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Abstract—Future optical networks will have 10°7 increase in rates
and highly granular traffic due to large transactions. Cognitive
techniques will provide agile automated fast scheduling of resources,
topology changes and agile adaptations for congestion control, load
balancing and reconfiguration involving all layers.!
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I. INTRODUCTION

New applications for big data, video and interactive games
and future 5G wireless applications will require an increase of
network data rates of 10°* and beyond. The cost per
bit/second must be brought down by approximately the same
order of magnitude. Overprovisioning for low network service
delay is too costly and is not a viable option. Economic
efficiency can be achieved by increasing resource sharing
through agile network control and application specific
network tuning. There are two major research forefronts that
are currently being addressed:

1. Physical Layer: massive integration via silicon
photonics and hybrids for reduction in footprints, lower
costs, weight and power consumption.

2. Development of agile, responsive and affordable on-
demand network services via a new architecture across
ALL network layers.

Current optical networks, including today’s software defined
networks and orchestration, are operated with predominantly
quasi-static connections. Present methods of setting up a
wavelength path result in slow changes to the network (~10
min setup times), as each of the network element along the
path is incrementally tuned to the final settings to avoid
instabilities and transient impairments arising from rapidly
introducing another optical channel into the network. Fast
dynamics due to large flow traffic may use an entire
wavelength for seconds to minutes with fast turn-ons and
turn-offs, requiring adaptations of the order of ~10mS. In
today’s optical network, the link quality of all wavelengths in
a fiber is monitored as the lightpath is turned on in several
steps. Optical Flow Switching [1] enables and coordinates
per-session end-to-end all optical lightpath switching over an
optical network. Its effectiveness is based on fast dynamic
scheduling in a short time scale (<100ms) for transaction
times of >1s. The analysis on control traffic and control
computation complexity to including impacts of such
impairments showed that the management and control of such
futuristic agile optical network is the major obstacle that
needs to be addressed, [2]. Changes in offered traffic and
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congestion within the network can occur in a second time
scale and human cannot be in the loop of an efficient network
management and control system. Cognitive techniques can
provide fast network state assessments, scheduling and
reconfigurations to maintain high network performance.
While cognitive techniques can be applied to all networks in
general, this paper will only address only ultra-fast optical
networks of the future. There have not been many quantitative
results pertaining to cognitive optical networks. To illustrate
the usefulness of cognitive techniques, this paper analyzes a
specific adaptation algorithm of optical network management
and control and evaluates the performance of a particular case
analytically.

II. COGNITIVE MANAGEMENT AND CONTROL OF AGILE
DYNAMIC OPTICAL NETWORKS

A cognitive network management and control system senses
current network state conditions such as traffic and flow
patterns and uses this information to decide how to adapt the
network to satisfy/improve overall performance and provide
quick responses to transaction requests. The cognitive
network module is part of the control plane that touches all
layers of a network, Fig. 1, (it may reside at network nodes as
well as at a centralised or distributed controller/s).
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Figure 1.Cognitive engine as part of network control plane.

The design of a cognitive network should consider and answer
the following questions (which is very far away from being
completed):
1. Should the cognitive processes be centralized, fully
distributed, or partially distributed?
2. How should network state information be filtered as
the amount of global information grows?



3. How should network changes be synchronized
among subnets and controllers?

4. Can the network function work well with under-
sampled (sparse) and stale link state data?

The number of network parameters and their short coherence
time for the very dynamic future networks render acquiring
the complete state information of the network impractical, [2].
The idea is to sense and control a small subset of the
parameters with the “most” information contents and uses
them to perform channel and traffic estimations and tune
network performance. The network management and control
system implements these objectives:

1. Infers network state based on traffic and active
probing with sparsely sampled and stale data.

2. Make decisions on fast scheduling of bursty large
transaction requests, load balancing, reconfiguration,
and restoration.

3. Predict intention of users and take appropriate
actions.

Research in this area has yet to yield many quantitative results
and thus the promise of cognitive network is still quite
illusive. In this paper, we will use a simple and well bounded
problem; formulate and solve it analytically as an illustration
of the efficacy of cognitive optical networks.

