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Abstract—In this paper, a multi-scale approach to spectrum
sensing and information exchange in millimeter wave cognitive
cellular networks is proposed. In order to overcome the huge
energy cost of acquiring full network state information on the
occupancy of each cell over the network, secondary users acquire
local state estimates, which are aggregated up the hierarchy to
produce multi-scale estimates of spectrum occupancy. The pro-
posed design accounts for local estimation errors and the irregular
interference patterns arising due to sensitivity to blockages, high
attenuation, and high directionality at millimeter wave. A greedy
algorithm based on agglomerative clustering is proposed to design
an interference-based tree (IBT), matched to the interference
pattern of the network. The proposed aggregation algorithm over
IBT is shown to be much more cost efficient than acquiring full
network state information from the neighboring cells, requiring
as little as 1/5th of the energy cost.

I. INTRODUCTION

To satisfy increasing throughput demands, 5G cellular
networks will employ techniques such as millimeter wave
(mm-wave), massive MIMO, cell densification, and cognitive
radio [1]-[3]. A challenge in deploying these technologies
is the high attenuation and sensitivity to blockage of mm-
wave transmissions. Attenuation in mm-wave is not solely
defined by the distance between transmitter and receiver,
which cases irregular interference patterns. Techniques for
managing interference in mm-wave networks must account for
these irregularities. Furthermore, the acquisition of network
state information (NSI) becomes more challenging as cell
density increases. A scalable approach for NSI is required.

In this paper, we consider a cognitive mm-wave cellular
network with a set of primary users (PUs), licensed to access
the spectrum, and a set of opportunistic secondary users (SUs),
which seek access to unoccupied spectrum. In each cell, PUs
join and leave the channel at random times. In order to utilize
the unoccupied spectrum, the SUs require accurate estimates
of spectrum occupancies throughout the cellular network. In
principle, channel occupancies can be estimated locally and
collected at a fusion center; in practice, such centralized
estimation is too costly in terms of transmit energy and delay.
Furthermore, due to path loss, shadowing, and blockage, SUs
may cause significant interference in some cells, but negligible
interference elsewhere in the network. Each SU needs precise
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information about the occupancies only of cells at which it is
likely to cause interference.

To this end, we present a cost effective approach to NSI
estimation and interference management that is tailored to
irregular interference patterns. We propose a hierarchical spec-
trum sensing scheme, based on [4], by which local estimates
of spectrum occupancy are aggregated efficiently at multiple
layers. As a result, SUs estimate accurately the spectrum
occupancy of cells to which they cause strong interference,
and estimate coarsely the spectrum occupancy otherwise. This
allows an effective trade-off between SU network throughput
and interference to PUs.

The main ingredients of this approach are (1) a cellular
hierarchy that determines the aggregation of measurements
and is matched to the irregular interference pattern of the
network based on agglomerative clustering [5, Ch. 14], and (2)
a derivation of the Bayes-optimum estimate of the spectrum
occupancy from the aggregated measurements. In terms of
the trade-off between SU network throughput, interference
to the PUs, and the energy expended in collecting spectrum
information, we observe a 10% cost reduction over the regular
tree construction proposed in our previous work [6], and up
to 1/5th of the cost of exchanging full NSI within neighboring
cells.

Previous work includes consensus-based schemes for spec-
trum estimation in static networks [7], [8], whereas here we
focus on a dynamic setting due to the high susceptibility to
the mobility of users and blockages at mm-wave. A framework
for joint spectrum sensing and scheduling in wireless networks
has been proposed in [9] for the case of a single cell; here we
consider a network composed of multiple cells.

The rest of this paper is organized as follows. In Section II,
we present the system model. In Section III, we introduce the
hierarchical spectrum sensing protocol, which is then analyzed
in Section IV. In Section V, we present the tree design and
some numerical results, followed by concluding remarks in
Section VI. Proofs, as well as analysis that considers the
impact of aggregation delays, are provided in [10].

