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ABSTRACT 1 INTRODUCTION

Predictive models learned from historical data are widely used
to help companies and organizations make decisions. However,
they may digitally unfairly treat unwanted groups, raising con-
cerns about fairness and discrimination. In this paper, we study
the fairness-aware ranking problem which aims to discover dis-
crimination in ranked datasets and reconstruct the fair ranking.
Existing methods in fairness-aware ranking are mainly based on
statistical parity that cannot measure the true discriminatory effect
since discrimination is causal. On the other hand, existing methods
in causal-based anti-discrimination learning focus on classification
problems and cannot be directly applied to handle the ranked data.
To address these limitations, we propose to map the rank position
to a continuous score variable that represents the qualification of
the candidates. Then, we build a causal graph that consists of both
the discrete profile attributes and the continuous score. The path-
specific effect technique is extended to the mixed-variable causal
graph to identify both direct and indirect discrimination. The re-
lationship between the path-specific effects for the ranked data
and those for the binary decision is theoretically analyzed. Finally,
algorithms for discovering and removing discrimination from a
ranked dataset are developed. Experiments using the real-world
dataset show the effectiveness of our approaches.
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Discrimination-aware machine learning which aims to construct
discrimination-free machine learning models has been an active re-
search area in the recent years. Many works have been conducted to
achieve this goal by detecting and removing discrimination/biases
from the historical training data [8, 10, 15, 24, 36], or from the con-
structed machine learning models [7, 16, 17, 31]. However, most
works focus on the classification models built for categorical de-
cisions, especially binary decisions. In this paper, we investigate
discrimination in ranking models, which are another widely used
machine learning models adopted by search engines, recommenda-
tion systems, and auction systems, etc. To be more specific, we study
the discrimination discovery and removal from the ranked data. A
ranked dataset is a combination of the candidate profiles with the
permutation of the candidates as the decision. Fairness concerns
are raised for the ranking models since biases and discrimination
can also be introduced into the ranking.
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Figure 1: A toy example of dataset and ranking results pro-
duced by two rankers. Blue squares represent the favorable
group and red circles represent unfavorable group.

Existing methods [30, 32] for studying the discrimination discov-
ery and removal from ranked data are mainly based on statistical
parity, which means that the demographics of individuals in any
prefix of the ranking are identical to the demographics of the whole
population. However, it has already been shown in classification
that statistical parity does not take into account the fact that part of
discrimination is explainable by some non-protected attributes and
hence cannot accurately measure discrimination [9]. We believe
that this observation also holds in the ranked data. Let’s consider a
toy example of ranked data for a company recruiting system shown
in Figure 1. The data contains four profile attributes: race (C), zip
code (Z), education (E), interview result (I), where race is the pro-
tected attribute with a favorable group (C = 1) and an unfavorable
group (C = 0), and education and interview result are the objective
requirements of getting the job. Assume that there are two rankers,
both of which compute the qualification scores to produce the rank-
ings. The first ranker, denoted by Ranker#1, produces qualification
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scores as an equal-weighted linear combination of two attributes
education and interview result. Intuitively, Ranker#1 produces a fair
ranking since it purely depends on two objective attributes. How-
ever, as can be seen, the ranking results do not satisfy statistical
parity. On the basis of Ranker#1, the second ranker, Ranker#2, fur-
ther gives a bonus score of 2 for the favorable group (i.e., C = 1). The
usage of the protected attribute explicitly results in the unfavorable
treatment to the protected group (C = 0). Nevertheless, the ranking
results satisfy statistical parity as two race groups are well-mixed
in equal proportion. This example shows that statistical parity may
produce misleading conclusions regarding discrimination.

To address the limitation of the statistical parity-based meth-
ods, the causal graph-based discrimination detection and removal
methods have been recently proposed by Zhang et al. [36]. It shows
that the correlation between the protected attribute and the deci-
sion is a nonlinear combination of the direct discrimination, the
indirect discrimination, as well as the explainable effect. The path-
specific effect technique has been used to capture the causal effects
passing through different paths. However, this work focuses on
binary classification. In ranking systems, the decisions are given in
term of a permutation of a series of unique, concatenating integers
which cannot be treated as regular random variables. This means
that causal graphs cannot be built in traditional ways. Thus, the
methods in [36] cannot be applied directly to deal with ranked data.

In this paper, we employ the causal graph to solve the fair ranking
problem by adopting a continuous variable called score instead of
the ranking positions to represent the qualifications of individuals
in the rank. We use the Bradley-Terry model [6] to obtain a reason-
able mapping from ranking positions to scores. We then construct
the causal graph from the individuals’ profiles and scores, a mix of
categorical and continuous data. Traditional causal graph construc-
tion and inference are limited to the single data-type situations
where the variables are all discrete (e.g., causal Bayesian networks)
or all continuous (e.g., linear Gaussian models). To address this
challenge, we associate the score with a set of Conditional Gauss-
ian (CG) distributions instead of the Conditional Probability Table
(CPT). Then, we extend the path-specific effect technique to our
mixed-variable causal graph for capturing direct and indirect dis-
crimination. We also derive a relationship between the path-specific
effects for the ranked data and those for the binary decision, assum-
ing that binary decision is obtained based on certain cut-off point
imposed on the ranking. Algorithms for detecting discrimination
in the causal graph, as well as for removing rank biases from the
data are developed. Finally, we conduct experiments using the real-
world dataset to show the effectiveness of our methods. The results
show that our methods can correctly detect and remove both direct
and indirect discrimination with relatively small data utility loss,
while the statistical parity based methods neither correctly identify
discrimination nor successfully mitigate discrimination.