2.1. An example on fast reconfiguration for all-optical WAN
Consider the following fiber network that provides wide area
tunnelled connections between major metropolitan areas in
the form of data pipes of capacity C bits per second as
depicted in Fig.2, [2]. The capacity assignment between the
ingress and egress metro-WAN nodes will be in integral
multiples of rate C (the rate per wavelength connection); i.e. £
> (), is an integer number of wavelengths each of capacity C.
Since the offered traffic is random, the network management
and control system needs to observe the input traffic and
decide if the average traffic volume has changed and
adaptively assigns new capacity or reduces the existing
capacity (in number of wavelengths).
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Figure 2. Cognitive network control system monitors traffic
arrival at MAN-WAN interfaces triggering reconfiguration.

In this problem we assume flow sessions (typically sessions of
lengths >1S) arrive as a conditional Poisson Process with a
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rate parameter A that can change over time and usually is
stochastic in nature. The arrival process in general is a doubly
stochastic point process, [3]. If the tunnel has k& wavelengths,
it can transmit & sessions at the same time. When all &
wavelengths are busy, sessions are scheduled for future
transmissions. For the ingress MAN-WAN node the controller
(can be distributed or centralised) maintains a virtual (virtual
since the sessions are really held at the senders’ terminals)
input queue with assigned time and wavelength for each
session to transmit. The service time of this system is the
amount of time a single wavelength can transmit the session
which can be modelled as deterministic (if the sessions are of
constant size), exponential or of a general distribution (that
can be acquired via learning on past data). If the service time
is exponential (i.e. the sessions have exponentially distributed
sizes) the queue can be modelled as an M/M/m queue
characterised by the Markov Process as depicted in Fig.3.
Note in this problem the rate parameter A, can be time varying
and stochastic. Thus Fig. 3 should be viewed as a short term
model of the system over one coherence time of A. It is a good
approximation if the number of session arrivals per coherence
time is fairly large. When the traffic pattern and thus A or the
number of wavelengths (k) assigned changes, the parameters
in the model will change accordingly.
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Figure 3. Markov Process Model for M/M/m queue.
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If the system had been in steady state before the arrival rate
changes, then the prior steady state probability distribution of
the queue should be used as the initial condition of the next
model and the transient until the next steady state is given by
traditional queueing theory such as in “delayed renewal
process,” [3]. The key to reconfiguration (in this case decision
to increase or decrease the number of wavelengths assigned)
can be done via estimates of the change in the arrival rate A.
The following are two simple estimators used in [4,6]. The
first estimator simply counts for a fixed amount of time T
backwards from the current time ¢ and forms the estimate as
shown below. The second estimator, also shown below, fixes
the number of arrivals » and determines the amount of time it
takes to find » arrivals.

Ap = W for fixed T, and
A, = Ny - Ng{_T) — ,for fixed n ; T =time for n arrivals.

The first estimator is simple and easy to find analytical
performance bounds. The second is much more responsive to
abrupt arrival rate changes especially on fast uptakes or slow
down-turns. It only requires # arrivals to make an estimate
and the amount of time it takes to make the estimate will
adjust to the underlying rate parameter albeit not optimally.
Fig. 4 depicts the behavior of the two estimators. The
performance is quite different even though » in the second
case is picked nominally such that n=AT. The value of T and n



must be chosen sufficiently large so the estimation errors are
kept small. A small (normalized by the mean m) standard
deviation o/mean can be used with the Chebyshev Inequality
to guarantee small false alarm rates and high probability of
detection in a Neyman-Pearson Test. Tighter Chernoff
Bounds can be used, though the bound will be more sensitive
to the distribution of the arrival process, whereas the
Chebychev Inequality has the advantage of only depending on
the mean and standard deviation of the distribution and thus is
more robust.
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Figure 4. Sample function of Poisson arrival process and
estimators behaviour; the arrows are session arrival times.

