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Abstract

We consider shells with zero Gaussian curvature, namely shells with one principal curvature zero and the other one having a
constant sign. Our particular interests are shells that are diffeomorphic to a circular cylindrical shell with zero principal longitudinal
curvature and positive circumferential curvature, including, for example, cylindrical and conical shells with arbitrary convex cross
sections. We prove that the best constant in the first Korn inequality scales like thickness to the power 3/2 for a wide range
of boundary conditions at the thin edges of the shell. Our methodology is to prove, for each of the three mutually orthogonal
two-dimensional cross-sections of the shell, a “first-and-a-half Korn inequality”—a hybrid between the classical first and second
Korn inequalities. These three two-dimensional inequalities assemble into a three-dimensional one, which, in turn, implies the
asymptotically sharp first Korn inequality for the shell. This work is a part of mathematically rigorous analysis of extreme sensitivity
of the buckling load of axially compressed cylindrical shells to shape imperfections.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Classical first and second Korn inequalities have been known to play a central role in the theory of linear elasticity
and recently they have found very important applications in the problems of buckling of slender structures [6,4,5]. Let
us recall the classical first and second Korn inequalities, that actually date back to 1908, [8,9]. To that end we denote

eucn) ={u:R" > R":u(x) =Ax + b, A € Skew(R"), b e R"}

be the set of all infinitesimal motions, i.e., a Lie algebra of the group of all Euclidean transformations (rigid body
motions). Let £ be an open connected subset of R” and u € W!-?(Q; R"). We denote' by gradu and (grad u)sym the
gradient and the symmetric part of the gradient, respectively, of a vector field u. It is well-known that (grad u) sy, =0
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' We reserve more streamlined notations Vau and e(z) for “simplified” gradient and symmetrized gradient, respectively, that will be our main
characters in the technical part of the paper.
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in € (in the sense of distributions) if and only if # € euc(n). This is an immediate consequence of a simple observation
(also very well-known) that all partial derivatives of the gradient G = grad u can be expressed as a linear combination
of partial derivatives of the symmetric part of the gradient E = (grad #)sym:
0G jk _ 0Ej, 0E;; 0Ei
axi  Axi axk  oxJ

The classical first Korn inequality (e.g., as stated in [14]) quantifies this result by describing how large (grad u)sym
must be if  lies in a closed subspace V. W!-2(Q; R") that has trivial intersection with euc(n). If Q is a Lipschitz
domain, then there exists a constant K (€2, V), such that for every u € V

Il (grad w)sym 1> > K (2, V) llgradul?, (1.1)

where || - || is the L%-norm. The Korn constant K (€2, V) measures the distance between the subspace V and euc(n).
The classical second Korn inequality asserts that the standard W12 norm topology can be equivalently defined by
replacing gradu with (grad u)sym:

lgradu|®> < C()(ll (grad w)sym|* + llul®), ue Wh(Q;R"). (1.2)

Originally, Korn inequalities were used to prove existence, uniqueness and well-posedness of boundary value prob-
lems of linear elasticity (see e.g., [11,1]). Nowadays, often, as in our particular case, it is the best Korn constant
K (€2, V) in the first Korn inequality that is of central importance (e.g., [2,12,13,15,16,10]). Specifically, we are inter-
ested in the asymptotic behavior of the Korn constant K (€25, V},) for shells with zero Gaussian curvature as a function
of their thickness / for subspaces Vj, of W12 functions satisfying various boundary conditions at the thin edges of
the shell. In [6,5] we have shown that K (2, V}) represents an absolute lower bound on safe loads for any slender
structure. For a classical circular cylindrical shell we have proved in [3] that K (25, Vi) ~ h3/? for a broad class of
boundary conditions at the thin edges of the shell.

The motivation for this work comes from the fact that the experimentally measured buckling loads of axially
compressed cylindrical shells behave in a paradoxical way, dramatically disagreeing with predictions of classical
shell theory. The universal consensus is that such behavior is due to the extreme sensitivity of shells to imperfections
of shape and load. This study is a part of rigorous analytical investigation of the influence of shape on the structural
behavior of cylindrical shells. It looks like (and this will be addressed in future work) the determining factor of the
effect of shape imperfections is the Gaussian curvature of the shell’s mid-surface as the Ansatzen in [17] suggest.
In this paper we show that if the shell has a vanishing principal curvature (yielding zero Gaussian curvature), as
in circular cylindrical shells, then the scaling of the Korn constant K (2, Vj,) will remain unaffected, provided the
nonzero principal curvature has a constant sign. Our analysis also shows that if both principal curvatures are zero on
any open subset of the shell’s mid-surface, then K (2, Vj,) ~ h2. We conjecture that K (2, Vj,) ~ h for shells of
uniformly positive Gaussian curvature, while K (2, V;) ~ h*3 if the Gaussian curvature is negative on any open
subset of the shell’s middle surface, as suggested by test functions constructed in [17]. These conjectures will be
addressed elsewhere.

