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ABSTRACT
Predictive models learned from historical data are widely used

to help companies and organizations make decisions. However,

they may digitally unfairly treat unwanted groups, raising con-

cerns about fairness and discrimination. In this paper, we study

the fairness-aware ranking problem which aims to discover dis-

crimination in ranked datasets and reconstruct the fair ranking.

Existing methods in fairness-aware ranking are mainly based on

statistical parity that cannot measure the true discriminatory effect

since discrimination is causal. On the other hand, existing methods

in causal-based anti-discrimination learning focus on classification

problems and cannot be directly applied to handle the ranked data.

To address these limitations, we propose to map the rank position

to a continuous score variable that represents the qualification of

the candidates. Then, we build a causal graph that consists of both

the discrete profile attributes and the continuous score. The path-

specific effect technique is extended to the mixed-variable causal

graph to identify both direct and indirect discrimination. The re-

lationship between the path-specific effects for the ranked data

and those for the binary decision is theoretically analyzed. Finally,

algorithms for discovering and removing discrimination from a

ranked dataset are developed. Experiments using the real-world

dataset show the effectiveness of our approaches.
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1 INTRODUCTION
Discrimination-aware machine learning which aims to construct

discrimination-free machine learning models has been an active re-

search area in the recent years. Many works have been conducted to

achieve this goal by detecting and removing discrimination/biases

from the historical training data [8, 10, 15, 24, 36], or from the con-

structed machine learning models [7, 16, 17, 31]. However, most

works focus on the classification models built for categorical de-

cisions, especially binary decisions. In this paper, we investigate

discrimination in ranking models, which are another widely used

machine learning models adopted by search engines, recommenda-

tion systems, and auction systems, etc. To bemore specific, we study

the discrimination discovery and removal from the ranked data. A

ranked dataset is a combination of the candidate profiles with the

permutation of the candidates as the decision. Fairness concerns

are raised for the ranking models since biases and discrimination

can also be introduced into the ranking.

Figure 1: A toy example of dataset and ranking results pro-
duced by two rankers. Blue squares represent the favorable
group and red circles represent unfavorable group.

Existing methods [30, 32] for studying the discrimination discov-

ery and removal from ranked data are mainly based on statistical

parity, which means that the demographics of individuals in any

prefix of the ranking are identical to the demographics of the whole

population. However, it has already been shown in classification

that statistical parity does not take into account the fact that part of

discrimination is explainable by some non-protected attributes and

hence cannot accurately measure discrimination [9]. We believe

that this observation also holds in the ranked data. Let’s consider a

toy example of ranked data for a company recruiting system shown

in Figure 1. The data contains four profile attributes: race (C), zip
code (Z ), education (E), interview result (I ), where race is the pro-
tected attribute with a favorable group (C = 1) and an unfavorable

group (C = 0), and education and interview result are the objective
requirements of getting the job. Assume that there are two rankers,

both of which compute the qualification scores to produce the rank-

ings. The first ranker, denoted by Ranker#1, produces qualification
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scores as an equal-weighted linear combination of two attributes

education and interview result. Intuitively, Ranker#1 produces a fair

ranking since it purely depends on two objective attributes. How-

ever, as can be seen, the ranking results do not satisfy statistical

parity. On the basis of Ranker#1, the second ranker, Ranker#2, fur-

ther gives a bonus score of 2 for the favorable group (i.e.,C = 1). The
usage of the protected attribute explicitly results in the unfavorable

treatment to the protected group (C = 0). Nevertheless, the ranking
results satisfy statistical parity as two race groups are well-mixed

in equal proportion. This example shows that statistical parity may

produce misleading conclusions regarding discrimination.

To address the limitation of the statistical parity-based meth-

ods, the causal graph-based discrimination detection and removal

methods have been recently proposed by Zhang et al. [36]. It shows

that the correlation between the protected attribute and the deci-

sion is a nonlinear combination of the direct discrimination, the

indirect discrimination, as well as the explainable effect. The path-

specific effect technique has been used to capture the causal effects

passing through different paths. However, this work focuses on

binary classification. In ranking systems, the decisions are given in

term of a permutation of a series of unique, concatenating integers

which cannot be treated as regular random variables. This means

that causal graphs cannot be built in traditional ways. Thus, the

methods in [36] cannot be applied directly to deal with ranked data.

In this paper, we employ the causal graph to solve the fair ranking

problem by adopting a continuous variable called score instead of

the ranking positions to represent the qualifications of individuals

in the rank. We use the Bradley-Terry model [6] to obtain a reason-

able mapping from ranking positions to scores. We then construct

the causal graph from the individuals’ profiles and scores, a mix of

categorical and continuous data. Traditional causal graph construc-

tion and inference are limited to the single data-type situations

where the variables are all discrete (e.g., causal Bayesian networks)

or all continuous (e.g., linear Gaussian models). To address this

challenge, we associate the score with a set of Conditional Gauss-

ian (CG) distributions instead of the Conditional Probability Table

(CPT). Then, we extend the path-specific effect technique to our

mixed-variable causal graph for capturing direct and indirect dis-

crimination. We also derive a relationship between the path-specific

effects for the ranked data and those for the binary decision, assum-

ing that binary decision is obtained based on certain cut-off point

imposed on the ranking. Algorithms for detecting discrimination

in the causal graph, as well as for removing rank biases from the

data are developed. Finally, we conduct experiments using the real-

world dataset to show the effectiveness of our methods. The results

show that our methods can correctly detect and remove both direct

and indirect discrimination with relatively small data utility loss,

while the statistical parity based methods neither correctly identify

discrimination nor successfully mitigate discrimination.

