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Abstract—In this paper, a multi-scale approach to spectrum
sensing and information exchange in millimeter wave cognitive
cellular networks is proposed. In order to overcome the huge
energy cost of acquiring full network state information on the
occupancy of each cell over the network, secondary users acquire
local state estimates, which are aggregated up the hierarchy to
produce multi-scale estimates of spectrum occupancy. The pro-
posed design accounts for local estimation errors and the irregular
interference patterns arising due to sensitivity to blockages, high
attenuation, and high directionality at millimeter wave. A greedy
algorithm based on agglomerative clustering is proposed to design
an interference-based tree (IBT), matched to the interference
pattern of the network. The proposed aggregation algorithm over
IBT is shown to be much more cost efficient than acquiring full
network state information from the neighboring cells, requiring
as little as 1/5th of the energy cost.

I. INTRODUCTION

To satisfy increasing throughput demands, 5G cellular

networks will employ techniques such as millimeter wave

(mm-wave), massive MIMO, cell densification, and cognitive

radio [1]–[3]. A challenge in deploying these technologies

is the high attenuation and sensitivity to blockage of mm-

wave transmissions. Attenuation in mm-wave is not solely

defined by the distance between transmitter and receiver,

which cases irregular interference patterns. Techniques for

managing interference in mm-wave networks must account for

these irregularities. Furthermore, the acquisition of network

state information (NSI) becomes more challenging as cell

density increases. A scalable approach for NSI is required.

In this paper, we consider a cognitive mm-wave cellular

network with a set of primary users (PUs), licensed to access

the spectrum, and a set of opportunistic secondary users (SUs),

which seek access to unoccupied spectrum. In each cell, PUs

join and leave the channel at random times. In order to utilize

the unoccupied spectrum, the SUs require accurate estimates

of spectrum occupancies throughout the cellular network. In

principle, channel occupancies can be estimated locally and

collected at a fusion center; in practice, such centralized

estimation is too costly in terms of transmit energy and delay.

Furthermore, due to path loss, shadowing, and blockage, SUs

may cause significant interference in some cells, but negligible

interference elsewhere in the network. Each SU needs precise
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information about the occupancies only of cells at which it is

likely to cause interference.

To this end, we present a cost effective approach to NSI

estimation and interference management that is tailored to

irregular interference patterns. We propose a hierarchical spec-

trum sensing scheme, based on [4], by which local estimates

of spectrum occupancy are aggregated efficiently at multiple

layers. As a result, SUs estimate accurately the spectrum

occupancy of cells to which they cause strong interference,

and estimate coarsely the spectrum occupancy otherwise. This

allows an effective trade-off between SU network throughput

and interference to PUs.

The main ingredients of this approach are (1) a cellular

hierarchy that determines the aggregation of measurements

and is matched to the irregular interference pattern of the

network based on agglomerative clustering [5, Ch. 14], and (2)

a derivation of the Bayes-optimum estimate of the spectrum

occupancy from the aggregated measurements. In terms of

the trade-off between SU network throughput, interference

to the PUs, and the energy expended in collecting spectrum

information, we observe a 10% cost reduction over the regular

tree construction proposed in our previous work [6], and up

to 1/5th of the cost of exchanging full NSI within neighboring

cells.

Previous work includes consensus-based schemes for spec-

trum estimation in static networks [7], [8], whereas here we

focus on a dynamic setting due to the high susceptibility to

the mobility of users and blockages at mm-wave. A framework

for joint spectrum sensing and scheduling in wireless networks

has been proposed in [9] for the case of a single cell; here we

consider a network composed of multiple cells.

The rest of this paper is organized as follows. In Section II,

we present the system model. In Section III, we introduce the

hierarchical spectrum sensing protocol, which is then analyzed

in Section IV. In Section V, we present the tree design and

some numerical results, followed by concluding remarks in

Section VI. Proofs, as well as analysis that considers the

impact of aggregation delays, are provided in [10].

II. SYSTEM MODEL

A. Network Model

We consider a cognitive network, depicted in Fig. 1, com-

posed of a cellular network of PUs with NC cells, and an

opportunistic network of SUs. We denote the set of cells by

C ≡ {1, 2, . . . , NC}. Transmissions are slotted and occur over

frames, indexed by t. Let bi,t ∈ {0, 1} be the PU spectrum

occupancy of cell i ∈ C at time t; i.e. bi,t = 1 if the channel

is occupied by PUs in cell i at time t, and bi,t = 0 if it is idle.

We suppose that {bi,t, t ≥ 0, i ∈ C} are i.i.d. across cells and
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expected throughput per frame. The second term is the reward

if the SUs in cell i access the channel when the PU is active,

where 0 ≤ ρB ≤ ρI is the instantaneous expected throughput

in this case. The term (6) indicates the total interference

generated by SUs in cell i to the rest of the primary network.

