
1 
 

Cognitive Optical Networks

Vincent W.S. Chan, Life Fellow IEEE, Fellow OSA 
Claude E. Shannon Communication and Network Group, Research Laboratory of Electronics 

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

 
Abstract—Future optical networks will have 103-4 increase in rates 

and highly granular traffic due to large transactions. Cognitive 

techniques will provide agile automated fast scheduling of resources, 

topology changes and agile adaptations for congestion control, load 

balancing and reconfiguration involving all layers.1 
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I. INTRODUCTION 

New applications for big data, video and interactive games 

and future 5G wireless applications will require an increase of 

network data rates of 10
3-4

 and beyond. The cost per 

bit/second must be brought down by approximately the same 

order of magnitude. Overprovisioning for low network service 

delay is too costly and is not a viable option. Economic 

efficiency can be achieved by increasing resource sharing 

through agile network control and application specific 

network tuning. There are two major research forefronts that 

are currently being addressed: 

1. Physical Layer: massive integration via silicon 

photonics and hybrids for reduction in footprints, lower 

costs, weight and power consumption. 

2. Development of agile, responsive and affordable on-

demand network services via a new architecture across 

ALL network layers. 

Current optical networks, including today’s software defined 

networks and orchestration, are operated with predominantly 

quasi-static connections. Present methods of setting up a 

wavelength path result in slow changes to the network (~10 

min setup times), as each of the network element along the 

path is incrementally tuned to the final settings to avoid 

instabilities and transient impairments arising from rapidly 

introducing another optical channel into the network. Fast 

dynamics due to large flow traffic may use an entire 

wavelength for seconds to minutes with fast turn-ons and 

turn-offs, requiring adaptations of the order of ~10mS. In 

today’s optical network, the link quality of all wavelengths in 

a fiber is monitored as the lightpath is turned on in several 

steps. Optical Flow Switching [1] enables and coordinates 

per-session end-to-end all optical lightpath switching over an 

optical network. Its effectiveness is based on fast dynamic 

scheduling in a short time scale (<100ms) for transaction 

times of 1s. The analysis on control traffic and control 

computation complexity to including impacts of such 

impairments showed that the management and control of such 

futuristic agile optical network is the major obstacle that 

needs to be addressed, [2]. Changes in offered traffic and 
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congestion within the network can occur in a second time 

scale and human cannot be in the loop of an efficient network 

management and control system. Cognitive techniques can 

provide fast network state assessments, scheduling and 

reconfigurations to maintain high network performance. 

While cognitive techniques can be applied to all networks in 

general, this paper will only address only ultra-fast optical 

networks of the future. There have not been many quantitative 

results pertaining to cognitive optical networks. To illustrate 

the usefulness of cognitive techniques, this paper analyzes a 

specific adaptation algorithm of optical network management 

and control and evaluates the performance of a particular case 

analytically. 

II. COGNITIVE MANAGEMENT AND CONTROL OF AGILE 

DYNAMIC OPTICAL NETWORKS 

A cognitive network management and control system senses 

current network state conditions such as traffic and flow 

patterns and uses this information to decide how to adapt the 

network to satisfy/improve overall performance and provide 

quick responses to transaction requests. The cognitive 

network module is part of the control plane that touches all 

layers of a network, Fig. 1, (it may reside at network nodes as 

well as at a centralised or distributed controller/s). 

 
Figure 1.Cognitive engine as part of network control plane. 

The design of a cognitive network should consider and answer 

the following questions (which is very far away from being 

completed):  

1. Should the cognitive processes be centralized, fully 

distributed, or partially distributed?  

2. How should network state information be filtered as 

the amount of global information grows?  
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3. How should network changes be synchronized 

among subnets and controllers?  

4. Can the network function work well with under-

sampled (sparse) and stale link state data? 

The number of network parameters and their short coherence 

time for the very dynamic future networks render acquiring 

the complete state information of the network impractical, [2]. 

The idea is to sense and control a small subset of the 

parameters with the “most” information contents and uses 

them to perform channel and traffic estimations and tune 

network performance. The network management and control 

system implements these objectives: 

1. Infers network state based on traffic and active 

probing with sparsely sampled and stale data. 

2. Make decisions on fast scheduling of bursty large 

transaction requests, load balancing, reconfiguration, 

and restoration. 

3. Predict intention of users and take appropriate 

actions. 

Research in this area has yet to yield many quantitative results 

and thus the promise of cognitive network is still quite 

illusive. In this paper, we will use a simple and well bounded 

problem; formulate and solve it analytically as an illustration 

of the efficacy of cognitive optical networks.  