2 PRELIMINARIES

Throughout the paper, attributes are denoted by an uppercase letter,

e.g.: X ; sets of attributes are denoted by a bold uppercase letter, e.g.:
X. A value of a certain attribute is denoted by a lowercase letter, e.g.:

x ; a set of values of a set attributes is denoted by a bold lowercase
letter, e.g.: x. The domain space of an attribute is denoted by XX .

The domain space of an attribute set is a Cartesian product of the

domain spaces of its elements, denoted by XX =
∏

X ∈X XX .
A causal graph [25] is a DAG G = (V,A) where V is a set of

nodes and A is a set of edges. Each node in the graph represents an

attribute. Each edge, denoted by an arrow “→” pointing from the

cause to the effect, represents the direct causal relationship. The

path that traces arrows directed from one nodeX to another nodeY
is called the causal path fromX toY . For any nodeX , its parents are
denoted by Pa(X ), and its children are denoted by Ch(X ). Usually,
the local Markov condition is assumed to be satisfied, which means

that each node is independent of its non-descendants conditional

on all its parents. Each child-parent family in the graph is associated

with a deterministic function

x = fX (Pa(X ), εX ), X ∈ V,

where εX is an arbitrarily distributed random disturbance. This

functional characterization of the child-parent relationship leads

to the conditional probability distribution that characterizes the

graph, i.e., P(x |Pa(X )). When all variables are discrete, P(x |Pa(X ))
is denoted by a conditional probability table (CPT).

Inferring causal effects in the causal graph is performed through

interventions, which fixes the values a set of variables X ⊆ V to

constants x. Symbolically, it is formalized as do(X = x) or simply
do(x). The post-intervention distribution of all other attributes

Y = V\X, denoted by P(Y = y|do(X = x)) or simply P(y|do(x)), can
be calculated using the truncated factorization formula [18]

P(y|do(x)) =
∏
Y ∈Y

P(y |Pa(Y ))δX=x, (1)

where δX=x means assigning attributes in X involved in the term

ahead with the corresponding values in x. As a result, the total

causal effect of X on Y is assessed by comparing the difference

between the post-intervention distributions under two different

interventions do(x′) and do(x′′). A common measure of the total

causal effect is the expected difference as shown in Definition 1.

Note that the total causal effect measures the effect of the interven-

tion that is transmitted along all causal paths from X to Y.

Definition 1 (Total causal effect). Given a causal graph

G = (V,A) and two disjoint sets of variables X,Y ⊆ V, the total

causal effect of X on Y in terms of two interventions do(x′) and
do(x′′), denoted by TE(x′, x′′), is given by

TE(x′, x′′) = E [Y|do(x′)] − E [Y|do(x′′)] ,
where E[·] is the expectation.
As an extension to the total causal effect, Avin et al. [3] proposed

the path-specific effect that measures the causal effect where the

intervention’s effect is transmitted along a subset of the causal

paths from X to Y. Denote a subset of causal paths by π , and denote
by P(Y|do(x′|π )) the post-intervention distribution of Y with the

intervention’s effect transmitted along π . Based on that, the π -
specific effect is given by Definition 2.

Definition 2 (Path-specific effect). Given a causal graph

G = (V,A), two disjoint sets of variables X,Y ⊆ V, and a subset

of causal paths π , the π -specific effect of X on Y in terms of two

interventions do(x′) and do(x′′), denoted by SEπ (x′, x′′), is given by

SEπ (x′, x′′) = E
[
Y|do(x′|π )

] − E [Y|do(x′′)] .

Research Track Paper KDD 2018, August 19 23, 2018, London, United Kingdom

2537



In [3], it is pointed out the condition under which the path-

specific effect can be estimated from the observed data, known

as identifiability of the path-specific effects. In [27], Shpitser et al.

gave the method for calculating the identifiable path-specific effect.

How to deal with the unidentifiable situation is discussed in [34].

These strategies are readily to be applied to our methods.

3 MODELING DIRECT AND INDIRECT
DISCRIMINATION IN RANKED DATA

In this section, we study how to model direct and indirect discrimi-

nation in a ranked dataset as the causal effect. We consider a ranked

dataset D consisting of N individuals with a protected attribute C ,
several non-protected attributes Z = {Z1, · · · ,Z j , · · · }, and a rank
permutation π as the decision. There is a subset of attributes R ⊆ Z

that may cause indirect discrimination, referred to as the redlining

attributes. We assume all attributes are categorical. We further make

two reasonable assumptions: 1) the protected attribute C has no

parent; and 2) the score S has no child. The two assumptions are to
make our theoretical results more concise and can be easily relaxed.

3.1 Building Causal Graph for Ranked Data

A rank permutation is a series of unique, concatenating integers

that cannot be treated as normal categorical random variables. In

data science, a number of models [23] are proposed to map the

ranking positions in a ranked data to the continuous scores. In this

paper we use the Bradley-Terry model [6] but the logic also applies

to other models. The comparison of the performance of different

models is beyond the scope of the paper and is left for future work.

A Bradley-Terry modelM assigns each individual i a score si
(si ∈ R) to indicate the qualification preference of individual. Gen-
erally, a larger score represents a better qualification. The differ-

ence between the scores of two individuals i , j corresponds to the
log-odds of the probability pi , j that individual i is ranked before
individual j in the rank, i.e.,

si − sj = log
pi j

1 − pi j
.

Equivalently, solving for pi j yields

pi j =
esi

esi + esj
.