We define the SU network reward and the total interference

to PUs as the sum of local rewards and interferences over the

entire network:

RS(at,bt) =
∑

i∈C

rS,i(ai,t,bt), (7)

IP (at,bt) =
∑

i∈C

ιP,i(ai,t,bt). (8)

The SUs in cell i select ai,t to optimize a trade-off between

RS(at,bt) and IP (at,bt) based on partial NSI, denoted by

the belief πi,t(b) that the NSI takes value bt = b at time t.

We use a Lagrangian formulation to capture such trade-off,

denoting the expected utility by

ui(ai,t, πi,t) ,
∑

b∈{0,1}NC

πi,t(b)
[
rS,i(ai,t,b)−λιP,i(ai,t,b)

]
, (9)

where λ ≥ 0 is a Lagrangian multiplier term.1 Thus,

a∗i,t = arg max
a∈{0,1}

ui(a, πi,t), (10)

yielding the optimal expected local utility

u∗
i (πi,t) = max

{
ui(0, πi,t), ui(1, πi,t)

}
=
(
ui(1, πi,t)

)+
,

where (·)
+
= max{·, 0} and ui(0, πi,t) = 0 from (5)-(6).

Given the belief πt = (π1,t, π2,t, . . . , πNC ,t) across the

network, under the optimal SU access decisions a
∗
t given by

(10), the optimal network utility is thus given by

U∗(πt) =
∑

i∈C

u∗
i (πi,t). (11)

The belief πt is computed based on noisy, and aggregate

(noise-free and fine-grained) spectrum measurements per-

formed over the network, as described in the next section.

III. HIERARCHICAL SPECTRUM SENSING

In order to reduce the cost of acquisition of NSI and account

for errors in spectrum measurements and delay incurred during

information exchange, we propose a multi-scale approach to

spectrum sensing. To this end, we partition the cellular grid

into a tree-based hierarchical structure. We will design an

algorithm for the construction of this tree in Section V.

We associate a tree to the cell grid. At level-0, we have the

leaves, represented by the cells C. We let C
(i)
0 ≡ {i} for i ∈ C.

At level-1, let C
(k)
1 be a partition of the cells into n1 non-empty

subsets, where 1 ≤ k ≤ n1 ≤ |C|. We associate a cluster

head to each subset C
(k)
1 ; the set of n1 level-1 cluster heads

is denoted as H1. Hence, C
(k)
1 is the set of cells associated to

the level-1 cluster head k ∈ H1.

Recursively, at level-L, let HL be the set level-L cluster

heads, with L ≥ 1. If |HL| = 1, then we have defined a

1In principle, different cells may employ different values of λ. We ignore
this case for simplicity.

tree with depth D = L. Otherwise, we define a partition of

HL into nL+1 non-empty subsets H
(m)
L , where 1 ≤ m ≤

nL+1 ≤ |HL|, and we associate to each subset a level-(L+1)

cluster head (specifically, H
(m)
L is associated to level-(L+ 1)

cluster head m); the set of nL+1 level-(L + 1) cluster heads

is denoted as HL+1. Let C
(m)
L+1,m = 1, 2, . . . , nL+1 be the set

of cells associated to level-(L + 1) cluster head m ∈ HL+1.

This is obtained recursively as

C
(m)
L+1 =

⋃

k∈H
(m)
L

C
(k)
L . (12)

Let HL(i) ∈ HL be the level-L parent of cell i ∈ C, i.e.,

H0(i) = i, and HL(i) = k for L ≥ 1 if and only if i ∈ C
(k)
L ,

for some k ∈ HL. We make the following definitions.

Definition 1. We define the hierarchical distance between

cells i ∈ C and j ∈ C as

Λ(i, j) , min {L ≥ 0 : HL(i) = HL(j)} .

In other words, Λ(i, j) is the lowest level L such that cells

i and j belong to the same level-L cluster. It follows that

Λ(i, i) = 0 and Λ(i, j) = Λ(j, i), i.e., the hierarchical distance

between cell i and itself is 0, and it is symmetric.

Definition 2. We let C
(i)
Λ (L) be the set of cells at hierarchical

distance L from cell i ∈ C. That is, C
(i)
Λ (0) ≡ {i}, and

C
(i)
Λ (L) ≡ C

(HL(i))
L \ C

(HL−1(i))
L−1 , L > 0. (13)

In fact, C
(HL(i))
L contains all cells at hierarchical distance

(from cell i) less than L (or equal to it). Thus, C
(i)
Λ (L) is

obtained by removing from C
(HL(i))
L all cells at hierarchical

distance less than (or equal to) L − 1, C
(HL−1(i))
L−1 (note that

this is a subset of C
(HL−1(i))
L−1 , since HL−1(i) ∈ H

(HL(i))
L−1 ).