2.1. An example on fast reconfiguration for all-optical WAN 

Consider the following fiber network that provides wide area 

tunnelled connections between major metropolitan areas in 

the form of data pipes of capacity C bits per second as 

depicted in Fig.2, [2]. The capacity assignment between the 

ingress and egress metro-WAN nodes will be in integral 

multiples of rate C (the rate per wavelength connection); i.e. k 

> 0, is an integer number of wavelengths each of capacity C. 

Since the offered traffic is random, the network management 

and control system needs to observe the input traffic and 

decide if the average traffic volume has changed and 

adaptively assigns new capacity or reduces the existing 

capacity (in number of wavelengths).  

 

Figure 2. Cognitive network control system monitors traffic 

arrival at MAN-WAN interfaces triggering reconfiguration.  

In this problem we assume flow sessions (typically sessions of 

lengths >1S) arrive as a conditional Poisson Process with a 

rate parameter  that can change over time and usually is 

stochastic in nature. The arrival process in general is a doubly 

stochastic point process, [3]. If the tunnel has k wavelengths, 

it can transmit k sessions at the same time. When all k 

wavelengths are busy, sessions are scheduled for future 

transmissions. For the ingress MAN-WAN node the controller 

(can be distributed or centralised) maintains a virtual (virtual 

since the sessions are really held at the senders’ terminals) 

input queue with assigned time and wavelength for each 

session to transmit. The service time of this system is the  

amount of time a single wavelength can transmit the session 

which can be modelled as deterministic (if the sessions are of 

constant size), exponential or of a general distribution (that 

can be acquired via learning on past data). If the service time 

is exponential (i.e. the sessions have exponentially distributed 

sizes) the queue can be modelled as an M/M/m queue 

characterised by the Markov Process as depicted in Fig.3. 

Note in this problem the rate parameter , can be time varying 

and stochastic. Thus Fig. 3 should be viewed as a short term 

model of the system over one coherence time of . It is a good 

approximation if the number of session arrivals per coherence 

time is fairly large. When the traffic pattern and thus  or the 

number of wavelengths (k) assigned changes, the parameters 

in the model will change accordingly.  

Figure 3. Markov Process Model for M/M/m queue. 

If the system had been in steady state before the arrival rate 

changes, then the prior steady state probability distribution of 

the queue should be used as the initial condition of the next 

model and the transient until the next steady state is given by 

traditional queueing theory such as in “delayed renewal 

process,” [3]. The key to reconfiguration (in this case decision 

to increase or decrease the number of wavelengths assigned) 

can be done via estimates of the change in the arrival rate . 

The following are two simple estimators used in [4,6]. The 

first estimator simply counts for a fixed amount of time T 

backwards from the current time t and forms the estimate as 

shown below. The second estimator, also shown below, fixes 

the number of arrivals n and determines the amount of time it 

takes to find n arrivals.  

arrivals. for   time  ; fixedfor 

 andfixedfor 

n







Tn  ,
T

n)Tt(N)t(N
λ

  T,  ,
T

)Tt(N)t(N
λ

n

T

 

The first estimator is simple and easy to find analytical 

performance bounds. The second is much more responsive to 

abrupt arrival rate changes especially on fast uptakes or slow 

down-turns. It only requires n arrivals to make an estimate 

and the amount of time it takes to make the estimate will 

adjust to the underlying rate parameter albeit not optimally. 

Fig. 4 depicts the behavior of the two estimators. The 

performance is quite different even though n in the second 

case is picked nominally such that n=T. The value of T and n 

…
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must be chosen sufficiently large so the estimation errors are 

kept small. A small (normalized by the mean m) standard 

deviation /mean can be used with the Chebyshev Inequality 

to guarantee small false alarm rates and high probability of 

detection in a Neyman-Pearson Test. Tighter Chernoff 

Bounds can be used, though the bound will be more sensitive 

to the distribution of the arrival process, whereas the 

Chebychev Inequality has the advantage of only depending on 

the mean and standard deviation of the distribution and thus is 

more robust. 

 
Figure 4. Sample function of Poisson arrival process and 

estimators behaviour; the arrows are session arrival times. 

