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Abstract—For communications over large-scale antennas, non-
coherent differential detection is an attractive option to avoid
expensive channel estimation, but cannot maximally collect the
performance benefits as the antenna number increases. For
a desired performance-complexity tradeoff, this letter develops
multiple symbol differential detection (MSDD) with simple im-
plementation for single-input multiple-output (SIMO) systems,
which jointly detects a block of symbols within the channel
coherence time. The generalized likelihood ratio test criterion
is adopted that maximizes the likelihood function over both the
information symbols and the unknown channels. Simple formulas
of the MSDD-SIMO detector are derived, whose performance is
competitive to training-based coherent detection.

Index Terms—Multiple symbol differential detection, nonco-
herent communications, generalized likelihood ratio test, large-
scale antenna arrays.

I. INTRODUCTION

IN contemporary wireless systems such as Internet of
Things and millimeter-wave communications, large-scale

antenna arrays have been considered as a promising technique
to provide enhanced performance beyond traditional small-
scale antenna array implementations in terms of increased link
reliability and data rate [1], [2]. As the number of antennas
increases, great opportunities arise to collect much enhanced
antenna gain, in the form of either diversity gain for rich scat-
tering channels or array gain for channels with sparse angular
directivity [3], [4]. On the other hand, it is increasingly chal-
lenging to acquire the channel state information (CSI) required
by coherent communications. This is because the conventional
channel estimation techniques applicable to small-scale an-
tenna systems cannot be effectively applied due to the large
number of unknown channel coefficients, which may result in
prohibitively long training time and huge power consumption
[3]. For channels with sparse scattering such as in millimeter-
wave systems, compressive sensing (CS) techniques have been
applied in channel estimation to reduce training resources [5]–
[7]. Still, they may incur high computational complexity in
the process of CS-based signal recovery, which is related to
the problem size decided by the number of antennas [8], [9].
Besides, CS methods are not applicable for radio frequency
systems experiencing rich scattering. A simple alternative
using beam sweeping has been proposed for low-complexity
training in millimeter-wave systems [10]. However, when there
are not enough training resources in practical systems, the
problem of pilot contamination may occur and cause non-
negligible channel estimation errors [11], [12], which then
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severely degrades the performance of training-based coherent
detection [13].

Alternatively, noncoherent communication, as an efficient
transmission paradigm without need for instantaneous channel
estimation, utilizes the autocorrelation of the received signals
to demodulate data information in the absence of CSI. There-
fore, it has attracted recent attention in the context of large-
scale antenna array systems [14]–[17]. In [14], a system with a
single transmit antenna and a large number of receive antennas
is analyzed to shed light on its asymptotic performance under
the assumption of an infinite number of antennas. Noncoher-
ent detection is coupled with energy-based communications
to construct a multiuser system [14]. Along this line, the
constellation design is further studied for noncoherent large-
scale antenna systems in [15], [16]. Since most of these works
aim for theoretical understanding of the achievable system
performance, they all require some form of channel statistical
information for analysis, and focus on the asymptotic results as
the number of antennas grows infinite. However, they adopt the
conventional energy detection or differential detection, which
are not as effective in collecting the antenna gain. In fact,
as the number of antenna increases, conventional noncoherent
detectors exhibit an increasing performance gap from coherent
detection, which is a major technical hindrance that motivates
this work. To this end, this letter focuses on the design
of efficient noncoherent detection schemes for large-scale
antenna systems, in the absence of any channel statistics. Such
effort is found in [17], which proposes a decision-feedback
differential detection scheme. However, it is developed for a
proof-of-concept geometrical channel model, and it needs the
channel statistics for its weighting process.

In this work, we develop multiple symbol differential detec-
tion (MSDD) to implement noncoherent communications for
uplink (massive) single-input multiple-output (SIMO) trans-
missions, in the absence of channel statistical knowledge. The
goal is to avoid any channel estimation, while effectively im-
prove the detection performance of noncoherent detection for
large-antenna systems. The idea of MSDD is to jointly detect
a block of consecutive symbols from signal autocorrelations
under the assumption of channel time-invariance at least within
the data block size [18]. In this work, we collect measurements
at the receiver by spatial autocorrelation, not temporal auto-
correlation [19]. Then, we resort to the generalized likelihood
ratio test (GLRT) criterion [20], in which the maximization of
the likelihood function is performed over both the unknown
symbols and the unknown channels. The derived formula of
the general MSDD-SIMO detector is applicable for various
modulation modes. And, such a general detector formulation
can be further simplified in the case of constant-amplitude
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constellations, e.g. M -ary phase shift keying (PSK). The
proposed MSDD solution allows simple hardware implemen-
tation and enables flexible options for performance-complexity
tradeoffs in large-antenna communication systems. It can
effectively collect the antenna gain to considerably outperform
the conventional (one-symbol) differential detection (DD) in
both sparse and rich scattering channel environments. Its bit
error rate (BER) performance approaches that of the idealized
coherent detection (CD) with perfect channel information,
without invoking complicated channel estimation or subject
to pilot contamination.

