with I, to get Q%
the response f{j = éj-m -D as usual. It is easy to verify—and the
reader should take a moment to do so, since going forward we will
repeatedly use this simple idea, but in increasingly sophisticated
ways—that, upon reconstructing the servers’ responses, the user
indeed learns the largest email in D, just as it sought to do. To
see why, simply note that ¢, - II,, = &, and that & - D yields
the 336 KB email, which has the largest size among emails in the
inbox.

Before we move on, a few remarks about this simple example
are in order. First, we note that the example highlights a poten-
tial application of permutations in PIR, but it reveals no obvious
advantage to thinking about such permutations in terms of multi-
plication by a permutation matrix (as opposed to using some other
representation of a permutation). Nevertheless, in the sequel we
will see increasingly sophisticated variations of this idea which do
rely inherently on the idea of “permuting queries” by way of matrix

= é ;- I, after which it computes and returns

multiplications.! Second, we reiterate that the user in this example
does not require any specific knowledge about D or I1,, beyond the
height and semantic meaning of I1,,. In fact, even upon reconstruct-
ing the servers’ responses, the user still learns nothing about the
physical layout of D—not even the row number of the email it just

'We point out, moreover, that even for this very simple example, representing the
requisite permutations as matrix multiplications is not unreasonable, as the special
structure of permutation matrices (specifically, their sparsity and the restriction of
their components to {0, 1}) allows the servers to store and compute with them very
efficiently, a fact that will later prove crucial.
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fetched! Finally, although the permuted query vectors arising in
our example provide the exact same ¢-privacy guarantee as regular
queries in the underlying PIR protocol,? the additional hint “size”
does reveal some meta-information about which emails the user is
after. This meta-information can have implications for privacy; for
instance, in our email fetching example, the servers may infer that
a user requesting emails by size is interested in emails residing in
the tails of the size distribution (i.e., very small or large emails) as
opposed to those near the middle. Thus, in applications that wish
to leverage permutations in this way, special care must be taken
to identify and quantify if and how such leakage might betray the
users’ privacy. We emphasize that (i) such leakage is application-de-
pendent and cannot be meaningfully quantified outside the context
of a specific application, and (ii) in many (if not most) applications,
business logic already betrays similar meta-information.

3.2 From permutation matrices to “simple
indexes of queries”

One can think of the permutation matrices Iy, and I, from the
preceding subsection as being two “indexes” through which users
can fetch the blocks comprising D. Indeed, both indexes are them-
selves just special databases whose blocks are all (non-private) posi-
tional queries for blocks in D; in other words, IL,, and I, are two
very simple examples of what we call “indexes of queries”.

Note that such indexes of queries need not take the form of
permutation matrices—permutation matrices merely capture the
special case in which the index of queries presents a sorted view of
all blocks in D. Indeed, one could just as well consider an index of
queries II that (i) is not square, (ii) has some columns containing
no 1s (meaning that certain blocks from D are not accessible via
I0), and/or (iii) has some columns containing multiple 1s (meaning
that certain blocks from D are accessible in multiple ways via II).
One even consider indexes of aggregate queries, in which some
rows may contain several arbitrary non-zero entries. Such indexes
of queries would map standard basis vectors to requests for linear
combinations of blocks from D and may be useful for solving simple
statistical queries. However, we leave the development of this idea
to future work and, for the time being, cast the following definition
for “simple indexes of queries”, which captures all but the last
possibility just mentioned.

Definition 3.4. A simple index of queries for a database D € F'**
is a (0,1)-matrix IT € FP*" in which each row contains exactly one
1 entry.

An equivalent definition states that IT € FP*” is a simple index of
queries for D € F™** if it maps each standard basis vector from F¥
to a standard basis vector from F’.

3.3 Leakage: It’s not a bug, it’s a feature

In the epilogue to SECTION 3.1, we remarked that the mere act of
fetching blocks through a given index of queries can implicitly leak
meta-information about which blocks the user seeks. Furthermore,

ZIndeed, Shamir’s (£ + 1, £)-threshold scheme perfectly hides the secret from coalitions
of up to ¢ shareholders; thus, no amount of post-processing—including, of course,
multiplication by a permutation matrix—will allow coalition members to extract any
information about the user’s query.
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Definition 3.4 explicitly permits indexes of queries through which
(owing to the presence of all-0 columns) it is impossible to access
certain blocks from D, thus potentially making the information leak-
age explicit. In this subsection, we briefly revisit this information
leakage—seemingly a weakness of simple indexes of queries—and
spin it as a potentially useful feature.

In particular, in use cases where certain implicit leakage is tol-
erable (or even inevitable), it is possible to reduce the cost of PIR
queries by explicitly leaking the exact same information. Trading off
some (limited and controlled) information leakage in exchange for
more efficient and expressive PIR queries is not without precedence;
for example, both of Olumofin and Goldberg’s [21] and Wang, Yun,
Goldwasser, Vaikuntanathan, and Zaharia’s [27] SQL-based PIR
queries leak the “shape” of a query while hiding its sensitive con-
stants. Learning the shape of an SQL query may betray information
about the possible (and likely) constants in a way analogous to in-
dexes of queries; however, as is the case with our indexes of queries,
quantifying precisely how much information is leaked (and how
troubling this leakage is) remains highly application-dependent. To
make our explicit-leakage proposal more concrete, we return to the
earlier example of requesting emails by size and suppose that, due
to the context in which indexes of queries are being employed, the
servers can immediately deduce that any email requested by size
resides in the “large” tail of the size distribution (and yet, for the
sake of the example, that such leakage is deemed acceptable). In this
case, it is possible to support queries by size much more efficiently
if we replace I, with a matrix through which only emails in the
“large” tail are actually accessible.

This involves deleting each row of II;, that corresponds to an
email not in the “large” tail of the size distribution, resulting in a
rectangular pseudo-permutation matrix; that is, in a p xr matrix that
has at most one 1 in each row and each column and 0s elsewhere.
Thus, we end up with a short-and-fat (0,1)-matrix having full rank
(i.e., rank p). For instance, the three largest emails in D could be
accessed via
00100
01000
10000

Hlargest =

The following analog of COROLLARY 3.2 applies.