The optimum Bayesian Estimator is given by considering the
arrival times of the flows: ¢ = {¢;, (-, #)}. The estimator is the
minimum mean square causal estimator of the arrival rate 1
given{t;}, using a doubly stochastic point process model for
the arrival times of the sessions, [3],
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Where p(4) is the a-priori probability distribution of the
arrival rate parameter as a stochastic process, which are not
usually known and also can be nonstationary. This can be
estimated over the coherence time of the network from prior
traffic statistics using a learning algorithm. The caution with
such learning techniques is that it will not do well against an
extremely rare or black-swan event. The assumption, that the
coherence time of the arrival process is longer than the times
that reconfigurations occur, is the regime where such
algorithms are useful. In the event that the coherence time is
shorter than the times needed for reconfiguration, adaptive
techniques will not be effective. The queueing delay in
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general is of the form depicted in Fig.5. f is a polynomial
depending on the queueing model. The steady state delays for
k-1, k and k+1 wavelengths assigned to the tunnel are shown.
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Figure 5. Queueing delay of general service time with k-1, k
and k+1 wavelengths assigned to the tunnel; 6=target load.

Fig. 6 shows the delay in the system when there is a sudden
surge of session arrival rates (doubled) at /=0 for the estimator
Ar. The estimator is accurate for large 7’s but the
reconfiguration response is slow whereas small 7°s are more
agile but exhibit high false alarm probabilities. Both the A4,
and the optimum estimator due to Clark are better but not
perfect. In the case of the optimum estimator the algorithm is
very hard to implement requiring the prior distribution of the
A process. The desire is to find an algorithm that runs
continuously and adapts the system at any time scale and
achieve the delay performance of the lower envelope of the
various estimators. We will use a technique of sequential
decision called “stopping trials” to explore its efficacy.
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Figure 6. Delay performance of adaptation algorithm.

2.2 Stopping trial: optimum sequential maximum likelihood
triggering of reconfiguration, [4].

The cognitive network management and control system
monitors the traffic arrival at the metro-WAN (wide-area-
network) interface node. We model the traffic arrival to the
interface node as a Poisson Process with rate parameter A
arrivals per second, Fig.7, (any arrival process can be used).
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Figure 7. Poisson session arrival process, [5].



For simplicity (to get some simple analytical results to
understand the dependency of the behavior of the system to
key network parameters but the formulation is good for
G/G/m systems) assume each traffic session is a deterministic
binary sequence of length L; hence a M/D/m queueing model.
The service time is the transmission time, L/C second. The
session inter-arrival times {X;} are independent of each other.
The number of session arrivals N(f) jumps by one at every
event time {S;}. Given A, the relevant distribution, mean,
variance and moment generating functions are:

2/ .
A-r’
The semi-invariant moment generating function y = log(g) is

convex and we can use the Chernoff to bound the error
probability of a sequential test.

fr)=dexp(-x) E[X]=1/1 or=UX1 g,(n= r<i

a1
e (r)_(ﬂ,—l’)z =20

For a threshold ¢, the Chernoff bound for the n™ session
arrival time to exceed a threshold «a is, Pr{S,>a} is:

Pr{S, > a}<exp {0{ re(n) % }}

7x'(r)