On the other hand, the probability of any rank permutationω given

a Bradley-Terry model M is proportional to the product of the

probability pi , j of all preference pairs subject to ω, i.e.,

P(ω |M) ∝
∏

(i , j):ωi<ωj

pi j ,

where ωi ,ωj are the ranking positions of individuals i , j . Thus, the
logarithm likelihood of the Bradley-Terry modelM given the ob-

served rank permutation ω is given by L(M|ω) = − log P(ω |M).
As a result, the optimal Bradley-Terry model that best fits the ob-

served rank permutationω can be obtained by minimizingL(M|ω)
as the loss function. Wu et al. [29] proved that the loss function is

convex and could be efficiently optimized with gradient descent.

After obtaining the score S using the Bradley-Terry model, we
build a causal graph for variables C , Z and S . We first adopt the
PC-algorithm for learning the structure of the causal graph. Since

there exist both discrete and continuous variables, different con-

ditional independence testing methods can be adopted, such as

chi-square test for discrete variables, partial correlation matrix for

continuous variables, and conditional Gaussian likelihood ratio test

for mixed variables. Then, for parameterizing the causal graph, we

treat discrete and continuous variables in different ways. For dis-

crete variables C and Z (we can extend our method to the situation

where some profile attributes are continuous), each of them is asso-

ciated with a Conditional Probability Table (CPT). The conditional

probabilities can be estimated from data using standard statistical

estimation techniques (like the maximum likelihood estimation).

For continuous score S , it is associated with the Conditional Gauss-
ian (CG) distributions instead of the CPT. Let Q = Pa(S)\{C}. For
each value assignment c , q of parents of S , there is a CG distri-

bution whose mean and variance are based on c , q. Thus, the CG
distribution of S is given by

P(s |c , q) = N(μc ,q,σ 2c ,q).

Finally, we fit each CG distribution N(μc ,q,σ 2c ,q) to the scores of
all candidates with C = c and Q = q using standard statistical

estimation techniques.

As an example, Figure 2 shows a causal graph of the toy example

presented in the Introduction. Each of C ,Z , E, I is associated with
a CPT representing the conditional probability given the parents,

and S is associated with a set of CG distribution where the mean

and the variance are based on its parents, the other four variables.

C

E

Z

I

S

...

N
(
μc ,z ,e ,i ,σc ,z ,e ,i

)

Score S

...

Figure 2: Causal graph of the toy example involving: race (C),
zip code (Z ), education (E), interview result (I ), and score (S).

3.2 Quantitative Measurement

Now we show how direct and indirect discrimination in a ranked

data can be quantitatively measured based on the causal graph

we build. It is known that discrimination is a causal effect of the

protected attribute on the decision. We first give the quantitative

measure of the total causal effect of protected attribute C on score

S as shown in Theorem 3.1.

Theorem 3.1. The total causal effect is given by

TE(c+, c−) =
∑
q∈XQ

(
μc+ ,qP(q|c+) − μc− ,qP(q|c−)

)
(2)

Proof. According to Definition 1, total causal effect is given by

TE(c+, c−) = E [S |do(c+)] − E [S |do(c−)]
=

∫
s · P(s |do(c+))ds −

∫
s · P(s |do(c−))ds .
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According to Eq. (1), we have

P(s |do(c+)) =
∑
z∈XZ

P(s , z|do(c+))

=
∑
z∈XZ

P(s |c+, q)
∏
Z j ∈Z

P(zj |Pa(Z j ))δC=c+ .

It can be shown that∏
Z j ∈Z

P(zj |Pa(Z j ))δC=c+ = P(z|c+). (3)

In fact, if we sort all nodes inZ according to the topological ordering

as {Z1, · · · ,Z j , · · · }, we can see that all parents of each node Z j
are before it in the ordering. In addition, since C has no parent, it

must be Z j ’s non-descendant; since E has no child, it cannot be

Z j ’s parent. Thus, based on the local Markov condition, we have
P(zj |Pa(Z j )) = P(zj |c+, z1, · · · , zj−1). According to the chain rule
we obtain P(z|c+). Thus, it follows that

P(s |do(c+)) =
∑
z∈XZ

P(s |c+, q)P(z|c+)

=
∑
q∈XQ

P(s |c+, q)
∑
Z\Q

P(z|c+) =
∑
q∈XQ

P(s |c+, q)P(q|c+).

As a result, we have∫
s · P(s |do(c+))ds =

∫
s ·

∑
q∈XQ

P(s |c+, q)P(q|c+)ds

=
∑
q∈XQ

P(q|c+)
∫

sP(s |c+, q)ds =
∑
q∈XQ

μc+ ,qP(q|c+).

Hence, the theorem is proven. �

In [36], the authors show that in the single-type causal graph,

total causal effect generally cannot correctly measure either direct

discrimination or indirect discrimination, which should be modeled

as the path-specific effects. By adopting similar strategy, we cap-

ture direct discrimination by the causal effect transmitted via the

direct edge from C to S , and capture indirect discrimination by the
causal effect transmitted via the paths that pass through redlining

attributes. Formally, define πd as the path set that contains only

C → S , and define πi as the path set that contains all causal paths
which are from C to S and pass through R. Then, direct discrimina-

tion can be captured by the πd -specific effect SEπd (·), and indirect
discrimination can be captured by the πi -specific effect SEπi (·). We
extend the method in [36] for computing the path-specific effect

from data to our mixed-variable causal graph for computing SEπd (·)
and SEπi (·). The results are shown in Theorem 3.2.