The goal of this paper is to show that the tools developed in [3] for circular cylindrical shells, and extended and
developed further in [7], possess enough flexibility to be applicable to a wide family of shells, and especially to
cylindrically-shaped shells (the ones that have no boundary in one of the principal directions). The main idea is to first
prove an inequality that is a hybrid between the first and second Korn inequalities (we call it “first-and-a-half Korn
inequality” for this reason) by “assembling” it from its two-dimensional versions corresponding to cross-sections of
the shell by curvilinear coordinate surfaces. The first Korn inequality is then a consequence of the first-and-a-half
Korn inequality and an estimate on the normal component of u € V;,. We believe that this general methodology will
work for broad classes of shells, even though the Gaussian curvature does affect both the final results and the validity
of some of the technical steps in the proof, which must be suitably modified in each particular case. For example, the
assumption of zero Gaussian curvature is essential for all main results in Section 3.

2. Preliminaries

Consider a shell whose mid-surface is of class C2. Suppose z and 6 are coordinates on the mid-surface of the shell,
such that z = constant and 6 = constant are the lines of principal curvatures. Here 6 will denote the circumferential
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coordinate and z—the longitudinal for cylindrically shaped shells. In the case of a straight circular cylinder, 6 and z
are the standard cylindrical coordinates. Let r (8, z) be the position vector of the shell’s mid-surface. Introducing the
normal coordinate ¢, we obtain the set of orthogonal curvilinear coordinates (z, 6, z), related to Cartesian coordinates
via

x=R(t,0,2) =r(z,0) +1tn(z,9),

where n is the outward unit normal, and R(z, 6, 7) is the position vector of a point in space with coordinates (¢, 6, 7).
In this paper we will study shells of uniform thickness /4, given in (¢, 6, z) coordinates by

h h
Ch = {R(tvev Z) te Ih7 6 S [Oa p]a Z € [l7 L]’ R(t’oa Z) - R(t’ P Z)}a Ih - |:_§7 §i| . (21)
We denote
AZ=Ir P, Ag=Irel

the two nonzero components” of the metric tensor of the middle surface. The two principal curvatures will be denoted
by k, and «g. Their signs are chosen in such a way that k, and kg are positive for a barrel-shaped shells, like a sphere.
The four functions Ay, A_, kg, and «, satisfy the Codazzi—Gauss relations (see e.g. [17, Section 1.1])

0K, Azo 0Ky Ag;
L _ — ) =2 = (k. — < 2.2
39 (kg — Kz) A, 9z (tcz — Kp) As (2.2)
d (Ag; d (Azp
— : — — | =—AA , 23
o (524 5 (5) = - Acom 3)

and define the Levi-Civita connection on the middle surface of the shell via the following derivation formulas
v 1 04, v 1 04, v
e, =——————€9 — KN, eg = ———€,, N =kKe;,

e €z AZAQ 20 6 z e €0 AZAG 20 z e; z€z

v 1 0Ap v 1 0Ag v
eg = — —e; —kyh, e, =———ep, n=«kpep.
ey €0 AZAQ 3z z 6 ep€z AzA0 9z 0 ey 0€0
Using these formulas we can compute the components of gradu in the orthonormal basis e;, ey, e;:
P urp — Apkolg Uz — Azkzu; ]
" Ao (1 + tKg) AL (L+ 1)
Azug,e + A, Agkou; +A0,zuz Agugﬂz _Azﬂ”z
gradu = | ug; _
A Ap(1 + tkp) A Ap(1 + 1K)
" Azuzﬁg —Ag,zug AQI/LLZ + A Agk uy +Az,9u9
| A Ag(1+ tg) AAg(1+ 1K) |

We will now specialize to the particular case of zero Gaussian curvature k, = 0. In this case, equations (2.2)—(2.3)

can be solved explicitly in terms of four arbitrary smooth functions B(z), a(6), b(8), c(6):

Ao =a@)B@) +b®), ko="2
Ap

We require that A;, Ap and c(0) be strictly positive functions of their variables on the mid-surface of the shell. Hence,
for shells of zero Gaussian curvature the formula for grad u simplifies:

A, = B'(2), (2.4)

Ut

gradu = | ug;

Uzt

ur,g — c(@)ug Uz ]
Ag +1c(0) A,
ug.o +c(@u; +a@u; ug;
Ag +1c(0) A,
uz,p —a@ue uzz
Ag +1tc(6) A;

2 The principal directions are mutually orthogonal.

2.5)
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Table 1
Functions B(z), a(6), b(#) and c(#) for cylinders and cones.