=exp iy (1) = ry (a/ )}
=exp {— ad + nflog(al) — log(n) + 1]}

where y, (r,)=a/n

2.3 Sequential observations and stopping trials.

We consider the cognitive network management and control
system that uses a sequential test (stopping trial) to trigger
network reconfigurations. The objective is to find a good
algorithm to make a decision at the fastest possible time when
the session arrival statistics changes (increases or decreases)
by observing the arrival process at the node sequentially. The
performance metric is to make sure the queueing delay is not
excessive or stay below a preset target value. Taking a long
time to decide, after a change in arrival rates, will be
unresponsive and increases queueing delays (exceeding
threshold set by the performance metric on delay) on the
uptake and waste resources on the downturn. Reacting too
quickly may seem responsive but wrong (possibly frequent)
decisions on noisy data (false alarms) will lead to wasted
resources and deny resources for more needy lightpaths and
trigger frequent adaptations. Simple decision algorithms such
as Ar and 4, described above, have the disadvantage of taking
too much time to react when there are more arrivals than
expected and reacting to noisy data when there are not enough
arrivals to give a good estimate of the underlying rate change,
resulting in  inappropriate and even  disruptive
reconfigurations. Here the sequential test makes decisions in a
responsive manner yet with good accuracies. Thus, the
algorithm will make a decision when it thinks there are
enough arrivals to reliably make an estimate or when there are
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not enough arrivals, it will decide to continue to make
observations until it can make a clear choice with a small
probability of making an error. The decision algorithm can be
modeled as a two threshold crossing problem.

Assume the network has been running (since ¢ = - o) with
traffic session arrival rates of A = k6@ each with length L bits.
The capacity used to serve this traffic is kC with average
traffic C6k. The traffic undergoes a change at = 0 to (k+1)6
or (k-1)@ as in Fig. 8. For respectable delays &€ must be less
than 1, possibly in the range 0.4 - 0.7. The idea is when the
traffic changes enough to warrant a change in capacity
assignment due to delay considerations the network
management system will either add or subtract a wavelength
of capacity C. We will explore the responsiveness of this
system in the following analysis.

Average traffic arrival rate A4

State 1: traffic increases

(k+1)6
State 0: original traffic k0

(k—l)t9 _StaTte_2: t_raf_ﬁc_de?re_ase_s -

0 t

Figure 8. Average traffic Poisson arrival rate with possible
change of rate at t = 0, from State 0 to State 1, C=1.

Define for the traffic in States 0, 1 and 2 respectively as,

Z, =S —nlk6. E[Z 1=0,—n/6k((k+1)and n/ Gk —1).
We can define the new “inter-arrival times” sequence as:
Y,=X,-1/kf, (C set to 1). Y, is IID and is zero mean for the

traffic in State 0 and Y < 0 for the traffic in State 1 and ¥ >0
for the traffic in State 2 and the Y’s are IID except possibly
across the boundary at = 0. Thus,

Z, = Zn: Y, is a random walk in intervals te (-00,0) and (0,0).

i=1

Note that this shifted arrival process is no longer Poisson and
the increment Y, can be either positive or negative with non-
zero probability and it has bounded expectation, as shown in
Fig.9. It is still a random walk. Technically, Z, is a zero mean
Martingale given the network traffic is in State 0, a Sub-
martingale given the traffic is in State 1 and a Super-
martingale given the traffic is in State 2. The algorithm
essentially is a sequential maximum-likelihood hypothesis test
on the running sequence Z, or equivalently the increments Y,,.
We will assume the process starts at # = 0 and the system will
eventually either make a transition to state 1 or state 2 from
state 0 (the length of time may be unbounded). With no
change in traffic load, Z, will hover around 0, though since Z,
has non-zero variance the process eventually may wander off
and trip the thresholds « or £ causing an error in adaptation. If
an error in adaptation occurs the algorithm is self-correcting
in the sense that it will correct its errors after a while since the
algorithm is always running. The probability of an erroneous
reconfiguration can be set with arbitrary low probability or



long mean free time of occurrence by tuning « and £. Assume
a state change occurred at some time say ¢ = 0. The optimum
hypothesis test is to calculate the likelihood ratio A, and
compare it to the thresholds at every session arrival time.

/)
Al7)- fz,H(ﬁ )
fZ/H Z‘l
The M aximum Aposterion MAP, ruleis :

A(i > p,/ p, select state2
< p,/ p, select statel

Equivalently, we can use the log likelihood ratio,
log A(E)z Zlog A(yn ), since y, is IID
n=1
Thus, given the state, the two random walks contain the same
sequence {Z,} of sample values but with different probability
measures, Fig.9.
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Figure 9. Sample functions of the random walk Z,, one sample
function for traffic in State 1 and one for State 2.