OBSERVATION 3.5. Let € € F? be a standard basic vector and
let I € FP* be a pseudo-permutation matrix with rank p. If
(15 él), ey (e, é[) is a component-wise (¢ + 1,£)-threshold sharing
of e, then (x;, él -10), ., (s é[ -T) is a component-wise (t + 1,¢)-
and (1, {)-threshold sharing of a standard basis vector ¢’ € F’;
namely, of &’ = & - I1.2

Intuitively, OBSERVATION 3.5 implies that a ¢-private IT-PIR
query through a short-and-fat pseudo-permutation matrix yields
a t-private IT-PIR query over a non-hidden subset of a larger data-
base. Specifically, such a matrix IT € FP*" necessarily contains 7 — p
all-0 columns; consequently, every pseudo-permuted share vector
(xj, Qj -II) has 7 — p corresponding 0 entries, which means queries
through IT cannot fetch blocks corresponding to the all-0 columns
in IT. Note that anyone can deduce the set of unfetchable blocks by

3Speciﬁcally, the 7 — p entries corresponding to all-0 columns in IT are (1, £)-threshold
shares of 0; the remaining p entries are each (t + 1, £)-threshold shares of either 0 or 1.
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inspecting IT (or a pseudo-permuted query vector 0 ;-10), and it is in
this sense that IT explicitly leaks information: it explicitly leaks that
the request is for a block “indexed by some query” in IL.

The upshot of explicitly leaking this information is twofold. First,
the query vectors become shorter (their lengths correspond to the
number of queries pinIJ, rather than to the number of blocks 7 in D);
thus, each request incurs strictly lower upstream communication
cost (p group elements) compared to a positional query over D (7
group elements). Second, because each pseudo-permuted query
vector é; = Qj -IThas support of size p, the vector-matrix product

Qj' -D incurs strictly lower computation cost (= 2ps field operations)
compared to a positional query over D (x 2rs field operations). We
also stress that whatever information does leak is known a priori
to the user; i.e., although queries leak some information, they do

so transparently —there are no surprises.

3.4 Privacy in the face of implicit and explicit
information leakage

In the preceding subsection, we claimed that a t-private query
through a simple index of queries IT is, at least in some sense, still
t-private. Formally proving that this is indeed the case necessitates
a slight (though natural) modification to the standard definition of ¢-
privacy. In particular, a direct application of the standard definition
would require, for every coalition S C [1..£] of at most ¢ servers
and for every record index i € [1..r], that

Pl =i|Qs=(LQ),....Q;)] =PI =, (1)
where I and Qg denote the random variables respectively describing
the block index the user requests and the joint distribution of share
vectors it sends to servers in S (including the “hint” that the query
should go through II).

However, it is evident that Equation (1) need not hold, for ex-
ample, when the block in row i of D is not accessible through II. It
would not suffice to merely restrict the quantifier so that I ranges
only over the subset of block indices which are accessible through
IT; indeed, there may be several distinct indexes of queries, each
inducing its own conditional distribution for I. In other words, a
correct definition must account for the fact that curious PIR servers
will inevitably—upon learning that a given request is through a
particular index of queries [I—leverage this information to update
their priors. The following modified ¢-privacy definition captures
this idea.

Definition 3.6. LetD € F”* and let eachI1,,...,II,, be an index
of queries* for D. Requests are ¢-private with respect to1l,, . . ., Il,, if,
for every coalition S C [1..£] of at most ¢ servers, for every record
index i € [1..7], and for every index of queries IT € {II;, ..., I, },

Pr[l=i|Qs =L Qj,...,Q;)] = Pr[I =i Ey],
where I and Qg denote the random variables respectively describing
the block index the user requests and the joint distribution of query
vectors it sends to servers in S (including the “hint” that the query

should go through II), and where Ep is the event that the request
is through II.

4Our omission of the word “simple” here is intentional: each IT ; can either be simple
indexes of queries or one of the more sophisticated types we introduce in the sequel. In
particular, by allowing some or all of the II; to be different kinds of indexes of queries,
we can use Definition 3.6 to define privacy for all constructions in this paper.
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Observe that a ¢-private query through a simple index of queries
IT is functionally equivalent to—ergo, provides the exact same pri-
vacy guarantee as—a t-private positional query over the database
Dy = II - D. Consequently, Definition 3.6 reduces to the usual
t-privacy definition when IT € F"*" is the identity matrix.

The next theorem follows from the above observation and the
t-privacy of Goldberg’s IT-PIR [13, 16].

THEOREM 3.7. Let D € F™** and let each IT,,. .., TI,, be a simple
index of queries for D. If IT € {I1,...,I0,} with T € FP*" and if
(1, él), ey (xps Qg) is a component-wise (¢t + 1,{)-threshold sharing
of a standard basis vector e € F?, then (II, x;, Ql), oo (I xp, Q[)

is t-private with respect to I, ..., II,.

Proor. Consider a coalition S comprising ¢ servers. Fix i €
[1..7]and T € {II;,...,00,} with IT € FF*", and let I, J, and
Qg respectively denote the random variables describing the index
(within D) of the block the user requests, the index of the standard
basis vector the user actually encodes in its query, and the joint
distribution of share vectors it sends to servers in S (including the
“hint” that the query should go through the index II).

As per Definition 3.6, we need to show that Pr[I = i | Qg
(IT; éiﬂ . ’éjt)] = Pr[I = i | Eg], where Ep; denotes the event
that the user’s request is through IT. The key observation underlying
the proof is that Pr[I = i | Ey] = Prle; -1 =¢, | Ep]and Pr[I =i |
Qs =1L le,...,th)] = Pr[éj M=g| Qs = (IL; le,---,th)]‘

Hence, we have

Pr[I =i | Ey] =Prlé, - I | Ey]
=Pifé, I =¢| Qs =L Q,.....Q;,)]
=Pr[I=i|Qs=(5Q;,....Q;)l
as desired. Note that the second line of the above derivation follows
immediately from the t-privacy of (x;, él), oy (xp, ég). O

N
=e
N

=e;

4 BATCH INDEXES OF QUERIES

In the preceding section, we discussed how requests through a
simple index of queries can leak meta-information about which
blocks the user seeks. We now turn our attention to our first non-
trivial indexes of queries, called batch indexes of queries, which
improve on simple indexes of queries by leveraging ideas from
coding theory to decrease this information leakage.

Suppose we wish to leverage simple indexes of queries for an
application in which the servers will hold multiple indexes of que-
ries intended to facilitate different kinds of requests, yet in which
all requests always will go through one of these indexes of queries.
In this case, knowing only that a given request passed through
some index of queries yields no information for an attacker: for
information about a request to leak, the attacker would have to
learn through which index of queries that request passed. Thus, con-
cealing through which index of queries each request passes would
effectively eliminate this source of information leakage while main-
taining the utility that indexes of queries provide.