2 PRELIMINARIES

Throughout the paper, attributes are denoted by an uppercase letter,
e.g.: X; sets of attributes are denoted by a bold uppercase letter, e.g.:
X. A value of a certain attribute is denoted by a lowercase letter, e.g.:
x; a set of values of a set attributes is denoted by a bold lowercase
letter, e.g.: x. The domain space of an attribute is denoted by Xx.
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The domain space of an attribute set is a Cartesian product of the
domain spaces of its elements, denoted by Xx = [[xex Xx.

A causal graph [25] is a DAG G = (V, A) where V is a set of
nodes and A is a set of edges. Each node in the graph represents an
attribute. Each edge, denoted by an arrow “—” pointing from the
cause to the effect, represents the direct causal relationship. The
path that traces arrows directed from one node X to another node Y
is called the causal path from X to Y. For any node X, its parents are
denoted by Pa(X), and its children are denoted by Ch(X). Usually,
the local Markov condition is assumed to be satisfied, which means
that each node is independent of its non-descendants conditional
on all its parents. Each child-parent family in the graph is associated
with a deterministic function

x = fx(Pa(X), ex),
where ¢x is an arbitrarily distributed random disturbance. This
functional characterization of the child-parent relationship leads
to the conditional probability distribution that characterizes the
graph, i.e., P(x|Pa(X)). When all variables are discrete, P(x|Pa(X))
is denoted by a conditional probability table (CPT).

Inferring causal effects in the causal graph is performed through
interventions, which fixes the values a set of variables X C V to
constants x. Symbolically, it is formalized as do(X = x) or simply
do(x). The post-intervention distribution of all other attributes
Y = V\X, denoted by P(Y = y|do(X = x)) or simply P(y|do(x)), can

be calculated using the truncated factorization formula [18]

P(yldo(x) = | | P(yIPa(¥))éx=x.
Yey

Xev,

(1)

where dx—x means assigning attributes in X involved in the term
ahead with the corresponding values in x. As a result, the total
causal effect of X on Y is assessed by comparing the difference
between the post-intervention distributions under two different
interventions do(x’) and do(x”’). A common measure of the total
causal effect is the expected difference as shown in Definition 1.
Note that the total causal effect measures the effect of the interven-
tion that is transmitted along all causal paths from X to Y.

DEFINITION 1 (TOTAL CAUSAL EFFECT). Given a causal graph
G = (V,A) and two disjoint sets of variables X,Y C V, the total
causal effect of X on Y in terms of two interventions do(x") and
do(x""), denoted by TE(x",x""), is given by

TE(x,x"") = E [Y|do(x")| — E [Y|do(x"")] ,
where E[-] is the expectation.

As an extension to the total causal effect, Avin et al. [3] proposed
the path-specific effect that measures the causal effect where the
intervention’s effect is transmitted along a subset of the causal
paths from X to Y. Denote a subset of causal paths by 7, and denote
by P(Y|do(x’|)) the post-intervention distribution of Y with the
intervention’s effect transmitted along x. Based on that, the 7-
specific effect is given by Definition 2.

DEFINITION 2 (PATH-SPECIFIC EFFECT). Given a causal graph
G = (V,A), two disjoint sets of variables X,Y C V, and a subset
of causal paths m, the n-specific effect of X on Y in terms of two
interventions do(x") and do(x""), denoted by SE(x’,x""), is given by

SE,(x',x"")=E [Y|do(x'|,,)] -E [Y|d0(x")] .
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In [3], it is pointed out the condition under which the path-
specific effect can be estimated from the observed data, known
as identifiability of the path-specific effects. In [27], Shpitser et al.
gave the method for calculating the identifiable path-specific effect.
How to deal with the unidentifiable situation is discussed in [34].
These strategies are readily to be applied to our methods.

3 MODELING DIRECT AND INDIRECT
DISCRIMINATION IN RANKED DATA

In this section, we study how to model direct and indirect discrimi-
nation in a ranked dataset as the causal effect. We consider a ranked
dataset D consisting of N individuals with a protected attribute C,
several non-protected attributes Z = {Z1,--- ,Zj,- - - }, and a rank
permutation 7 as the decision. There is a subset of attributes R € Z
that may cause indirect discrimination, referred to as the redlining
attributes. We assume all attributes are categorical. We further make
two reasonable assumptions: 1) the protected attribute C has no
parent; and 2) the score S has no child. The two assumptions are to
make our theoretical results more concise and can be easily relaxed.

3.1 Building Causal Graph for Ranked Data

A rank permutation is a series of unique, concatenating integers
that cannot be treated as normal categorical random variables. In
data science, a number of models [23] are proposed to map the
ranking positions in a ranked data to the continuous scores. In this
paper we use the Bradley-Terry model [6] but the logic also applies
to other models. The comparison of the performance of different
models is beyond the scope of the paper and is left for future work.