The network management system will run the sequential
detection test with two thresholds « and £ as shown in Fig.9.
When the traffic increases (system in State 1), the random
walk Z, will drift towards crossing £ (inter-arrival times are
shorter and thus the negative drift) and result in the addition
of a unit of capacity C. When the traffic decreases (system
move to State 2), Z, will drift towards crossing « (the inter-
arrival times are longer) and result in a subtraction of capacity
C. With no change in traffic load, Z, will hover around 0,
though since Z, has non-zero variance the process eventually
may wander off and trip the thresholds ¢ or S causing an error
in adaptation. Thus the magnitude of & and £ must be set
large enough so the probability of making such an error is
small. However, since this algorithm is continuously running,
any errors can be corrected eventually as the process evolves.
If the traffic undergo a change in state at # = 0 to either State 1
or State 2 from State 0, it is informative to find out what is the
mean time to tripping one of the thresholds. This can be found
by using a technique for running sequential tests called
stopping trials. Let J (the discrete stopping trial variable) be
the number of arrivals after ¢+ = 0 that the network
management system will add or subtract capacity. The
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expected value of J given the traffic is in State 1 and 2 can be
found using Wald’s Identity and Equality, [5].

Wald's Identity : E[exp (rZ, — Jy(r))]=1;
Wald's Equaltiy : E[S, | = I_/E[J]
1

1
sy () =——+ ;
Y= I,

A
A—r
_L+ [ 1

kO (k+1)0 Ok(k+1)

.
=———+1lo
y(r) o e

7i(0)=

ELJ[]] =T (1) = %ll] _ % — _B6k(k+1)

a o«
E[Z]2]  y;(0)
Thus, the mean number of arrivals that will trigger the
addition of a wavelength is given by E[J/1] = -fS6k(k+1). Not
surprisingly, the mean number of session arrivals until a
threshold is tripped is proportional to the magnitude of f and
the target load factor, 8. However, E[J/H] for each hypothesis
H, is proportional to the square of the current number of
wavelengths £, assigned. The reason is with & wavelengths
and at a nominal load away from the threshold the £
wavelengths will share the arrivals evenly accounting for one
factor of k and the other factor of £ comes from the service
rate of k& wavelengths. An exponentially tight approximate
expression for the error probability is:

Prieft}~ exp {ELJ[21y, (D} = . Prief2} ~ exp B/, (D} = e

E[J]2]=J(2) =

=abk(k—1);fork>1

Now we can treat the case when there is no state change (i.e.
the network stays in State 0), and find the probability Pr{e|0},
of making an erroneous reconfiguration as the network
management system runs in real time. We also want to
determine if the algorithm works when we do not know a
traffic change has occurred. We can use the Chernoff Bound
as above to estimate this probability but here we use the
Chebychev Inequality instead since the bound only requires
mean and variances and not knowledge of the detailed
distributions. Hence the estimate is more robust to variations
of the underlying statistic of session arrivals.

Pr{e0} = Pr{Z, crossing & or 3}
= Pr{Z crossing a}+ Pr{Z, crossing S}

Using Kolmogorov's random walk inequality on Z, after m steps:

Pr{max
<n<m

2

S, —n?‘ > mg}s g

me
2
Pr{Z,crossing &t | = Pré‘gﬂg Z,|zme= a}S ma;o; = (a]?;)z
ol =1/ =1/(koy
2
Pz cossing ) = el 2 me = ] < =
Pr{e 0, after m arrivals} < (k}Z)z (alz + ,Blzj



Thus the error probability linearly increases with m and
decreases as the square of « and f. Even if there has been an
erroneous reconfiguration due to tripping of one of its
threshold, the algorithm will self-correct after a while. It is
possible to determine how quickly the algorithm can correct
itself, by modeling the elapsed interval from erroneous
adaptation to self-corrections as a renewal process. The
expected time to tripping any threshold (including recovery
via self-correction after making an error) can be obtained
using first passage time techniques. The frequencies at which
the errors occur can be obtained using renewal theory and
Blackwell’s Theorem. These quantities can be obtained
analytically but we will save those for another time. Such
information will be important and very useful for the network
architecture to tune the algorithm and the value of the
thresholds for good but not jittery response.