For example, suppose that a server believes a priori that a given
request will pass through the index IT; with probability p and that it
will pass through the index IT, with probability 1—p, so that

Pr[l=i]=Pr[l=i|Ey |-p+Pr[l=i|Ep] (1-p).
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In this case, if the server receives the hint “1”, then it can immedi-
ately update its priors to conclude that Pr[I = i| = Pr[I =i | EH1]§
thus, the hint “1” in this example is leaking information about which
block the client is fetching. On the other hand, if the client were
somehow able to route its request through IT; without revealing
through which of II; or II, its request is passing, then the server
would be unable to update its priors and the request would leak no
new information.

Even in cases where, say, some queries through an index and
others are positional, and hence bypass the indexes of queries al-
together, hiding through which index a given non-positional re-
quest passes would still serve to reduce the quantity of information
that leaks. Batch indexes of queries provide one such way to hide
through which out of several simple indexes of queries a given
request passes.

The batch-indexes-of-queries construction we present here is
specific to Goldberg’s IT-PIR, leveraging the so-called “u-ary family
of codes” [16, §3]. One could of course consider analogous instan-
tiations for other PIR protocols or based on other codes; however,
we leave exploration of this idea to future work. Before proceeding,
we briefly review #-ary codes and how they are used to construct
efficient IT-PIR protocols.

4.1 IT-PIR from u-ary codes

Recall that, in the vector-matrix model for PIR (as expounded in
SECTION 2), each server typically holds a complete, plaintext replica
of the database D. Several recent IT-PIR constructions [2, 6, 12, 16]
have instead considered a generalization of the vector-matrix model
wherein each server holds an encoded bucket that is merely de-
rived from—and typically much smaller than—the actual database
D. The benefits of this bucketized vector-matrix approach echo
the benefits of explicit leakage described in the previous section:
smaller buckets directly translate into lower upstream communi-
cation, lower per-server computation costs, and lower per-server
storage costs.

One recently proposed construction in the bucketized vector-
matrix model modifies Goldberg’s IT-PIR protocol to utilize what is
called the u-ary family of codes [16, §3 and §5]. In this scheme, each
bucket is a matrix of (0-private) “shares” obtained using a “rampi-
fied” variant of Shamir’s (1,¢)-threshold scheme: given u € N,
the u-ary code encodes D € F"*¢ by (i) partitioning the r blocks
comprising D into 7/ many u-tuples® (ii) interpolating compo-
nent-wise through each u-tuple at some predefined x-coordinates
to obtain /1 many length-s vectors of degree-(# — 1) polynomials
from F[x], and then (iii) placing a single component-wise evalua-
tion of each vector of polynomials into each of the ¢ > u buckets.
Thus, the bucket held by each of the £ servers resides in Fr/uxs
and, in particular, is a factor # smaller than D.

Despite no server actually holding D, users can still fetch blocks
of D using slightly modified ¢-private positional queries over the
buckets. Specifically, a user desiring the ith block from D sim-
ply needs to determine (i) which of the /1 bucket rows holds
evaluations of the polynomial vector passing through the desired

For ease of exposition, here and throughout we make the simplifying assumption that
u | r. Eliminating this assumption is trivial, but doing so would only serve to introduce
unnecessary clutter and exceptional cases to our notation and the descriptions of our
constructions.
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block, and (ii) at which x-coordinate that polynomial vector passes
through the desired block. It then constructs a length-(r/1) vector
of (t + 1,{)-threshold shares encoding a positional query for the
above bucket row at the above x-coordinate (in contrast to always
encoding the positional query at x = 0, as it would typically do
in Goldberg’s protocol). The rest of the protocol is exactly as in
the standard vector-matrix model, except that, in the secret recon-
struction step, the user interpolates the servers’ responses to the
same x-coordinate it used to encode its request. The result is a
t-private v-Byzantine-robust (m, £)-server IT-PIR protocol for any
m >t + u [16, Theorem 1] and v < m — t — u — 1 [16, Theorem 2].
In particular, note that the number of servers, the privacy threshold,
and the downstream communication cost are each identical to in
Goldberg’s protocol, whereas the upstream communication cost,
the storage cost, and the server-side computation cost are all a fac-
tor u lower. (The tradeoft for the latter improvements is a reduction
by u in the protocol’s robustness to non-responding and Byzantine
servers.) For additional details and proofs, we refer the reader to
the original paper [16].

There are at least two ways to improve on our simple indexes
of queries using u-ary codes. The most obvious way is to encode
a simple index of queries into u-ary buckets, thereby reducing
the upstream communication, and possibly the computation cost,
associated with queries through that index. This slightly improves
efficiency (though, as we will see in SEcTION 7, indexes of queries
are already plenty fast), but it does nothing to address information
leakage. The remainder of this section deals with a more interesting
approach that combines multiple disparate indexes of queries into a
single batch index, thereby reducing information leakage by letting
each user query D through the index of its choice without revealing
which particular index of queries it uses. The idea is to merge all
the indexes of queries into a single matrix of polynomials using
component-wise polynomial interpolation (4 la the above u-ary
codes), so that each server holds only a single bucket obtained
via component-wise evaluation of the resulting polynomial matrix.
Users can then formulate requests through any of the constituent
indexes of queries using appropriately crafted queries over the
buckets, all the while concealing through which of the underlying
simple indexes of queries their requests pass. Before formalizing
this idea in SECTION 4.3, we walk through the process of merging the
simple indexes of queries Iy, and I, from SECcTION 3.1.

4.2 Batching two indexes of queries

Recall that IT,y, and I1, are the permutation matrices that respec-
tively map a request encoding the ith standard basis vector of F° to
a positional query for the ith email in a lexicographic ordering of
the email inbox D depicted in Figure 1 by sender or a numerical
(decreasing) ordering of D by size. They are defined as

00100 00100
10000 01000
Mer = [0 0 0 1 0| and Iye:= {100 0 0
01000 00001
00001 00010

The merging process is simple. We first fix some x-coordinates,
say x = 0 and x = 1, which serve as identifiers for II g, and I,
Then, for each entry in IT,,,, we interpolate through that entry (at
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x = 0) and the corresponding entry of I, (at x = 1) to obtain a
linear polynomial in F[x]. As both I, and II, are (0,1)-matrices,
only four polynomials can arise in this step (corresponding to the
pairs (0,0), (0,1), (1,0) and (1, 1)); i.e., every interpolation yields one
of fio(x) = 0, fy(x) = X, figlo) = 1 —x, or fin(®) = L.

