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Abstract: Streamflow is one the most important variables controlling and maintaining aquatic
ecosystem integrity, diversity, and sustainability. This study identified and quantified changes in
34 hydrologic characteristics and parameters at 30 long term (1939-2016) discharge stations in the
Southeast Atlantic and Gulf Coast Hydrologic Region (Region 3) using Indicators of Hydrologic
Alteration (IHA) variables. The southeastern United States (SEUS) is a biodiversity hotspot, and the
region has experienced a number of rapid land use/land cover changes with multiple primary
drivers. Studies in the SEUS have been mostly localized on specific rivers, reservoir catchments
and/or species, but the overall region has not been assessed for the long-term period of 1939-2016
for multiple hydrologic characteristic parameters. The objectives of the study were to provide
an overview of multiple river basins and 31 hydrologic characteristic parameters of streamflow in
Region 3 for a longer period and to develop a conceptual map of impacts of selected stressors and
changes in hydrology and climate in the SEUS. A seven step procedure was used to accomplish
these objectively: Step 1: Download data from the 30 USGS gauging stations. Steps 2 and 3:
Select and analyze the 31 IHA parameters using boxplots, scatter plots, and PDFs. Steps 4 and 5:
Synthesize the drivers of changes and alterations and the various change points in streamflow in
the literature. Step 6: Synthesize the climate of the SEUS in terms of temperature and precipitation
changes. Step 7: Develop a conceptual map of impacts of selected stressors on hydrology using
Driver-Pressure-State-Impact—-Response (DPSIR) framework and IHA parameters. The 31 [HA
parameters were analyzed. The meta-analysis of literature in the SEUS revealed the precipitation
changes observed ranged from —30% to +35% and temperature changes from —2 °C to 6 °C by
2099. The fiftieth percentile of the Global Climate Models (GCM) predict no precipitation change
and an increase in the temperature of 2.5 °C in the region by 2099. Among the GCMs, the 5th and
95th percentile of precipitation changes range between —40% and 110% and temperature changes
between —2 °C and 6 °C by 2099. Meta-analysis of land use/land cover show the region has
experienced changes. A number of rapid land use/land cover changes in 1957, 1970, and 1998
are some of the change points documented in the literature for precipitation and streamflow in
the region. A conceptual map was developed to represent the impacts of selected drivers and the
changes in hydrology and climate in the study region for three land use/land cover categories in
three different periods.

Keywords: indicators of hydrologic alteration; discharge; southeastern United States; flow-regulation;
DPSIR framework; changing climate; changing land use
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1. Introduction

Streamflow has been called the “master variable” or the “maestro ... that orchestrates pattern
and process in rivers” [1]. Streamflow controls and maintains the function, structure, and dynamics of
aquatic ecosystems in riparian zones, including flood plains and adjacent wetlands. The magnitude,
timing, and duration of typical hydrologic flow characteristics and events, such as monthly median
flows and annual low flow events, provide the necessary stable and expected conditions for aquatic
life. Organisms require predictable patterns in magnitude, timing, frequency, duration, and extremes
of flow events each year, decade, century, and millennium for their continued success and survival.
The streamflow, which formerly provided a range of habitats (e.g., stream channel, flood plain, alluvial
aquifer, and hyporheic zone), no longer provides the range of hydrologic events that it once did [1,2]
due to multiple stressors.

The southeastern United States (SEUS) is a biodiversity hotspot [3] with the highest overall native
richness of any temperate region in North America [4]. The region is considered the “wood basket” of
the United States (US), producing about half of the country’s timber supply, and is one of the major
agricultural areas in the nation [5,6]. The SEUS struggles with water related conflicts [7]. Dams were
constructed on many of the free-flowing rivers in the SEUS for flood relief, power generation purposes,
and, in some cases, water supply (Atlanta). These modifications were further exacerbated by additional
stressors over the last century in the region, such as urbanization, land cover and population change,
warming temperatures, and increases in annual precipitation [7]. These have important implications
on the region’s biodiversity, ecosystem sustainability, and integrity [8].

The SEUS has been underrepresented in hydroclimatic research [7]. Studies in this region have
been primarily focused on specific rivers, reservoir catchments, and/or species [9,10], but the overall
region has not been assessed. Most of these studies focus on shorter periods; fewer stations [7,11];
and fewer hydrologic characteristic parameters, such as floods [9], droughts, and average flows.
Very few studies have used multiple hydrologic characteristic parameters (e.g., the Indicators of
Hydrologic Alteration (IHA) program for smaller regions) [12]. The details of several studies in the
different regions in the SEUS are provided in Table S1 in the Supplementary Materials.

