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ABSTRACT

Many web applications use databases for persistent data storage,

and using Object Relational Mapping (ORM) frameworks is a com-

mon way to develop such database-backed web applications. Un-

fortunately, developing efficient ORM applications is challenging,

as the ORM framework hides the underlying database query gen-

eration and execution. This problem is becoming more severe as

these applications need to process an increasingly large amount

of persistent data. Recent research has targeted specific aspects of

performance problems in ORM applications. However, there has not

been any systematic study to identify common performance anti-

patterns in real-world such applications, how they affect resulting

application performance, and remedies for them.

In this paper, we try to answer these questions through a compre-

hensive study of 12 representative real-world ORM applications. We

generalize 9 ORM performance anti-patterns from more than 200

performance issues that we obtain by studying their bug-tracking

systems and profiling their latest versions. To prove our point, we

manually fix 64 performance issues in their latest versions and ob-

tain a median speedup of 2× (and up to 39× max) with fewer than

5 lines of code change in most cases. Many of the issues we found

have been confirmed by developers, and we have implemented

ways to identify other code fragments with similar issues as well.
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• Software and its engineering→ Software performance;
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1 INTRODUCTION

Modernweb applications face the challenge of processing a growing

amount of data while serving increasingly impatient users. On one
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hand, popular web applications typically increase their user bases

by 5–7% per week in the first few years [32], with quickly growing

data that is produced or consumed by these users and is managed

by applications. On the other hand, studies have shown that nearly

half of the users expect a site to load in less than 2 seconds and will

abandon a site if it is not loaded within 3 seconds [24], while every

extra 0.5 second of latency reduces the overall traffic by 20% [35].

To manage large amounts of data, modern web applications often

follow a two-stack architecture, with a front-end application stack

fulfilling application semantics and a back-end database manage-

ment system (DBMS) storing persistent data and processing data re-

trieval requests. To help developers construct such database-backed

web applications, Object Relational Mapping (ORM) frameworks

have become increasingly popular, with implementations in all

common general-purpose languages: the Ruby on Rails framework

(Rails) for Ruby [22], Django for Python [9], and Hibernate for Java

[14]. These ORM frameworks allow developers to program such

database-backed web applications in a DBMS oblivious way, as the

frameworks expose APIs for developers to operate persistent data

stored in the DBMS as if they are regular heap objects, with regular-

looking method calls transparently translated to SQL queries by

frameworks when executed.

Unfortunately, ORM frameworks inevitably bring concerns to

the performance and scalability of web applications, whose multi-

stack nature demands cross-stack performance understanding and

optimization. On one hand, it is difficult for application compilers

or developers to optimize the interaction between the application

and the underlying DBMS, as they are unaware of how their code

would translate to queries by the ORM. On the other hand, ORM

framework and the underlying DBMS are unaware of the high-

level application semantics and hence cannot generate efficient

plans to execute queries. Making things even worse, data-related

performance and scalability problems are particularly difficult to

expose during in-house testing, as they might only occur with large

amounts of data that only arises after the application is deployed.

Unlike performance problems on the client side, which have been

well studied in prior work [34, 41], the cross-stack performance

problems on the server side are under-studied, which unfortunately

are the key to the data-processing efficiency of ORM applications.

Although recent work [26, 27, 29, 46] has looked at specific per-

formance problems in ORM applications, there has been no com-

prehensive study to understand the performance and scalability

of real-world ORM applications, the variety of performance issues

that prevail, and how such issues are addressed.

Given the above, we target three key research questions about

real-world ORM applications in this paper:
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• RQ 1: How well do real-world database-backed web applica-

tions perform as the amount of application data increases?

• RQ 2: What are the common root causes of performance

and scalability issues in such applications?

• RQ 3: What are the potential solutions to such issues and

can they be applied automatically?

To answer these questions, we conduct a comprehensive two-

pronged empirical study on a set of 12 Rails applications represent-

ing 6 common categories that exercise a wide range of functionali-

ties provided by the ORM framework and DBMS. We choose Rails

as it is a popular ORM framework [11]. We carefully examine 140

fixed performance issues randomly sampled from the bug-tracking

systems of these 12 applications. This helps us understand how

well these applications performed on real-world data in the past,

and what types of performance and scalability problems have been

discovered and fixed by end-users and developers in past versions.

To complement the above study, we also conduct thorough pro-

filing and code review of the latest versions of these 12 applications.

This investigation helps us understand how these applications cur-

rently perform on our carefully synthesized data (to be explained

in Section 3), what types of performance and scalability problems

still exist in the latest versions, and how they can be fixed.

In terms of findings, for RQ1, our profiling in Section 4 shows

that, under workload that is no larger than today’s typical work-

load, 11 out of 12 studied applications contain pages in their latest

versions that take more than two seconds to load and also pages

that scale super-linearly. Compared to client-side computation (e.g.,

executing JavaScript functions in the browser), server-side compu-

tation takes more time in most time-consuming pages and often

scales much worse. These results motivate research to tackle server-

side performance problems in ORM applications.

For RQ2, we generalize 9 ORM performance anti-patterns by

thoroughly studying about 200 real-world performance issues, with

140 collected from 12 bug-tracking systems and 64 manually iden-

tified by us based on profiling the same set of ORM applications

(Section 5). We group these 9 patterns into three major categories—

ORM API misuses, database design problems, and trade-offs in

application design. All but one of these patterns exist both in pre-

vious versions (i.e., fixed and recorded in bug-tracking systems)

and the latest versions (i.e., discovered by us through profiling and

code review) of these applications. 6 of these anti-patterns appear

profusely in more than half of the studied applications. While a few

of them have been identified in prior work, the majority of these

anti-patterns have not been researched in the past.

Finally, for RQ3, we manually design and apply fixes to the 64

performance issues in the latest versions of these 12 ORM appli-

cations (Section 6). Our fixes achieve 2× median speedup (and up

to 39 ×) in server-side performance improvement, and reduce the

average end-to-end latency of 39 problematic web pages in 12 appli-

cations from 4.17 seconds to 0.69 seconds, making them interactive.