In order to collect NSI, the SUs exchange local estimates

over the tree. In particular, we propose a scheme in which the

SUs carry out a hierarchical fusion of local estimates. This

fusion is patterned after hierarchical averaging, a technique

for scalar average consensus in wireless sensor networks [4].

At frame t, the SUs in each cell i obtain a noisy measure-

ment of bi,t. The SUs transmit their estimates to a single SU,

designated the cluster head for cell i. The cluster head forms

the aggregate estimate b̂i,t of the spectrum occupancy.

Next, these estimates are fused up the hierarchy.2 By the end

of the spectrum sensing phase in frame t, the level-1 cluster

head m ∈ H1 receives the spectrum estimates from its cluster

C
(m)
1 , that is b̂i,t from cells i ∈ C

(m)
1 . These estimates are

aggregated at the level-1 cluster head as

S
(1)
m,t ,

∑

i∈C
(m)
1

b̂i,t, ∀m ∈ H1, (14)

which estimates the number of PUs occupying the spectrum

in cell C
(m)
1 at time t.

This process continues up the hierarchy: the level-L cluster

head m ∈ HL receives the aggregate spectrum estimate

2Typically, this fusion incurs delay. Due to space constraint, herein we
consider no delay; the case with aggregation delays is investigated in [10].
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S
(L−1)
k,t from the level-(L − 1) cluster head k ∈ H

(m)
L−1

connected to it. These are aggregated as

S
(L)
m,t =

∑

k∈H
(m)
L−1

S
(L−1)
k,t . (15)

Thus, S
(L)
m,t represents the aggregate spectrum estimate at

the level L cluster head m. Finally, the aggregate spectrum

measurements are fused at the root (level D) as

S
(D)
1,t =

∑

k∈H
(1)
D−1

S
(D−1)
k,t =

∑

j∈C

b̂j,t. (16)

After reaching the final level of the hierarchy, the aggregated

measurements are propagated down to the individual cells

i ∈ C, following the tree. At frame t, SUs operating in cell i

receive from their level-L cluster heads:
{

S
(0)
H0(i),t

= b̂i,t,

S
(L)
HL(i),t =

∑

j∈C
(HL(i))

L

b̂j,t, 1 ≤ L < D,

recalling that HL(i) is the level-L parent of cell i, C
(HL(i))
L is

the set of cells associated to HL(i). From these measurements,

cell i can compute the aggregate spectrum estimate of the cells

at all hierarchical distances from itself:
{

σ
(0)
i,t , b̂i,t,

σ
(L)
i,t ,S

(L)
HL(i),t−S

(L−1)
HL−1(i),t

, 1≤L≤D.
(17)

Thus, the SUs operating in cell i can compute the aggregate

spectrum estimate at multiple scales corresponding to different

hierarchical distances L, for L = 0, 1, . . . , D. Importantly,

only an estimate of the aggregate spectrum is available, rather

than the current state of a specific cell bj,t, ∀j 6= i. These

aggregate spectrum estimates are used to update the belief

πi,t in the next section.

IV. ANALYSIS

Using the aggregate estimates at each scale, the SUs in each

cell i update the belief πi,t based on the following theorem.

Theorem 1. Given σ
t
i = (ot

0,o
t
1, . . . ,o

t
D), where

o
t
L = (oL,0, oL,1, . . . , oL,t), we have

πi,t(b) =

D∏

L=0

P

(

bj,t = bj , ∀j ∈ C
(i)
Λ (L)|σ

(L,t)
i = otL

)

, (18)

where, letting
∑

j∈C
(i)
Λ (L)

bj = x,

P

(

bj,t = bj , ∀j ∈ C
(i)
Λ (L)

∣
∣
∣σ

(L,t)
i = otL

)

(19)

= P






∑

j∈C
(i)
Λ (L)

bj,t =
∑

j∈C
(i)
Λ (L)

bj

∣
∣
∣
∣
∣
∣
∣

σ
(L,t)
i = otL






︸ ︷︷ ︸

A

×

(
∑

j∈C
(i)
Λ (L)

bj

)

!
(

|C
(i)
Λ (L)| −

∑

j∈C
(i)
Λ (L)

bj

)

!

|C
(i)
Λ (L)|!

︸ ︷︷ ︸

B

where χ(·) is the indicator function. Additionally,

|C
(i)
Λ (L)|
∑

x=0

xP






∑

j∈C
(i)
Λ (L)

bj,t=x

∣
∣
∣
∣
∣
∣
∣

σ
(L,t)
i =otL




 = oL,t. (20)

To help unpack Theorem 1, we make the following obser-

vations:

1) Equation (18) implies that πi,t is statistically independent

across the subsets of cells at different hierarchical dis-

tances from cell i; this follows from the i.i.d. assumption

made in Section II.