Carrying out this process for I1 . and IL, yields

0 0 1 0 0
1-x x 0 0 0
Hersicd®) == | X 0 0 1-x 0 |e€ (]F[x])%.
0 1-x 0 0 X
0 0 0 x 1-x

One can verify that evaluating ITgy,.{x) component-wise at
x =0 and x = 1 recovers I, and I, respectively; indeed, com-
puting the vector-matrix product of Il .(x) with €; € F° and then
evaluating the result at x = 0 and x = 1 yields the ith rows from IT,
and I, respectively. For example, € - IT g sid%) = (x 001-x0),
which evaluatesto & € F> and ¢, e F° at x = 0 and x = 1.

Let x;,...,x, € F\ {0,1} be arbitrary, pairwise distinct scalars.
The bucket held by each server j will be obtained via component-
wise evaluation of Iye,(X) at x = x;. Thus, to fetch the ith email
in a lexicographic ordering of D by sender, the user will “en-
code at x = 0” the standard basis vector ¢; € P’ into ¢ vectors,
(%1, éio)), ey (xp, éﬁ?)), of (¢ + 1,{)-threshold shares; specifically,
it will select a length-5 vector of degree-¢ polynomials from F[x]
uniformly at random, subject only to the requirement that this vec-
tor passes component-wise through €; at x = 0, and then it will send
to each server j the component-wise evaluation éﬁ.o) of this vector
at x = x;. Likewise, to fetch the ith email in a numerical (decreas-

J
ing) ordering of D by size, the user will “encode at x = 1” the same

standard basis vector ¢, € IF° into £ vectors (x;, éil)), ey (xp, QS))
of (t + 1,£)-threshold shares.

Notice that the only difference between how the user constructs
the above two requests is the x-coordinate at which it encodes
the standard basis vector €;; thus, the x-coordinate here serves the
same purpose that the hint, “sender” or “size”, served back in
SECTION 3.1, allowing the user to specify through which of the
two indexes of queries its request is intended to pass. However, in
contrast to with the hints that the user explicitly revealed in SEc-
TION 3.1, from the perspective of any coalition of up to t servers,
requests encoded at x = 0 are perfectly indistinguishable from
those encoded at x = 1; that is, it is impossible for such a coalition
to infer (based on the shares its members receive) through which
of the two indexes of queries a given request passes [17].

Before we move on, a few brief remarks about this simple exam-
ple are in order. First, we note that the resulting buckets are still
quite sparse, having at most 2 non-zero entries in each row and
in each column. Second, we observe that the ¢-privacy of requests
through the buckets is still an immediate consequence of [16, Theo-
rem 1]; indeed, the buckets are nothing more than 2-ary buckets of
a database obtained by appropriately splicing together the indexes
of queries I, and IL,. Finally, we point out that, owing to the
fact that each entry of Il . is an (at-most-)linear polynomial,
reconstructing the servers’ responses now requires one additional
response. Hence, the protocol just described implements ¢-private
(m,{)-server IT-PIR for any m > ¢ + 1.
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4.3 Batching u indexes of queries

Definition 4.1 formalizes a generalization of the construction from
SECTION 4.2, which allows combining for arbitrarily many simple
indexes of queries.

Definition 4.1. Fix # > 1 and let xy,...,x, € F\{0,...,u —
1} be pairwise distinct scalars. A sequence I, ...,II, € FP*" of
matrices is a u-batch index of queries for Goldberg’s IT-PIR with
bucket coordinates xy, . . ., xz if (i) I, #11,, for some iy, iy € [1..£],

and (ii) foreach j=0,...,u — 1,
l . . . .
= B (=) G )e=s) - (=)

i=1

is a simple index of queries.

The first requirement of Definition 4.1, which insists that IT; #
I1;, for some iy, i € [1..£], is a non-triviality requirement included

merely to prevent simple indexes of queries from qualifying.® The
second requirement is what captures the key property we intuitively
desire from batch indexes of queries. The expression arising in
that second requirement is just the familiar Lagrange interpolation
formula. Intuitively, the definition says that the sequence of buckets
I1,,...,II, is a u-batch index of queries if interpolating component-
wise through the II; at each x = 0,...,u — 1 yields a length-u
sequence of simple indexes of queries. The restriction that xi, . . ., x,
be elements of F \ {0,...,u — 1} is necessary to guarantee that
users can actually request blocks through the constituent simple
indexes of queries without betraying the privacy of their requests
(see [16, proof of Theorem 1]).

The next theorem follows easily from [16, Theorems 1&2].

THEOREM 4.2. Fix 4 > land j € [0..u — 1], and let IT
(M, ...,T,) € (FP*7)" be buckets of a u-batch index of que-
ries with bucket coordinates x;,...,x, € F\ {0,...,u — 1}. If
(x1, éjl )y ..y (xg, éj[) is a sequence of component-wise (¢t + 1,{)-
threshold shares of a standard basis vector e € FF encoded at x = j,
then (I1, x;, le), o (I xy, éjf) is t-private with respect to II.

Proor. The proof of this theorem is nearly identical to that
of THEOREM 3.7. Consider a coalition S comprising ¢ servers. Fix
i €[l..r]andlet I, J, K, and Qg respectively denote the random
variables describing the index (within D) of the block the user
requests, the index of the standard basis vector the user actually
encodes in its query, the x-coordinate at which it encodes that
standard basis vector, and the joint distribution of share vectors it
sends to servers in S (including the “hint” that the query should go
through the u-batch index of queries II).