Most of these optimizations follow generic patterns that we believe

can be automated in the future through static analysis and code

transformations. As a proof of concept, we implement a simple

static checker based on our findings and use it to find hundreds of

API misuse performance problems in the latest versions of these

applications (Section 7).

Figure 1: Structure of an example Rails application

Overall, our comprehensive study provides motivations and

guidelines for future research to help avoid, detect, and fix cross-

stack performance issues in ORM applications. We have prepared

a detailed replication package for all the performance-issue study,

profiling, and program analysis conducted in this paper. This pack-

age is available on the webpage of our Hyperloop project [16], a

project that aims to solve database-related performance problems

in ORM applications.

2 BACKGROUND

Our study focuses on applications written in Ruby on Rails (Rails).

Ruby is among the top 3 popular languages on GitHub [38], and

Rails is among the top 3 popular web application frameworks

[11]. Many widely used applications are built upon Rails, such

as hulu [15], gitlab [13], airbnb [2], etc. Compared to other popular

ORM frameworks such as Django [9] and Hibernate [14], Rails has

2× more applications on github with 400 more stars than Django

and Hibernate combined. As Rails provides similar functionalities

as Django and Hibernate, we believe our findings can apply to

applications built on top of those frameworks as well.

Like other applications built on top of an ORM framework, Rails

applications are structured based on the model-view-controller

(MVC) architecture. We illustrate this using an example shown

in Figure 1, which is abridged from a forum application that al-

lows users to publish posts and comments. First, developers de-

sign model classes that inherit from a special ActiveRecord super

class, such as User and Message in Figure 1, where their corre-

sponding fields are stored persistently in the DBMS. The associ-

ations between model classes, chosen from has_many, has_one,

and belongs_to, need to be explicitly declared in model classes,

such as the “has_many :messages” specified in the User class and

the “belongs_to :user” specified in the Message class. After that,

they design controllers, such as MessagesController.rb in Fig-

ure 1 that contains multiple actions, with each action determining
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Table 1: Details of the applications chosen in our study

Category Abbr. Name Stars Commits Contributors

Forum
Ds Discourse 21238 22501 568

Lo Lobster 1304 1000 48

Collaboration
Gi Gitlab 19255 49810 1276

Re Redmine 2399 13238 6

E-commerce
Sp Spree 8331 17197 709

Ro Ror_ecommerce 1109 1727 21

Task- Fu Fulcrum 1502 697 44

management Tr Tracks 835 3512 62

Social Da Diaspora 11183 18734 335

Network On Onebody 1592 1220 6

Map
OS Openstreetmap 664 8000 112

FF Fallingfruit 41 1106 7

how the application responds to a specific web-page request. Inside

an action there is code to retrieve database data through queries

transparently translated by the ORM. Finally, the retrieved data is

rendered via views that are often written in a template language, as

shown in index.html.erb in Figure 1. Such views determine how

the retrieved data is displayed in a client’s browser.

The life cycle of a Rails application, and ORM applications in

general, is as follows. When receiving a client HTTP request like

“http://.../messages/index”, the application server first looks

up the routing rules, shown at the top of Figure 1, to map this

request to the index action inside MessagesController. When the

index action executes, it invokes the @user.undeleted_messages

function, which calls messages. where(...). The call to the Rails

API where is dynamically translated to a SQL query by the Rails

framework to retrieve data from the DBMS. The query results are

then serialized into model objects and stored in @messages. The

index action then calls render "index" to render the retrieved

data in @messages using the index.html.erb template.

3 PROFILING & STUDY METHODOLOGY

This section explains how we profile ORM applications and study

their bug-tracking systems, with the goal to understand how they

perform and scale in both their latest and previous versions.

3.1 Application Selection

As mentioned in Section 2, we focus on Rails applications. Since

it is impractical to study all open-source Rails applications (about

200 thousand of them on GitHub [12]), we focus on 6 popular

application categories1 as shown in Table 1. These 6 categories

cover 90% of all Rails applications with more than 100 stars on

GitHub. They also cover a variety of database-usage characteristics,

such as transaction-heavy (e.g., e-commerce), read-intensive (e.g.,

social networking), and write-intensive (e.g., forums). Furthermore,

they cover both graphical interfaces (e.g., maps) and traditional

text-based interfaces (e.g., forums).

We study the top 2 most popular applications in each category,

based on the number of “stars” on GitHub. These 12 applications

shown in Table 1 have been developed for 5 to 12 years. They are

1We use the category information as provided by the application developers. For
example, Diaspora is explicitly labeled ‘social-network’ [8].

Table 2: Some of Gitlab statistics for workload synthesis

#projects #users #commits #projects #branches #projects

≤ 1 74678 ≤ 1 115246 ≤ 1 224551

1 - 5 31009 1 - 5 51499 1 - 5 54171

5 -10 5063 5 -10 26429 5 -10 7097

10 - 20 2133 10 - 20 25797 10 - 20 4429

20 - 100 1116 20 - 100 41939 20 - 100 3996

100 - 1000 97 100 - 1000 23407 100 - 1000 3644

> 1000 4 > 1000 14098 > 1000 527

Statistics about (1) the number of users who own certain number of projects; and the
number of projects that have certain number of (2) commits and (3) branches.

Table 3: Database sizes in MB

#records Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

200 10 10 11 11 46 30 3 3 10 17 12 9
2000 25 100 135 35 83 98 10 16 39 53 14 14
20000 182 982 764 224 340 233 68 62 200 259 32 62

all in active use and range from 7K lines of code (Lobsters [17]) to

145K lines of code (Gitlab [13]).

3.2 Profiling Methodology

Populating databases. To profile an ORM application, we need

to populate its database. Without access to the database contents in

the deployed applications, we collect real-world statistics of each ap-
plication based on its public website (e.g., https://gitlab.com/explore

for Gitlab [13]) or similar application’s website (e.g., amazon [3]

statistics for e-commerce type applications). We then synthesize

database contents based on these statistics along with application-

specific constraints. Specifically, we implement a crawler that fills

out forms on the application webpages hosted on our profiling

servers with data automatically generated based on the data type

constraints. Our crawler carefully controls how many times each

form is filled following the real-world statistics collected above.