Theorem 3.2. The πd -specific effect SEπd (c+, c−) is given by

SEπd (c+, c−) =
∑
q∈XQ

(
μc+ ,q − μc− ,q

)
P(q|c−), (4)

The πi -specific effect SEπi (c+, c−) is given by

SEπi (c+, c−) =
∑
z∈XZ

(
μc− ,q

∏
G ∈Vπi

P(g|c+, Pa(G)\{C})

∏
H ∈V̄πi

P(g|c−, Pa(G)\{C})
∏

O ∈Z\Ch(C)
P(o |Pa(O))

)
−
∑
q∈XQ

(
μc− ,qP(q|c−)

)
,

(5)

where Vπi and V̄πi is obtained by dividingC’s children except S based
on the above method. Eq. (5) can be simplified to

SEπi (c+, c−) =
∑
q∈XQ

μc− ,q
(
P(q|c+) − P(q|c−)) (6)

if πi contains all causal paths from C to S except the direct edge

C → S .

Proof. For the πd -specific effect, according to Definition 2, we
have

SEπd = E
[
S |do(c+ |πd )

] − E [S |do(c−)]
=

∫
s · P(s |do(c+ |πd ))ds −

∫
s · P(s |do(c−))ds .

In the above equation, P(s |do(c−)) can be computed according to
the truncated factorization formula (1). To compute P(s |do(c+ |πd )),
we follow the steps in [27]. First, express P(s |do(c+ |πd )) as the
truncated factorization formula. Then, divide the children ofC into

two disjoint sets Vπd and V̄πd . Let Vπd contains C’s each child V
where edge C → V is a segment of a path in πd ; let V̄πd contains
C’s each child V where either V is not included in any path from

C to S , or edge C → V is a segment of a path not in πd . Finally,
replace values of C with c+ for the terms corresponding to nodes
in Vπ , and replace values ofC with c− for the terms corresponding
to nodes in V̄πd .

Following the above procedure, we obtain

P(s |do(c+ |πd )) =
∑
z∈XZ

P(s |c+, q)
∏
Zi ∈Z

P(zi |Pa(Zi ))δC=c− .

By using Eq. (3), it follows that

P(s |do(c+ |πd )) =
∑
q∈XQ

P(s |c+, q)P(q|c−),

which leads to Eq. (4) in the theorem.

For the πi -specific effect, following the above procedure similarly
we can obtain

P(s |do(c+ |πi )) =
∑
z∈XZ

(
P(s |c−, q)

∏
G ∈Vπi

P(g|c+,Qa(G))

∏
H ∈V̄πi

P(g |c−, Pa(G)\{C})
∏

O ∈Z\Ch(C)
P(o |Pa(O))

)
,

which leads to Eq. (5). If πi contains all causal paths from C to S
except the direct edge, it means that Vπi = Ch(C)\{S}, and V̄πi = ∅.
Thus, it follows that

P(s |do(c+ |πi )) =
∑
z∈XZ

P(s |c−, q)
∏
Z ∈Z

P(z |Pa(Z )\{C})δC=c+

=
∑
q∈XQ

P(s |c−, q)P(q|c+),

which leads to Eq. (6). Hence, the theorem is proven. �

Theorems 3.1 and 3.2 present the quantitative measurement of

the total causal effect as well as the πd and πi -specific effects. The
following proposition reveals the relationship among TE(·), SEπd (·)
and SEπi (·). It shows that the indirect (discriminatory) effect is equal
to the total causal effect plus the “reversed” direct (discriminatory)

effect.
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Proposition 3.3. If πi contains all causal paths fromC to S except
the direct edge C → S , we have

SEπi (c+, c−) = TE(c+, c−) + SEπd (c−, c+).

Proof. The proof can be directly obtained from Eq. (2) and (6).

�

3.3 Relationship between Ranking and Binary
Decision

In the earlier work [36], we have derived the πd and πi -specific
effects of the protected attribute C on a binary decision attribute

E with positive decision e+ and negative decision e− (denoted by
SEEπd (·) and SEEπi (·) for distinguishing with the path-specific effects
derived for ranked data in this paper). Assume that the decision

is made based on a cut-off point θ of the score. Then an interest-
ing question is to ask, given a discrimination-free rank, whether a

binary decision made based on the cut-off point θ is also discrimi-
nation free. Answering this question needs to derive a relationship

between SEπ (·) and SEEπ (·). In this subsection, we derive such re-
lationships under the condition that ∀q, θ ≥ μc+ ,q ≥ μc− ,q and

σc+ ,q = σc− ,q = σ . We first obtain the formulas of SEEπd (·) and
SEEπi (·) using the cut-off point θ .
Lemma 3.4. Given the causal graph based on score S , and a cut-off

point θ for determining a binary decision E, we have

SEEπd (c+, c−) =
∑
q∈XQ

1

2

(
erf(θ − μc− ,q√

2σ
) − erf(

θ − μc+ ,q√
2σ

)
)
P(q|c−),

(7)

SEEπi (c+, c−) =
∑
q∈XQ

1 − erf( θ−μc− ,q√
2σ

)
2

Δq. (8)

Proof. Since θ is a cut-off point, we have P(e+ |c+, q) = P(s ≥
θ |c+, q) and P(e+ |c−, q) = P(s ≥ θ |c−, q). According to the CDF of
the Gaussian distribution, we have

P(e+ |c+, q) =
1 − erf( θ−μc+ ,q√

2σ
)

2
, P(e+ |c−, q) =

1 − erf( θ−μc− ,q√
2σ

)
2

.