As per Definition 3.6, we need to show that Pr[I =i | Qg =
(IT; éjl’ . ’éjt)] = Pr[I = i | Eg], where Ep; denotes the event
that the user’s request is through II. The key observation is that
Pr{l = i|Eq] = Y}y Prlé; - m = & | K = k,Ey] - Pr{K = k | Ey]

6Omitting the non-triviality requirement would mean that whenever IT € FP*" is a
simple index of queries, the sequence of buckets ILIL ..., Il € FP*" is a u-batch index
of queries for every u > 1. Clearly, this fails to jibe with what we intuitively mean by
“u-batch” index of queries.
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and Pr{I = i | Qg = (IT; gjl,...,éjt)] = St Prle - = & |
K=k Qs=(LQj.,....Qj,)] - Pr[K = k | Ery]. Hence, we have

u—1
Pr[I=i|Ey|= ) Pr[é, - m = & | K = k,Ey] - Pr[K = k | Ey]
k=0

u-1 . s
= ZPI[E] * T :Ei |K:k,QS = (H, Q]l”Q]t)]
k=0 “Pr[K = k | Eg]
=Pr[I=i|Qs=(LQ;,....Q;)l
as desired. Note that the second line of the above derivation follows
immediately from the t-privacy of (x, Q1), . . ., (xz, Qp). O

CoRrOLLARY 4.3. The construction just described implements ¢-
private v-Byzantine-robust (m, £)-server IT-PIR for any m > ¢ + u.

In each of the following results, when we speak of a “u-batch”
index of queries, we are implicitly assuming that u is the largest
value for which Definition 4.1 is satisfied—i.e., that

ﬂu;zéni.( ( )( (

is not another simple index of queries—and that the buckets have
minimal degree in this regard. More precisely, we assume that
interpolating through the buckets (at the indeterminate x) yields
a matrix of polynomials each having degree at most u — 1. We
also point out that the results all hold for u = 1, provided we
treat “1-batch index of queries” as synonymous with “simple index
of queries”. The first observation regards the sparsity of #-batch
indexes of queries, while the second regards the possible values
that their non-zero entries can take on.

U—Xiy
Xi—=Xi1

U—x; )

U—Xiy )
Xi—X;

U—Xxp )
Xi = Xiy1

Xij—Xe

OBSERVATION 4.4. Fix > 1. If TI; € FP*” is a bucket of a u-
batch index of queries, then the rows and columns of II; each
contain at most # non-zero entries; hence, the total number of
non-zero entries in II; is at most min(p, r) - .

OBSERVATION 4.5. Fix u > 1. If II; € FP*" is a bucket of a u-
batch index of queries, then there exists a set S comprising at most
2% — 1 scalars from F such that every non-zero element in II; is an
element of S.

Both observations are trivial to prove: it suffices to note that
all entries in a bucket are y-coordinates of points on polynomials
obtained via interpolating through the u# values that reside in cor-
responding coordinates of the u constituent pseudo-permutation
matrices. When all # components are 0, interpolation yields the
zero polynomial (OBSERVATION 4.4); in all cases, every polynomial
corresponds to a particular non-zero #-bit binary string.

5 INDEXES OF BATCH QUERIES

In the previous section, we proposed batch indexes of queries as
a way to obtain all the benefits of simple indexes of queries but
with improved privacy guarantees. We now turn our attention to
a special kind of batch indexes of queries, called indexes of batch
queries, which improve on the earlier batch indexes of queries by
enabling users to fetch several related blocks (i.e., a batch of related
blocks) with a single request.

Suppose we wish to leverage indexes of queries for an applica-
tion in which typical requests seek the best k matches for some
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search term z. An obvious straw man construction would involve
creating, for each possible search term z, a simple index of que-
riesIT, € F**" whose k rows are positional queries for the best k
matches for that z. Unfortunately, this trivial solution offers little
privacy: knowing which simple index of queries a user’s requests go
through immediately reveals precisely which blocks those requests
are for. In theory, merging all of the simple indexes of queries into
a batch index of queries would eliminate this leakage, but this ap-
proach does not scale; indeed, several of the motivating uses cases
from SECTION 1 require best k queries involving millions of possible
search terms, which would require millions of buckets held by mil-
lions of non-colluding servers! Indexes of batch queries provide an
alternative construction that facilitates such requests supporting
many—perhaps millions of —search terms much more efficiently
and without requiring a large number of servers.

5.1 IT-PIR with k-batch queries

Recall that in the vector-matrix model for PIR, a typical request
takes the form of a positional query represented by a standard basis
vector. In the case of Goldberg’s IT-PIR, the querier encodes this
vector component-wise into ¢ vectors of (¢ + 1, £)-threshold shares,
and then it sends one such vector of shares to each of ¢ servers; thus,
a user seeking the blocks referenced by the k rows of one of the
simple indexes of queries IT, € F**" from our straw man construc-
tion would need to make k separate requests, respectively encoding
the standard basis vectors é,, . . ., &, € F*. of course, as we already
noted, such a user should not expect any privacy.

Henry, Huang, and Goldberg [17] proposed k-batch queries as a
more efficient way to request k blocks at once. Their k-batch queries
are based on the same idea as u-ary codes: instead of encoding
each basis vector €, . . ., & in a separate request, a k-batch query
encodes them all in a single request using (¢ + 1, £)-threshold ramp
shares, much like we saw in SECTION 4. Specifically, the user selects
a length-k vector of degree-(¢ + k — 1) polynomials uniformly at
random, subject to the requirement that, for each i = 1, ..., k, the
vector passes component-wise through é; at x = i — 1. Nothing
changes from the perspective of the servers’ and yet a little algebra
establishes that, if such a request passes through the simple index
of queries I, € F**" to a database D € F"*, then the servers’
responses reconstructto & - II, - Datx = 0,to &, - II, -Datx = 1,
and so on up to € - IT, - D at x = k — 1. Of course, the user should
still not expect any privacy; we have only succeeded in making the
non-private solution more efficient.

Whereas k-batch queries commingle effortlessly with simple
indexes of queries, some technicalities interfere when one attempts
to naively perform k-batch queries through batch indexes of que-
ries (cf. [16, §5]), due to the way batch indexes of queries asso-
ciate their constituent simple indexes of queries with specific x-
coordinates.