Take Gitlab as an example, an application that allows user toman-

age projects and git repositories.We run a crawler on our ownGitlab

installation. Under each generated user account, the crawler first

randomly decides howmany projects this user should own based on

the real-world statistics collected from https://gitlab.com/explore

shown in Table 2, say N , and then fills the create project page

N times. The crawler continues to create new project commits,

branches, tags, and others artifacts in this manner.

Other applications are populated similarly, and we skip the de-

tails due to space constraints. Virtual-machine images that contain

all these applications and our synthetic database content, as well

as data-populating scripts, are available at our project website [16].

Scaling input data. We synthesize three sets of database con-

tents for each application that contain 200, 2000, and 20, 000 records

in its main database table, which is the one used in rendering home-

page, such as the projects table for Gitlab and Redmine, the posts

table for social network applications, etc. Other tables’ sizes scale

up accordingly following the data distribution statistics discussed

above. The total database sizes (in MB) under these three settings

are shown in Table 3.

When we discuss an application’s scalability, we compare its

performance among the above three settings. When we discuss an

application’s performance, we focus on the 20, 000-record setting,

which is a realistic setting for all the applications under study. In

fact, based on the statistics we collect, the number of main table

802



Table 4: Numbers of sampled and total issue reports

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

17 7 22 22 28 2 2 12 13 5 3 7

4607 220 18038 12117 4805 114 158 1470 3206 400 17 650

The upper row shows the number of reports sampled for our study; the lower row
shows the total number of reports in each application’s bug-tracking system.

records of every application under study is usually larger than

20, 000 in public deployments of the applications. For example,

Lobsters and Tracks’ main tables hold the fewest records, 25, 000

and 26, 000, respectively. Many applications contain more than

1 million records in their main tables — Spree’s official website

contains almost 500 million products, Fallingfruit’s official website

contains more than 1 million locations on map, etc.

Identifying problematic actions. Next, we profile applica-

tions to identify actions with potential performance problems. We

deploy an application’s latest version under Rails production mode

on AWS m4.xlarge instance [5] with populated databases. We run

a Chrome-based crawler [6] on another AWS instance to visit links

repeatedly and randomly for 2 hours to collect performance pro-

files for every action in an application.2 We repeat this for all three

sets of databases shown in Table 3, and each set is repeated for 3

times. We then process the log produced by both Chrome and the

Rails Active Support Instrumentation API [1] to obtain the average

end-to-end loading time for every page, the detailed performance

breakdown, as well as issued database queries.

For each application, we firstly identify the top 10 most time-

consuming controller actions, among which we further classify an

action A as problematic if it either spends more than one second on

the server side, meaning that the corresponding end-to-end loading

time would likely approach two seconds, making it undesirable

for most users [24]; or its performance grows super-linearly as the

database size increases from 200 to 2, 000 and then to 20, 000 records.

The identified actions are the target of our study on performance

and scalability problems as we describe in Section 5 and 6.

3.3 Report-Study Methodology

To complement the above profiling that examines the latest version

of an application using our synthetic datasets, we also study the per-

formance issues reported by users based on real-world workloads

and fixed by developers for past versions of these ORM applications,

so that we can understand how well these deployed applications

performed in the past.

To do so, we examine each application’s bug-tracking system. For

6 applications that contain fewer than 1000 bug reports, as shown in

Table 4, we manually check every bug report. For applications with

1000 to 5000 bug reports, we randomly sample 100 bug reports that

have been fixed and contain the keywords performance, slow, or

optimization. For Redmine and Gitlab, which have more than 10,000

bug reports, we sample 200 from them in the sameway. Bymanually

checking each report’s discussion, source code, and patches, we

identify the ones that truly reflect performance problems related

to data processing on the server side. Every bug report is cross-

checked by at least two authors. This results in 140 reports in total

from all 12 applications, as shown in Table 4.

2The database size will increase a little bit during profiling as some pages contain forms,
but the overall increase is negligible and does not affect our scalability comparison.

Figure 2: End-to-end page loading time
Measured for top 10 time-consuming pages per application. Box: 25 to 75 percentile;
Red line: median; PA: problematic actions from all 12 applications (see Section 3.2).

Figure 3: Percentage of server time among end-to-end time

Measured for top 10 most time-consuming pages per application. Red line: median;

PA: problematic actions from all 12 applications (see Section 3.2)

3.4 Threats to Validity

Threats to the validity of our study could come from multiple

sources. Applications beyond these 12 applications may not share

the same problems as these 12 applications. The profiling work-

load synthesized by us may not accurately represent the real-world

workload. The machine and network settings of our profiling may

be different from real users’ setting. Our study of each application’s

bug-tracking system does not consider bug reports that are not fixed

or not clearly explained. Despite these aspects, we have made our

best effort in conducting a comprehensive and unbiased study, and

we believe our results are general enough to guide future research

on improving performance of ORM applications.

4 PROFILING RESULTS

End-to-end loading time. We identify the 10 pages with the

most loading time for every application under the 20,000-record

database configuration and plot their average end-to-end page load-

ing time in Figure 2. 11 out of 12 applications have pages whose

average end-to-end loading time (i.e., from browser sending the

URL request to page finishing loading) exceeds 2 seconds; 6 out of

12 applications have pages that take more than 3 seconds to load.

Tracks performs the worst: all of its top 10 most time-consuming

pages take more than 2 seconds to load. Note that, our workload

is smaller or, for some applications, much smaller than today’s

real-world workload. Considering how the real-world workload’s

size will continue growing, these results indicate that performance

problems are prevalent and critical for deployed Rails applications.

803



Table 5: Number of problematic actions in each application

App Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

slow 0 0 1 1 3 0 0 0 0 1 0 0
not-scalable 1 1 0 0 0 0 2 0 1 2 3 1
slow & not-scalable 0 5 1 2 0 2 1 10 1 0 1 0

Server vs. client. We break down the end-to-end loading time

of the top 10 pages in each application into server time (i.e., time

for executing controller action, including view rendering and data

access, on Rails server), client time (i.e., time for loading the DOM in

the browser), and network time (i.e., time for data transfer between

server and browser). As shown in Figure 3, server time contributes

to at least 40% of the end-to-end-latency for more than half of the

top 10 pages in all but 1 application.3 Furthermore, over 50% of

problematic pages spend more than 80% of the loading time on

Rails server, as shown by the rightmost bar (labeled PA) in Figure 3.