The lemma is proven by substituting P(e+ |c+, q) and P(e+ |c−, q) in
the formulas of SEEπd and SE

E
πi in [36] with the above expressions.

�

Then we present two lemmas to show the properties of erf(·).
Lemma 3.5. For any x1 ≥ x2 ≥ 0, we have

1

2
(erf(x1) − erf(x2)) ≤ erf(x1 − x2

2
).

Proof. Since erf(x) (x ≥ 0) is concave and erf(0) = 0, we have
erf(x2)
x2

≥ erf(x1)
x1

=⇒ x2
2x1

erf(x1) ≤ 1

2
erf(x2)

which follows that(
1

2
− x2
2x1

)
erf(x1) ≥ 1

2
erf(x1) − 1

2
erf(x2).

Again, since erf(x) (x ≥ 0) is concave and erf(0) = 0, we have(
1

2
− x2
2x1

)
erf(x1) ≤ erf(x1

2
− x2

2
).

Combining the above two inequalities, the lemma is proven. �

Lemma 3.6. For any t ≥ 0, when 0 ≤ x ≤ t , we have

αtx ≤ erf(x) ≤ αtx + βt ,

where

αt =
erf(t)
t
, βt = erf(

√
ln

2t√
π erf(t) ) −

erf(t)
t

√
ln

2t√
π erf(t) .

Proof. It is obvious that erf(x) ≥ αtx (0 ≤ x ≤ t ). Then, βt
is obtained by calculating the tangent line with the slope αt of
erf(x). �

Based on the above results, the following two theorems charac-

terize the relationship between SEπ and SEEπ .

Theorem 3.7. Given the causal graph based on score S and an

arbitrary cut-off point θ , if for the ranking derived from the score we

have

SEπd (c+, c−) ≤
2
√
2(τ − βt )σ

αt
,

for the binary decision derived from the score wemust have SEEπi (c+, c−) ≤
τ , where

t = max
q

{
μc+ ,q − μc− ,q

2
√
2σ

}
.

Proof. Let x1 =
θ−μc− ,q√

2σ
, x2 =

θ−μc+ ,q√
2σ

, according to Lemma 3.5

we have
1

2
(erf(x1) − erf(x2)) ≤ erf(x1 − x2

2
) = erf(

μc+ ,q − μc− ,q

2
√
2σ

).

According to Lemma 3.6 it follows that

erf(
μc+ ,q − μc− ,q

2
√
2σ

) ≤ αt
μc+ ,q − μc− ,q

2
√
2σ

+ βt .

Combining the above inequality with Eq. (7), we have

SEEπd ≤
∑
q∈XQ

(
αt

μc+ ,q − μc− ,q

2
√
2σ

+ βt

)
P(q|c−)

=
αt

2
√
2σ

SEπd + βt ≤ τ .

�

Theorem 3.8. Given the causal graph based on score S and an

arbitrary cut-off point θ , if for the ranking derived from the score we

have

SEπi (c+, c−) ≤
2
√
2(τ − c)σ
αt

,

for the binary decision derived from the score wemust have SEEπi (c+, c−) ≤
τ , where

t = max
q

{
max{s} − μc− ,q√

2σ

}
,

c =
1

2
−
∑

q:Δq≥0

(
αt maxq{μc+ ,q}√

2

)
−
∑

q:Δq<0

(
αt

2
√
2
+ βt

)
.
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Proof. According to Lemma 3.6 we have

erf(θ − μc− ,q√
2σ

) ≥ erf(
maxq{μc+ ,q} − μc− ,q√

2σ
) ≥ αt

maxq{μc+ ,q} − μc− ,q√
2σ

,

erf(θ − μc− ,q√
2σ

) ≤ erf(max{s} − μc− ,q√
2σ

) ≤ αt
max{s} − μc− ,q√

2σ
+ βt .

Combining the above inequalities with Eq. (8), we have

SEEπi =
∑

q:Δq≥0

1 − erf( θ−μc− ,q√
2σ

)
2

Δq +
∑

q:Δq<0

1 − erf( θ−μc− ,q√
2σ

)
2

Δq

≤ 1

2
+
∑

q:Δq≥0
αt

μc− ,q −maxq{μc+ ,q}
2
√
2σ

Δq +
∑

q:Δq<0

(αt
μc− ,q −max{s}

2
√
2σ

− βt )Δq

=
αt

2
√
2σ

SEπi + c ≤ τ .

�

4 DISCOVERY AND REMOVAL ALGORITHMS

We develop the discrimination discovery and removal algorithms

based on the derived πd and πi -specific effects. Since the values of
SEπd (c+, c−) and SEπi (c+, c−) can be arbitrarily large, we give the
criterion of direct and indirect discrimination in terms of relative dif-

ference. We require that the ratio of SEπd (c+, c−) and SEπi (c+, c−)
over the expected score of the non-protected group, i.e., E[S |c+],
is smaller than a given threshold τ . For example, the Equality and
Human Rights Commission (EHRC) consider 0.05 as a significant

threshold for the gender pay gap. By defining the discrimination

measures

DEd (c+, c−) =
SEπd (c+, c−)
E[S |c+]

and

DEi (c+, c−) =
SEπi (c+, c−)
E[S |c+] ,

the criterion of discrimination is shown below. To avoid reverse dis-

crimination, we also similarly define DEd (c+, c−) and DEi (c+, c−).
Then, we give the criterion of discrimination as follows.

Criterion 1. Given a user-defined threshold τ , direct discrimina-

tion exists if either DEd (c+, c−) > τ or DEd (c−, c+) > τ holds, and in-
direct discrimination exists if either DEi (c+, c−) > τ or DEi (c−, c+) >
τ holds.