B(z) a@®) bO) )

cylinders  z 0 1 k(6)
cones z 1 0 (@(0),0’(9),0"(6))

In the case of shells, the thickness variable ¢ is uniformly small. We therefore introduce the simplified gradient

<

u ur g —c(@)ug Utz
i AG Az
6 0
Vu=1|ug,; ug.0 + ¢ XZ +a®us % . (2.6)
Z
" uzp —a(@ug Uzz
L o AG Az _

We note that in (2.6) the components u;, ug and u, are still functions of (¢, 9, z).

To be more specific we give two examples of zero Gaussian curvature shells: cylinders and cones. A cylinder is
described by a simple, smooth closed curve of length p in the xy-plane. Let p(8), 6 € [0, p) be the position vector
of this curve, parametrized by its arc-length. The position vector of the middle surface of the shell is then given by
r(6,z) = p(0) + ze;, where e, is the unit vector perpendicular to the xy-plane, i.e. the unit vector in the z-direction.
It is easy to verify that 6 = constant and z = constant are lines of curvature and xg = k (#) is the curvature of curve
p(0) in the plane, whose sign is chosen to be positive for a circle.

A second example is a cone with vertex at the origin. A cone is described by a simple, smooth closed curve of
length p lying in the northern hemisphere of a unit sphere centered at the origin. Let 6(9), 6 € [0, p) be the arc-length
parametrization of this curve. In this case the middle surface of the shell is given by r (0, z) = zo (0). Once again, it is
easy to verify that & = constant and z = constant are lines of curvature and

(0(0),0'(0),0"(0))
Ko = s
Z

where (a, b, ¢) = a - (b x ¢) is the triple-product of 3 vectors in space. We summarize the data for cylinders and cones
in Table 1.

In this paper all norms || - || are L? norms. However, because of the curvilinear coordinates we will use several
different flavors of the L? inner product and the corresponding norm. For f, g: C;, — R we define the L? inner
product

L p
(ﬁ@q=/f@muwx=///Aﬁw@wﬂm,
Cy Iy 10

which gives rise to the norm || f||.

L p
IUW=@fm=f/fAﬁM%MML 2.7)

I, 10

In cross-sections & = constant we use

L
I£13 = / / A f2(t.6,2)dzdt. (2.8)
I, 1

We will also use the Euclidean version of the norm on cross-sections
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a B
112 = / / (e, B.y)dadp, 2.9)
a1 B

where {«, 8, y} ={t,0, z} and o;, B;, i = 1,2 are the corresponding limits of integration. In each case it will be clear
which variable #, 6 or z plays the role of the fixed variable y. Of course, due to uniform positivity of Ay and A the
norms || f |, and || f|lo are obviously equivalent. In particular, all inequalities involving one type of norm will also be
valid for another. Finally, all constants that are independent of # and 4 will be denoted by C. Once this is understood,
such abuse of notation does not lead to any ambiguity.

3. Main results

We formulate our Korn inequalities for vector fields u satisfying specific boundary conditions at the two edges of
the shell. We define
Vi ={ue W2Chi R tu(t,0,1) = up(t,0,1) = ug(t, 0, L) =0}, 3.1
and
Vi={ueV!  u6,0)=0} (3.2)
We note that p-periodicity of functions in Vh1 is built in by definition of C;. We state our main results as a sequence

of related theorems.

Theorem 3.1. Suppose k, = 0 on Cj,. Then there exist a constant C independent of h, such that for every u € V2,

el grad @)y
||gradu||2§C( CEE I 4 (eradw)gml ) (33)
2 ¢ 2
leradul® < -5l (zradw)ym| . (3.4)

forall h € (0, ).

We note that in Theorem 3.1 we placed no constraints on the behavior of the other principal curvature ky. This
freedom is compensated by requiring that u belong to a smaller subspace th of WL2(Cp: R3). In fact, if kp vanishes on
an open subset of the middle surface of the shell then, according to Theorem 3.3, the bound in (3.4) is asymptotically
sharp as h — 0.

If we demand that the curvature ky does not change sign (i.e., be uniformly positive for cylindrically-shaped shells),
then not only can the first Korn inequality (3.4) be improved, but its domain of validity can be extended from th to
VL.

Theorem 3.2. Suppose that k, = 0 and kg # 0 on Cy. Then there exists a constant C independent of h, such that for
everyu € Vhl, inequalities (3.3) and

C
radu|? < ——||(grad u) 2, 3.5)
lg l i (g sym |l (
hold for all h € (0, 1).
In fact, inequalities (3.3) and (3.5) are asymptotically sharp.
Theorem 3.3 (Existence of optimal ansatzen,).