This result further motivates us to study the performance problems

on the server side of ORM applications.

Problematic server actions. Table 5 shows the number of

problematic actions for each application identified using themethod-

ology discussed in Section 3.2. In total, there are 40 problematic

actions identified from the top 10 most time-consuming actions

of every application. Among them, 34 have scalability problems

and 28 take more than 1 second of server time. Half of the pages

that correspond to these 40 problematic actions take more than

2 seconds to load, as shown in the rightmost bar (labeled PA) in

Figure 2. In addition, we find 64 performance issues in these 40

problematic actions, and we will discuss them in detail in Section 5.

5 CAUSES OF INEFFICIENCIES

After studying the 64 performance issues in the 40 problematic ac-

tions and the 140 issues reported in the applications’ bug-tracking

systems, we categorize the inefficiency causes into three categories:

ORM API misuses, database design, and application design. In the

following we discuss these causes and how developers have ad-

dressed them. We believe these causes apply to applications built

using other ORM frameworks as well, as we will discuss in Section 8.

5.1 ORM API Misuses

About half of the performance issues that we studied suffer from

API misuses. In these cases, performance can be improved by chang-

ing how the Rails APIs are used without modifying program se-

mantics or database design. While some of these misuses appear

simple, making the correct decision requires deep expertise in the

implementation of the ORM APIs and query processing.

5.1.1 Inefficient Computation (IC)

In these cases, the poorly performing code conducts useful com-

putation but inefficiently. Such cases comprise more than 10% of

the performance issues in both bug reports and problematic actions.

Inefficient queries. The same operation on persistent data can

be implemented via different ORM calls. However, the performance

of the generated queries can be drastically different. This problem

has not been well studied before for ORM applications.

Figure 4 shows two ways that an online shopping system checks

if there are product variantswhose inventory are not tracked. The

3Part of the server time could overlapwith the client time or the network time. However,
our measurement shows that the overlap is negligible.

Table 6: Inefficiency causes across 12 applications

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS Sum

ORM API Misuse

IC
0 0 0 0 0 1 0 1 2 2 2 0 8

0 0 3 6 5 0 0 2 2 0 0 0 18

UC
0 3 0 0 0 0 0 0 0 0 2 0 5

1 0 3 4 4 1 0 1 2 1 0 0 17

ID
0 1 0 0 3 2 0 3 2 3 0 1 15

3 1 4 5 11 0 0 2 1 2 0 0 29

UD
0 0 1 0 0 0 0 0 0 0 0 0 1

2 0 3 1 2 0 0 0 0 0 0 0 8

IR 0 3 1 0 0 0 0 1 0 0 0 0 5

Database Design Problems

MF
0 0 0 1 0 0 0 0 0 0 1 1 3

0 2 0 0 2 0 0 0 0 0 1 0 5

MI
0 1 0 0 0 0 0 0 0 0 2 0 3

3 1 4 6 3 0 0 3 5 1 1 3 30

Application Design Tradeoffs

DT
1 0 0 2 0 2 6 10 0 1 0 0 22

5 1 1 0 0 1 0 3 1 0 0 2 14

FT
0 2 0 0 0 0 0 0 0 0 0 0 2

3 2 4 0 1 0 2 1 2 1 1 2 19

Sum 18 17 24 25 31 7 8 27 17 11 10 9 204

Data with white background shows 64 issues from 40 problematic actions
Data with gray background shows 140 issues from 12 bug-tracking systems
IC: Inefficient Computation MF: Missing Fields
UC: Unnecessary Computation MI: Missing Indexes
ID: Inefficient Data Accessing DT: Content Display Trade-offs
UD: Unnecessary Data Retrieval FT: Functionality Trade-offs
IR: Inefficient Rendering

Ruby code differs only in the use of any? vs exists?. However,

the performance of the generated queries differs substantially: the

generated query in Figure 4(a) scans all records in the variants

table to compute the count if no index exists, but that in Figure 4(b)

only needs to scan and locate the first variant record where the

predicate evaluates to true. Spree developers discovered and fixed

this problem in Spree-6720.4 Our profiling finds similar problems.

For example, simply replacing any? with exists? in a problematic

action of OneBody improves server time by 1.7×. Our static checker
that will be discussed in Section 8 finds that this is a common

problem as it appears in the latest versions of 9 out of 12 applications

under study.

Another common problem is developers using API calls that gen-

erate queries with unnecessary ordering of the results. For example,

Ror, Diaspora, and Spree developers use Object.where(c).first

to get an object satisfying predicate c instead of Object.find_by(c),

not realizing that the former API orders Objects by primary key

after evaluating predicate c. As a fix, both Gitlab and Tracks devel-

opers explicitly add except(:order) in the patches to eliminate

4We use A-n to denote report number n in application A’s bug-tracking system.
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(a) Inefficient

(b) Efficient

Figure 4: Different APIs cause huge performance difference

Figure 5: A loop-invariant query in Redmine

unnecessary ordering in the queries, further showing how simple

changes can lead to drastic performance difference.

Moving computation to the DBMS. As the ORM framework

hides the details of query generation, developers often write code

that results in multiple queries being generated. Doing so incurs

extra network round-trips, or running computation on the server

rather than the DBMS, which leads to performance inefficiencies.

For example, the patch of Spree-6720 replaces if(exist?)

find; else create with find_or_create_by, where the latter

combines two queries that are issued by exist and find/create

into one. The patch of Spree-6950 replaces pluck(:total).sum

with sum(:total). The former uses pluck to issue a query to load

the total column of all corresponding records and then computes

the sum in memory, while the latter uses sum to issue a query

that directly performs the sum in the DBMS without returning

actual records to the server. The patch of Gitlab-3325 replaces

pluck(:id)+pluck(:id), which replaces two queries and an in-

memory union via + with one SQL UNION query, in effect moving

the computation to the DBMS. Such API misuses are very common

and occur in many applications as we will discuss in Section 8.