Based on the above analysis, we develop the algorithm for discov-

ering discrimination in a rank, referred to as FDetect, as shown in

Algorithm 1. Once direct or indirect discrimination is detected, the

discriminatory effects need to be eliminated before the ranked data

is used for training or sharing. We propose a path-specific-effect-

based Fair Ranking (FRank) algorithm to remove both discrimina-

tion from the ranked data and reconstruct a fair ranking. We first

modify the score distributions so that the causal graph contains no

discrimination, and then reconstruct a fair ranking based on the

modified causal graph. As shown in Theorem 3.2, the discrimina-

tory effect only depends on the means of the score distributions.

Hence we only need to modify the means of the score.

To maximize the utility during the modification process, we min-

imize the distance between the original score distributions and the

Algorithm 1: FDetect

Input :Ranked dataset D, protected attribute C , user-defined

parameter τ .

Output :Direct/indirect discrimination judдed , judдei .

1 judдed = judдei = f alse ;

2 Derive the score S using the Bradley-Terry model;

3 Build the causal graph for S and attributes in D;

4 Compute DEd (·) according to Theorem 3.2;

5 if DEd (c+ , c−) > τ ‖ DEd (c− , c+) > τ then

6 judдed = true ;

7 Divide C ’s children except S into Vπi and V̄πi ;

8 Compute DEi (·) according to Theorem 3.2;

9 if DEi (c+ , c−) > τ ‖ DEi (c− , c+) > τ then

10 judдei = true ;

11 return [judдed , judдei ];

modified score distributions, as measured by the Bhattacharyya dis-

tance [4]. Specifically, for each score distribution N(μc ,q,σ 2c ,q), de-
note the modified distribution byN(μ ′c ,q,σ 2c ,q). The Bhattacharyya
distance between the two distributions is given by

DB=− ln
∫ √

N(μc ,q,σ 2c ,q)N(μ ′c ,q,σ 2c ,q)ds =

(
μc ,q − μ ′c ,q

)2
8σ 2c ,q

.

We define the objective function as the sum of the Bhattacharyya

distances for all score distributions. As a result, we obtain the fol-

lowing quadratic programming problem with μc ,q as the variables.

minimize
∑

c ∈XC ,q∈XQ

(
μc ,q − μ ′c ,q

)2
σ 2c ,q

subject to DEd (c+, c−) ≤ τ , DEd (c−, c+) ≤ τ ,

DEi (c+, c−) ≤ τ , DEi (c−, c+) ≤ τ .

After obtaining the modified score distribution by solving the

quadratic programming problem, we reconstruct a fair ranking as

follows. Consider the individuals with the same profile c , q, i.e.,
∀i , ci = c , qi = q. For each individual i , the new score s ′i is re-
generated from the new CG distribution N(μ ′c ,q,σ 2c ,q) at the same
percentile as the score si in the original distribution. Specifically,
since si = μc ,q + ρσc ,q and s

′
i = μ ′c ,q + ρσc ,q where ρ is the value

from the standard normal distribution for the percentile, we have

s ′i = si + (μ ′c ,q − μc ,q). Finally, we re-rank all individuals according
to the descending order of their new scores. Since the new scores

contain no discrimination, so does the new rank. The procedure is

shown in Algorithm 2, referred to as FRank.

The computational complexity of our discovery and removal

algorithms depends on how efficiently to derive the score S using
Bradley-Terry model. [29] proved that the likelihood function is

convex and the optimal solution can be efficiently obtained using

gradient descent. The complexity also depends on the complexities

of building the causal graph and computing the path-specific effect.

Many researches have been devoted to improving the performance

of network construction [1, 14, 28] and probabilistic inference in
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Algorithm 2: FRank

Input :Ranked dataset D, protected attribute C , user-defined

parameter τ .

Output :Modified dataset D∗.
1 if PSE-DD(D , C , τ ) == [f alse , f alse] then
2 return;

3 Obtain the modified distributions of S by solving the quadratic

programming problem;

4 foreach c , q do

5 foreach i : ci = c , qi = q do

6 s′i = si + (μ′c ,q − μc ,q);

7 Compute the new rank of each individual according to the

descending order of S , and replace the rank in D with the new

one to obtain D∗;
8 return D∗;

causal graphs [12, 13]. The complexity analysis can be found in

these related literature.

5 EXPERIMENTS

5.1 Experimental Setup

In the experiments, the causal graphs are then constructed using the

open source software TETRAD [11] and parameterized as described

in Section 3.1. The quadratic programming is solved using CVXOPT

[2]. The discrimination threshold τ is set as 0.05 for both direct and
indirect discrimination.

Dataset.We use a real world dataset, the German Credit [20],

which is also used in previous works [30, 32]. The German Credit

dataset consists of 1000 individuals with 20 attributes applying for

loans. Due to the small sample size, we only select 8 attributes in

our experiments including age, dependent, duration, housing, job,

property, purpose, residence. We treat age as the protected attribute,

housing as the redlining attribute.

Based on the German Credit dataset, we generate three ranked

datasets for experiments. We employ the weighted-sum ranking

strategy proposed in [30, 32] to generate two ranked datasets, de-

noted by D1 and D2. The weighted sum is computed through a

weighted linear summation of certain attributes, and then all candi-

dates are ranked according to the weighted sum. InD1, all attributes

are summed up with equal weight, while in D2, the summation is

for all attributes except age. We also use another ranked data D

where the ranking is directly based on an original attribute credit

amount. After that, we derive the continuous qualification scores

from each ranked dataset using the Bradley-Terry model and build

the causal graph. As an example, the constructed causal graph for

D is shown in Figure 3.