(1) Suppose that both curvatures kg and k, vanish on an open subset 2 of the middle surface of the shell. Then there
exist C* nonzero vector fields u", compactly supported in 2 x I, and a constant C independent of h, such that

| (grad u™)gym 1> < Ch?||gradu” |>,  forall he(0,1). (3.6)
Y
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(ii) Suppose that k; =0 and kg > 0 on Cy. Then there exist nonzero vector fields u", vanishing at z =1, L, and a
constant C independent of h, for which

I (gradu”)sym 1> < Chv/h|gradu® |, forall he (0,1). (3.7)

Remark 3.4. Our results are formulated for shells cut along the coordinate surfaces. However, they are also valid for
any shell C;, bounded by the surfaces z = z(¢, 0) and z = Z(¢, 0), where the spaces Vhl, th are defined by (3.1) and
(3.2) respectively, except the indicated components of u# vanish on the surfaces z = z(¢, 0) and z = Z (¢, 0), instead of
z =1 and z = L. This is because there exists shells C; cCyC C;F, such that the shells Chi are bounded by surfaces
z = constant. But then the ansatz from Theorem 3.3 supported in C,” gives an upper bound on the Korn constant of Cj,
that scales as 4%/ (or as h?). At the same time every function in Vh1 or th of Cj, can be extended (by extending the
relevant components of u by zero) to a function in Vh1 or th of C;r , giving the lower bound on the Korn constant that
scales as h3/2 (or as h?).

Remark 3.5. Our main results hold not only for cylindrical shells (i.e. p-periodic displacements u), but also for
“open” shells, where periodicity of u is replaced either by

ug(t,0,2) =ug(t, p,z) =0, (3.8)
or by
ur(t,0,2) =u;(t, p,2) =u(t,0,2) =uz(t, p,2) =0. (3.9)

In both cases we can apply our theory to 2 p-periodic vector fields, obtained by the odd 2 p-periodic extension of uy
and even 2 p-periodic extension of all other functions, in the case of boundary conditions (3.8); and odd 2 p-periodic
extension of both u; and u, and even 2 p-periodic extension of all other functions, in the case of boundary conditions
(3.9). In each case, it is easy to check that every component (in (z, 6, z) coordinate system) of Vu and e(u) = (Vu +
Va)D) /2 will either be even or odd in 8, making squares of their L% norms on I, x [— p, pl x [l, L] be double those
on I x [0, p] x [I, L].

4. Proofs of Theorems 3.1 and 3.2

Our strategy is to prove a first-and-a-half Korn inequality (3.3) for the simplified version Vu of gradu, given
by (2.6)

llullle@)]]

Vul|><C
[Vul~ < < A

+ ||e<u)||2> : (4.1)
where

e(u) = % (w + (Vu)T) .

We then show that (4.1) implies (3.3). In order to prove (4.1) we apply the method, introduced in [3], of assembling
(4.1) from the analogous two-dimensional inequalities corresponding to the three coordinate surface cross-sections
of the shell. Most of the proof is done for u € Vhl and without any additional assumptions on the sign of ky. When
additional assumptions become necessary, they will be explicitly stated. Also, in what follows we will use a classical
density argument implicitly, by conducting the proofs for smooth vector fields and then observing that we can pass to
the limit in the final inequalities when a W2 vector field is approximated by a sequence of C* ones with the same
boundary conditions.

4.1. The t = const cross-section

The Korn-type inequality corresponding to ¢t = const cross-section involves 686, 0z, z6, and zz components of the
gradient. The first-and-a-half Korn inequality in this case is stated in the following lemma.
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Lemma 4.1. The following inequality is valid whenever u € Vhl.
1(Va)gz 1> + 11 (Va) 01> < Clle@) | (lle@) | + fluql). (4.2)
Proof. Observing that

(Vo 12 + 1(Vae) 011> = 4lle@)a|I* — 2((Va)az, (Vi) z0)c,

we conclude that it is sufficient to prove

[((Vu)oz, (Vu)zg)c, | < Clle@)|[(lle(@)|| 4 llusl])- (4.3)

We have, that

L p
(Ve (Vi) ), = / / / O A‘;(Q)“ededzdm / (1) — B,
I, I 0 I
where
L p
Il(t)://ug,zuz,gdedz,
I 0
and
L p p L
h(r)://a(e)ugug,zdedz: %/a(e)/(ug),zdzzo,
[ 0 0 I

sinceug =0atz=Ilandz=1L
Let us estimate /;(¢). The idea is first to observe that

L p L p L p
//ue,zuz,gdedzz—//uguz,gszdz=/‘v/u9,9uud9dz,
[ 0 I 0 [ 0

where p-periodicity of u; and uy has been used in the last equality, and then express up g and u; ; in terms of
(Vu)gp = e(u)gp and (Vu),, = e(u),;, respectively. Thus,