The optimum Bayesian Estimator is given by considering the 

arrival times of the flows: t = {ti, (-, t)}. The estimator is the 

minimum mean square causal estimator of the arrival rate  

given{ti}, using a doubly stochastic point process model for 

the arrival times of the sessions, [3],  
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Where p() is the a-priori probability distribution of the 

arrival rate parameter as a stochastic process, which are not 

usually known and also can be nonstationary. This can be 

estimated over the coherence time of the network from prior 

traffic statistics using a learning algorithm. The caution with 

such learning techniques is that it will not do well against an 

extremely rare or black-swan event. The assumption, that the 

coherence time of the arrival process is longer than the times 

that reconfigurations occur, is the regime where such 

algorithms are useful. In the event that the coherence time is 

shorter than the times needed for reconfiguration, adaptive 

techniques will not be effective. The queueing delay in 

general is of the form depicted in Fig.5. f is a polynomial 

depending on the queueing model. The steady state delays for 

k-1, k and k+1 wavelengths assigned to the tunnel are shown. 

 
Figure 5. Queueing delay of general service time with k-1, k 

and k+1 wavelengths assigned to the tunnel; =target load. 

Fig. 6 shows the delay in the system when there is a sudden 

surge of session arrival rates (doubled) at t=0 for the estimator 

T. The estimator is accurate for large T’s but the 

reconfiguration response is slow whereas small T’s are more 

agile but exhibit high false alarm probabilities. Both the n 

and the optimum estimator due to Clark are better but not 

perfect. In the case of the optimum estimator the algorithm is 

very hard to implement requiring the prior distribution of the 

 process. The desire is to find an algorithm that runs 

continuously and adapts the system at any time scale and 

achieve the delay performance of the lower envelope of the 

various estimators. We will use a technique of sequential 

decision called “stopping trials” to explore its efficacy. 

Figure 6. Delay performance of adaptation algorithm. 

2.2 Stopping trial: optimum sequential maximum likelihood 

triggering of reconfiguration, [4]. 

The cognitive network management and control system 

monitors the traffic arrival at the metro-WAN (wide-area-

network) interface node. We model the traffic arrival to the 

interface node as a Poisson Process with rate parameter  

arrivals per second, Fig.7, (any arrival process can be used).  

 

Figure 7. Poisson session arrival process, [5]. 
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For simplicity (to get some simple analytical results to 

understand the dependency of the behavior of the system to 

key network parameters but the formulation is good for 

G/G/m systems) assume each traffic session is a deterministic 

binary sequence of length L; hence a M/D/m queueing model. 

The service time is the transmission time, L/C second. The 

session inter-arrival times {Xi} are independent of each other. 

The number of session arrivals N(t) jumps by one at every 

event time {Si}. Given , the relevant distribution, mean, 

variance and moment generating functions are: 

 

The semi-invariant moment generating function   = log(g) is 

convex and we can use the Chernoff to bound the error 

probability of a sequential test. 
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2.3 Sequential observations and stopping trials. 

We consider the cognitive network management and control 

system that uses a sequential test (stopping trial) to trigger 

network reconfigurations. The objective is to find a good 

algorithm to make a decision at the fastest possible time when 

the session arrival statistics changes (increases or decreases) 

by observing the arrival process at the node sequentially. The 

performance metric is to make sure the queueing delay is not 

excessive or stay below a preset target value. Taking a long 

time to decide, after a change in arrival rates, will be 

unresponsive and increases queueing delays (exceeding 

threshold set by the performance metric on delay) on the 

uptake and waste resources on the downturn. Reacting too 

quickly may seem responsive but wrong (possibly frequent) 

decisions on noisy data (false alarms) will lead to wasted 

resources and deny resources for more needy lightpaths and 

trigger frequent adaptations. Simple decision algorithms such 

as T, and n described above, have the disadvantage of taking 

too much time to react when there are more arrivals than 

expected and reacting to noisy data when there are not enough 

arrivals to give a good estimate of the underlying rate change, 

resulting in inappropriate and even disruptive 

reconfigurations. Here the sequential test makes decisions in a 

responsive manner yet with good accuracies. Thus, the 

algorithm will make a decision when it thinks there are 

enough arrivals to reliably make an estimate or when there are 

not enough arrivals, it will decide to continue to make 

observations until it can make a clear choice with a small 

probability of making an error. The decision algorithm can be 

modeled as a two threshold crossing problem. 

Assume the network has been running (since t = - ) with 

traffic session arrival rates of   = k  each with length L bits. 

The capacity used to serve this traffic is kC with average 

traffic Ck. The traffic undergoes a change at t = 0 to (k+1) 

or (k-1)  as in Fig. 8. For respectable delays  must be less 

than 1, possibly in the range 0.4 - 0.7. The idea is when the 

traffic changes enough to warrant a change in capacity 

assignment due to delay considerations the network 

management system will either add or subtract a wavelength 

of capacity C. We will explore the responsiveness of this 

system in the following analysis.   