Notations: a denotes a scalar, a is a vector, A represents
a matrix, and A means a set. (·)T , (·)∗, and (·)H are the
transpose, conjugate, and conjugate transpose of a matrix
or vector, respectively. The operation vec(·) stacks all the
columns of a matrix into a vector, tr(A) calculates the trace
of A, and R(·) returns the real part of a complex argument.
|A| denotes the cardinality of A.

II. SIGNAL MODEL

In the context of noncoherent detection, a sequence of
independent information-bearing symbols ai ∈ M are differ-
entially encoded into the transmit symbols bi ∈ M via the
rule bi = aibi−1, where M denotes the M -ary constellation
set, e.g., M = {ej2πi/M | i = 0, 1, · · · ,M−1} for M -ary PSK.

Consider a SIMO system with one transmit antenna and
Nr receive antennas. Assume a block-fading channel model,
where the channel is time-invariant within the duration of
multiple consecutive symbols in the same data block. The
input-output signal model over the block-fading SIMO channel
with frequency flat fading can be written as

Y = hbT + W (1)

where Y is the Nr×(N+1) received signal collected from the
Nr receive antennas over the block length of N + 1 symbols,
the Nr×1 vector h denotes the block fading SIMO channels,
the transmit signal vector b contains the initial symbol b0 and
the following N differentially encoded symbols in the form
of b = [b0 b1 b2 · · · bN ]T , and W represents additive white
Gaussian noise (AWGN) with identical variance σ2

n.

III. MULTIPLE SYMBOL DIFFERENTIAL DETECTION

In developing an MSDD scheme for noncoherent com-
munications, we seek to jointly detect the N consecutive
information symbols a = [a1 a2 · · · aN ]T from the re-
ceived Y in (1), without acquiring the channel h through
expensive training. Because of differential encoding, we have
bi = b0

∏i
k=1 ak, i = 1, · · · , N , which turns (1) into

Y = h[b0 b1 b2 · · · bN ] + W

= hb0

[
1 a1 a1a2 · · ·

N∏
k=1

ak

]
+ W

= vαT + W (2)

where v = hb0 is the unknown channel scaled by the prede-
fined initial symbol b0, and α = [1 a1 a1a2 · · ·

∏N
k=1 ak]T

contains the unknown information symbols.

Since v is unknown in the absence of the channel knowl-
edge h, a reasonable alternative to the optimal maximum like-
lihood (ML) criterion for detecting a is the GLRT approach.
When W is AWGN, vec(Y − vαT ) follows the multivariate
normal distribution with a probability density function

f(Y;v,α) = (3)

1√
2πσ2

n

NrN
exp

(
−
(
vec
(
Y−vαT

))H(
vec
(
Y−vαT

))
2σ2

n

)
.

Then, the task of GLRT-based noncoherent MSDD amounts
to maximizing the following log-likelihood metric over both
ã and ṽ:

Λ[Y | ã, ṽ] = (vec(Y))
H vec(ṽα̃T )

+
(
vec(ṽα̃T )

)H
vec(Y)

−
(
vec(ṽα̃T )

)H
vec(ṽα̃T ), (4)

where ã and ṽ are candidate values of a and v respectively,
and α̃ = [1 ã1 ã1ã2 · · ·

∏N
k=1 ãk]T is the candidate value

of α. Using the properties of inner products, (4) can be
reformulated to yield the following equivalent metric:

Λ[Y | ã, ṽ] = 〈ṽ,Y∗α̃〉+ 〈ṽ∗,Yα̃∗〉

−

(
1 +

N∑
n=1

n∏
k=1

|ãk|2
)
〈ṽ∗, ṽ〉. (5)

Accordingly, the GLRT rule for noncoherent detection of the
multiple information symbols a is given by

â = arg max
ã

{
max
ṽ
{Λ[Y | ã, ṽ]}

}
. (6)

Since v is a nuisance parameter, we solve (6) by first
keeping ã fixed and computing