Our study attempted to fill in some of these lacunae in research. The specific objectives of the study
were: (1) to provide an overview of the multiple hydrologic characteristic parameters of streamflow
in the region for a longer period and in multiple river basins; and (2) to arrive at a conceptual map
describing the impacts of selected stressors and changes in hydrology and climate in the study region.
To address the first objective, the hydrologic characteristics and parameters were generated using IHA
from the long-term mean-daily discharge data (30 United States Geological Survey (USGS) gauging
stations during 1938-2016). To address the second objective, the overview of IHA was combined
with syntheses of existing literature about the hydrologic characteristics in the region to arrive at
a conceptual map using the Driver-Pressure-State-Impact-Response (DPSIR) framework [13].

2. Study Region, Data Used and Methods

2.1. Study Region

Southeast Atlantic and Gulf Coast (Hydrologic Region 3), the study region, is 1 of the 21 hydrologic
regions in the US [14]. The hydrologic region has multiple river basins along the coast with a total
area of 721,520 square kilometers of drainage that ultimately discharges into: (a) the Atlantic Ocean
within and between the states of Virginia and Florida; (b) the Gulf of Mexico within and between the
states of Florida and Louisiana; and (c) the associated waters [15]. The study region has experienced
rapid land use/land cover change [16-19]. The details of the changes are elaborated in the next section
(Results and Discussion). The hydrologic region has 18 subregions with 137 hydropower plants that are
licensed, exempt, or active and awaiting relicensing [excludes dedicated Pumped Storage Hydropower
(PSH) plants and plants with mixed capabilities [20].
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The SEUS is physiographically diverse, although dominated by a broad coastal plain [21].
The region includes portions of 16 different Omernik’s ecoregions while providing breeding habitat
for 580 terrestrial vertebrate species (e.g., amphibians, birds, mammals, and reptiles), many of which
are endemic and/or endangered [22]. The ecoregions include: the blue ridge, piedmont, southeastern
plains, middle Atlantic and southeastern coastal plains [23]. The region is a biodiversity hotspot [3]
and produces much of the nation’s timber and wood pulp supplies along with cotton, peanuts, citrus,
and specialty crops [24].

The SEUS is characterized by a humid, subtropical climate [18]. The region receives ample
rainfall throughout the year [25]. Despite this, the region has experienced recurring droughts, which
have prompted water use restrictions and induced interstate water conflicts [26]. Much of the
region has little seasonality in precipitation, but strong seasonality in runoff owing to high rates of
summer evapotranspiration [21]. Additionally, this region is vulnerable to a number of climate-driven
events, including sea-level rise, catastrophic floods, heat waves, winter storms, tropical cyclones,
and tornadoes [27]. Furthermore, the SEUS often suffers from low surface water availability due to
frequent occurrences of La Nifia, which brings warm, dry conditions between the months of October
and April [26].

2.2. Data Used

Long-term USGS gauging stations in the SEUS were chosen for this study. Initially, 38 USGS
gauging stations in Hydrologic Region 3 that had at least 90 years of mean-daily discharge data were
identified. The data were downloaded from the USGS National Water Information System (NWIS)
Web Interface webpage [28]. After analysis, it was determined that mean-daily discharge data between
approximately 1893 (the first year of record for any station) and 1939 have numerous data-gaps at
multiple stations. Finally, for this study, mean-daily discharge data from 1 January 1939 to 31 December
2017 (78 years) were selected and used for analysis in Hydrologic Region 3. Table 1 lists the available
information about the 30 stations [e.g., USGS Station Number (on map), USGS ID, USGS Station Name,

Latitude, Longitude, river mile of station, and drainage area above gauge], while Figure 1 shows
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The descriptions of streamflow gauge locations are presented in Table 1. The details of land
cover data can be obtained from [31].

Table 1. Summary of USGS gauging stations: USGS ID, Station Name, Latitude, Longitude, River
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Monthly temperature and precipitation simulations from 19 global climate models for the SEUS
region at a 1° x 1° grid scale were used. The data for the states of Alabama, Florida, Georgia,
Mississippi, North Carolina, South Carolina, and Tennessee were downloaded (http://gdo-dcp.ucllnl.
org/downscaled_cmip_projections/). The period of the temperature data was 1950-2100 for two
future scenarios [representative concentration pathways (RCPs) RCP4.5 and RCP8.5] [29]. More details
of the data can be obtained from [5,29,30]. Changes in temperature and precipitation observed from
literature were used in the meta-analysis. More details of the meta-analysis can be obtained from [5].

The descriptions of streamflow gauge locations are presented in Table 1. The details of land cover
data can be obtained from [31].