/11 (Hdt = (e(u)zzv e(u)gg — @Mz - Kaur) . 4.4)
Ch

Ag
Ih

Applying the Schwartz inequality we obtain

/Il(t)dt = Clle@)[(lle@)Il + lJu || 4 lluz D). (4.5)

In
By the Poincaré inequality, applicable, since u, =0 at z =1,
luzll < Clluz,z |l < Clle@)]. (4.6)

Using this inequality in (4.5) we obtain the desired bound (4.2). O
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4.2. The 6 = const cross-section

Lemma 4.2. The following inequality is valid whenever u,(t,6,1) = 0.

l[url - lle )]

|KVu»AF+wKVunm25cr( p

+wmmﬁ. 4.7)

Let us show that Lemma 4.2 is an immediate consequence of the same two-dimensional inequality in Cartesian co-
ordinates, proved in [3, Theorem 3.1]. It states that if 1 € (0, 1), ¢ = (u, v) € H' (I, x (I, L); R?) satisfies v(x, 1) =0,
x € I in the sense of traces, then

l[lo

IV@li5 < Clle@)llo (T + |I€C(¢)I|o> ; (4.8)

where
Cq Ux Uy c _l c c\T
V¢—LJIW] @) =5 (ve+ o).

Lemma 4.2 says that the same statement holds in our curvilinear coordinates, where Vu is given by (2.6).

Proof of Lemma 4.2. We first prove inequality (4.7) for each fixed 6 € [0, p]:

llusllo - llea (@) llo

1(Va)e |l + 1 (Va) 15 < € < ;

+wwm%>, 4.9)

1 Utz
L Ut,r S\ Tz
2 2 2\ A,
I fllg = A f(t,0,2)°dzdt, eg(u) =
I ! l M + u ”z,z
" 2\a, A,

Then inequality (4.7) is obtained by integrating (4.9) over 6 < [0, p], and using uniform positivity and boundedness
of Ag and A, together with the Schwartz inequality, so that

where

p
/ I flloligllodd < ClfINgI-
0

Let

u u 1
G=| ol E=-(G+GT).
Az“z,t (Az“z),z 2

Then, by (4.8) applied to ¢ = (u;, A,u;), we obtain

Il llo

IIGII§§CIIEII0( + IIEI|0>- (4.10)

By uniform positivity and boundedness of Ay, A, norms || - ||op and || - |9 are equivalent. Hence,
(Vi) 15 + 1 (Vi) 15 < CUG NG+ (1G4 11F) < CIG 5.
Applying (4.10), we prove the lemma, if we show that
IElo < Clleg(m)llo- (4.11)

We estimate

1
|w%scwwm&wWA@+wm@+5wm+Amw%
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By the Poincaré inequality ||u;[|3 < C|lu |2, so that

VEI2 < Clleo @)1+ ~llur.s + Avtts |2
0= 0 ) Z”t,z Uz tllo-

It remains to observe that

u
sz + Az llo = H\/Az (A— + u)
4

=Cllegmllg. O
0

4.3. The z = const cross-section

Lemma 4.3. Let u € Vhl. Then there exists a constant C > 0, independent of h, so that

llugll - Nle@)]]

I(Va)oll* + |(Va)a |1> < C ( -

+ flue I* + ||e<u>||2) : (4.12)

Proof. As before, we will show that (4.23) is a consequence of a two-dimensional Korn-type inequality. However,
before we can proceed with this strategy, we observe that the term with u, in the 66-component of Vu can be easily
discarded due to the Poincaré inequality (4.6). Indeed, suppose we have proved (4.23), where e(u) is replaced with
€' (u), where all components are the same as in e(u), except
) ug,p + c(@)uy
e =—""1—"—.
Ag
Then
le’@l < lle@)ll + Cllu:ll < Clle),
so that
l[usll - lle’ @)l
I(Va)s > + (Va)r |1 < C (ZT

<o (PO 4 e ?).

+ el + ||e’(u>||2)

h

Next we prove the two-dimensional Korn-type inequality.