II. SYSTEM MODEL
A. Network Model

We consider a cognitive network, depicted in Fig. 1, com-
posed of a cellular network of PUs with N cells, and an
opportunistic network of SUs. We denote the set of cells by
C=1{1,2,..., N¢}. Transmissions are slotted and occur over
frames, indexed by t. Let b;; € {0,1} be the PU spectrum
occupancy of cell ¢ € C at time ¢; i.e. b;; = 1 if the channel
is occupied by PUs in cell ¢ at time ¢, and b; ; = 0 if it is idle.
We suppose that {b; ;,¢ > 0,4 € C} are i.i.d. across cells and
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% Primary users; Secondary users

Fig. 1: System Model.

evolve according to a two-state Markov chain, as a result of
PUs joining and leaving the network at random times. Let

vi £ P(b;i11=1b; 1=0), v = P(b;1+1=0/b;;=1), (1)

denote the transition probabilities of the Markov chain from
“0” to “1” and from “1” to “0”, respectively. At steady-state,
bi+ = 1 with probability

V1

(1>

(@)

B .
l/1-|-V0

We denote the state of the network at time t as b; =
(bl,t7 bQ,ta SR ch7t)~

The SUs opportunistically access the spectrum to maximize
their own throughput, subject to a constraint on the interfer-
ence caused to the PUs. The SU access decisions are denoted
as a;; € {0,1}, where a;; = 1 if the SUs operating in
cell ¢ access the channel at time ¢, and a;; = 0 otherwise.
Let the network-wide SU access decision be denoted by
a; = (a1,4,a2,4,...,aN.,¢) at time ¢. Let ¢; ; > 0 denote
the interference strength generated by the SUs in cell ¢ to
the primary network in cell j. We assume that interference
is symmetric, so that ¢;; = ¢;,,Vi,j € C. While this
assumption relies on channel reciprocity, we note that our
analysis extends readily to asymmetric interference. We collect
the interference strength values into the matrix € RNoxNe |

B. Propagation Model

We suppose that nodes transmit and receive in the mm-wave
band and employ directional antenna arrays [1], [11]. Mm-
wave transmissions tend to be absorbed by objects, resulting
in blockages [12] that severely attenuate the wireless signal.
At the same time, the reduced wavelength of mm-wave trans-
mission permits more antennas to fit onto devices, resulting in
higher directivity [2], [13].

These two factors result in an irregular interference pattern.
To model this, we adopt a variation of the stochastic blockage
and sectored beamforming model of [14]-[17]. Rectangular
blockages of fixed height and width are placed randomly
on cell boundaries, as shown in Fig. 2. We say that links
between cells i, j are line of sight (LOS) if the line segment
connecting the centers of cells < and j does not intersect any
blockage object. Otherwise, such links are said to be non-LOS
(NLOS). Accordingly, we define LOS and NLOS path loss

Fig. 2: Blockage Model.

exponents, denoted o7, and «, respectively. Experimentally-
derived values are published in [1], [13], with o ~ 2 and
any =~ 3 — 4 as typical values.

Let G¢(6;) and G,.(6,) denote the antenna array gains of
the SUs and PUs along the directions 6; and 6,., respectively.
Let G4, g+ (with g; < G¢) and w; denote the main lobe gain,
side lobe gain, and half-beamwidth of the main lobe of the
transmit SU array, and let G,., g, (with g, < G,) and w,
denote the same quantities related to the receiver’s array. Then,
the antenna array gains are

10;] < w;,

3
|01| > Wi, ( )

G;
Gi(6;) = {QMG#;;(W_%)W
2w; G +2(T—w)g;
where the denominator ensures that the total radiated power
is constant regardless of directivity.

The interference caused by the SUs depends on the orien-
tation of the users, which, due to mobility, will vary across
time slots. Rather than calculate a new interference matrix in
every time slot, we define the interference in an average sense,
supposing that 6¢, 6, are uniformly distributed across (—m, 7).
More precisely, we define ¢ as

i’ {%f G1(6,)G,(6,)d6,6,, (i,7) is LOS,
i,j:

AN “)
Wf G(04)G(0,)d0:0.,., (i, ) is NLOS,

where P; is a reference transmit power and d(i,j) is the
distance between cells ¢ and j. The higher the blockage
density, the smaller the beamwidths w;, w,., and the greater the
difference between gains G; and g;, the less the interference
and the better the performance of the network.