A Bradley-Terry model M assigns each individual i a score s;
(si € R) to indicate the qualification preference of individual. Gen-
erally, a larger score represents a better qualification. The differ-
ence between the scores of two individuals i, j corresponds to the
log-odds of the probability p; ; that individual i is ranked before
individual j in the rank, i.e.,

si —s;j = log Pij .
1= pij
Equivalently, solving for p;; yields
eSi
P e

On the other hand, the probability of any rank permutation o given
a Bradley-Terry model M is proportional to the product of the
probability p; ; of all preference pairs subject to w, i.e.,

[

(i,j):wi<wj

P(w|M) « Pijs
where w;, w; are the ranking positions of individuals i, j. Thus, the
logarithm likelihood of the Bradley-Terry model M given the ob-
served rank permutation o is given by L(M|w) = —log P(w|M).
As a result, the optimal Bradley-Terry model that best fits the ob-
served rank permutation w can be obtained by minimizing £(M|w)
as the loss function. Wu et al. [29] proved that the loss function is
convex and could be efficiently optimized with gradient descent.
After obtaining the score S using the Bradley-Terry model, we
build a causal graph for variables C, Z and S. We first adopt the
PC-algorithm for learning the structure of the causal graph. Since
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there exist both discrete and continuous variables, different con-
ditional independence testing methods can be adopted, such as
chi-square test for discrete variables, partial correlation matrix for
continuous variables, and conditional Gaussian likelihood ratio test
for mixed variables. Then, for parameterizing the causal graph, we
treat discrete and continuous variables in different ways. For dis-
crete variables C and Z (we can extend our method to the situation
where some profile attributes are continuous), each of them is asso-
ciated with a Conditional Probability Table (CPT). The conditional
probabilities can be estimated from data using standard statistical
estimation techniques (like the maximum likelihood estimation).
For continuous score S, it is associated with the Conditional Gauss-
ian (CG) distributions instead of the CPT. Let Q = Pa(S)\{C}. For
each value assignment c, q of parents of S, there is a CG distri-
bution whose mean and variance are based on ¢, q. Thus, the CG
distribution of S is given by

P(sle, q) = Npic.q: 02.q)-

Finally, we fit each CG distribution N (u,q. acz’ q) to the scores of
all candidates with C = ¢ and Q = q using standard statistical
estimation techniques.

As an example, Figure 2 shows a causal graph of the toy example
presented in the Introduction. Each of C, Z, E, I is associated with
a CPT representing the conditional probability given the parents,
and S is associated with a set of CG distribution where the mean
and the variance are based on its parents, the other four variables.

Score S

Figure 2: Causal graph of the toy example involving: race (C),
zip code (Z), education (E), interview result (I), and score (S).

N(ﬂc,z,z,ia O'C,z,e,i)

3.2 Quantitative Measurement

Now we show how direct and indirect discrimination in a ranked
data can be quantitatively measured based on the causal graph
we build. It is known that discrimination is a causal effect of the
protected attribute on the decision. We first give the quantitative
measure of the total causal effect of protected attribute C on score
S as shown in Theorem 3.1.

THEOREM 3.1. The total causal effect is given by

TE(ct,¢7) = Z (pc+,qP(q|c+) - yc—,qP(qlc_))
qe¥g

)

Proor. According to Definition 1, total causal effect is given by

TE(c*,cT)=E [S|do(c+)] —E[S|do(c7)]

=/s-P(s|do(c+))ds—/s-P(sldo(c_))ds.
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According to Eq. (1), we have
P(s|do(c*)) = Z P(s, zldo(ct))

z€Xy
= > Pilet, @ [ | PjlPa(z)dc=ct-
27Xy Z;ez
It can be shown that
[ ] PeIPaz)dc=cr = Palc). (3)

Zj€Z

In fact, if we sort all nodes in Z according to the topological ordering
as {Zy,---,Zj,---}, we can see that all parents of each node Z;
are before it in the ordering. In addition, since C has no parent, it
must be Z;’s non-descendant; since E has no child, it cannot be
Zj’s parent. Thus, based on the local Markov condition, we have
P(zj|Pa(Zj)) = P(zj|c", z1, - - , zj—1). According to the chain rule
we obtain P(z|c"). Thus, it follows that

PGsldo(c") = ) P(sle*, @)P(zlc™)

z€Xy
=Y Pslet,q) D Palet) = Y P(slet, @P(gle’).
qe¥g Z\Q qeXg

As a result, we have

/s‘P(s|do(c+))ds = /s' Z P(slc*, q)P(q|ct)ds

qEXQ
= 3 Pl [SPOIT s = Y e, Plale”)
qug q€£Q
Hence, the theorem is proven. O

In [36], the authors show that in the single-type causal graph,
total causal effect generally cannot correctly measure either direct
discrimination or indirect discrimination, which should be modeled
as the path-specific effects. By adopting similar strategy, we cap-
ture direct discrimination by the causal effect transmitted via the
direct edge from C to S, and capture indirect discrimination by the
causal effect transmitted via the paths that pass through redlining
attributes. Formally, define 7, as the path set that contains only
C — S, and define 7; as the path set that contains all causal paths
which are from C to S and pass through R. Then, direct discrimina-
tion can be captured by the 7 -specific effect SE,(-), and indirect
discrimination can be captured by the 7;-specific effect SE, (-). We
extend the method in [36] for computing the path-specific effect
from data to our mixed-variable causal graph for computing SE, (-)
and SEy; (+). The results are shown in Theorem 3.2.