Table 1. Summary of USGS gauging stations: USGS ID, Station Name, Latitude, Longitude, River
Length in miles and kilometers, and Drainage Area (above gauge in miles and kilometers) [28].

e, N tengh e Dz e

1 02056000 ROANOKE RIVER AT NIAGARA, VA 37°15'18"" 79°52'18" 355.3 (571.8) 509 (819.2)

2 02062500 ROANOKE (STAUNTON) RIVER AT BROOKNEAL, VA 37°02/22.0"" 78°56'44.6' 256.2 (412.3) 2404 (3868.9)

3 02080500 ROANOKE RIVER AT ROANOKE RAPIDS, NC 36°27'36" 77°38'01" 133.6 (215.0) 8384 (13,492.7)

4 02083000 FISHING CREEK NEAR ENFIELD, NC 36°09'02"" 77°41'35" 40 (64.4) 526 (846.5)

5 02085500 FLAT RIVER AT BAHAMA, NC 36°10'58"" 78°52/44" 1.2(1.9) 149 (239.8)

6 02087500 NEUSE RIVER NEAR CLAYTON, NC 35°38'50"" 78°24/19" 23(3.7) 1150 (1850.7)

7 02100500 DEEP RIVER AT RAMSEUR, NC 35°43'35"" 79°39'20" - 349 (561.7)

8 02112000 YADKIN RIVER AT WILKESBORO, NC 36°09'09"" 81°08'44"" - 504 (811.1)

9 02129000 PEE DEE RIVER NEAR ROCKINGHAM, NC 34°56'45"" 79°52'11" - 6863 (11,044.9)
10 02138500 LINVILLE RIVER NEAR NEBO, NC 35°47'44"" 81°53/28"" - 66.7 (107.3)
11 02151500 BROAD RIVER NEAR BOILING SPRINGS, NC 35°12/39"" 81°41'51" - 875 (1408.2)
12 02167000 SALUDA RIVER AT CHAPPELLS, SC 34°10'28"" 81°51'51"" 52.3 (84.2) 1360 (2188.7)
13 02169000 SALUDA RIVER NEAR COLUMBIA, SC 34°00'50"" 81°05'17"" - 2520 (4055.5)
14 02197000 SAVANNAH RIVER AT AUGUSTA, GA 33°22/25"" 81°56'35"" 187.4 (301.6) 7510 (12,086.1)
15 02213000 OCMULGEE RIVER AT MACON, GA 32°50'19"" 83°37'14" 198 (318.6) 2240 (3604.9)
16 02223000 OCONEE RIVER AT MILLEDGEVILLE, GA 33°05'22"" 83°12/56" 139.1 (2239 2950 (4747.6)
17 02223500 OCONEE RIVER AT DUBLIN, GA 32°32/40"" 82°5341" 74.3 (119.6) 4400 (7081.1)
18 02231000 ST. MARYS RIVER NEAR MACCLENNY, FL 30°21'31" 82°04'54"" 100 (160.9) 700 (1126.5)
19 02315500 SUWANNEE RIVER AT WHITE SPRINGS, FL 30°19'32"" 82°44'18" 171 (275.2) 2430 (3910.7)
20 02329000 OCHLOCKONEE RIVER NEAR HAVANA, FL 30°33'14"" 84°23'03"" 94 (151.3) 1140 (1834.6)
21 02339500 CHATTAHOOCHEE RIVER AT WEST POINT, GA 32°53'10"" 85°10'56"" 198.9 (320.1) 3550 (5713.2)
22 02347500 FLINT RIVER AT US 19, NEAR CARSONVILLE, GA 32043'17" 84°13'57" 238.4 (383.7) 1850 (2977.3)
23 02349605 FLINT RIVER AT GA 26, NEAR MONTEZUMA, GA 32°17'35"" 84°02/37"" 180.3 (290.2) 2920 (4699.3)
24 02352500 FLINT RIVER AT ALBANY, GA 31°35'39"" 84°08'39"" 103.4 (166.4) 5310 (8545.6)
25 02358000 APALACHICOLA RIVER AT CHATTAHOOCHEE, FL 30°42'03"" 84°51'33" 106 (170.6) 17,200 (27,680.6)
26 02387500 OOSTANAULA RIVER AT RESACA, GA 34°34'37.6 84°56'30.67"" 3.5(5.6) 1602 (2578.2)
27 02395980 ETOWAH RIVER AT GA 1 LOOP, NEAR ROME, GA 34°13/56/" 85°07'01"" 6.6 (10.6) 1801 (2898.4)
28 02414500 TALLAPOOSA RIVER AT WADLEY, AL 33°07'00"" 85°33/39"" 125.3 (201.7) 1675 (2695.6)
29 02424000 CAHABA RIVER AT CENTREVILLE, AL 32°56'42"" 87°08/21" 81.2 (130.7) 1027 (1652.8)
30 02465000  DLACK WARRIOI;DIE\(Z)%I;SI%I?T{EELLOCK ANDDAM 550151550 87°35/24"/ 125.9 (202.6) 4820 (7757.0)

2.3. Methods

The following steps were carried out in the study.