Figure 8. Average traffic Poisson arrival rate with possible 

change of rate at t = 0, from State 0 to State 1, C=1. 

Define for the traffic in States 0, 1 and 2 respectively as, 
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kXY nn /1 , (C set to 1). Yn is IID and is zero mean for the 

traffic in State 0 and Y  < 0 for the traffic in State 1 and Y  > 0 

for the traffic in State 2 and the Y’s are IID except possibly 

across the boundary at t = 0. Thus, 


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in YZ
1

is a random walk in intervals  t²  (-,0) and (0,).  

Note that this shifted arrival process is no longer Poisson and 

the increment Yn can be either positive or negative with non-

zero probability and it has bounded expectation, as shown in 

Fig.9. It is still a random walk. Technically, Zn is a zero mean 

Martingale given the network traffic is in State 0, a Sub-

martingale given the traffic is in State 1 and a Super-

martingale given the traffic is in State 2. The algorithm 

essentially is a sequential maximum-likelihood hypothesis test 

on the running sequence Zn or equivalently the increments Yn. 

We will assume the process starts at t = 0 and the system will 

eventually either make a transition to state 1 or state 2 from 

state 0 (the length of time may be unbounded). With no 

change in traffic load, Zn will hover around 0, though since Zn 

has non-zero variance the process eventually may wander off 

and trip the thresholds  or  causing an error in adaptation. If 

an error in adaptation occurs the algorithm is self-correcting 

in the sense that it will correct its errors after a while since the 
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long mean free time of occurrence by tuning  and . Assume 

a state change occurred at some time say t = 0. The optimum 

hypothesis test is to calculate the likelihood ratio , and 

compare it to the thresholds at every session arrival time. 
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Thus, given the state, the two random walks contain the same 

sequence {Zn} of sample values but with different probability 

measures, Fig.9. 

 

Figure 9. Sample functions of the random walk Zn, one sample 

function for traffic in State 1 and one for State 2. 

The network management system will run the sequential 

detection test with two thresholds  and  as shown in Fig.9. 

When the traffic increases (system in State 1), the random 

walk Zn will drift towards crossing  (inter-arrival times are 

shorter and thus the negative drift) and result in the addition 

of a unit of capacity C. When the traffic decreases (system 

move to State 2), Zn will drift towards crossing  (the inter-

arrival times are longer) and result in a subtraction of capacity 

C. With no change in traffic load, Zn will hover around 0, 

though since Zn has non-zero variance the process eventually 

may wander off and trip the thresholds  or  causing an error 

in adaptation. Thus the magnitude of   and  must be set 

large enough so the probability of making such an error is 

small. However, since this algorithm is continuously running, 

any errors can be corrected eventually as the process evolves. 

If the traffic undergo a change in state at t = 0 to either State 1 

or State 2 from State 0, it is informative to find out what is the 

mean time to tripping one of the thresholds. This can be found 

by using a technique for running sequential tests called 

stopping trials. Let J (the discrete stopping trial variable) be 

the number of arrivals after t = 0 that the network 

management system will add or subtract capacity. The 

expected value of J given the traffic is in State 1 and 2 can be 

found using Wald’s Identity and Equality, [5].  

Thus, the mean number of arrivals that will trigger the 

addition of a wavelength is given by E[J/1] = -k(k+1). Not 

surprisingly, the mean number of session arrivals until a 

threshold is tripped is proportional to the magnitude of  and 

the target load factor, .  However, E[J/H] for each hypothesis 

H, is proportional to the square of the current number of 

wavelengths k, assigned. The reason is with k wavelengths 

and at a nominal load away from the threshold the k 

wavelengths will share the arrivals evenly accounting for one 

factor of k and the other factor of k comes from the service 

rate of k wavelengths. An exponentially tight approximate 

expression for the error probability is: 
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Now we can treat the case when there is no state change (i.e. 

the network stays in State 0), and find the probability Pr{e0}, 

of making an erroneous reconfiguration as the network 

management system runs in real time. We also want to 

determine if the algorithm works when we do not know a 

traffic change has occurred. We can use the Chernoff Bound 

as above to estimate this probability but here we use the 

Chebychev Inequality instead since the bound only requires 

mean and variances and not knowledge of the detailed 

distributions. Hence the estimate is more robust to variations 

of the underlying statistic of session arrivals. 
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Thus the error probability linearly increases with m and 

decreases as the square of  and . Even if there has been an 

erroneous reconfiguration due to tripping of one of its 

threshold, the algorithm will self-correct after a while. It is 

possible to determine how quickly the algorithm can correct 

itself, by modeling the elapsed interval from erroneous 

adaptation to self-corrections as a renewal process. The 

expected time to tripping any threshold (including recovery 

via self-correction after making an error) can be obtained 

using first passage time techniques. The frequencies at which 

the errors occur can be obtained using renewal theory and 

Blackwell’s Theorem. These quantities can be obtained 

analytically but we will save those for another time. Such 

information will be important and very useful for the network 

architecture to tune the algorithm and the value of the 

thresholds for good but not jittery response. 