THEOREM 3.2. The my-specific effect SEx,(c*,c7) is given by
SEra(¢* )= Y (Herq —teq) P @)
qeXg
The i -specific effect SEx,(c*, ¢™) is given by
SEm(c*,cT) = 3 (wea | ] Ple*, PaGN(Ch

z€Xy GEV”i

[ Pt Py [ PlolPaon)= 3 (neqP(ale)
HEeV,, O€Z\Ch(C) qeXg

®)

2539

KDD 2018, August 19-23, 2018, London, United Kingdom

whereV, andV , is obtained by dividing C’s children except S based
on the above method. Eq. (5) can be simplified to

SEr(c*,c7) = > peq (Plqle™) - Plgle?)) (©)
qeXg
if m; contains all causal paths from C to S except the direct edge
C—S.

Proor. For the r;-specific effect, according to Definition 2, we
have

SEx, = E [Sldo(c*|z,)] — E[S|do(c)]

=/s~P(s|do(c+|nd))ds—/s-P(s|do(c_))ds.

In the above equation, P(s|do(c™)) can be computed according to
the truncated factorization formula (1). To compute P(s|do(c*|,)),
we follow the steps in [27]. First, express P(s|do(c*|x,)) as the
truncated factorization formula. Then, divide the children of C into
two disjoint sets V, and V”d. Let V, contains C’s each child V
where edge C — V is a segment of a path in 74; let V,;, contains
C’s each child V where either V is not included in any path from
Cto S, or edge C — V is a segment of a path not in 7. Finally,
replace values of C with ¢* for the terms corresponding to nodes
in V, and replace values of C with ¢~ for the terms corresponding
to nodes in V,rd.

Following the above procedure, we obtain

P(sldo(c*|r,)) = Y PGsle*, q) [ | P(zilPa(Zi)oc=c-
z€Xy ZieZ
By using Eq. (3), it follows that
P(sldo(c*|,) = ) P(sle”, @)P(qle),
qEXQ
which leads to Eq. (4) in the theorem.

For the 7;-specific effect, following the above procedure similarly
we can obtain

PGsldote* 1) = Y (Pl [ ] Plgle*, QaG))

Z€Xy GEVy,
[ Pele.Pa@nich [ Polpaco)).
HeV,, 0€eZ\Ch(C)

which leads to Eq. (5). If 7; contains all causal paths from C to S
except the direct edge, it means that V,;, = Ch(C)\{S}, and V, = 0.
Thus, it follows that

P(sldo(c*|x)) = PGsle™. o) | [PalPaZ)\{CHde=c:

z€Xy ZeZ
= > Psle™, qP(qlc),
9€Xg
which leads to Eq. (6). Hence, the theorem is proven. O

Theorems 3.1 and 3.2 present the quantitative measurement of
the total causal effect as well as the 7; and ;-specific effects. The
following proposition reveals the relationship among TE(-), SE,(-)
and SE;, (+). It shows that the indirect (discriminatory) effect is equal
to the total causal effect plus the “reversed” direct (discriminatory)
effect.
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PRrROPOSITION 3.3. If 7; contains all causal paths from C to S except
the direct edge C — S, we have

SEz,(c*,c7) = TE(c*, ™) + SEq (¢, c™).

Proor. The proof can be directly obtained from Eq. (2) and (6).
O

3.3 Relationship between Ranking and Binary
Decision

In the earlier work [36], we have derived the 7; and 7;-specific
effects of the protected attribute C on a binary decision attribute
E with positive decision e™ and negative decision e~ (denoted by
SEE ,()and SE%, (+) for distinguishing with the path-specific effects
derived for ranked data in this paper). Assume that the decision
is made based on a cut-off point 0 of the score. Then an interest-
ing question is to ask, given a discrimination-free rank, whether a
binary decision made based on the cut-off point 6 is also discrimi-
nation free. Answering this question needs to derive a relationship
between SE () and SEEI(-). In this subsection, we derive such re-
lationships under the condition that Vq, 0 > pc+ ¢ > pe-,q and
Oct,q = Oc-,q = 0. We first obtain the formulas of SEE[ d() and

SEf,i (+) using the cut-off point 6.

LEMMA 3.4. Given the causal graph based on score S, and a cut-off
point 0 for determining a binary decision E, we have

_ 1 9—;10—’ 9‘.”0*, _
SEfrd(CJr’C )=q; E(erf(#)—erf(wq) P(qlc),
<0

7

9_#1."

1 —erf( =3

_ V20

SEE (¢*,¢7) = Z ; 29__Aq (8)

qe£Q

ProoF. Since 0 is a cut-off point, we have P(e*|c*,q) = P(s >
0|c*,q) and P(e*|c™,q) = P(s > 0|c”, q). According to the CDF of
the Gaussian distribution, we have

1 erf(Te)

W= Pl = ——

The lemma is proven by substituting P(e*|c*, q) and P(e*|c™, q) in
the formulas of SEE , and SEfn in [36] with the above expressions.
O

Then we present two lemmas to show the properties of erf(-).

LEMMA 3.5. For any x; > x9 > 0, we have
1 _
5 (erf(xy) - erf(xz)) < erf(¥).