1. Download data from the 30 USGS gauging stations. The missing data were estimated using
a simple average where the number of consecutive missing days was less than 2. Linear regression
was used when there were more than 2 consecutive days missing. Details of the missing table can
be obtained from the Supplementary Materials (Table S2).
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2.  Estimate relatively common hydrologic characteristic parameters [2,32] that are strongly
correlated to aquatic ecosystem species survival, diversity, richness, habitat maintenance,
integrity, and sustainability using the IHA program [2,32]. IHA processes the mean-daily
discharge data (input) using a compilation of functions and routines to provide 31 annual and
monthly hydrologic characteristics and parameters that describe flow central tendency, variability,
magnitudes, timing, frequency, duration, rise and fall rates, and reversals and extremes (outputs).
The description of the IHA output variables used in this study and some of its influence on
ecosystem functions and processes is presented in Table 2.

3. Analyze the 31 IHA parameters using boxplots and probability density frequency (pdf) plots.

4.  Identify the drivers of changes and alterations in streamflow in the study region from
published literature.

5. Identify the various change points in streamflow observed from published literature.

6.  Synthesize the climate of the SEUS in terms of temperature and precipitation changes observed
from an earlier study using meta-analysis and data analysis of global climate data.

7. Develop a conceptual map of impacts of selected stressors and changes in hydrology and climate
for selected periods.

Table 2. Explanation of the variables computed by the Indicators of Hydrologic Alteration (IHA)
program showing class variables and parameters [2,32,33].

Hydrologic Function IHA Variable

Median flows—Magnitude = Medians of flow by month

Annual 1-day minimum—lowest streamflow for 1 day per year

Annual 3-day minimum—lowest streamflow over a 3-day period

Low Flows—Magnitude Annual 7-day minimum—lowest streamflow for a 7-day period

Annual 30-day minimum—lowest streamflow for a 30-day period

Annual 90-day minimum—lowest streamflow for a 90-day period

Annual 1-day maximum—highest streamflow for a day

Annual 3-day maximum—highest streamflow for a 3-day period

High Flows—Magnitude = Annual 7-day maximum—highest streamflow for a 7-day period

Annual 30-day maximum—highest streamflow for a 30-day period

Annual 90-day maximum—highest streamflow for a 90-day period

Timing of Annual 1-day low flows—Julian day of events

Extreme flow-Timing
Timing of Annual 1-day high flows—Julian day of events

Number of low-flow pulses (within bank) within each year—measure the number of
annual occurrences during which the magnitude of the water condition remains below
a 25th percentile threshold

High and Low Median duration of high-flow pulses—measure the median annual occurrences during

Pulses—Frequency which the magnitude of the water condition remains below a 25th percentile threshold

and Duration Number of high-flow pulses (within bank) within each year—measure the number of
annual occurrences during which the magnitude of the water condition exceeds
an 75th percentile threshold

Median duration of high-flow pulses—measure the median annual occurrences during
which the magnitude of the water condition exceeds an 75th percentile threshold

Number of hydrologic reversals

Rise rates of the hydrograph—means of all positive differences between consecutive

Ch i t
anges in water daily values

condition—Hydrographs

Fall rates of the hydrograph—means of all negative differences between consecutive
daily values




Hydrology 2018, 5, 42 6of 18

Hydrology 2018, 5, x 7 of 19

3. Results and Discussion
3. Results and Discussion

3.1. Overview of the Hydrological Characteristics of Streamflow in the SEUS during 1939-2016
3.1. Overview of the Hydrological Characteristics of Streamflow in the SEUS during 1939-2016
Critical components of the flow regime i 1nclude the magnitude and seasonal pattern of flows;

timing gf ex‘t?er%% Boneltfle %et ﬁefn%‘}y Ige c?a]bffltl e Ad4 A {B%Héite ﬂ%%dss ea;gr&a]h ks 5%%1m{erm1t%’ent

Aol g e oy B b0, ety e i cctaiion. o 42 %d%%m%g i
it 1

1nt rmittent ow daﬂl son an an g ow var1 1 ates o
ots 1;3% né 1str 4 ata or #fl tat 'season, 1t‘x reena% Xes
h en s [ (]) 0% ts o nth y stream até or a statlonsts " ea onah 1 ure
ShOK Jngansand er eaosxes Y Basdian fowsly (s Yémonsﬁl he stations, median me $,dnd

vagability afe highsst duiins ﬁlsehé%t%%?ggo in %%‘fﬁh gFla%s%rﬁ pEIN Y ?ﬁ istribyitiensyin Maych
ang, RS SSEe RTRALEEH AR RS AR PN hlarasos ?8&%8%%*38{@%1%%&195}{&08}}‘@
yeahrh e essaRbnns sremabada Rivennsae bidnhiasafuddTiveiiguse eblandiat ddapsa Rivst pear
Magslenas s Iéféygpi:%3%4@6‘&@%9%@%%@@&%&%@@x@@u@%ﬁ?ﬂmmg%}@ﬁc?@%mmtﬂe/
2595 peprantiheictly nererntdadninsmpe dendier & depiation RN driierguartilsange hilloms, similar
pattesry(Bigilea sigi Dlipplansientiaryp Miteri@lg)ard Be highfloevseduring/therlatipripertigh hevyear
areloftap testutitetechw iththeyemane stasonssblighedlovith inuthie spo segsare Bligbfidanl éntchthepspigng
lowrprassibretdblerin siystepring dvingtbaoirgts thermsestenhereas/logy thoowssin the fadhpecherdasiltogthe
pofbivariicathe afadl precwrirduriogldifeondgtehiomti (@utobrd-Peeenibtat-cdl frome spéviogt térivtehedian
floReceralie hinBhE) lowibst Feegpierseavadigefsilofre aieihd gndrddd ofuhicstaetoperaageddrishs 66l heni