5.2 k-batch queryable batch indexes of queries

Our indexes of batch queries are essentially just k-batch indexes of
queries that have been constructed so as to map specific k-batch
queries into other, meaningful k-batch queries over D. Conceptually,

"In fact, coalitions of up to ¢ servers cannot distinguish k-batch from non-batch
queries [18].
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we “transpose” the impractical straw man construction that began
this section in a way that makes the best k queries for each search
term z occupy a single row of a k-batch index of queries, at k
pairwise distinct x-coordinates. To see how this works, it is helpful
to think of the buckets comprising a k-batch index of queries as
2-dimensional projections of a particular 3-dimensional matrix; for
instance, if there are p possible search terms z, then the p-batch
index of queries arising from the straw man construction would be
projections of a matrix IT residing in F**"?, say

poe-mmTTT ‘ro 0. 0--="0"0 ‘
. TEEEERY
071 ) o o . : k
001 0 -0 0)|g o 00 e 0 ‘
00 0 -0 0. .|l :
II= [ S o o -7
00 1 -0 1) 0 m——""""

Viewed in this way, it becomes apparent that we should transpose
IT with respect to its height (k) and depth (p) axes. Doing so yields
a matrix IT’ € FP<k wherein, foreachi=1,...,pandj=1,...,k,
the ith “plane” corresponds to a specific search term z; in which the
vector intersecting the “layer” at depth j holds a positional query
for the jth-best matching block for z; in D. Each server will then
hold one bucket from a “layer-wise” k-ary encoding of IT'. To fetch
the best k matches for search term z;, the user will simply encode k
copies of the standard basis vector e; in a ¢-private k-batch query,
atx = 0,at x = 1, and so on up to x = k — 1. We emphasize that the
user here encodes the same basis vector at eachof x =0,...,k— 1.
In a typical k-batch query, encoding multiple copies of the same
basis vector would provide no benefit to the user and would only
unnecessarily reduce the query’s Byzantine robustness. It is also
worth noting that the user can choose to encode just m < k copies
of é;atx = 0,...,m— 1in order to fetch only the best m matches
for search term z;.

The following definition formalizes the above construction, while
the theorem that proceeds it addresses the parameters of IT-PIR
protocol queries through such an index.

Definition 5.1. Fix k > 1 and let x;,...,x, € F\ {0,...,k -
1} be pairwise distinct scalars. A sequence I1;,...,II, € FF*" of
matrices is an index of k-batch queries for Goldberg’s IT-PIR with
bucket coordinates x;, . .., x; if, for each i = 1,.. ., p, the matrix

Tio

Ti(k-1)

is a pseudo-permutation matrix, where, for each j € [0..k — 1],
¢ . . )
J=Xn1 J = Xn41 J=X¢
)...<xn—x )(xn—x )..'(xn_x(’).

n-1 n+1
We emphasize that indexes of k-batch queries are a special case
of k-batch indexes of queries; hence, THEOREM 4.2 implies that ¢-
private queries through an index of k-batch queries IT are ¢-private
with respect to II. In light of this, THEOREM 5.2 is just a restatement
of COROLLARY 4.3.

o Jj=x
: (

n X, =X

n=1 nol

THEOREM 5.2. The construction just described implements ¢-
private v-Byzantine-robust (m,€)-server IT-PIR for any m > t+2k—1
andv<m-t-2k+1.
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6 RELATED WORK

This section discusses the small body of existing literature on ex-
pressive PIR queries, describing how our new techniques relate to
and differ from those prior works.

Keyword-based PIR queries. A technical report by Chor, Gilboa,
and Naor [7] proposed a mechanism through which users can fetch
blocks privately by specifying keywords of interest. Similar to our
indexes of queries, they accomplish this by augmenting the database
with an auxiliary data structure (a binary search tree, a trie, or a
minimal perfect hash function) intended to help users translate
keyword-based requests into positional PIR queries, which are
ultimately handled by the underlying PIR protocol. Specifically, the
user employs positional queries to obliviously traverse the auxiliary
data structure (which, for tree-based data structures, may require
many iterative queries) in order to learn the physical location within
the database of some record of interest, which it eventually fetches
using a final positional PIR query over the actual data.

In contrast to keyword-based PIR, indexes of queries let users
fetch data in a single round of interaction and they do not reveal any
information about the structure and layout of the underlying data
set. Indeed, the communication and computation costs incurred
while fetching records via an index of queries are decoupled from
the number of blocks in the database and are, in fact, upper bounded
by the cost of a positional PIR query over the database (such as the
one occurring in the last step of Chor et al’s scheme).

SQL-based PIR queries. Olumofin and Goldberg [21] extended
Chor et al’s approach to a scheme enabling users to fetch blocks
privately using simple SOL queries filtered by WHERE or HAVING
clauses. Similar to indexes of batch queries, Olumofin and Goldberg
accomplish this by having the database operator prepare (perhaps
several) inverted indexes that map sensitive search criteria to the
physical locations of associated blocks in the database. Also similar
to our approach, their technique may leak some information about
which blocks a user seeks, as it hides the sensitive search terms
that appear in a query but not the overall “shape” of the query.

Of course, because Olumofin and Goldberg’s construction di-
rectly build on keyword-based PIR, the differences we highlighted
above also differentiate our approach from theirs. Moreover, al-
though a single SQL query in their model may return a batch con-
sisting of several records, this comes at a cost of requiring the user
to perform multiple positional queries against the underlying data-
base (indeed, the user must always perform a number of queries
corresponding to the maximum possible size of a response, so as to
avoid leaking information about the actual size of the response);
indexes of batch queries, by contrast, can return such batches in a
single response using only a single query (and without leaking the
size of the response).

PIR from function secret sharing. In terms of functionality, our
proposal is most directly comparable to the recent PIR protocols
based on Boyle, Gilboa, and Ishai’s function secret sharing (FSS) [3—
5]. FSS provides a way for clients to split certain functions f into
pairs of “function shares”, which are themselves functions that
can be evaluated at an input x to produce additive shares of f(x).
This enables the construction of expressive 2-server protocols with
which users can fetch records privately using any search criteria
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expressible as a polynomial sized branching program. (FSS construc-
tions that split functions into ¢-tuples for £ > 2 have also been
proposed, thus yielding analogous £-server PIR protocols, but these
constructions are dramatically less efficient and require stronger
computational assumptions compared to the 2-party construction.)

In contrast to our index-of-queries approach, FSS permits key-
word searches without any need for the server to prepare auxiliary
data structures. However, this added flexibility comes at a cost
of stronger security assumptions and a (potentially) higher com-
putation cost. Specifically, unlike the information-theoretic PIR
underlying our approach, existing PIR protocols based on (2-party)
FSS schemes (i) require a comparatively stronger non-collusion
assumption (i.e., that there exists a pair of servers who may not
collude), (ii) provide only computational security even when this
maximally strong non-collusion assumption holds, and (iii) neces-
sarily incur computational cost comparable to the upper bound on
that of our index-of-queries approach.