ProoFr. Since erf(x) (x > 0) is concave and erf(0) = 0, we have
erf(xz2) - erf(x1)
X2 0x

which follows that

1 X2
2 2x1

1
X2 erf(xy) < - erf(x2)
2x1 2

) erf(xy) > % erf(xy) — % erf(xy).
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Again, since erf(x) (x > 0) is concave and erf(0) = 0, we have

1 X2
2 2x1

Combining the above two inequalities, the lemma is proven.

X1 X
)erf(xl) < erf(?1 - ?2)
]

LEMMA 3.6. Foranyt > 0, when 0 < x < t, we have

arx < erf(x) < opx + fy,
where
2t

erf(t) _ 2t B erf(t)
g Pr=e \/m Eet) ¢ " Vet

Proor. It is obvious that erf(x) > a;x (0 < x < t). Then, f;
is obtained by calculating the tangent line with the slope «; of
erf(x). O

ar =

Based on the above results, the following two theorems charac-
terize the relationship between SE,; and SEE.

THEOREM 3.7. Given the causal graph based on score S and an
arbitrary cut-off point 0, if for the ranking derived from the score we
have

SEr,(c*,c7) < —2\/5(1' — 'Bt)o,
ar
for the binary decision derived from the score we must have SE%, (ct,e7) <
7, where

t = max {HC+’q —fera }
q 2V20 ’
06— c” 0— c .
ProOOF. Let x; = \75 A xy = \7{"‘ , according to Lemma 3.5
o o

we have
1 X1 — X2 He*,q — He.q
— (erf(x1) — erf(xp)) < erf(————) = erf(———).
2 2 2V2¢0
According to Lemma 3.6 it follows that
Het,q — /JC’,q) <a Her,q = Hem.q N
2\/50' 2\50
Combining the above inequality with Eq. (7), we have

He+,q — He™.q _
SEE < (Ott— + B | P(qlc™)
7 q;g 220

¢4
=—tSEﬂ-d+ﬁt <T.

2\/50

erf(

Bt

O

THEOREM 3.8. Given the causal graph based on score S and an
arbitrary cut-off point 0, if for the ranking derived from the score we
have

2V2(t —
SE,ri(ch,c_) < M’
ar

for the binary decision derived from the score we must have SEf;i (ct,e) <
max{s} — He.q

T, where
st

1 oy maxq{fict q}
CZE_Z (t ql'lc,q)
q:Aq =0 \/E

t = max
q

-2

+ ﬂt) .
q:Aq<0

e
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ProoF. According to Lemma 3.6 we have

il

0 — pc- max + q} — Hem max + gt — Heo
erf( He ,q) > erf( q{ﬂc ,q} He ,q) > a q{l-lc ,q} Hem.q
20 \/50 \/50

0 — e max{s} — pic- max{s} — fic-
erf( fe ,q) < erf( (s} ~ pe ,q) <a s} ~peq + ps.

V2o V2o V2o

Combining the above inequalities with Eq. (8), we have

—~Hc™.q

1— erf(0tezay l—erf(aw)

E _ V2o
SEy, = Z qu+ Z 5 Aq
q:Aq20 q:Aq<0
1 He-,q — maxq{pc+ q} -,q — max{s}
_§+Zath 4 Cqu'FZ(O(tlJC 4 -
q:Aq =0 2\/50 q:Aq<0 2\50—
a
= —tSE,,i +tc<rt.
2\/56
O

4 DISCOVERY AND REMOVAL ALGORITHMS

We develop the discrimination discovery and removal algorithms
based on the derived 7; and 7;-specific effects. Since the values of
SEx,(c*,c7) and SEx,(c*, ¢7) can be arbitrarily large, we give the
criterion of direct and indirect discrimination in terms of relative dif-
ference. We require that the ratio of SE,(c*, ¢”) and SE, (c*,¢7)
over the expected score of the non-protected group, i.e., E[S|c"],
is smaller than a given threshold 7. For example, the Equality and
Human Rights Commission (EHRC) consider 0.05 as a significant
threshold for the gender pay gap. By defining the discrimination
measures

SEzy(c*,c7)
DEy(c*,c7) = 2Za= 2"/
a(€¢) = —Fre
and
_ SEn-(thi)
DEj(c*,c) = 228 22 )
i€ ) = 551

the criterion of discrimination is shown below. To avoid reverse dis-
crimination, we also similarly define DE4(c*, ¢”) and DE;(c*, ¢7).
Then, we give the criterion of discrimination as follows.

CRITERION 1. Given a user-defined threshold t, direct discrimina-
tion exists if either DEg(ct,c¢™) > 1 or DE4(c™, ¢) > 7 holds, and in-
direct discrimination exists if either DE;(c*,¢”) > 7 or DE;(¢™,c") >
T holds.

Based on the above analysis, we develop the algorithm for discov-
ering discrimination in a rank, referred to as FDetect, as shown in
Algorithm 1. Once direct or indirect discrimination is detected, the
discriminatory effects need to be eliminated before the ranked data
is used for training or sharing. We propose a path-specific-effect-
based Fair Ranking (FRank) algorithm to remove both discrimina-
tion from the ranked data and reconstruct a fair ranking. We first
modify the score distributions so that the causal graph contains no
discrimination, and then reconstruct a fair ranking based on the
modified causal graph. As shown in Theorem 3.2, the discrimina-
tory effect only depends on the means of the score distributions.
Hence we only need to modify the means of the score.