(Lishkaina B veras @ INTE B8tisnstaangeshingn00)-tom?, 1bonwiPq iRy arpaindifco ld Havetali Oh AR ee,
FLtoU%38G miidHhe23paburicola River at Chattahoochee, FL, USGS station 02358000).

%x10° Mean and median streamflow Mean streamflow, st.id - 02169000 Mean streamflow, st. |d 02231 000
— M : ; ks ' , e 8000 T T
' a b i c
L @ NN ©
3 tog [ . 1 (.
ot Ll . 5000 | '
i ! ! 1
250 |I'I" (. ! ! —_ ! !
£ ! ! 1 1 ! 2 ! 1
8 b r 1 P < 40 ! L
2 Phy g 1! 1 z 1
§2_11|:||I|' 1! ! ! 2 ": '|:i
E Lot o r ' E ! P 1
S ot T L g30000 1 | |
Sqsl, 0y 1 h i 1 I 1 £ I [
S15h 1h . [ [ | @ 1 !
@ Pyt ! - 1 i 1 1
R e e R L LI L oo by 1l > o ! i !
£ |yttt Ty ! ! 1 ! oy ! £ 2000 Pt A
£ I ] I I | | 1 = 1o 1
R I B I I T . | Ly ! = | Do S T
= thyrrh L i by 2 Ly P X i
[ |||1|I:[|II|I|=I 1 1 |.i"|||'
RN TETRE] 1000 ! ! !
059 HIIII”IIIIIIII Il g u |I; BII'
] 1
oY TiInd E ENMMNNQ [ I L oﬂ gﬁﬁg ﬂﬂlﬁ
.JFMAMJJASON FMAMUJJASOND JFMAMUJJASOND

Figugad MVhikthlyneeard ggeembimgplions) and median (graybasppdess filow srinhh8Satithenstthtlantic
anghd @ HilE GastsH{istdobdgiicRRgiom 3) im the: (a) 30 statimsssedbeatddnrtiibetstayl yersigionbBhhadada
RiRéyerenedr ClolmindaiS 6 TISAA amal((9)Sit. Mary’s River mear Nhachbemyy FFL [IS3A.

h&é&&ﬁf@fﬁﬁ&%ﬂ%ﬁ&n SR 888%%%%%{% R w?éhassﬂeﬁeagaaaé%%gf tPﬁ%efP‘&SﬂE‘ﬁ%ent

ater a -riparian _species, are ermine atterns of variation in. streamflo
fresﬁwa er angll riparian scp%c es, are ge ermlnedkﬁl p R sObf Varla(tlon in stream oév i34].

iy 4t f°l°§afa d%%&"“fgg&é% oW HOR AR fhgé&%tﬁggmsgg SERESSERL Wlngff%%l Ator
f(? ’ Oa S Iﬁ%ﬂ“én Team How Lsing Ann ots dtsP t 0 E%l O§O stations
Fi statlons sgure a¥11§ emen1 ater% 51 IP %(Et)}l*te area bﬁ ﬁﬁ 5%’?{1

( ISUTGRAID PHRRISE) tar 1y i QLo o%v%%c?mﬁ?“ﬁ&e Eons‘ég?fngp%“ﬂtﬁva 1S

for 1-andd0idak o mlnim%%gfﬁwowf%f)wg‘)}earf‘&s St nsaéémne% 1232nA0L6 sy dadinRigy 1
of Higueridw! B S oreasomexiBaAX S 818 &pwakalassgaymﬁm&mtr?ﬂmmﬁm%% 30
stadionsnnas A2ty Tovemasedigifl 3hafsiaptheR-doxaniaimm stieamtion dusngihe3dsa16-
Rollsandibsighhldbernthiesinad the litsvatustorcstlinateprsoeshanisiolinkmbeiaen thesglow
flosvostiibnteshand ton procRReey A bRAtP TS Wikhin givielingeowsystems Poasrafiery atadikely to
oveylapgistacantisiorapineerfisds. Tiis patentiadiyiesudtssinvachevgistin anid vofmplex @ffectatrbheour
lindsatdhepfoiispsicatl ayeat dhablasy theveby (ajfectivipoitihecanfesitodrpbiyisioad, aqupttic btabitatretherdby
affertiyig gheaperitppi)iore dibte chanigephi hatitatt uoediticnsaandting eappaitity ( 2y mdkdiia terchadiges in