Theorem 4.4. Let
V= {¢ = (u,v) e Wh2(1;, x (0, p); R?) : u(x, ) is p —periodic}
and let

U x a]()’)“,y +b1(y)v

G —
@ |:U,x a2(y)v,y +ba(y)u

] E(¢) = %(G+GT), (4.13)

where ay, aa, by, by are Lipschitz continuous functions in [0, p], such that a\(y) and a(y) do not vanish on [0, p].
Then,

lullll E|l
||G||zsc( +||E||2+||¢||2), (4.14)
where
h/2 p
112 = / / £2(x. y)dyds.
—h/2 0

The proof is based on the sharp inequality for harmonic functions [3, Lemma 4.3], see also [7, Theorem 1.1], which
we formulate here for the sake of completeness.
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Lemmad4.5. Let R, = (—%, %) x (0, p). Suppose w € HY(Ry) is harmonic in Rj, and satisfies the boundary condition
w(x,0) =w(x, p) in the sense of traces. Then

24/3
lw | < =il + llw 2. (4.15)

Proof of Theorem 4.4. The first step is to replace u(x, y) by its harmonic extension in Rj, by defining w € H'(Ry,)
to be the unique solution of the Dirichlet boundary value problem

Aw=0, (x,y)€Ry

(4.16)
w=u, (x,y) € 0Ry.
By the Poincaré inequality,
lu—wl <AV —wl. 4.17)

Next, we express A(u — w) = Au in terms of E(x, y), defined in (4.13), by eliminating all derivatives, except u :

2E12’y _ 1

aj ayaz

Alu—w)=Eqy+ (Exnx —b2E11 +b1E2) + R(x, y), (4.18)

where

blbzu - aza/ uy— azb/ v
17y 1
R(x,y)= .
aaz

Now we multiply (4.18) by u — w and integrate by parts over R, using the fact that u — w vanishes on dRj,:

2E12(u,y - w,y) _ E22(u,x - w,x)

IIV(M—w)Hz:/|:E11(u,x—w,x)+ +(u—w)Q(x,y)} dxdy,

Ry

aj ayaz

where Q(x, y) is a linear combination of E11, E12, E22, u, v and u , with uniformly bounded coefficients. Estimating
llu — wl by (4.17) we obtain, after division by ||V (u — w)||,
IE|
[V —w)| <Ch T+IIMII+IIU|I+|Iu,yII . 4.19)

Our last task is to estimate [lu y||. This is done by replacing u with w, estimating ||w y|| using (4.15), and returning
back to u, while controlling the incurred errors by (4.17) and (4.19).

lwlflw|
oyl <20y —wy > + 20wy > < C (nvw —w)|*+ TX + llw . 12

1
<C (nwu —w) 1?4 llu >+ 7 el RV @ = w) D+ 1V = w>||>)

laellllae oIl Ml IV (e — w) |
< C IV —w)l* + llu > + = +
h h
lull|E|
sc(h2||u,y||2+||E||2+ p + lull® 4 ol + lullluy ]l )

where we took into account that u , = E1;. Estimating
C?|lul?
2
and choosing / so small that Ch? < 1/4 we obtain the inequality

[ullllE
h

which holds for all sufficiently small & > 0. Observing that

1 2
Cllellze yIl = 5l y 117 +

luylI* < C (||E||2+ + [lull* + ||v||2>, (4.20)
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IGI* = I1Enll* + I1E22lI* + G 12l* + 12E12 — G12l%,
we get the bound

IGII> < 7IIE|I* 4+ 31IG12l1%,
while

IG 12117 = llar (Wu,y + b1 (vlI? < ClluyI* + v]1).
This shows that (4.20) implies (4.14). O

If we apply this theorem to ¢(t,0) = (u,(¢, 0, z), up(t, 6, z)) (for each fixed value of z) and then integrate over
z € [1, L], we obtain the inequality (taking into account the equivalence between the curvilinear norm (2.7) and the
Euclidean norm)

llue ]l - lle)|
I(Va)oll* + |(Va)a |I> < € <T + lle@) 1 + llulI* + llug ||2> : 4.21)
By the Poincaré inequality and (4.2) we obtain
lugll* < ClIl (Vi lI* < Clle)l (le@)| + llul)). (4.22)

Combining this with (4.21) we obtain (4.12), which completes the proof of Lemma 4.3. O

Lemma 4.6. Suppose that either u € th oruec Vhl and kg > 0 on [0, p] x [, L). Then there exists a constant C > 0,
independent of h, such that

llu | - lleG@)l

(Vi) 1?4 (Vi) |* < C ( -

+ ||e<u>||2) : (4.23)

Proof. Ifu € th then we can just use the Poincaré inequality and (4.7) to estimate
[l - lle(@) |l
h

Ifuce Vhl, then the Poincaré inequality cannot be used. Instead we use uniform positivity of ky and estimate u; by
expressing it in terms of ¢’ (u)gg as follows:

lus 1> < Cll(Va),,|* < C ( + ||e<u)||2) : (4.24)

_ Age'(W)ag —ug g
1 — - ..

4.25
Aors (4.25)

Multiplying both sides of (4.25) by Agkeu; we obtain
A0K9M,2 = Aguse’ (W)po — (uour) o + ugurp.

Replacing the obtained u; g by its expression u; g = Ag(Vu);0 + c(6)ug, and integrating over I, x [0, p] x [[, L] we
arrive at the estimate (using equivalence of various norms)

e |1 < Clu e @)l + llug I* + 1 (Va)so [l 1ug ).