To maximize the utility during the modification process, we min-
imize the distance between the original score distributions and the

ﬁt)Aq9
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Algorithm 1: FDetect

Input :Ranked dataset D, protected attribute C, user-defined
parameter 7.

Output:Direct/indirect discrimination judgey, judge;.

judgey = judge; = false;

-

Derive the score S using the Bradley-Terry model;
Build the causal graph for S and attributes in D;
Compute DE () according to Theorem 3.2;

5 if DEg(c*, ¢™) > 7 || DE4(c™, ¢*) > r then

6 L judgeg = true;

oW N

7 Divide C’s children except S into V,;; and V
8 Compute DE;(-) according to Theorem 3.2;

if DE;(c*, ¢”™) > 7 || DEi(c™, ¢*) > r then
10 L judge; = true;

11 return [judgey, judge;];

modified score distributions, as measured by the Bhattacharyya dis-
tance [4]. Specifically, for each score distribution N(yc,q. O'CZ’ q), de-
note the modified distribution by N/ (ué,q, O'CZ’q). The Bhattacharyya
distance between the two distributions is given by

2 ’ 2 (,Uc,q -
Dp=- ln/\/N(ﬂc,q, O-c,q)N(Hc,q’ Uc,q)ds =

We define the objective function as the sum of the Bhattacharyya
distances for all score distributions. As a result, we obtain the fol-
lowing quadratic programming problem with yi¢ q as the variables.

, 2
(ﬂc,q - I—‘c,q)

minimize
2
Oc.q

ceXc,qeXy
DEg(c*,c7) <1,
DE;(ct,c7) <,

DE4(c™,c") < t,
DE;(c”,c) < t.

subject to

After obtaining the modified score distribution by solving the
quadratic programming problem, we reconstruct a fair ranking as
follows. Consider the individuals with the same profile c, q, i.e.,
Vi,c; = ¢,q; = q. For each individual i, the new score slf is re-
generated from the new CG distribution N (. 4. O'E,q) at the same
percentile as the score s; in the original distribution. Specifically,
since s; = pic,q + poc,q and s; = pi; g + poc,q Where p is the value
from the standard normal distribution for the percentile, we have
s; = si + (k¢,q — He,q)- Finally, we re-rank all individuals according
to the descending order of their new scores. Since the new scores
contain no discrimination, so does the new rank. The procedure is
shown in Algorithm 2, referred to as FRank.

The computational complexity of our discovery and removal
algorithms depends on how efficiently to derive the score S using
Bradley-Terry model. [29] proved that the likelihood function is
convex and the optimal solution can be efficiently obtained using
gradient descent. The complexity also depends on the complexities
of building the causal graph and computing the path-specific effect.
Many researches have been devoted to improving the performance
of network construction [1, 14, 28] and probabilistic inference in
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Algorithm 2: FRank

Input :Ranked dataset D, protected attribute C, user-defined
parameter 7.
Output: Modified dataset D*.
1 if PSE-DD(D, C, 7) == [false, false] then
2 L return;

3 Obtain the modified distributions of S by solving the quadratic
programming problem;
4 foreach c, q do

|

7 Compute the new rank of each individual according to the
descending order of S, and replace the rank in O with the new
one to obtain D*;

foreachi:c; =c,q; =qdo
| sh =i+ (g = pe,q)i

8 return D*;

causal graphs [12, 13]. The complexity analysis can be found in
these related literature.

5 EXPERIMENTS
5.1 Experimental Setup

In the experiments, the causal graphs are then constructed using the
open source software TETRAD [11] and parameterized as described
in Section 3.1. The quadratic programming is solved using CVXOPT
[2]. The discrimination threshold 7 is set as 0.05 for both direct and
indirect discrimination.

Dataset. We use a real world dataset, the German Credit [20],
which is also used in previous works [30, 32]. The German Credit
dataset consists of 1000 individuals with 20 attributes applying for
loans. Due to the small sample size, we only select 8 attributes in
our experiments including age, dependent, duration, housing, job,
property, purpose, residence. We treat age as the protected attribute,
housing as the redlining attribute.

Based on the German Credit dataset, we generate three ranked
datasets for experiments. We employ the weighted-sum ranking
strategy proposed in [30, 32] to generate two ranked datasets, de-
noted by D1 and D2. The weighted sum is computed through a
weighted linear summation of certain attributes, and then all candi-
dates are ranked according to the weighted sum. In D1, all attributes
are summed up with equal weight, while in D2, the summation is
for all attributes except age. We also use another ranked data D
where the ranking is directly based on an original attribute credit
amount. After that, we derive the continuous qualification scores
from each ranked dataset using the Bradley-Terry model and build
the causal graph. As an example, the constructed causal graph for
D is shown in Figure 3.

Baseline. We involve the statistical parity-based discrimination
discovery and removal algorithms proposed by Yang et al. [30] and
Zehlike et al. [32]. For discrimination discovery, Yang et al. [30]
proposed three set-based discrimination measures called rRD, rND,
and rKL to compute the difference between the protected group and
the whole dataset in terms of risk difference, risk ratio, and Kullback-
Leibler distance. They compute the values of difference at several
discrete points (e.g., top-10, top-20, - - - ) and sum up all values with
the logarithmic discounts. All measures are normalized to 0-1 range
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Figure 3: The causal graph of D. The yellow node Age is the
protected attribute, the orange node Housing is the redlin-
ing attribute, and the purple node Score is the decision at-
tribute. The red dash-dot line captures the direct discrimina-
tion from Age to Score, and the green dashed line captures
the indirect discrimination through Housing.