Hydrology 2018, 5, 42 7 of 18

habitat conditions and water quality, which in turn, drive patterns of distribution and recruitment of
biota; (3Laffect sources and exchange of material and energy in riverine ecosystems, therebX affecting
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Hydr St gya{ﬁfg)g/%averaged for 1939-2016. Although the legends are the same, they represent the highand ¢ ¢
low flows.
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the rate of inter-annual change, while the rates themselves provide the intra-annual environmental
change. The probability of the occurrence of the rise, fall and reversal rates are highest in the ranges
1-50, 1-40 and 80-120, respectively (Column 3 in Figure 6). Knowledge of these changes from one
C}Py%nt)% t;'%][he%t fan be useful to understand the drought stress on plants as well as desiccation sfress,
on the%ow-mobility of stream edge organisms [33].
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The rate of rise, fall and reversals in the water conditions may be tied to the stranding of certain
organisms along the water’s edge or in ponded depressions, or they may be tied to the ability of plant
roots to maintain contact with phreatic water supplies [2]. Among the stations, the rise and fall rates
varied between 1 and 4000 and —4000 and 1, respectively (Rows 1 and 2 in Figure 6), while the reversal
varied between 1 and 250 (Row 3 in Figure 6). The boxplots and scatter plots provide a measure of
the rate of inter-annual change, while the rates themselves provide the intra-annual environmental
change. The probability of the occurrence of the rise, fall and reversal rates are highest in the ranges
1-50, 1-40 and 80-120, respectively (Column 3 in Figure 6). Knowledge of these changes from one day
to the next can be useful to understand the drought stress on plants as well as desiccation stress on the
low-mobility of stream edge organisms [33].

The knowledge of the various IHA flow parameters would be useful in understanding the
synergistic and complex effects of these mechanistic links while maintaining the water quality,
ecosystem processes, and functions sustainably. For example, while meeting the spawning flow
targets in the rivers, we can prevent dissolved oxygen impacts of hypoxic swamp water drainage on
waters in the main stem of the river. The parameters would support planning and management of flow
targets by aiding in the step-down process during high flows and step-up process during low flows.
A specific example is in the Roanoke River during the spawning season for anadromous fishes during
1 April-15 June [9]. Knowledge of the IHA high flow parameters would be useful in the step-down
process by holding water in the floodplain to meet spawning flow targets. The frequency, magnitude,
duration, timing, and spatial extent of flow events are universal drivers of ecological integrity in
riverine ecosystems and apply to events of both high and low flow magnitude [36].
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of one or more states. There are three contributors to precipitation formation, i.e., atmospheric
circulation dynamical systems, water vapor transport, and vertical thermal stability [19]. The
warm/cold El Nifo Southern Oscillation (ENSO) events are characterized by colder and




watersheds in the region. During La Nina events, reduced precipitation and streamflow are observed
for a large portion of the stations in the SEUS, especially for the December-January-February (DJF)
and March-April-May (MAM) seasons [40]. The climate change and variability not only impact the
river flow but also its water quality which are both major determinants of river ecosystem conditions
andtheyrerg]ting benefits (e.g., factors such as light, temperature, channel morphology, and speciess
interactions).
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As some of the drivers of change, hydromorphological pressures and alterations in streamflow
in the SEUS are discussed briefly. The SEUS has experienced rapid land use/land cover change with
multiple primary drivers: timber harvesting and conversion of forests to agriculture during the 19th
and early 20th centuries which reached a low in ~1920 [19]; regeneration of forests from farmland
following the Great Depression of the 1930s [7]; forest fragmentation caused by the economic boom
during the 1980s to 2000s; [17] and, recently, the conversion of agricultural land use to urban/suburban
development [18]. These land use/land cover changes can affect the regional hydrologic and climatic
conditions through changing the surface energy, water fluxes, soil hydraulic property, and surface
roughness [19]. Human population has dramatically increased since 1940, which has changed land
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and water use over time. The rise in urban population is accompanied by an increase in urbanized
areas. For example, population increases of between 25% and 35% from 1970-2000 were found in
the Lower Ocmulgee, Lower Oconee, Ohoopee, and Altamaha watersheds [10]. Increasing trends of
exurban development and suburban residential development in previously rural landscapes (rural
suburbanization) fragment the region’s agriculture and forested lands. This land transformation alters
the hydrologic response of the land via changes in vegetation, impervious landcover, and drainage;
increases withdrawals from surface and groundwater to support increased demands; and alters the
hydrologic cycle via water and wastewater infrastructure that can alter both recharge and subsurface
drainage [43]. Additional impacts of urbanization processes are the growing areas of impervious
(sealed) surfaces (e.g., parking lots, asphalt, roofing, and concrete and gravel roads) which prevent
rainwater infiltration into the soil and cause its direct runoff to storm drain systems.