SQL-based PIR queries from FSS. A recent paper of Wang, Yun,
Goldwasser, Vaikuntanathan, and Zaharia [27] proposed Splinter, a
system that employs function secret sharing to support a range of
queries comparable to those supported by Olumofin and Goldberg’s
SQL-based approach. Splinter provides both the best and worst of
both worlds: on one hand, Splinter supports a similar set of queries
as SQL-based PIR with improved performance (by replacing many
recursive PIR-by-keyword queries with single-round FSS queries);
on the other hand, it leaks the shape of queries (4 la SQL-based
PIR) and requires both computational assumptions and rigid non-
collusion assumptions (4 la FSS-based PIR).?

Despite the above benefits of indexes of queries over existing
keyword-, and SQL-, and function secret sharing-based PIR ap-
proaches, there exist use cases in which the latter are more useful —
each approach facilitates fundamentally different classes of inter-
actions. Indeed, it is not obvious how to realize efficient keyword-
based queries using indexes of queries alone, as this would require
users to somehow learn which rows in the index correspond to
which keywords. For instance, returning to our running private-
inbox-queries example, we note that while many casual interactions
with an email client leverage only the views naturally support-
able with indexes of queries, users can and do frequently rely on
keyword-based searches to locate emails of interest. Thus, an ac-
tual private email client would benefit from simultaneous support
for both indexes of queries and keyword- or SQL-based queries.
Fortunately, because none of the three approaches require any mod-
ification to the underlying database, no technical challenges prevent
the servers from supporting all of them at the same time.

8Wang et al. assert that Olumofin and Goldberg’s SQL-based PIR “requires all the
providers to be honest” [27, §8.2]; however, this claim is false. Indeed, Olumofin
and Goldberg provide the same degree of flexibility as our indexes of queries in
choosing security assumptions: the default instantiation is unconditionally private
provided at most ¢ out of £ servers collude, for any choice of ¢ < ¢ including, e.g.,
¢ =t — 1. (By contrast, existing FSS schemes, including those used by Splinter, only
support ¢ = £ — 1 and, even then, only provide computational privacy against smaller
coalitions.) Moreover, one can employ either computational or hybrid PIR in Olumofin
and Golberg’s framework, thus providing computational privacy when all servers
collude and, indeed, even allowing the protocol to run with a single server. This can be
accomplished under a wide variety of computational assumptions, including Paillier’s
decisional composite residuosity assumption (DCRA) or standard lattice assumption.
Finally, setting ¢ < £ — 1 allows the former scheme to provide some level of Byzantine-
robustness, which equates to better liveness and potential mitigation of active attacks
by small coalitions of servers.
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(a) 4-batch query throughput on an Nvidia Tesla K20 GPU Accelerator (massively parallel)
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(b) 4-batch query throughput on an Intel Core i5-2500 CPU @ 3.30GHz (single-threaded)

Figure 2: Number of 4-batch index of queries requests our implementation can process per second. Figure 2(a)
depicts the counts for a massively parallel implementation on an Nvidia Tesla K20 GPU Accelerator; Figure 2(b)
depicts the same counts for a single-threaded implementation on an Intel Core i5-2500 CPU. Each experiment
was repeated for 100 trials; we report here the mean number of requests per second. Error bars are omitted due
to their small size (all standard deviations were below 2% of the mean).

7 IMPLEMENTATION AND EVALUATION

All three variants of indexes of queries introduced in this paper
yield sparse matrices; thus, querying through an index of queries
is an instance of sparse matrix-vector (SpMV) multiplication, an
embarrassingly parallelizable workload that is particularly well
suited to implementation on a massively parallel compute platform,
such as a general-purpose GPU device.

In order to empirically gauge the practicality of our indexes-of-
queries approach, we implemented finite-field SpMV multiplication
and ran a series of experiments both on an Nvidia Tesla K20 GPU
Accelerator [9] and on an Intel Core i5-2500 CPU. Both implemen-
tations support SpMV multiplication in the binary fields GF(2%)
and GF(2'%) and in Z, for arbitrary multi-precision prime moduli

1371

q.9 We use lookup tables and exclusive-ORs for fast binary field
arithmetic; for prime-order field arithmetic, our GPU code uses a
hand-optimized PTX implementation of “schoolbook” multiplica-
tion/addition together with Barrett reduction [1], while our CPU
implementation outsources arithmetic to NTL [26] and GMP [11].
Our implementations are licensed under version 2 of the GNU

°Numerous efficient CUDA-based SpMV multiplication implementations already exist,
yet essentially all implementations we found assume that the entries are floating-point
numbers. Modifying any of these implementations to do integer arithmetic modulo
a 32-bit word-size prime would be relatively straightforward; however, in order to
obtain good PIR performance, we need support for SpMV multiplication over small
binary fields and/or over prime-order fields with multiple-precision prime moduli.
Indeed, benchmarks we ran on Percy++, an open-source implementation of Goldberg’s
PIR protocols, indicate that the PIR over small binary fields is fastest, followed by PIR
over prime order fields with moduli > 128 bits long. For instance, we observe about a
3.5x speedup switching from a 32-bit modulus to a 1024-bit modulus.
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General Public License (GPLv2), and we are presently working to
integrate both versions into Percy++ [14], an open-source imple-
mentation of Goldberg’s IT-PIR protocol.

We conducted two sets of experiments. The first set of exper-
iments consists of microbenchmarks designed to measure the la-
tency imposed by routing PIR queries through an index of que-
ries prior to conducting a positional query against the actual data-
base. The second set of experiments evaluates the feasibility of
deploying our techniques over a real-world dataset; specifically, we
constructed several batch indexes of queries through which users
can fetch academic articles posted to the IACR Cryptology ePrint
archive [19].

7.1 SpMV microbenchmarks

For the first set of experiments, we generated a large number of
random #-batch indexes of queries for various choices of %, index
dimensions, and finite fields, and then we measured the number of
SpMV operations we could evaluate per second, either as a mas-
sively parallel computation on our Nvidia K20 GPU Accelerator or
as a single-threaded computation on our Intel Core i5-2500 CPU.
The results of this experiment are unsurprising—our SpMV multi-
plications consistently run extremely fast, even when the indexes
of queries have quite large dimensions.

In line with expectations, we observed that varying the height
of the index (p) and the batching parameter (1) had very little im-
pact on throughput for our GPU implementation,'® whereas the
throughput decreased linearly with pu for our CPU implementa-
tion.