Λ[Y | ã] = max
ṽ
{Λ[Y | ã, ṽ]}. (7)

According to Taylor’s theorem, we resort to the variational
technique by imposing

ṽ = v0 + λε, (8)

where v0 ∈ CNr denotes the optimal solution to v ∈ CNr ,
ε ∈ CNr measures the distortion of ṽ from v0, and λ ∈ R is
the coefficient of the distortion. After substituting (8) into (5)
and then taking the first-order derivative of Λ[Y | ã, ṽ] with
respect to λ at zero, we obtain

∀ε, ∂

∂λ
Λ[Y | ã, ṽ]

∣∣∣∣
λ=0

= 〈ε, (Yα̃∗)∗〉+ 〈ε∗,Yα̃∗〉

−

(
1 +

N∑
n=1

n∏
k=1

|ãk|2
)

(〈ε,v∗
0〉+ 〈ε∗,v0〉) . (9)

Setting the derivative in (9) to zero yields the optimal v as

v0 =
1

1 +
∑N
n=1

∏n
k=1 |ãk|2

Yα̃∗. (10)

Note that (10) yields the channel estimate h = b−1
0 v0 given b0

and after obtaining the estimate of α, even though the channel
estimate is not explicitly used during noncoherent detection.
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Next, substituting ṽ in (5) by v0 in (10) yields

Λ[Y | ã] =
1

1+
∑N
n=1

∏n
k=1 |ãk|2

α̃TYHYα̃∗

=
1

1+
∑N
n=1

∏n
k=1 |ãk|2

tr
((
α̃∗α̃T

) (
YHY

))
=

1

1+
∑N
n=1

∏n
k=1 |ãk|2

(
N∑
l=0

l∏
p=0

|ãp|2zll

+
N∑
i=1

i−1∑
l=0

l∏
p=0

|ãp|2 2R

(
i−l∏
k=1

ãl+k zil

))
, (11)

where zil = yHi yl is the autocorrelation of the received
signal with yi being the i-th column of Y, and |ã0|2 = 1 is
introduced just for the convenience of mathematical notation.
In reaching the third equation of (11), we use the property
that tr

((
α̃∗α̃T

) (
YHY

))
equals the sum of all entries in

the Hadamard product
(
α̃∗α̃T

)
◦
(
YHY

)T
, while the sum

of the diagonal entries and that of off-diagonal entries of the
Hadamard product are organized in the first and second terms,
respectively. According to (6) and with Λ[Y | ã] given by (11),
the proposed MSDD rule can be formalized as

â = arg max
ã
{Λ[Y | ã]}, where Λ[Y | ã] is in (11). (12)

It is worth noting that (11) can be significantly simplified
for the constant-amplitude modulation schemes. Without loss
of generality, we consider the case of normalized amplitude
|ãi| = 1, i ∈ {1, · · · , N}, which simplifies (11) to

Λ[Y | ã] =
1

1+N

N∑
l=0

zll +
2

1+N

N∑
i=1

i−1∑
l=0

R

(
i−l∏
k=1

ãl+k zil

)
.

(13)
Further, since the first summation term and the constant

coefficient of the second summation term in (13) are irrelevant
to ã, (12) can be reformulated as a simple MSDD-SIMO
detector for all the constant-amplitude constellation cases:

â = arg max
ã

{
N∑
i=1

i−1∑
l=0

R

(
i−l∏
k=1

ãl+k zil

)}
, for constant |ãi|.

(14)

IV. IMPLEMENTATION AND COMPLEXITY

Noticeably, the MSDD solution leads to an important benefit
in terms of simplified hardware implementation for large-scale
antenna systems with large Nr. As shown in Fig. 1, the re-
ceiver first collects autocorrelation values z’s as inner products
(denoted by � in Fig. 1) of the received signals y’s across
antennas, where each inner product can be implemented using
simple analog components such as shift registers, multipliers
and adders. Then the MSDD rule is applied on the scalar z’s
only, rather than on y’s of a large size Nr. The number of z’s
involved is a function of the fixed block size N instead of Nr,
that is, N(N+1)/2 for (14) or (N+2)(N+1)/2 for (12).

The computational complexity of MSDD via exhaustive
search is O(|M|N ), which is exponential in N but independent
of Nr. Reduced-complexity alternatives such as sphere decod-
ing and Viterbi algorithms can be adopted to offer polynomial
complexity [19], with a small drop in performance.

r

0

1

2

10

21

20 1 2

Fig. 1. Diagram of the MSDD-SIMO receiver with N = 2.