Hence, replacing [|ug||> by its estimate from (4.22) and then using the inequality Cab < a®/2 + C?b*/2, we obtain
the bound

luell® < Clle@) 1> + [[(Va)ol lua ) (4.26)
Using this inequality to estimate the term ||u, 1% in (4.12), we obtain

llus |l - Nle(@)]]
h

Once again we apply the inequality Cab < a®/2 + C?b?/2 to obtain

llug|l - Nle@)]]
h

Estimating ||ug 12 via (4.22), we obtain the desired inequality (4.23). O

1(Va)o |I* + 1 (Vae |1 < € < + [IVu)ollllugll + ||€(u)||2) .

I(Va)oll* + | (Va)a |I> < € ( + [lugll® + ||e(u>||2) :
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4.4. Conclusion of the proof

The conclusion of the proof is conducted under the assumptions of Lemma 4.6, covering both Theorems 3.1
and 3.2. Combining the estimates (4.2), (4.7) and (4.23) we arrive at (4.1). However, Vu and e(u) are the simplified
versions of gradu and (grad u)sym. Thus, we need to show that (3.3) follows from (4.1). We will show that under
the assumptions of Theorems 3.1 it is a consequence of (4.24), while under the assumptions of Theorems 3.2 it is a
consequence of (4.26).

The main observation in either case is that components of gradu and Vu are multiples of one another with coeffi-
cients that are independent of u. Thus, by direct calculation, we estimate

lgradu — Vu| < Ch|lgradul|, VYue W"2(C);R?), 4.27)
from which we get additionally,

I(gradu)sym — e(@)|| < [lgradu — Vu|| < Ch|gradul|, Yue W'(Cy:R?). (4.28)
Proof of Theorem 3.1. Observe, that t¢, tz, zt and zz components of gradu and Vu coincide. The analysis for the

cross section 8 = const involved only these components of the gradient. Thus, estimate (4.7) holds for gradu in place
of Vu. This implies (4.24) for (grad #)sym in place of e(u), i.e., we have

C
llae|l < Ell(gradu)symll- (4.29)
This allows us to show that (4.1) implies (3.3). Combining (4.1), (4.27) and (4.28), we obtain
[l || (grad &) sym||
lgradu|* < C ( o gl grad ul] + [ (gradu) g ) (4.30)
Estimating

1 , C*
Cllucllligradull < 7 llgrada]|” + —=flu|
we get

[z |11l (grad @) sym |
h

lgradu|®> < C ( + [l N1 + ||(gradu)sym||2> :

Finally, by (4.29)
llues |1l (grad ) sym|
h 9
and (3.3) follows. Combining estimates (4.29) and (3.3) we obtain (3.4). O

2
lJu |I” <

Proof of Theorem 3.2. In this case we proceed in the same way as in [3], proving the following lemma.
Lemma 4.7. Inequalities (4.1), (4.22), and (4.26) taken together, imply

C
IVu|? < ﬂne(muz. (4.31)

7

We postpone the proof of this virtually algebraic lemma and show that it implies (3.3) and (3.5).
Combining (4.31) with (4.28) we obtain

C
radul||? < C||Vu|]? < —— radu 2 4 W2 eradul? ,
llg I© < ClIVul| _hﬁ(ll(g symll lg (]

proving the first Korn inequality (3.5). Now, inequality (4.1) and (3.5) imply (3.3). Indeed, using the estimate

Cllucllli(grad w)syml _ Cllul1l (grad t)sym|l
h3/4 - h

llue [l grad || <
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in (4.30) we obtain (3.3). O
Proof of Lemma 4.7. We begin with the inequality (4.26),
1
lul? < Cllle@)1* + 21 Valllugll) < C (ne(u)n2 + e Vul* + 6—2||u0||2>

for any € > 0. The small parameter € € (0, 1) will be chosen later to optimize the resulting inequality. Estimating
llug ||> by (4.22) we obtain for sufficiently small e,

e |1 < (IIe(u)II + €| V| t3 (Ile(u)ll +|Ie(u)||||ur||))

Estimating

2
IIe(u)IllluzII = —||uz|| t3a leGa)|,

we obtain

le@)]®
Jucll < € (6—4 +eXIVal? ).

Thus,

[ | SC(”ei—Z)”JrGIIVuII). (4.32)

Substituting this inequality into (4.1), we obtain

le@I* | ellVulle@)l
Vu|?><C .
IVal|? < ( Tt
Estimating
CGIIVulllle(u)ll ”V 12 JrC262||6(14)||2
h 2h? ’

we obtain the inequality

2 1 €2 2
IVul? <€ (2= + 2 ) el
We now choose € = h'/# to minimize the upper bound and obtain (4.31). O

5. Proof of Theorem 3.3

The ansatz in part (i) of the theorem is a classical Kirchhoff ansatz. The assumptions of part (i) say that the shell
contains a plate, which means that we can introduce a local Cartesian coordinate system (xp, x2, x3) in which the
(sub)plate be described as

Php={(x1,x2) € QCR?, x3€1I}}.