There are alsomore complicated cases where a loop implemented

in Ruby can be completely pushed down to DBMS, which has been

addressed in previous work using program synthesis [29].

Moving computation to the server. Interestingly, there are

cases where the computation should be moved to the server from

the DBMS. As far as we know, this issue has not been studied before.

For example, in the patch of Spree-6819, developers replace

Objects.count with Objects.size in 17 different locations, as

count always issues a COUNT query while size counts the Objects

in memory if they have already been retrieved from the database by

earlier computation. Such issues are also reported in Gitlab-17960.

Summary. Rails, like other ORM frameworks, lets developers

implement a given functionality in various ways. Unfortunately,

developers often struggle at picking the most efficient option. The

deceptive names of many Rails APIs like count and sizemake this

even more challenging. Yet, we believe many cases can be fixed

using simple static analyzers, as we will discuss in Section 8.

5.1.2 Unnecessary Computation (UC)

More than 10% of the performance issues are caused by (mis)using

ORM APIs that lead to unnecessary queries being issued. This type

of problems has not been studied before.

Figure 6: A query with known results in Tracks

Loop-invariant queries. Sometimes, queries are repeatedly

issued to load the same database contents and hence are unneces-

sary. For instance, Figure 5 shows the patch from redmine-23334.

This code iterates through every custom field value and retains

only those that user has write access to. To conduct this access-

permission checking, in every iteration, read_only_attribute_

names(user) issues a query to get the names of all read-only fields

of user, as shown by the red highlighted line in the figure. Then,

if value belongs to this read-only set, it will be excluded from the

return set of this function (i.e., the reject at the beginning of the

loop takes effect). Here, the read_only_attribute_names(user)

query returns exactly the same result during every iteration of

the loop and causes unnecessary slowdowns. As shown by the

green lines in figure, Redmine developers hoist loop invariant

read_only_attribute_names(user) outside the loop and achieve

more than 20× speedup for the corresponding function for their

workload. Similar issues also occur in Spree and Discourse.

Dead-store queries. In such cases, queries are repeatedly is-

sued to load different database contents into the same memory

object while the object has not been used between the reloads. For

example, in Spree, every shopping transaction has a correspond-

ing order record in the orders table. This table has a has_many

association relationship with the line_items table, meaning that

every order contains multiple lines of items. Whenever the user up-

dates his/her shopping cart, the line_items table would change, at

which point the old version of Spree always uses an order.reload

to make sure that the in-memory copy of order and its associated

line_items are up-to-date. Later on, developers realize that this

repeated reload is unnecessary, because the content of order is not

used by the program until check out. Consequently, in Spree-6379,

developers remove many order.reload from model classes, and

instead add it in a few places in the before_payment action of the

checkout controller, where the order object is to be used.

Queries with known results. A number of issues are due to

issuing queries whose results are already known, hence incurring

unnecessary network round trips and query processing time. An

example is in Tracks-63. As shown in Figure 6, the code originally

issues a query to retrieve up to show_number_completed num-

ber of completed tasks. Clearly, when show_number_completed

is 0, the query always returns an empty set due to limit being

0. Developers later realize that 0 is a very common setting for

show_number_completed. Consequently, they applied the patch

shown in Figure 6 to only issue the query when needed.

Summary. While similar issues in general purpose programs

can be eliminated using classic compiler optimization techniques

(e.g., loop invariant motion, dead-store elimination), doing so for

ORM applications is difficult as it involves understanding data-

base queries. We are unaware of any compilers that perform such

transformations.
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Figure 7: Inefficient lazy loading in Lobsters

Figure 8: Inefficient eager loading in Spree

5.1.3 Inefficient Data Accessing (ID)

Problems under this category suffer from data transfer slow

downs, including not batching data transfers (e.g., the well-known

“N+1” problem) or batching too much data into one transfer.

Inefficient lazy loading. As discussed in Section 2, when a set

of objects O in table T1 are requested, objects stored in table T2
associated with T1 and O can be loaded together through eager

loading. If lazy loading is chosen instead, one query will be issued

to load N objects from T1, and then N separate queries have to

be issued to load associations of each such object from T2. This is
known as the “N+1” query problem. While prior work has studied

this problem [7, 18, 28], we find it still prevalent: it appears in 15

problematic actions and 9 performance issues in our study.

Figure 7 shows an example that we find in the latest version of

Lobsters, where the deleted code retrieves 50 mods objects. Then,

for each mod, a query is issued to retrieve its associated story.

Using eager loading in the added line, all 51 queries (and hence

51 network round-trips) will be combined together. In our experi-

ments, the optimization reduces the end-to-end loading time of the

corresponding page from 1.10 seconds to 0.34 seconds.

Inefficient eager loading. However, always loading data ea-

gerly can also cause problems. Specifically, when the associated

objects are too large, loading them all at once will create huge

memory pressure and even make the application unresponsive. In

contrast to the “N+1” lazy loading problem, there is little support

for developers to detect eager loading problems.

In Spree-5063, a Spree user complains that their installation

performs very poorly on the product search page. Developers found

that the problem was due to eager loading shown in Figure 8. In the

user’s workload, while loading 405 products to display on the page,

eager loading causes 13811 related variants products containing

276220 option_values (i.e., product information data) to be loaded

altogether, making the page freeze. As shown in Figure 8, the patch

delays the loading of option_values fields of variants products.

Note that these option_values are needed by later computation,

and the patch delays but not eliminates their loading.

Inefficient updating. Like the “N+1” problem, developerswould
issue N queries to update N records separately (e.g., objects.each

|o| o.update end) rather than merging them into one update

(e.g., objects.update_all). This is reported in Redmine and Spree,

and our static checker (to be discussed in Section 8) finds this to be

common in the latest versions of 6 out of the 12 studied applications.