Hydromorphological pressures comprise all physical alterations due to the modifications of
their shores (e.g., riparian and littoral zones, water level and flow, navigation, flood prevention
building reservoirs) as well as to meet the demand for multiple uses (agriculture, urbanization,
hydropower, mineral extraction, fishing, tourism, etc.) [44]. Although river flow derives ultimately
from precipitation, at any given time and place, a river’s dominant flow pressure are derived from
some combinations that help to determine both the supply of water and the pathways by which
precipitation reaches the channel. Example of combination parameters include: surface water, soil
water, groundwater, climate, geology, topography, soils, vegetation, land use/land cover, etc. [1].
Many different methods have been applied to reveal dominant processes/pressures in river basins
such as chaos theory, wavelet theory, circular statistics, and time series analysis techniques [45].
Identifying the reasons for significant changes would often require a “reference” with a natural flow
regime. Determining the reasons is challenging, because there is currently insufficient knowledge in
defining “significant change” and they carry considerable uncertainty [46]. The dominant pressures
could vary with high/average/low flows. During the latter half of the 19th to mid-late 20th century,
the US Army Corps of Engineers constructed hydrologic structures on many of the free-flowing rivers
in the SEUS for flood relief, power generation purposes, and, in some cases, water supply (Atlanta).
Alteration of a streamflow regime through the construction and operation of dams and weirs may
produce hydrologic impacts (e.g. “hydropeaking”), which typically change sub-daily flow variability
due to changes in energy demand and power station operation. For example, the Tallapoosa’s flow
regime in certain reach typically fluctuates between extreme low and high flows corresponding to
patterns in power generation [12]. Land conversion (e.g., urbanization) and stream channelization can
also increase peak discharge, with shorter flood durations, and decrease baseflows, resulting in flashier
flows. Heavy water extraction from free-flowing streamflow due to agricultural and urban water use
may also produce hydrologic impacts that are similar to “hydropeaking” and is often a neglected
driver of alterations in streamflow [42]. The methods/parameters of hydromorphological pressures
(e.g., hydropeaking) will need to have significant differences between pre- and post-pressure to have
large confidence bands to account for this uncertainty [46]. In general, the drivers often include
a combination of changes in streamflow, and it is often difficult to separate the effects of individual
drivers [47].

3.4. Change Points in Streamflow and Climate in the SEUS

Many rivers in the US have had a significant reduction in flood flows due to dams. The degree
of flood flow alteration increases as the size of the river increases, with a 29% reduction of mean
annual flows in large rivers, 15% in medium rivers, and 7% in small rivers [48]. Measures of flow
alteration and criteria for establishing reference conditions were variable [1]. Additionally, identifying
the exact points of changes can be challenging due to the existence of multiple drivers of change,
hydromorphological pressures, and alterations in streamflow in the region. These changes have
been observed using single station data or using clusters of change points from multiple station data.
Each of these have their own advantages and disadvantages. When only a single stream gauge is
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analyzed, it is difficult to distinguish whether a change point is due to changes in drivers (e.g., climate)
or more direct changes such as modifications to the instruments used to measure streamflow [49].
Studies have documented that streamflow exhibits a step change around 1970, and that the observed
streamflow change is in concert with a change in precipitation in the region [50-52]. Spatial clusters
of change points have been observed in the SEUS’s mean normalized streamflow and precipitation
during 1957-1998 [53]. The changes in the 1950s could be attributed to back-to-back droughts in the
region [54]. Spatial distribution of stations with step changes occurring at different time intervals vary
with seasons [19]. Spatial clusters of seasonal breaks reveal that the spring season is significantly earlier
(late 1980s—early 1990s) than all other seasons (break in 1998-1999) [52]. The year of streamflow
regulation has been observed as alternation points which varies with the station. Additionally,
the streams are regulated due to hydropower generation in the region. Recent statistics show that in
the 12 subregions (HUC-04) there are 142 hydropower, PSH, and mixed facilities that are licensed,
exempt, or currently active but awaiting relicensing [20]. Identifying the year of regulation in each
of them can be challenging. Attributing the hydrological changes in the SEUS associated to climate
change, changes associated to other aspects of human activity, and the changes discussed in this section
(based on earlier results, e.g., 1957, 1970, and 1998) for the SEUS can be a continuation of this study
and is deferred for future work.

The alteration disrupts the longitudinal continuity of fluvial ecosystems, often compromising
the biotic integrity of rivers by restricting the downstream transport of sediments, trophic
resources, the migration of lotic fauna (e.g., fish), modifying downstream channel morphologies,
the physicochemical properties (e.g., dissolved oxygen and stream temperature variability). The flow
alterations are associated with ecological change, and the risk of ecological change increases with
increase in the magnitude of flow alteration [1]. Gillespie et al. [55] observed evidence of relationships
among flow, biota, water quality, and ecosystem responses under flow modifications. They identified
that research was primarily focused on traditionally monitored ecological groups (e.g., fish) and the
importance of site-specific factors (e.g., climate).