C. Network Performance Metrics

Given the NSI b, € {0,1}V¢ and the SU access decision
a; € {0,1}Ve, we define the local expected reward for the
SUs in cell ¢ and the interference to the PUs caused by the
activity of the SUs in cell ¢ as

rsi(aie,be) = aii[pr(l — bis) + pBbid, %)
N¢

tp,i(@ie, be) = it Z ®i,jbj¢ (6)
j=1

The first term in (5) indicates the reward if the SUs in cell 7
access the channel when the PU is idle, where p; > 0 is the
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expected throughput per frame. The second term is the reward
if the SUs in cell 7 access the channel when the PU is active,
where 0 < pp < py is the instantaneous expected throughput
in this case. The term (6) indicates the total interference
generated by SUs in cell ¢ to the rest of the primary network.

We define the SU network reward and the total interference
to PUs as the sum of local rewards and interferences over the
entire network:

s(anby) =Y rsiaiby), (7)
ieC

p(a;,bi) = tpi(aie by). ®)
ieC

The SUs in cell 7 select a;; to optimize a trade-off between
Rs(at,bs) and Ip(as, by) based on partial NSI, denoted by
the belief 7, ;(b) that the NSI takes value b, = b at time ¢.
We use a Lagrangian formulation to capture such trade-off,
denoting the expected utility by

23 " mia(b)[rsi(ais, b)—=Aipi(aie, b)), (9)

be{0,1}Nc

azhﬂ-zf

where \ > 0 is a Lagrangian multiplier term.! Thus,

a;f(.,t = argag}%}i} ui(aa Tri,t)v (10)

s

yielding the optimal expected local utility

:(ui(l,m,t))Jr’

where (-)* = max{-,0} and u;(0,7; ;) = 0 from (5)-(6).

Given the belief m; = (74, m2¢,...,TNg,t) across the
network, under the optimal SU access decisions a; given by
(10), the optimal network utility is thus given by

=i ().

i€C

u;k (ﬂ-i,t) = max{ui(07 ﬂ-i,t)a u’l(la 7ri,t)}

Y

The belief 7, is computed based on noisy, and aggregate
(noise-free and fine-grained) spectrum measurements per-
formed over the network, as described in the next section.

III. HIERARCHICAL SPECTRUM SENSING

In order to reduce the cost of acquisition of NSI and account
for errors in spectrum measurements and delay incurred during
information exchange, we propose a multi-scale approach to
spectrum sensing. To this end, we partition the cellular grid
into a tree-based hierarchical structure. We will design an
algorithm for the construction of this tree in Section V.

We associate a tree to the cell grid. At level-0, we have the
leaves, represented by the cells C. We let Cj () = = {i} fori € C.
Atlevel-1, let CYC) be a partition of the cells into n; non-empty
subsets, where 1 < k < ny < |C|. We associate a cluster
head to each subset Cik); the set of ny level-1 cluster heads
is denoted as H;. Hence, C§k> is the set of cells associated to
the level-1 cluster head k € #;.

Recursively, at level-L, let H; be the set level-L cluster
heads, with L > 1. If [Hy| = 1, then we have defined a

In principle, different cells may employ different values of A. We ignore
this case for simplicity.

tree with depth D = L. Otherwise, we define a partition of
Hy into nry; non-empty subsets ’H(Lm), where 1 < m <
nr4+1 < |Hrl|, and we associate to each subset a level-(L+1)
cluster head (specifically, Hgn) is associated to level-(L + 1)
cluster head m); the set of ny41 level-(L + 1) cluster heads
is denoted as Hy 1. Let C(Lﬁ)l, m=1,2,...,nr41 be the set
of cells associated to level-(L + 1) cluster head m € Hp 1.
This is obtained recursively as
U C(k)

clm) _
ke(™

12)

L+1

Let Hp (i) € Hp be the level-L parent of cell i € C, i.e.,
Hy(i) =4, and Hp(i) = k for L > 1 if and only if ¢ € C(Lk),
for some k € Hy. We make the following definitions.