Figure 2 plots the measurements we obtained from one arbitrary-
yet-representative set of parameters; specifically, it shows the re-
sults for a sequence of indexes of 4-batch queries having p = 2!
rows and mapping to databases D having between r = 2" and
7 = 220 blocks. In all cases, our GPU implementation was able to
process well over a thousand requests per second (indeed, we found
that memory bandwidth to and from the GPU was consistently the
bottleneck); our CPU implementation was able to process between
a few hundred (for r = 2%°) and a few thousand (for r = 2') re-
quests per second in the binary fields and on the order of a few
dozen requests per second (for all r) in large prime-order fields. In
all cases, increasing r yielded a roughly linear decrease in through-
put, with a slope inversely proportional to the cost of a single field
operation.

For comparison, we found that it took just over 1.4 second per
GiB of database (using a single thread) to process a single positional
query using fast arithmetic in GF(2®), with every other field we
measured taking notably longer. Thus, we conclude that, even in the
worst conceivable cases, indexes of queries introduce no significant
latency to PIR requests (and, when p < 7, they may significantly
speed up the subsequent PIR processing by producing positional
queries with small support).

10We ran experiments for various choices of # € [1..16] and power-of-two heights
and widths, with dimensions ranging from extremely short-and-fat to perfectly square
(but never tall-and-skinny); hence, our indexes were consistently extremely sparse (at
most about 0.1% of entries were nonzero), causing most GPU threads to sit idle most
of the time, regardless of how we set « and p.
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7.2 TIACR Cryptology ePrint Archive

For the second set of experiments, we created a dataset by scraping
the IACR Cryptology ePrint Archive [19], an open-access reposi-
tory that provides rapid access to recent research in cryptology. In
particular, we scraped metadata (paper id, paper title, author list,
submission date, keywords, and file size) for 10,181 papers (which
was the entire dataset as of midday on February 10, 2017, excluding
60 papers that our scraper skipped over because of inconsistently
formatted metadata). We also scraped citation counts for each paper
in the dataset from Google Scholar [15].

Using this data, we constructed a “synthetic ePrint” database, in
which the ith row holds a random bitstring whose length equals the
file size of the ith paper in the actual ePrint dataset (padded with 0s
to the length of the largest paper).!! The largest paper in the dataset
was 19.3 MiB, but only 56 out of the 10,181 papers exceeded 4.69 MiB;
therefore, we pruned those 56 papers to obtain a dataset comprising
10,125 papers (the discarded manuscripts were predominantly older
PostScript files). This resulted in a 46.35 GiB database (including
the 0-padding) of chronologically sorted “synthetic ePrint papers”
that user can fetch using IT-PIR queries.

We also constructed histograms to determine (i) the total number
of papers associated with each keyword, and (ii) the total number
of papers by each author. We identified 1,005 unique keywords that
were associated with five or more distinct papers each, and 1,750
unique authors that were each associated with four or more distinct
papers each, within the pruned dataset. From here, we constructed
four different indexes of 4-batch queries over GF(2®); namely, we
created indexes of 4-batch queries supporting requests for the “4
most highly cited” and the “4 most recently posted” ePrint papers
for each keyword (associated with at least 5 papers) and for each
author (associated with at least 4 papers).

We performed two kinds of experiments for each of the four
indexes of queries. Table 1 summarizes the results of these experi-
ments, as well as some statistics about the time required to generate,
and the storage requirements for, each index of queries. First, we
measured the total number of requests through each of the four
indexes of queries that both our Nvidia Tesla K20 GPU Accelerator
and our Intel Core i5-2550 CPU could process per second; given
their small dimensions and the choice of working over GF(2}), in
all cases we managed a whopping 49,000+ queries per second on
the GPU and over 20,000 queries per second on a single core of
the CPU. Second, we measured the total time required to retrieve
a random paper from the dataset using a positional query output
by each of the four indexes of queries. Because each of these in-
dexes of queries contains a relatively large number of all-0 columns,
the cost of the latter PIR step was substantially lower than that
of a standard positional query. In particular, queries by keyword
took around 19 seconds, on average, whereas queries by author
took around 33 seconds, on average; by contrast, positional PIR
queries over the entire database took nearly 70 seconds, on average.
These measurements suggest that indexes of queries can indeed be
a useful building block in the construction of practical PIR-based
systems for datasets on the order of tens of GiB.

"\We refrained from downloading all ePrint papers and instead opted for random
data purely to avoid unduly burdening ePrint with a high volume of unnecessary
downloads.
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Table 1: Experimental results obtained for the JACR Cryptology ePrint Archive [19] dataset. The dataset consists of 10,181
academic papers and associated metadata. All timing experiments were repeated for 100 trials to obtain a standard deviation
to one significant figure, and are reported to that precision (+ the standard deviation).

Search Sort Simple Bucket Bucket # of GPUindex CPU index PIR
criteria criteria index generation size nonempty throughput throughput throughput
generation (interp. + eval.) Columns (queries/sec) (queries/sec) (secs/query)
Keyword Recency ~1.5+0.1s 54+ 9ms 71.76KiB 2692 49100100 32800 +400 19.1+0.7s
= Gitations  1.3+0.1s  52+10ms  70.17KiB 2645 49100+ 100 30700+ 600 18.8=0.65
Author Recency 3.1+£0.1s 63+ 6ms 92.38 KiB 4548 49100 £ 100 22700 £400 32.6+0.8s
=70 Citations 3.1+0.2s 63+ 8ms  91.69KiB 4546 49000+ 100 20100 =300 32.4 +0.9s
8 CONCLUSION AND FUTURE WORK [6] Terence H. Chan, Siu-Wai Ho, and Hirosuke Yamamoto. Private information

We proposed indexes of queries, a novel mechanism for supporting
efficient and expressive, single-round queries over multi-server PIR
databases. Our approach decouples the way users construct their
queries from the physical layout of the database, thereby enabling
users to retrieve information using contextual queries that specify
which data they seek, as opposed to position-based queries that
specify where in the database those data happen to reside. We
demonstrated the feasibility of at least one promising applications
of our indexes-of-queries approach, and proposed several other
compelling possibilities, which we believe present several exciting
opportunities for future work.

Another potential avenue for future work is to explore the in-
dex of queries approach as it applies to other vector-matrix PIR
protocols, which may lead to additional useful instantiations (e.g.,
eliminating non-collusion assumptions and compressing queries
by settling for computational privacy). Likewise, it would be in-
teresting to explore how other families of batch codes might yield
alternative constructions for batch indexes of queries and indexes of
batch queries, which may offer different tradeoffs or compatability
with a wider range of PIR protocols.
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