3.5. Conceptual Map of Selected Drivers of Changes and Alterations in Streamflow and Climate in the SEUS

Figure 8 shows a conceptual map of the impacts of selected drivers and changes in hydrology
and climate in the study region for the late 19th century to the present day using DPSIR framework for
three types of land use/land cover changes for three periods. In the framework, the drivers are land
use/land cover change, climate change, and variability. They apply pressure on the region (e.g., forest
restoration, Row 1 in Figure 8, grey arrows). The state of the system is represented using variables
(e.g., runoff) and the change in the state of the systems are identified (Row 2 in Figure 8 in green color)
using measured variables (e.g., streamflow) and its characteristics (e.g., IHA parameters). The changes
then impact climate (Row 4 in Figure 8), and the system responds to the changes in the state (Row 4 in
Figure 8). The 31 IHA parameters estimated could provide useful information on different components
of the DPSIR ecosystems for the region (e.g., impact, response, and state).

The variability of atmospheric temperature is a major driver of water temperature, which is
important for the distribution of aquatic species and the biogeochemistry of fluvial ecosystems, while
the precipitation regime governs the hydrologic regime of fluvial ecosystems and the catchment run-off
processes [50]. In general, forested catchments had higher evapotranspiration than grass pastures,
with few exceptions. Replacing trees with grass cover generally increases runoff by decreasing
evapotranspiration [47]. Forest restoration increased surface roughness and reduced the southerly
winds. This caused a decrease in July precipitation (due to weaker moist transport), while causing
reduced northerly winds resulting in an increase in January precipitation (due to weaker dry and cold
airflows) [16]. Reduced regional farm and forest productivity may result from altered rainfall patterns
and increased climate variability [24]. From a forest-based water production perspective, a 2 °C
increase in temperatures can decrease water yield by 11%, and a 10% reduction of precipitation can
lead to a 20% decline in water yield in loblolly pine forests [56]. In general, for most of the SEUS a 1%
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streamﬂow in the region for a longer period and in multiple river basins; and (2) develop a conceptual
map of the impacts of selected stressors and changes in hydrology and climate in the SEUS.
A seven step procedure was used to accomplish these objectively: Step 1: Download data from
the 30 USGS gauging stations. Step 2: Estimate relatively common hydrologic characteristics and
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parameters that are correlated to the ecosystem. Step 3: Analyze the 31 IHA parameters using boxplots,
scatter plots, and PDFs. Step 4: Identify the drivers of changes and alterations in streamflow from
published literature. Step 5: Identify the various change points in the streamflow observation literature.
Step 6: Synthesize the climate of the SEUS in terms of temperature and precipitation changes. Step 7:
Develop a conceptual map of the impacts of selected stressors and changes in hydrology and climate
for selected periods using the Driver-Pressure-State-Impact-Response (DPSIR) framework.

In general, the meta-analysis of literature in the SEUS revealed the precipitation changes observed
ranged from —30% to +35% and temperature changes from —2 °C to 6 °C by 2099. The fiftieth
percentile of the simulations from Global Climate Models (GCMs) predict no precipitation change and
an increase of 2.5 °C temperature in the region by 2099. Among the GCMs, the 5th and 95th percentile
of precipitation changes range between —40% and 110% and temperature changes between —2 °C and
6 °C by 2099. In addition to climate, the region has experienced a number of rapid land use/land cover
changes with multiple primary drivers of change, such as: (1) the conversion of forests to agriculture
during the 19th century and early 20th century, which reached a low in ~1920; (2) the regeneration of
forests from farmland following the Great Depression of the 1930s; (3) forest fragmentation caused
by the economic boom in the 1980s—2000s; and (4) recently, the conversion of agricultural land use
to urban/suburban development. The years 1957, 1970, and 1998 were some of the change points
documented in literature for precipitation and streamflow in the region.

A conceptual map was developed of the impacts of selected drivers and changes in hydrology
and climate in the study region for three land use/land cover categories in three different periods
(late 19th century to the present day) using DPSIR framework. The 31 IHA parameters estimated
could provide useful information on different components of the DPSIR ecosystems for the region
(e.g., impact, response, and state). Attributing the hydrological changes associated to climate change,
changes associated to other aspects of human activity, and the changes due to change points (e.g., 1957,
1970, and 1998) for the SEUS, and synthesizing them for each river basin, can be a continuation of this
study and is deferred for future work. Additionally, identifying the effects of individual drivers and
quantifying them are also deferred for future work.
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Figure S1: Monthly distribution of streamflow statistics from the 30 stations during the study period 1939-2016,
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during the study period 19392016, Figure S3: Boxplot of annual distribution of magnitude of low flow streamflow
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reviewed using search words (in quotes) and the corresponding number of studies (in parenthesis), Table S2:
Summary of missing data by station and missing-time period intervals.
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