(0 is the most fair value and 1 is the least fair value). Since they
don’t provide any criterion for discrimination discovery, we simply
use 0.05 as the threshold for all three measures. Zehlike et al. [32]
proposed an adjusted fairness condition (FairCon) that requires the
minimum number of protected candidates in every prefix of the
ranking list. For discrimination removal, Yang et al. [30] proposed
a fair data generator (FairGen) that manipulates the permutation
according to the user-defined preference f. For example, if f = 0.05,
all the candidates are well mixed in equal proportion at every prefix;
if f = 1, the candidates from the protected group are ranked at
the bottom. Zehlike et al. [32] proposed discrimination removal
methods, FA*IR, to select the most qualified candidate from the
corresponding group at every prefix in order to satisfy the adjusted
fairness condition.

To evaluate the data utility of all removal approaches, we adopt
two widely used metrics, the Spearman’s footrule distance (SFD) and
the Kendall’s tau distance (KTD) [19]. The Spearman’s footrule dis-
tance (SFD) measures the total element-wise displacement between
the modified permutation and the original one. The Kendall’s tau
distance (KTD) measures the total number of pairwise inversions
between the two permutations. For both of the distance metrics,
the larger values indicate more data utility loss.

5.2 Discrimination Discovery

We quantify the strength of direct and indirect discrimination using
our method FDetect for all three ranked datasets. The results are
shown in Table 1. For dataset D1, all attributes including the pro-
tected attribute are used for ranking directly. Thus, the ground-truth
is that both direct and indirect discrimination occurs in this dataset.
Our method obtains DE4(c*, ¢™) = 0.231 and DE;(c*, c¢™) = 0.055,
showing that both direct and indirect discrimination are correctly
identified. For dataset D2, since we use all the other attributes
except the protected attribute in the ranking process, the ground-
truth is that the indirect discrimination occurs but the direct dis-
crimination doesn’t. Our method shows DE;(c™,¢™) = 0.026 and
DE;(c*,¢™) = 0.061, which is also consistent with the ground-truth.
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For dataset D, we don’t have the ground-truth. Our method obtains
that DE4(c™, ¢™) = 0.005 and DE;(c*, ¢™) = 0.013. The results im-
ply that neither direct discrimination nor indirect discrimination
exists in this dataset.

The statistical parity-based methods rRD, rND, rKL and FairCon
cannot distinguish direct and indirect discrimination. We directly
report the results produced by these methods as shown in Table 1.
For D1, the method proposed by Yang et al. shows that rRD = 0.590,
rND = 0.440, and rKL = 0.204, while Zehlike’s FairCon shows that
the third position doesn’t satisfy the minimum fair requirement.
For D2, Yang’s method shows that rRD = 0.160, rND = 0.102, and
rKL = 0.022, while FairCon reports that the 5-th position doesn’t
satisfy the fair requirement. Most methods conclude discrimination
for both dataset, which kind of match our conclusions. However, for
D, Yang’s method shows that rRD = 0.109, TND = 0.070, and rKL =
0.008, where three values make the contradictory conclusions: there
is no discrimination according to rRD but rND and rKL report
significant discrimination. FairCon shows that the ranking cannot
satisfy the fair requirement at the 20-th position. All methods cannot
obtain the results that are consistent with ours, implying that they
may produce incorrect or misleading conclusions.

Table 1: Comparison of discrimination discovery methods
on the direct discrimination. The second column represents
the ground-truth for direct and indirect discrimination.

Ground-Truth | DE; | DE; | FairCon | rRD | rfND | rKL
D1 Y/Y 0.2310.055 3rd 0.590 | 0.440 | 0.204
D2 N/Y 0.026 | 0.061 5th 0.160 | 0.102 | 0.022
D - 0.005{0.013| 20th |0.109|0.070 | 0.008

5.3 Discrimination Removal

We perform FRank to remove discrimination and reconstruct fairly
ranked datasets with neither direct nor indirect discrimination.
Our theoretical results guarantee that there is no discrimination
after modification. For comparison, we also execute FairGen [30]
and FA”IR [32]. After removing discrimination, we further apply
FDetect to evaluate whether the newly-generated data achieves
truly discrimination-free. The results of three removal methods
are shown in Table 2. As can be seen, our method FRank removes
both direct and indirect discrimination precisely. However, FairGen
and FAIR cannot achieve discrimination-free. FairGen removes
neither direct nor indirect discrimination. It even introduces more
discrimination to D. FA*IR can mitigate part of direct discrimination,
but fails to remove indirect discrimination.

We adopt the Spearman’s footrule distance (SFD) and the Kendall’s
tau distance (KTD) to evaluate the data utility loss when mitigat-
ing the discrimination. As can be seen from the last two columns
of Table 2, our method FRank incurs relatively small data utility
loss, but FairGen suffers large data utility loss while not achieving
discrimination-free. Although FA*IR introduces quite a small data
utility loss, it fails to mitigate indirect discrimination. It is worth
pointing out that there is no direct or indirect discrimination in
D so our FRank doesn’t result in any distortion. On the contrary,
FairGen leads to too much utility loss.