In these Cartesian coordinates we construct the ansatz in terms of the function ¢ (x1, x2), compactly supported in $2:

ul = —x3¢. 4,
iy =39 0 6.1
uh = ¢ (x1,x2).

Then
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—X3Q xx; X3P xixa —Px —X30 x5y —X3Pxix, O
V' = | 3605, X300 b | @) =| X301 X300 O
@ .x, ® x, 0 0 0 0
This shows that
hz h2
IV |* = [|Vel* + ﬁuvwnz, le@™)|? = Envwnz.

Choosing a fixed nonzero ¢ € C%(SZ) we establish (3.6). The ansatz (5.1) was found by looking for the ansatz in the
form u” = v(x1, x2) + x3w(xq, x2). We then compute e(uh) = Eo(x1,x2) + x3E1(x1, x2). The ansatz (5.1) is the
general solution of the equations Eg(x1, x2) = 0. The same idea could be applied to gradu, given by (2.5). However,
the different structure of the gradient results only in trivial solutions of Eq (9, z) = 0. Nevertheless, the same idea
works if we relax our requirements. Specifically, we can find an ansatz in which all components of Ey(6, z) vanish,
except the zz-component. Accordingly, we look for the ansatz in the form ul =" ©0,2)+ rw” (0, 2), so that

(gradu™)sym = EL(0,2) +1ET(8,2) + O ().

In accordance with our strategy we have the following system of equations

w,h =0, \
1 v
h h
wp =~ <8—6t +c(9)v9) ,
1 vt
h__ - %%
wZ - AZ aZ £ (5.2)
i _vé”g +a(9)v?
! c(6) ’
—Agvp = A (V! ) —a®)v)).

The first four equations in (5.2) express w” and vth in terms of only two functions vg and v?. The last equation relates
vé’ and vi’, and needs to be solved. There are two mutually exclusive cases

e Case I:
A, H(®)
As G’
for some Lipschitz functions H(6) and G(z). It is easy to see from formulas (2.4) that (5.3) is equivalent to
a(f) and b(0) being linearly dependent, i.e. there exists a constant scalar Aq, such that either a(8) = Agb(6) or
b)) = rpa(6).
o Case 2: There exists an interval I = (61, 6>) C (0, p), such that a(9) # 0 and p’(8) #£ 0 for all € I, where
b(0)

P(Q)ZM'

(5.3)

Case 1. It is easy to see from Table 1 that all cylinders and cones fall into this case. Under the assumption (5.3) the
last equation in (5.2) has a general solution

V! =AgGRHO)",  vj=—AgH ()", (5.4)

expressing the ansatz in terms of a single potential ¢ (z, 6), which can be an arbitrary function with compact support.
Case 2. In this case we will assume that functions a () and b(0) are of class C>. Solving the last equation in (5.2)
with respect to vé” o
h 1

vy = B,—(Z)w(ew/(z)vz — (@(0)B(2) +b©®)vy )
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we see that we need both a(9)v§’ and b(@)vg to be 0-derivatives of some 6-periodic smooth functions of (6, z). Hence,
we define

h
vh = —I/f’e
7 a)

where ¥ (60, z) is supported on / x (I, L). But then, we also need that ,0(9)1“’0 be a 6-derivative of some 8-periodic
smooth function of (@, z). We then define
_ %

p'(6)
where ¢" (6, z) is supported on I x (I, L). These formulas yield the explicit ansatz that can be expressed in terms of a
single potential ¢” (z, @), which can be an arbitrary function with compact support. Specifically,

1?[/]’l

NS
a©) 36 \ 0'(0)

o =
(5.5)
B8l +0'©)¢" — (B(2) + p0)9y,
. B'(2)p(6)
Finally, in order to obtain optimal upper bound on the Korn constant we use the same scaling analysis as in [3] and
define ¢" (0, z) in terms of the smooth, non-constant p-periodic in 6 function ® (6, z). In Case 1 we just set

¢"(0,2) = 2 (n()0, 2),
where n(h) is the integer part of A~!/4. In Case 2 we define
¢"(0,2) =n(0, )P0}, 2),

where 17(0, z) is a smooth p-periodic in 6 function, supported on I x (I, L). In both cases the constructed ansatz yields
the upper bound K (V},) < Ch3/? for any V}, containing all W2 vector fields that vanish at z =1, L.
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