5.1.4 Unnecessary Data Retrieval (UD)

Unnecessary data retrieval happens when software retrieves

persistent data that is not used later. Prior work has identified

this problem in applications built using both Hibernate [27] and

Rails [46]. In our study, we find this continues to be a problem

in one problematic action in the latest version of Gitlab and 9

performance issue reports. Particularly, fixing the unnecessary data

(a) Inefficient partial rendering

(b) Efficient partial rendering

Figure 9: Inefficient partial rendering in Gitlab

retrieval in the latest version of Gitlab can drop the end-to-end

loading time of its Dashboard/Milestones/index page from 3.0

to 1.1 seconds in our experiments. We also see some unnecessary

data retrieval caused by simple misuses of APIs that have similar

names — map(&:id) retrieves the whole record and then returns

the id field, yet pluck(:id) only retrieves the id field.

5.1.5 Inefficient Rendering (IR)

IR reflects a trade-off between readability and performance when

a view file renders a set of objects. It has not been studied before.

Given a list of objects to render, developers often use a library

function, like link_to on Line 4 of Figure 9(a), to render one object

and encapsulate it in a partial view file such as _milestone.html.haml

in Figure 9(a). Then, the main view file index.html.haml simply

applies the partial view file repeatedly to render all objects. The

inefficiency is that a rendering function like link_to is repeatedly

invoked to generate very similar HTML code. Instead, the view file

could generate the HTML code for one object, and then use simple

string substitution, such as gsub in Figure 9(b), to quickly generate

the HTML code for the remaining objects, avoiding redundant com-

putation. The latter way of rendering degrades code readability, but

improves performance substantially when there are many objects

to render or with complex rendering functions.

Although slow rendering is complained, such transformation

has not yet been proposed by issue reports. Our profiling finds such

optimization speeds up 5 problematic actions by 2.5× on average.

5.2 Database Design Problems

Another important cause of performance problems is suboptimal

database design. Fixing it requires changing the database schema.

5.2.1 Missing Fields (MF)

Deciding which object field to be physically stored in database is

a non-trivial part of database schema design. If a field can be easily

derived from other fields, storing it in database may waste storage

space and I/O time when loading an object; if it is expensive to

compute, not storing it in database may incur much computation

cost. Deciding when a property should be stored persistently is a

general problem that has not been studied in prior work.

For example, whenwe profile the latest version of Openstreetmap [19],
a collaborative editable map system, we find that a lot of time is

spent on generating a location_name string for every diary based

on the diary’s longitude, latitude, and language properties stored

in the diary_entry table. Such slow computation results in a prob-

lematic action taking 1 second to show only 20 diaries. However, the
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location_name is usually a short string and remains the same value

since the location information for a diary changes infrequently. Stor-

ing this string physically as a database column avoids the expensive

computation. We evaluate this optimization and find it reducing

the action time to only 0.36 second.

We observe similar problems in the bug reports of Lobster, Spree,

and Fallingfruit, and in the latest version of Redmine, Fallingfruit,

and Openstreetmap. Clearly, developers need help on performance

estimation to determine which fields to persistently store in data-

base tables.

5.2.2 Missing Database Indexes (MI)

Having the appropriate indexes on tables is important for query

processing and is a well-studied problem [42]. As shown in Table 6,

missing index is themost common performance problem reported in

ORM application’s bug tracking systems. However, it only appears

in three out of the 40 problematic actions in latest versions. We

speculate that ORM developers often do not have the expertise

to pick the optimal indexes at the design phase and hence add

table indexes in an incremental way depending on which query

performance becomes a problem after deployment.

5.3 Application Design Trade-offs

Developers fix 33 out of the 140 issue reports by adjusting appli-

cation display or removing costly functionalities. We find similar

design problems in latest versions of 7 out of 12 ORM applications.

It is impractical to completely automate display and functionality

design. However, our study shows that ORM developers need tool

support, which does not exist yet, to be more informed about the

performance implication of their application design decisions.

5.3.1 Content Display Trade-offs (DT)

In our study, the most common cause for scalability problems

is that a controller action displays all database records satisfying

certain condition in one page. When the database size increases, the

corresponding page takes a lot of time to load due to the increasing

amount of data to retrieve and render. This problem contributes to

15 out of the 34 problematic actions that do not scale well in our

study. It also appears in 7 out of 140 issue reports, and is always

fixed by pagination, i.e., display only a fixed number of records in

one page and allow users to navigate to remaining records.
For example, in Diaspora-5335 developers used the will_paginate

library [20] to render 25 contacts per page and allow users to see

the remaining contacts by clicking the navigation bar at the bottom

of the page, instead of showing all contacts within one page as in

the old version. Clearly, good UI designs can both enhance user

experience and improve application performance.

Unfortunately, the lack of pagination still widely exists in latest

versions of ORM applications in our study. This indicates that ORM

developers need database-aware performance-estimation support

to remind them of the need to use pagination in webpage design.

5.3.2 Application Functionality Trade-offs (FT)

It is often difficult for ORM developers to estimate performance

of a new application feature given that they need to know what

queries will be issued by the ORM, how long these queries will

execute, and how much data will be returned from the database. In

our study, all but two applications have performance issues fixed

by developers through removing functionality.

(a) Server-time speedup (×) (b) Line of code changes

Figure 10: Performance fixes and LOC involved

For example, Tracks-870made a trade-off between performance

and functionality by removing a sidebar on the resulting page. This

side bar retrieves and displays all the projects and contexts of the

current user, and costs a lot of time for users who have participated

in many projects. In the side-bar code, the only data-related part

is simply a @sidebar.active_projects expression, which seems

like a trivial heap access but actually issues a SELECT query and

retrieves a lot of data from the database.

As another example, our profiling finds that the story.edit ac-

tion in the latest version of Lobsters takes 1.5 seconds just to execute

one query that determines whether to show the guidelines for

users when they edit stories, while the entire page takes 2 seconds

to load altogether. Since the guidelines object only takes very

small amount of space to show on the resulting page, removing

such checking has negligible impact to the application functionality,

yet it would speed up the loading time of that page a lot.

In general, performance estimation for applications built using

ORMs is important yet has not been done before. It is more difficult

as compared to traditional applications due to multiple layers of

abstraction. We believe combining static analysis with query scala-

bility estimation [25, 31] will help developers estimate application

performance, as we will discuss in Section 8.