2543

KDD 2018, August 19-23, 2018, London, United Kingdom

Table 2: Discrimination and data utility measured on the
new ranked data produced different methods. Values violat-
ing the discrimination criterion are marked in bold.

Data | Methods DE, DE; KTD SFD
FRank 0.050 | 0.050 | 24602 | 72938

D1 FairGen | 0.234 | 0.064 | 11150 | 44600
FA'IR 0.077 | 0.066 | 13882 | 55528

FRank 0.029 | 0.050 5851 | 18090

D2 FairGen | 0.246 | 0.060 | 19483 | 77934
FA'IR 0.022 | 0.061 231 924

FRank 0.005 | 0.013 0 0

D FairGen | 0.250 | 0.012 | 20806 | 83226
FA'IR 0.003 | 0.013 143 572

We also examine how the data utility varies with different values
of the discrimination threshold 7. We perform FRank on D1 and
vary the threshold 7 for FRank from 0.00 to 0.25 for evaluating
how much data utility loss is incurred. In Table 3, we can see that
both the Spearman’s footrule distance (SFD) and the Kendall’s tau
distance (KTD) decrease with the increase of 7, which means that
less utility loss is incurred with a larger threshold. This observation
is consistent with our analysis since the larger 7, the more relaxed
the constraints in FRank.

Table 3: Comparison of FRank with varied 7.

T 0.00| 0.05| 0.10| 0.15| 0.20| 0.25
DE4(ct,c¢™)| 0.000 | 0.050 | 0.100 | 0.150 | 0.200 | 0.231
DE;(c*,c™) | 0.000 | 0.050 | 0.055 | 0.055 | 0.055 | 0.055

SFD 43490 | 24602 | 14370 | 9041 | 3444 0
KTD 123626 | 72938 | 45636 | 28652 | 11054 0

6 RELATED WORK

Fairness-aware learning is an active research area in machine learn-
ing and data mining. Many methods have been proposed for con-
structing discrimination-free machine learning models, which ei-
ther based on data preprocessing or model tweaking. Data prepro-
cessing methods [8, 10, 15, 24, 36] modify the historical training
data to remove discrimination before it is used for learning a model.
Model tweaking methods [7, 16, 17, 31] require some tweak or ad-
justment of the constructed machine learning models. Fair ranking
is an emerging topic in fairness-aware learning. Current works in
fair ranking are mainly based on the statistical parity. In [32], it is
required that a preset proportion of protected individuals that must
be maintained in each prefix of the ranking for the rank to be fair.
However, many works (e.g., [36]) have shown that statistical parity
alone is insufficient as a general notion of fairness.

Recently, several studies have been devoted to analyzing dis-
crimination from the causal perspective [5, 24, 33-38]. In [5], the
authors proposed a framework based on the Suppes-Bayes causal
network and developed several random-walk-based methods to
detect different types of discrimination. However, it is unclear how
the number of random walks is related to practical discrimination
metrics. In addition, the construction of the Suppes-Bayes causal
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network is impractical with the large number of attribute-value
pairs. In this work we adopt the causal graph used in [24, 33-38].
A causal graph is a probabilistic graph model widely used for cau-
sation representation, reasoning and inference [25]. The limitation
of these works is that they focus on the classification problems
and cannot be applied directly to the fair ranking problem. This is
because in their models, the decision of each individual is treated
as an independent random variable, but the ranking positions of
different individuals are correlated. In this paper we address above
limitations and develop the causal-based fair ranking algorithms.

In data science, it is well-studied in data mining how to model a
ranking using a continuous score space [23]. Several models, such
as the Plackett-Luce model [21, 26], the Mallows model [22] and
the Bradley-Terry model [6], are widely used in this field. In this
work, we adopt the Bradley-Terry model to characterize the ranked
data and obtain the continuous scores from the ranks.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of discovering discrimina-
tion in a rank and reconstructing a fair rank if discrimination is
detected. We made use of the causal graph to capture the biases
in the rank as the causal effect. To address the limitation of the
existing single data-type causal graph, we modeled the ranking
positions using a continuous score, and built the causal graph for
the profile attributes as well as the score. Then, we extended the
path-specific effect technique to the mixed-variable causal graph,
which is used to quantitatively measure direct and indirect dis-
crimination in the ranked data. We also theoretically analyzed the
relationship between the path-specific effects for the ranked data
and those for the binary decision. Based on that, we developed an
algorithm for discovering both direct and indirect discrimination,
as well as an algorithm to reconstruct a fair rank from the causal
graph. The experiments using the German Credit dataset showed
that our methods correctly measure the discrimination in the rank
and reconstruct a rank that does not contain either direct or indi-
rect discrimination, while the statistical parity-based method may
obtain incorrect and misleading results.

In Theorem 3.2 we assume that the ;-specific effect is identifi-
able from the data. In some cases, the 7;-specific effect is not able
to be computed from the data due to the inherent unidentifiability
of the path-specific effect [3]. In our another work [34], we have
discussed how to deal with this situation, referred to as the uniden-
tifiable situation, and developed a lower and upper bound to the
unidentifiable path-specific effect. Similar ideas can be adopted to
deal with unidentifiable situation for ranked data. We leave this
part for future work.

Repeatability: Our software together with the datasets used in
this paper are available at http://tiny.cc/fair-ranking.
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