Baseline.We involve the statistical parity-based discrimination

discovery and removal algorithms proposed by Yang et al. [30] and

Zehlike et al. [32]. For discrimination discovery, Yang et al. [30]

proposed three set-based discrimination measures called rRD, rND,

and rKL to compute the difference between the protected group and

the whole dataset in terms of risk difference, risk ratio, and Kullback-

Leibler distance. They compute the values of difference at several

discrete points (e.g., top-10, top-20, · · · ) and sum up all values with

the logarithmic discounts. All measures are normalized to 0-1 range

Figure 3: The causal graph of D. The yellow node Age is the

protected attribute, the orange node Housing is the redlin-

ing attribute, and the purple node Score is the decision at-

tribute. The red dash-dot line captures the direct discrimina-

tion from Age to Score, and the green dashed line captures

the indirect discrimination through Housing.

(0 is the most fair value and 1 is the least fair value). Since they

don’t provide any criterion for discrimination discovery, we simply

use 0.05 as the threshold for all three measures. Zehlike et al. [32]

proposed an adjusted fairness condition (FairCon) that requires the

minimum number of protected candidates in every prefix of the

ranking list. For discrimination removal, Yang et al. [30] proposed

a fair data generator (FairGen) that manipulates the permutation

according to the user-defined preference f . For example, if f = 0.05,
all the candidates are well mixed in equal proportion at every prefix;

if f = 1, the candidates from the protected group are ranked at

the bottom. Zehlike et al. [32] proposed discrimination removal

methods, FA*IR, to select the most qualified candidate from the

corresponding group at every prefix in order to satisfy the adjusted

fairness condition.

To evaluate the data utility of all removal approaches, we adopt

twowidely usedmetrics, the Spearman’s footrule distance (SFD) and

the Kendall’s tau distance (KTD) [19]. The Spearman’s footrule dis-

tance (SFD) measures the total element-wise displacement between

the modified permutation and the original one. The Kendall’s tau

distance (KTD) measures the total number of pairwise inversions

between the two permutations. For both of the distance metrics,

the larger values indicate more data utility loss.

5.2 Discrimination Discovery

We quantify the strength of direct and indirect discrimination using

our method FDetect for all three ranked datasets. The results are

shown in Table 1. For dataset D1, all attributes including the pro-

tected attribute are used for ranking directly. Thus, the ground-truth

is that both direct and indirect discrimination occurs in this dataset.

Our method obtains DEd (c+, c−) = 0.231 and DEi (c+, c−) = 0.055,
showing that both direct and indirect discrimination are correctly

identified. For dataset D2, since we use all the other attributes

except the protected attribute in the ranking process, the ground-

truth is that the indirect discrimination occurs but the direct dis-

crimination doesn’t. Our method shows DEd (c+, c−) = 0.026 and
DEi (c+, c−) = 0.061, which is also consistent with the ground-truth.
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For dataset D, we don’t have the ground-truth. Our method obtains

that DEd (c+, c−) = 0.005 and DEi (c+, c−) = 0.013. The results im-

ply that neither direct discrimination nor indirect discrimination

exists in this dataset.

The statistical parity-based methods rRD, rND, rKL and FairCon
cannot distinguish direct and indirect discrimination. We directly

report the results produced by these methods as shown in Table 1.

ForD1, the method proposed by Yang et al. shows that rRD = 0.590,

rND = 0.440, and rKL = 0.204, while Zehlike’s FairCon shows that

the third position doesn’t satisfy the minimum fair requirement.

For D2, Yang’s method shows that rRD = 0.160, rND = 0.102, and

rKL = 0.022, while FairCon reports that the 5-th position doesn’t

satisfy the fair requirement. Most methods conclude discrimination

for both dataset, which kind of match our conclusions. However, for

D, Yang’s method shows that rRD = 0.109, rND = 0.070, and rKL =
0.008, where three values make the contradictory conclusions: there

is no discrimination according to rRD but rND and rKL report

significant discrimination. FairCon shows that the ranking cannot

satisfy the fair requirement at the 20-th position. All methods cannot

obtain the results that are consistent with ours, implying that they

may produce incorrect or misleading conclusions.

Table 1: Comparison of discrimination discovery methods
on the direct discrimination. The second column represents
the ground-truth for direct and indirect discrimination.

Ground-Truth DEd DEi FairCon rRD rND rKL
D1 Y/Y 0.231 0.055 3rd 0.590 0.440 0.204

D2 N/Y 0.026 0.061 5th 0.160 0.102 0.022

D - 0.005 0.013 20th 0.109 0.070 0.008

5.3 Discrimination Removal
We perform FRank to remove discrimination and reconstruct fairly

ranked datasets with neither direct nor indirect discrimination.

Our theoretical results guarantee that there is no discrimination

after modification. For comparison, we also execute FairGen [30]

and FA*IR [32]. After removing discrimination, we further apply

FDetect to evaluate whether the newly-generated data achieves

truly discrimination-free. The results of three removal methods

are shown in Table 2. As can be seen, our method FRank removes

both direct and indirect discrimination precisely. However, FairGen
and FA*IR cannot achieve discrimination-free. FairGen removes

neither direct nor indirect discrimination. It even introduces more

discrimination toD. FA*IR canmitigate part of direct discrimination,

but fails to remove indirect discrimination.