6 FIXING THE INEFFICIENCIES

After identifying the performance inefficiencies in the 40 problem-

atic actions across the 12 studied applications, we manually fix each

of them and measure how much our fixes improve the performance

of the corresponding application webpages. Our goal is to quantify

the importance of the anti-patterns discussed in Section 5.

6.1 Methodology

We use the same 20,000-record database configuration used in pro-

filing to measure performance improvement. For a problematic

action that contains multiple inefficiency problems, we fix one at a

time and report the speedup for each individual fix. To fix API-use

problems, we change model/view/control files that are related to the

problematic API uses; to add missing indexes or fields, we change

corresponding Rails migration files; to apply pagination, we use

the standard will_paginate library [20]. We carefully apply fixes

to make sure we do not change the program semantics. Finally, for

two actions in Lobster, we eliminate the expensive checking about

whether to show user guidelines, as discussed in Section 5.3.2.
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6.2 Results

In total, 64 fixes are applied across 39 problematic actions 5 to solve

the 64 problems listed in Table 6.

Speedup of the fixes. Figure 10(a) shows the amount of server-

time speedup and the sources of the speedup broken down into

different anti-patterns as discussed in Section 5.

Many fixes are very effective. About a quarter of them achieve

more than 5× speedup, and more than 60% of them achieve more

than 2× speedup. Every type of fixes has at least one case where it

achieves more than 2× speedup. The largest speed-up is around 39×
achieved by removing unnecessary feature in StoriesController.new

action in Lobsters, i.e., the example we discussed in Section 5.3.2.

There are 40 fixes that alter neither the display nor the function-

ality of the original application. That is, they fix the anti-patterns

discussed in Section 5.1 and 5.2. They achieve an average speedup

of 2.2×, with a maximum of 9.2× speedup by adding missing fields

in GanttsController.show from Redmine.

For all 39 problematic actions, many of which benefit from more

than one fix, their average server time is reduced from 3.57 seconds

to 0.49 seconds, and the corresponding end-to-end page loading

time is reduced from 4.17 seconds to 0.69 seconds, including client

rendering and network communication. In other words, by writing

code that contains the anti-patterns discussed earlier, developers

degrade the performance of their applications by about 6×.
We have reported these 64 fixes to corresponding developers. So

far, we have received developers’ feedback for 14 of them, all of

which have been confirmed to be true performance problems and 7

have already been fixed based on our report.

Simplicity of the fixes. Figure 10(b) shows the lines of code

changes required to implement the fixes. The biggest change takes

56 lines of code to fix (for an inefficient rendering (IR) anti-pattern),

while the smallest change requires only 1 line of code in 27 fixes.

More than 78% of fixes require fewer than 5 lines. In addition, among

the fixes that improve performance by 3× or more, more than 90%

of them take fewer than 10 lines of code. Around 60% of fixes are

intra-procedural, involving only one function.

These results quantitatively show that there is still a huge amount

of inefficiency in real-world ORM applications. Much inefficiency

can be removed through few lines of code changes. A lot of the

fixes can potentially be automated, as we will discuss in Section 8.

7 FINDING MORE API MISUSES

Some problems described in Section 5.1 are about simple API mis-

uses. We identify 9 such simple misuse patterns, as listed in Table

7, and implement a static analyzer to search for their existence in

latest versions of the 12 ORM applications. Due to space constraints,

we skip the implementation details. To recap, these 9 API patterns

cause performance losses due to “An Inefficient Query” ( 1 , 2 ,

3 ), “Moving Computation to the DBMS” ( 7 , 8 , 9 ), “Moving

Computation to the Server” ( 5 ), “Inefficient Updating” ( 4 ), and

“Unnecessary Data Retrieval” ( 6 ), as discussed in Section 5.1.

As shown in Table 7, every API misuse pattern still exists in

at least one application’s latest version. Worse, 4 patterns each

5Among the 40 problematic actions identified by our profiling, 1 of them (from GitLab)
spends most of its time in file-system operations and cannot be sped up unless its core
functionality is modified.

Table 7: API misuses we found in the latest versions

App. 1 2 3 4 5 6 7 8 9 SUM

Ds 8 61 0 0 6 6 3 0 1 85

Lo 1 38 0 0 0 5 1 0 0 45

Gi 7 3 0 1 6 3 3 0 0 23

Re 3 32 0 1 16 7 0 0 0 59

Sp 2 10 0 0 0 0 7 1 0 20

Ro 0 7 0 1 1 0 2 0 0 11

Fu 0 0 0 0 2 0 0 0 0 2

Tr 4 22 0 1 3 0 0 0 0 30

Da 5 42 1 1 0 8 0 0 0 57

On 10 60 0 0 6 0 0 0 0 76

FF 2 0 0 2 0 0 0 0 0 4

OS 0 12 0 0 2 2 0 0 0 16

SUM 42 287 1 7 42 31 16 1 1 428

1 : any?⇒ exists? 2 : where.first⇒ find_by

3 : *⇒ *.except(:order) 4 : each.update⇒ update_all

5 : .count⇒ .size 6 : .map⇒ .pluck

7 : pluck.sum⇒ sum 8 : pluck + pluck⇒ SQL-UNION

9 : if exists? find else create end⇒ find_or_create_by

occur in over 30 places across more than 5 applications. We have

checked all these 428 places and confirmed each of them. For further

confirmation, we posted them to corresponding application’s bug-

tracking system, and every category has issues that have already

been confirmed by application developers. 53 API misuses have

been confirmed, and 29 already fixed in their code repositories

based on our bug reports. None of our reports has been denied.

Only 3 out of these 428 API misuses coincide with the 64 per-

formance problems listed in Table 6 and fixed in Section 6. This is

because most of these 428 cases do not reside in the 40 problematic

actions that we have identified as top issues in our profiling. How-

ever, they do cause unnecessary performance loss, which could be

severe under workloads that differ from those used in our profiling.

In sum, the above results confirm our previously identified issues,

and furthermore indicate that simple API misuses are pervasive

across even the latest versions of these ORM applications. Yet, there

are many other types of API misuse problems discussed in Sec-

tion 5.1 that cannot be detected simply through regular expression

matching and will require future research to tackle.