V. NUMERICAL RESULTS

This section presents simulation results to verify the perfor-
mance of the proposed MSDD detector in terms of BER. In all
simulation trials, the transmitter with a single antenna sends N
consecutive binary PSK (BPSK) information-symbols1, while
the receiver with Nr antennas collects the signals passed
through Rayleigh fading channels2 and inflicted with AWGN
noise as in (1). Two benchmark methods are simulated as well:
DD which is actually a special case of MSDD with N = 1,
and idealized CD under perfect channel knowledge.

Fig. 2 illustrates the BER results of MSDD, DD, and CD
for various values of the signal-to-noise ratio (SNR) per bit,
where the slope of the BER curve indicates the collected
diversity order of the multi-antenna system. As expected, the
proposed MSDD outperforms DD, but exhibits performance
gaps from the idealized CD. In this sense, CD and DD provide
the lower and upper bounds of the BER performance of MSDD
respectively. To reveal the impact of N on the performance
of the MSDD detector, Fig. 3 depicts how much the BER
performance of MSDD improves as N increases. It shows that
the BER of the MSDD detector quickly decreases as N begins
to increase, and such improvement flattens out when N reaches
a moderate value, say N = 6 in Fig. 3. The saturation value of
N may vary slightly with Nr. This is because an increase in
Nr would cause an enlarged performance gap between DD and
CD. It then leaves more room for performance improvement by
MSDD, which echoes the motivation to develop MSDD in this
work. On the other hand, a small value of N leads to low com-
plexity and simple implementation, as discussed in Section IV.
Therefore, a moderate value of N is favored in the deployment
of MSDD, which reflects an efficient performance-complexity
tradeoff. In addition, choosing a small but effective value
for the parameter N rationalizes the assumption of channel
time-invariance within a data block size N , under which our
MSDD solution is derived. Finally, it should be noted that

1Without loss of generality, we test our noncoherent transmission scheme
in the simple BPSK case. Meanwhile, the proposed MSDD detectors in (12)
and (14) are applicable for more general and complex cases, and we have
tested higher-order modulations and observed similar performance results.

2The MSDD detectors are derived independently of any assumption on the
channel propagation model or fading distribution, and hence are applicable
to all channel conditions. Here simulation tests are carried out for rich
scattering channels with independent and identically distributed Rayleigh
fading, while similar test results are observed in other scenarios as well,
e.g., the spatially sparse channel model in millimeter-wave systems and other
fading distributions. Those results are not included due to space limit.
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Fig.2. BERoftheproposedMSDD-SIMOnoncoherentmethodversusSNR
comparedwiththatofDDandCDbenchmarksinRayleighfadingchannels
forBPSKwhenNr=32
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Fig.3. BERoftheproposedMSDD-SIMOnoncoherentmethodversusN
comparedwiththatofDDandCDbenchmarksinRayleighfadingchannels
forBPSKwhenNr=32andSNR= 3dB.

theperformancegapbetweenournoncoherentMSDDandthe
training-basedCDwillshrink,disappear,orevenflipoverin
practice.ThisisbecausetheBERcurvesofCDinbothFig.
2andFig.3areobtainedunderperfectlyknownCSI,yetthe
realisticperformanceofCDwouldsufferfromtheaggravated
channelestimationerrorsinpracticallarge-antennasystems.

VI.CONCLUSIONS

Thisworkdevelopsanewnoncoherentsolutionforuplink
SIMOtransmissionsbasedontheMSDDprinciple.Accord-
ingtotheGLRTrule,wederivethe MSDDformulasfor
generalmodulationconstellations.Byvirtualofnoncoherent
detection,itbypassesthecomplicatedchannelestimation
step,avoidstheassociatedhugetrainingoverheadandhigh
computationalcomplexity,andallowsasimpleanalog-digital
hardwarestructureforlarge-scaleantennaarraysystems.In
termsofBERperformance,itconsiderablyoutperformsthe
traditionaldifferentialdetection,andiscompetitivetothe
coherentcounterpartassumingperfectchannelinformation.
Asaresult,theproposedMSDD-basednoncoherentsolution
offersadesiredtradeoffbetweenperformanceandcomplexity
forfuturelarge-antennacommunications.Forfuturework,it

isofinteresttoinvestigatethepracticalimplementationof
this MSDDprincipleinbroadoperatingscenariossuchas
frequencyselectivechannelsandmultiusercases.
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