Definition 1. We define the hierarchical distance between
cellsi € C and j € C as

A, 5) & = HL(j)}-

In other words, A(i,7) is the lowest level L such that cells
7 and j belong to the same level-L cluster. It follows that
A(i,7) = 0and A(Z, j) = A(j, 1), i.e., the hierarchical distance
between cell ¢ and itself is 0, and it is symmetric.

min{L > 0: H;(%)

Definition 2. We let C (i)( L) be the set of cells at hierarchical
distance L from cell ¢ € C. That is, C(l)( 0) = {i}, and
(L)

=\ el LS00 13)

In fact, C(HL @) contains all cells at hierarchical distance
(from cell %) less than L (or equal to it). Thus, C(l)( L) is
obtained by removing from C(HL @) all cells at hierarchical
distance less than (or equal to) L — 1, C(HL 1(8) (note that

this is a subset of C(HL 1(®) , since Hy_1(i) € (HL( )))

In order to collect NSI, the SUs exchange local estlmates
over the tree. In particular, we propose a scheme in which the
SUs carry out a hierarchical fusion of local estimates. This
fusion is patterned after hierarchical averaging, a technique
for scalar average consensus in wireless sensor networks [4].

At frame ¢, the SUs in each cell ¢ obtain a noisy measure-
ment of b; ;. The SUs transmit their estimates to a single SU,
designated the cluster head for cell i. The cluster head forms
the aggregate estimate b; ; of the spectrum occupancy.

Next, these estimates are fused up the hierarchy.? By the end
of the spectrum sensing phase in frame ¢, the level-1 cluster
head m € H; receives the spectrum estimates from its cluster
C\™, that is b;, from cells i € C\™). These estimates are
aggregated at the level-1 cluster head as

SO 2 S by Ve,
iec{™

(14)

which estimates the number of PUs occupying the spectrum
in cell C; at time ¢.

This process continues up the hierarchy: the level-L cluster
head m € Hj receives the aggregate spectrum estimate

2Typically, this fusion incurs delay. Due to space constraint, herein we
consider no delay; the case with aggregation delays is investigated in [10].
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S,gﬁ_n from the level-(L — 1) cluster head k& € ’H<L"1)1
connected to it. These are aggregated as

S(L) Z S(L 1)

m,t —
(m)
ken (™,

s)

Thus, S,(,i 1 represents the aggregate spectrum estimate at
the level L cluster head m. Finally, the aggregate spectrum
measurements are fused at the root (level D) as

S = 3T s =Sk

hend) | jec

(16)

After reaching the final level of the hierarchy, the aggregated
measurements are propagated down to the individual cells
i € C, following the tree. At frame ¢, SUs operating in cell 4
receive from their level-L cluster heads:

(0) _ j
Saoe = B
SHL(i),t = ZjeciHL(i)) bj7t7 1<L<D,
recalling that Hp (7) is the level-L parent of cell 4, C} () §
the set of cells associated to Hp,(4). From these measurements,
cell ¢+ can compute the aggregate spectrum estimate of the cells
at all hierarchical distances from itself:

(O
O;¢ = Vit

{Uf? LSS

Thus, the SUs operating in cell < can compute the aggregate

spectrum estimate at multiple scales corresponding to different

hierarchical distances L, for L. = 0,1,...,D. Importantly,

only an estimate of the aggregate spectrum is available, rather

than the current state of a specific cell b;,,Vj # i. These

aggregate spectrum estimates are used to update the belief
;¢ in the next section.

(L-1) 17

e 1SLED.

IV. ANALYSIS

Using the aggregate estimates at each scale, the SUs in each
cell ¢ update the belief 7; ; based on the following theorem.

Theorem 1. Given of = (0f,0!,...,0%), where
ob = (or0,0L1,---,0L4t), we have
D .
mia(b) = JT P (b = b5, vj € (L))ot = o), (18)
L=0
where, letting Zjec};"')(L) bj =,
P (bye = by, 75 € (D) " = o} ) (19

=P Z bj¢ = Z b; O'EL’t)zot
jecs) (L) jecy (L)
A
X (Zaed”(m ) (‘C(Z)( = 2jecp bj)!
(@)
B

where x(-) is the indicator function. Additionally,

(Lt)_ t
Z bjr=x| 0, =op,

jec (L)

lc (L)

ZxP

z=0

=o0rz- (20)

To help unpack Theorem 1, we make the following obser-

vations:

1) Equation (18) implies that m; ; is statistically independent
across the subsets of cells at different hierarchical dis-
tances from cell ¢; this follows from the i.i.d. assumption
made in Section II.