8 DISCUSSION

In this section, we summarize the lessons learned and highlight the

new research opportunities that are opened up by our study.

Improving ORM APIs. Our study shows that many misused

APIs have confusing names, as listed in Table 7, but are translated

to different queries and have very different performance. Renaming

some of these APIs could help alleviate the problem. Adding new

APIs can also help developers write well-performing code without

hurting code readability. For example, if Rails provides native API

support for taking union of two queries’ results like Django [9]

does, there will be fewer cases of inefficient computation, such as

those discussed in Section 5.1.1. As another example, better ren-

dering API supports could help eliminate inefficient partial render
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problem discussed in Section 5.1.5. To our best knowledge, no ORM

framework provides this type of rendering support.
Support for design and development of ORMapplications.

Developers need help to better understand the performance of their

code, especially the parts that involve ORMAPIs. They should focus

on not only loops but ORM library calls (e.g., joins) in performance

estimation, since these calls often execute database queries and

can be expensive in terms of performance. Building static analysis

tools that can estimate performance and scalability of ORM code

snippets will alleviate some of the API misuses. More importantly,

this can help developers design better application functionality and

interfaces, as discussed in Section 5.3.

Developers will also benefit from tools that can aid in database

design, such as suggesting fields to make persistent, as discussed in

Section 5.2. While prior work focuses on index design [4], little has

been done on aiding developers to determine which fields to make

persistent. As the ORM application already contains information

on how each object field is computed and used, this provides a great

opportunity for program analysis to further help in both aspects.
Compiler and runtime optimizations. While some perfor-

mance issues are related to developers’ design decisions, we believe

that others can be detected and fixed automatically. Previous work

has already tackled some of the issues such as pushing computation

down to database through query synthesis [29], query batching

[28, 40], and avoiding unnecessary data retrieval [27]. There are

still many automatic optimization opportunities that remain un-

studied. This ranges from checking for API misuses, as we discussed

in Section 7, to more sophisticated database-aware optimization

techniques to remove unnecessary computation (Section 5.1.2) and

inefficient queries (Section 5.1.1).

Besides static compiler optimizations, runtime optimizations or

trace-based optimization for ORM frameworks are further possi-

bilities for future research, such as automatic pagination for ap-

plications that render many records, runtime decisions to move

computation between the server and the DBMS, runtime decisions

to switch between lazy and eager loading, and runtime decisions

about whether to remove certain expensive functionalities as dis-

cussed in Section 5.3.2. Automated tracing and trace-analysis tools

can help model workloads and workload changes, which can then

be used to adapt database and application designs automatically.

Such tools will need to understand the ORM framework and the

interaction among the client, server, and DBMS.
Generalizing to other ORM frameworks. Our findings and

lessons apply to other ORM frameworks as well. The database de-

sign (Section 5.2) and application design trade-offs (Section 5.3)

naturally apply across ORMs. Most of the API use problems (Sec-

tion 5.1), like unnecessary computation (UC), data accessing (ID,

UD), and rendering (IR), are not limited to specific APIs and hence

are general. While the API misuses listed in Table 7 may appear to

be Rails specific, there are similar misuses in applications built upon

Django ORM [9] as well: exists() is more efficient than count>0

( 1 ); filter().get() is faster than filter().first ( 2 ); clear

_ordering(True) is like except(:order) ( 3 ); all.update can

batch updates ( 4 ); len() is faster than count()with loaded arrays

( 5 ); only() is like pluck()( 6 ); aggregate (Sum) is like sum in

Rails ( 7 ); union allows two query results to be unioned in database

( 8 ); get_or_create is like find_or_create_by in Rails ( 9 ). We

sampled 15 issue reports each from top 3 popular Django applica-

tions on GitHub. As shown below, these 45 performance issues fall

into the same 8 anti-patterns our 140 Rails issue reports fall into:

IC UC ID UD MF MI DT FT

Redash [21] 2 3 6 0 0 0 2 2
Zulip [23] 2 5 2 1 0 2 1 2
Django-CMS [10] 0 9 3 0 1 0 1 1

9 RELATEDWORK
Empirical studies. Previous work confirmed that performance

bugs are prevalent in open-source C/Java programs and often take

developers longer time to fix than other types of bugs [33, 47]. Prior

work [41] studied the performance issues in JavaScript projects. We

target performance problems in ORM applications that are mostly

related to how application logic interacts with underlying database

and are very different from those in general purpose applications.

Our recent work [46] looked into the database performance of ORM

applications and discussed how better database optimization and

query translation can improve ORM application performance. No

issue report study or thorough profiling was done. In contrast, our

paper performs a comprehensive study on all types of performance

issues reported by developers and discovered using profiling. Un-

necessary data retrieval (UD), content display trade-offs (DT), and

part of the inefficient data accessing (ID) anti-patterns are the only

overlap between this study and our previous work [46] .
Inefficiencies in ORM applications. Previous work has ad-

dressed specific performance problems in ORM applications, such as

locating unneeded column data retrieval [27], N+1 query [26], push-

ing computation to the DBMS [29], and query batching [28, 40, 45].

While effective, these tools do not touch on many anti-patterns dis-

cussed in our work, like unnecessary computation (UC), inefficient

rendering (IR), database designs (MF, MI), functionality trade-offs

(FT), and also do not completely address anti-patterns like ineffi-

cient computation (IC) and inefficient data accessing (ID).
Performance issues in other types of software. Much re-

search was done to detect and fix performance problems in general

purpose software [30, 33, 36, 37, 39, 43, 44]. Detecting and fixing

ORMperformance anti-patterns require a completely different set of

techniques that understand ORM and underlying database queries.

10 CONCLUSION

Database-backed web applications are widely used and often built

using ORM frameworks. We conduct a comprehensive study to un-

derstand howwell such applications perform and scale with the data

they manage. By profiling the latest versions of 12 representative

ORM applications and studying their bug-tracking systems, we find

9 types of ORM performance anti-patterns and many performance

problems in the latest versions of these applications. Our findings

open up new research opportunities to develop techniques that can

help developers solve performance issues in ORM applications.
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