We adopt the Spearman’s footrule distance (SFD) and the Kendall’s
tau distance (KTD) to evaluate the data utility loss when mitigat-

ing the discrimination. As can be seen from the last two columns

of Table 2, our method FRank incurs relatively small data utility

loss, but FairGen suffers large data utility loss while not achieving

discrimination-free. Although FA*IR introduces quite a small data

utility loss, it fails to mitigate indirect discrimination. It is worth

pointing out that there is no direct or indirect discrimination in

D so our FRank doesn’t result in any distortion. On the contrary,

FairGen leads to too much utility loss.

Table 2: Discrimination and data utility measured on the
new ranked data produced different methods. Values violat-
ing the discrimination criterion are marked in bold.

Data Methods DEd DEi KTD SFD

D1
FRank 0.050 0.050 24602 72938

FairGen 0.234 0.064 11150 44600

FA*IR 0.077 0.066 13882 55528

D2
FRank 0.029 0.050 5851 18090

FairGen 0.246 0.060 19483 77934

FA*IR 0.022 0.061 231 924

D
FRank 0.005 0.013 0 0

FairGen 0.250 0.012 20806 83226

FA*IR 0.003 0.013 143 572

We also examine how the data utility varies with different values

of the discrimination threshold τ . We perform FRank on D1 and

vary the threshold τ for FRank from 0.00 to 0.25 for evaluating

how much data utility loss is incurred. In Table 3, we can see that

both the Spearman’s footrule distance (SFD) and the Kendall’s tau

distance (KTD) decrease with the increase of τ , which means that

less utility loss is incurred with a larger threshold. This observation

is consistent with our analysis since the larger τ , the more relaxed

the constraints in FRank.

Table 3: Comparison of FRank with varied τ .

τ 0.00 0.05 0.10 0.15 0.20 0.25

DEd (c+, c−) 0.000 0.050 0.100 0.150 0.200 0.231

DEi (c+, c−) 0.000 0.050 0.055 0.055 0.055 0.055

SFD 43490 24602 14370 9041 3444 0

KTD 123626 72938 45636 28652 11054 0

6 RELATED WORK
Fairness-aware learning is an active research area in machine learn-

ing and data mining. Many methods have been proposed for con-

structing discrimination-free machine learning models, which ei-

ther based on data preprocessing or model tweaking. Data prepro-

cessing methods [8, 10, 15, 24, 36] modify the historical training

data to remove discrimination before it is used for learning a model.

Model tweaking methods [7, 16, 17, 31] require some tweak or ad-

justment of the constructed machine learning models. Fair ranking

is an emerging topic in fairness-aware learning. Current works in

fair ranking are mainly based on the statistical parity. In [32], it is

required that a preset proportion of protected individuals that must

be maintained in each prefix of the ranking for the rank to be fair.

However, many works (e.g., [36]) have shown that statistical parity

alone is insufficient as a general notion of fairness.

Recently, several studies have been devoted to analyzing dis-

crimination from the causal perspective [5, 24, 33–38]. In [5], the

authors proposed a framework based on the Suppes-Bayes causal

network and developed several random-walk-based methods to

detect different types of discrimination. However, it is unclear how

the number of random walks is related to practical discrimination

metrics. In addition, the construction of the Suppes-Bayes causal
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network is impractical with the large number of attribute-value

pairs. In this work we adopt the causal graph used in [24, 33–38].

A causal graph is a probabilistic graph model widely used for cau-

sation representation, reasoning and inference [25]. The limitation

of these works is that they focus on the classification problems

and cannot be applied directly to the fair ranking problem. This is

because in their models, the decision of each individual is treated

as an independent random variable, but the ranking positions of

different individuals are correlated. In this paper we address above

limitations and develop the causal-based fair ranking algorithms.

In data science, it is well-studied in data mining how to model a

ranking using a continuous score space [23]. Several models, such

as the Plackett-Luce model [21, 26], the Mallows model [22] and

the Bradley-Terry model [6], are widely used in this field. In this

work, we adopt the Bradley-Terry model to characterize the ranked

data and obtain the continuous scores from the ranks.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of discovering discrimina-

tion in a rank and reconstructing a fair rank if discrimination is

detected. We made use of the causal graph to capture the biases

in the rank as the causal effect. To address the limitation of the

existing single data-type causal graph, we modeled the ranking

positions using a continuous score, and built the causal graph for

the profile attributes as well as the score. Then, we extended the

path-specific effect technique to the mixed-variable causal graph,

which is used to quantitatively measure direct and indirect dis-

crimination in the ranked data. We also theoretically analyzed the

relationship between the path-specific effects for the ranked data

and those for the binary decision. Based on that, we developed an

algorithm for discovering both direct and indirect discrimination,

as well as an algorithm to reconstruct a fair rank from the causal

graph. The experiments using the German Credit dataset showed

that our methods correctly measure the discrimination in the rank

and reconstruct a rank that does not contain either direct or indi-

rect discrimination, while the statistical parity-based method may

obtain incorrect and misleading results.

In Theorem 3.2 we assume that the πi -specific effect is identifi-
able from the data. In some cases, the πi -specific effect is not able
to be computed from the data due to the inherent unidentifiability

of the path-specific effect [3]. In our another work [34], we have

discussed how to deal with this situation, referred to as the uniden-

tifiable situation, and developed a lower and upper bound to the

unidentifiable path-specific effect. Similar ideas can be adopted to

deal with unidentifiable situation for ranked data. We leave this

part for future work.

Repeatability: Our software together with the datasets used in

this paper are available at http://tiny.cc/fair-ranking.
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