2) Equation (19) contains two terms. The term (A) is

the probability distribution of the aggregate spectrum

occupancy given previous estimates. The term (B) is the

probability of a specific realization of bj,t, j ∈ C
(i)
Λ (L),

given that its aggregate equals
∑

j∈C
(i)
Λ (L)

bj . This follows

from the fact that there are

(

|C
(i)
Λ (L)|
x

)

combinations

of such spectrum occupancies.

3) Equation (20) states that the expected aggregate occu-

pancy over C
(i)
Λ (L), given past estimates, equals oL,t, but

is independent of past spectrum estimates. However, its

probability distribution given by term (A) in (19) does

depend on past spectrum estimates.

4) In general, the term (A) in (19) cannot be computed in

closed form, except in some special cases (e.g., noiseless

measurements [18]). However, we will now show that a

closed-form expression is not required to compute the

expected utility in cell i.

We can use Theorem 1 to compute the expected utility in

cell i, given by (9). Using (5)-(6), partitioning the cells C based

on their hierarchical distance from cell i, and letting
{

Φi(tot) ,
∑

j∈C φi,j

Φi(L) ,
∑

j∈C
(i)
Λ (L)

φi,j ,
(21)

be the total interference generated by the SUs in cell i to

the network, and the interference generated to the cells at

hierarchical distance L from cell i, we finally obtain the

following lemma.

Lemma 1. The expected utility in cell i is given by

ui(0,σi,t) = 0 and

ui(1,σi,t) = ρI(1− σ
(0)
i,t ) + ρBσ

(0)
i,t

− λ

D∑

L=0

(

σ
(L)
i,t

|C
(i)
Λ (L)|

− πB

)

Φi(L)− λπBΦi(tot). (22)

Note that the utilities, and therefore the aggregate network

utility (11), depend on the structure of the tree employed for

the aggregation of spectrum occupancy estimates. In the next

section, we present an algorithm to design the tree so as to

maximize the network utility, and we provide some numerical

results.

V. INTERFERENCE-BASED TREE DESIGN

Network performance depends on the aggregation defined

by the sets C
(k)
L . Optimizing directly over the aggregation has
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Fig. 3: Reward to SUs for a reference interference to PUs of

0.025 (per cell) as a function of the aggregation cost.

exponential complexity, so we adopt a greedy approach based

on agglomerative clustering [5, Ch. 14], which we call the

interference-based tree (IBT). Define the similarity between

two macrocells as their total mutual interference, i.e.

γL(k1, k2) =
∑

i∈C
(k1)

L

∑

j∈C
(k2)

L

φi,j . (23)

Then, we build the hierarchy by successively merging the

macrocells with the highest similarity. This results in the

aggregation of cells that have high potential for interference.

We also want to limit the energy expended in aggregating

estimates. Define the aggregation cost per cell

C(k1, k2) =
1

NC

max
i∈C

k1
L

,j∈C
k2
L

d(i, j), (24)

which supposes that the energy cost is proportional to transmit

distance. Each time we combine two macrocells k1 and k2,

we incur an additional energy cost C(k1, k2). Aggregation

continues until either the aggregation forms a tree or a max-

imum aggregation cost is reached. Agglomerative clustering

has complexity O(N2
C log(NC)), where the N2

C term owes to

searching over all pairs of clusters.

In Figure 3 we show the trade-off between network re-

ward and per-cell aggregation cost. We simulate a 16 × 16
rectangular cellular network, with random blockages and φi,j

calculated according to a path-loss model with exponent α = 2
for links without blockages (LOS) and α = 4 for links with

blockages (NLOS) [1], [13]. We compare the IBT to two other

schemes: a regular tree, in which adjacent cells are aggregated

together into a tree without regard for Φ, and full-NSI, in

which SUs aggregate all of the measurements from cells within

a certain radius. Tree-based aggregation substantially improves

the reward/cost trade-off, and the IBT outperforms the regular

tree by 10%. Importantly, IBT incurs 1/5th of the energy

cost of full-NSI to exchange estimates over the network, thus

demonstrating a much more efficient use of resources.

VI. CONCLUSIONS

To reduce the cost of acquisition of network state infor-

mation in cognitive mm-wave networks, we have proposed a

hierarchical scheme to aggregate estimates at multiple scales.

This approach accounts for local estimation errors, the energy

cost of aggregation, and irregular interference patterns at mm-

wave. Using greedy, agglomerative clustering, we match the

aggregation tree to the network interference structure.
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