2) Equation (19) contains two terms. The term (A) is
the probability distribution of the aggregate spectrum
occupancy given previous estimates. The term (B) js the
probability of a specific realization of b;¢,j € C(Z (L),

given that its aggregate equals . . e c") (L) b;. This follows

e (L)

from the fact that there are (
T

> combinations

of such spectrum occupancies.

3) Equation (20) states that the expected aggregate occu-
pancy over C/(\Z)(L), given past estimates, equals oy, ¢, but
is independent of past spectrum estimates. However, its
probability distribution given by term (A) in (19) does
depend on past spectrum estimates.

4) In general, the term (A) in (19) cannot be computed in
closed form, except in some special cases (e.g., noiseless
measurements [18]). However, we will now show that a
closed-form expression is not required to compute the
expected utility in cell i.

We can use Theorem 1 to compute the expected utility in

cell 7, given by (9). Using (5)-(6), partitioning the cells C based
on their hierarchical distance from cell ¢, and letting

D, (tot) £ 3 cc dij
JAY
(L) = X e ry Piis

be the total interference generated by the SUs in cell i to
the network, and the inferference generated to the cells at
hierarchical distance L from cell ¢, we finally obtain the
following lemma.

2n

Lemma 1. The expected utility in cell ¢ is given by
u;(0,04) =0 and

wi(l,0:0) = pr(l — o\ + ppoy

D (L)
Y (‘:; _ 71'3) O,(L) — Mrp®s(tot).  (22)
=0 \ICA"(L)]

Note that the utilities, and therefore the aggregate network
utility (11), depend on the structure of the tree employed for
the aggregation of spectrum occupancy estimates. In the next
section, we present an algorithm to design the tree so as to
maximize the network utility, and we provide some numerical
results.

V. INTERFERENCE-BASED TREE DESIGN
Network performance depends on the aggregation defined

by the sets Cék). Optimizing directly over the aggregation has
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SU reward

Aggregation cost (per cell)

Fig. 3: Reward to SUs for a reference interference to PUs of
0.025 (per cell) as a function of the aggregation cost.

exponential complexity, so we adopt a greedy approach based
on agglomerative clustering [5, Ch. 14], which we call the
interference-based tree (IBT). Define the similarity between
two macrocells as their total mutual interference, i.e.

’YL(k1>k2): Z Z ¢z‘,j~

iecl) jecthe)

(23)

Then, we build the hierarchy by successively merging the
macrocells with the highest similarity. This results in the
aggregation of cells that have high potential for interference.

We also want to limit the energy expended in aggregating
estimates. Define the aggregation cost per cell

C(k1, k2) d(i, j), (24)

= — max

Ne iecflieC?
which supposes that the energy cost is proportional to transmit
distance. Each time we combine two macrocells k7 and ko,
we incur an additional energy cost C(ky,ks). Aggregation
continues until either the aggregation forms a tree or a max-
imum aggregation cost is reached. Agglomerative clustering
has complexity O(NZ log(N¢)), where the NZ term owes to
searching over all pairs of clusters.

In Figure 3 we show the trade-off between network re-
ward and per-cell aggregation cost. We simulate a 16 x 16
rectangular cellular network, with random blockages and ¢; ;
calculated according to a path-loss model with exponent o = 2
for links without blockages (LOS) and o = 4 for links with
blockages (NLOS) [1], [13]. We compare the IBT to two other
schemes: a regular tree, in which adjacent cells are aggregated
together into a tree without regard for ®, and full-NSI, in
which SUs aggregate all of the measurements from cells within
a certain radius. Tree-based aggregation substantially improves
the reward/cost trade-off, and the IBT outperforms the regular
tree by 10%. Importantly, IBT incurs 1/5th of the energy
cost of full-NSI to exchange estimates over the network, thus
demonstrating a much more efficient use of resources.

VI. CONCLUSIONS

To reduce the cost of acquisition of network state infor-
mation in cognitive mm-wave networks, we have proposed a

hierarchical scheme to aggregate estimates at multiple scales.
This approach accounts for local estimation errors, the energy
cost of aggregation, and irregular interference patterns at mm-
wave. Using greedy, agglomerative clustering, we match the
aggregation tree to the network interference structure.
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