III. SUMMARY AND DISCUSSIONS 

Future network management control systems must be agile 

and fast adaptive due to significant increase in large data 

volume and session granularities (a single transaction may 

occupy entire wavelength for a transmission period). These 

dynamics will demand network management and control of a 

time scale as fast as ~10mS compared to minutes and hours of 

current networks. Sensing schemes will be employed where 

each node and link selectively (as in judiciously) senses the 

network state (in Layers 1, 2 and 3). This information can be 

combined across nodes by a centralized or distributed 

controller to perform scheduling, complex statistical inference 

and network reconfigurations/load-balancing and even more 

drastic operations such as isolating suspicious subnet upon 

detection of anomalies for information assurance purposes. 

Cognitive techniques can eliminate human in the loop for 

network management and rapidly (and statistically optimally 

or near optimally) estimate network state trajectories and 

optimize network configurations. Learning algorithms can be 

used to estimate from historical data the nominal traffic 

statistics. In this paper, we use a specific example that yields 

analytical results to illustrate the efficacy of cognitive optical 

networks but it is merely a hint of what a more extensive set 

of such algorithms can do. 

 

The cognitive algorithm described here is Bayesian based, 

while other cognitive techniques may be used in other 

contexts to manage optical networks. The algorithm has four 

phases: 

1. Observation of session arrivals 

2. Estimation of arrival rate changes 

3. React to increase or decrease of traffic and add or 

subtract a wavelength in the tunnel between two 

MANs. 

4. Continue assessment for further changes or self-

correct erroneous reconfigurations. 

The first three traffic estimators all require some knowledge 

of the prior statistics of the session arrival processes. The first 

estimator, T, uses  to determine the amount of observation 

time T, to form an estimate. The second estimator, n, 

predetermines the number of arrivals n, before the estimator 

makes a decision. This has disadvantages, among which is: 

when the traffic suddenly reduces drastically, the algorithm 

does not react quickly. In fact if there are no arrivals the 

estimator will not output a decision. On the other hand, the 

stopping trial algorithm takes care of this case very gracefully. 

The third (optimum) estimator by Clark needs the prior 

statistical p(), of the arrival process, which is hard to 

determine. Any distributions given by idealised theoretical 

models will not be totally accurate (though probably 

tolerable). Learning from past data will not yield reliable 

models for rare events especially when the network is close to 

a serious congestion breakdown or at the on-set of zero day 

events. 

The stopping trial algorithm analysed here does not have the 

shortcomings of the first three estimators. Its key assumption 

is that the arrivals are independent and identically distributed 

if the arrival process is in a quasi-static state where  does not 

change much. The distribution of the inter-arrival times do not 

have to be exponential as used here to get simple analytical 

results. As long as the arrival process can be approximately 

modelled as a renewal process (a special case of random 

walk), the algorithm will work. The algorithm performs well 

when the observation and decision process time duration is 

shorter than the coherence time of the session arrival process. 

When it takes longer than the arrival process coherence time 

to estimate, the algorithm is not expected to perform well. In 

those cases, it is not clear adaptive reconfigurations are 

beneficial. Perhaps over-provisioning is the only sensible 

solution then. 

One superior characteristic of the stopping trial algorithm (it 

is the optimum maximum a-posteriori sequential test) is that it 

will make a decision whenever it determines it can do it 

reliably; not before or after. This ‘just in time’ behavior saves 

time and prevents unnecessary errors when there are 

insufficient observations. When the session arrival rate surges, 

the algorithm makes a decision as soon as the threshold, 

which is set with a target (low) probability of error, is tripped. 

On the downturn, it can be set to trip the threshold even if 

there are no arrivals, which is possible). The algorithm runs 

continuously and will self-correct reconfiguration errors. It is 

important for the network architect to use techniques such as 

‘first passage times’ and ‘renewal times’ to estimate the 

frequency of errors and tune the thresholds away from 

unacceptable disruptive frequent reconfigurations.  The choice 

will be a sensible balance of times to adaptation versus 

frequency of errors and coherence times of the network. 
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