III. SUMMARY AND DISCUSSIONS

Future network management control systems must be agile
and fast adaptive due to significant increase in large data
volume and session granularities (a single transaction may
occupy entire wavelength for a transmission period). These
dynamics will demand network management and control of a
time scale as fast as ~10mS compared to minutes and hours of
current networks. Sensing schemes will be employed where
each node and link selectively (as in judiciously) senses the
network state (in Layers 1, 2 and 3). This information can be
combined across nodes by a centralized or distributed
controller to perform scheduling, complex statistical inference
and network reconfigurations/load-balancing and even more
drastic operations such as isolating suspicious subnet upon
detection of anomalies for information assurance purposes.
Cognitive techniques can eliminate human in the loop for
network management and rapidly (and statistically optimally
or near optimally) estimate network state trajectories and
optimize network configurations. Learning algorithms can be
used to estimate from historical data the nominal traffic
statistics. In this paper, we use a specific example that yields
analytical results to illustrate the efficacy of cognitive optical
networks but it is merely a hint of what a more extensive set
of such algorithms can do.

The cognitive algorithm described here is Bayesian based,
while other cognitive techniques may be used in other
contexts to manage optical networks. The algorithm has four
phases:
1. Observation of session arrivals
2. Estimation of arrival rate changes
3. React to increase or decrease of traffic and add or
subtract a wavelength in the tunnel between two
MAN:E.
4. Continue assessment for further changes or self-
correct erroneous reconfigurations.

The first three traffic estimators all require some knowledge
of the prior statistics of the session arrival processes. The first
estimator, Ay, uses A to determine the amount of observation
time 7, to form an estimate. The second estimator, A,
predetermines the number of arrivals n, before the estimator
makes a decision. This has disadvantages, among which is:
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when the traffic suddenly reduces drastically, the algorithm
does not react quickly. In fact if there are no arrivals the
estimator will not output a decision. On the other hand, the
stopping trial algorithm takes care of this case very gracefully.
The third (optimum) estimator by Clark needs the prior
statistical p(4), of the arrival process, which is hard to
determine. Any distributions given by idealised theoretical
models will not be totally accurate (though probably
tolerable). Learning from past data will not yield reliable
models for rare events especially when the network is close to
a serious congestion breakdown or at the on-set of zero day
events.

The stopping trial algorithm analysed here does not have the
shortcomings of the first three estimators. Its key assumption
is that the arrivals are independent and identically distributed
if the arrival process is in a quasi-static state where 4 does not
change much. The distribution of the inter-arrival times do not
have to be exponential as used here to get simple analytical
results. As long as the arrival process can be approximately
modelled as a renewal process (a special case of random
walk), the algorithm will work. The algorithm performs well
when the observation and decision process time duration is
shorter than the coherence time of the session arrival process.
When it takes longer than the arrival process coherence time
to estimate, the algorithm is not expected to perform well. In
those cases, it is not clear adaptive reconfigurations are
beneficial. Perhaps over-provisioning is the only sensible
solution then.

One superior characteristic of the stopping trial algorithm (it
is the optimum maximum a-posteriori sequential test) is that it
will make a decision whenever it determines it can do it
reliably; not before or after. This ‘just in time’ behavior saves
time and prevents unnecessary errors when there are
insufficient observations. When the session arrival rate surges,
the algorithm makes a decision as soon as the threshold,
which is set with a target (low) probability of error, is tripped.
On the downturn, it can be set to trip the threshold even if
there are no arrivals, which is possible). The algorithm runs
continuously and will self-correct reconfiguration errors. It is
important for the network architect to use techniques such as
‘first passage times’ and ‘renewal times’ to estimate the
frequency of errors and tune the thresholds away from
unacceptable disruptive frequent reconfigurations. The choice
will be a sensible balance of times to adaptation versus
frequency of errors and coherence times of the network.
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