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Abstract

We consider shells with zero Gaussian curvature, namely shells with one principal curvature zero and the other one having a 
constant sign. Our particular interests are shells that are diffeomorphic to a circular cylindrical shell with zero principal longitudinal 
curvature and positive circumferential curvature, including, for example, cylindrical and conical shells with arbitrary convex cross 
sections. We prove that the best constant in the first Korn inequality scales like thickness to the power 3/2 for a wide range 
of boundary conditions at the thin edges of the shell. Our methodology is to prove, for each of the three mutually orthogonal 
two-dimensional cross-sections of the shell, a “first-and-a-half Korn inequality”—a hybrid between the classical first and second 

Korn inequalities. These three two-dimensional inequalities assemble into a three-dimensional one, which, in turn, implies the 
asymptotically sharp first Korn inequality for the shell. This work is a part of mathematically rigorous analysis of extreme sensitivity 

of the buckling load of axially compressed cylindrical shells to shape imperfections.
 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Classical first and second Korn inequalities have been known to play a central role in the theory of linear elasticity 

and recently they have found very important applications in the problems of buckling of slender structures [6,4,5]. Let 
us recall the classical first and second Korn inequalities, that actually date back to 1908, [8,9]. To that end we denote

euc(n) = {u :Rn → R
n : u(x) = Ax + b, A ∈ Skew(Rn), b ∈R

n}

be the set of all infinitesimal motions, i.e., a Lie algebra of the group of all Euclidean transformations (rigid body 

motions). Let � be an open connected subset of Rn and u ∈ W 1,2(�; Rn). We denote1 by gradu and (gradu)sym the 

gradient and the symmetric part of the gradient, respectively, of a vector field u. It is well-known that (gradu)sym = 0

* Corresponding author.
E-mail addresses: yury@temple.edu (Y. Grabovsky), davit.harutyunyan@epfl.ch (D. Harutyunyan).

1 We reserve more streamlined notations ∇u and e(u) for “simplified” gradient and symmetrized gradient, respectively, that will be our main 

characters in the technical part of the paper.
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in � (in the sense of distributions) if and only if u ∈ euc(n). This is an immediate consequence of a simple observation 

(also very well-known) that all partial derivatives of the gradient G = gradu can be expressed as a linear combination 

of partial derivatives of the symmetric part of the gradient E = (gradu)sym:

∂Gjk

∂xi
=

∂Ejk

∂xi
+

∂Eij

∂xk
−

∂Eik

∂xj
.

The classical first Korn inequality (e.g., as stated in [14]) quantifies this result by describing how large (gradu)sym

must be if u lies in a closed subspace V ⊂ W 1,2(�; Rn) that has trivial intersection with euc(n). If � is a Lipschitz 

domain, then there exists a constant K(�, V ), such that for every u ∈ V

‖(gradu)sym‖2 ≥ K(�,V )‖gradu‖2, (1.1)

where ‖ · ‖ is the L2-norm. The Korn constant K(�, V ) measures the distance between the subspace V and euc(n). 
The classical second Korn inequality asserts that the standard W 1,2 norm topology can be equivalently defined by 

replacing gradu with (gradu)sym:

‖gradu‖2 ≤ C(�)(‖(gradu)sym‖2 + ‖u‖2), u ∈ W 1,2(�;Rn). (1.2)

Originally, Korn inequalities were used to prove existence, uniqueness and well-posedness of boundary value prob-
lems of linear elasticity (see e.g., [11,1]). Nowadays, often, as in our particular case, it is the best Korn constant 
K(�, V ) in the first Korn inequality that is of central importance (e.g., [2,12,13,15,16,10]). Specifically, we are inter-
ested in the asymptotic behavior of the Korn constant K(�h, Vh) for shells with zero Gaussian curvature as a function 

of their thickness h for subspaces Vh of W 1,2 functions satisfying various boundary conditions at the thin edges of 
the shell. In [6,5] we have shown that K(�h, Vh) represents an absolute lower bound on safe loads for any slender 
structure. For a classical circular cylindrical shell we have proved in [3] that K(�h, Vh) ∼ h3/2 for a broad class of 
boundary conditions at the thin edges of the shell.

The motivation for this work comes from the fact that the experimentally measured buckling loads of axially 

compressed cylindrical shells behave in a paradoxical way, dramatically disagreeing with predictions of classical 
shell theory. The universal consensus is that such behavior is due to the extreme sensitivity of shells to imperfections 
of shape and load. This study is a part of rigorous analytical investigation of the influence of shape on the structural 
behavior of cylindrical shells. It looks like (and this will be addressed in future work) the determining factor of the 

effect of shape imperfections is the Gaussian curvature of the shell’s mid-surface as the Ansatzen in [17] suggest. 
In this paper we show that if the shell has a vanishing principal curvature (yielding zero Gaussian curvature), as 
in circular cylindrical shells, then the scaling of the Korn constant K(�h, Vh) will remain unaffected, provided the 

nonzero principal curvature has a constant sign. Our analysis also shows that if both principal curvatures are zero on 

any open subset of the shell’s mid-surface, then K(�h, Vh) ∼ h2. We conjecture that K(�h, Vh) ∼ h for shells of 
uniformly positive Gaussian curvature, while K(�h, Vh) ∼ h4/3 if the Gaussian curvature is negative on any open 

subset of the shell’s middle surface, as suggested by test functions constructed in [17]. These conjectures will be 

addressed elsewhere.
The goal of this paper is to show that the tools developed in [3] for circular cylindrical shells, and extended and 

developed further in [7], possess enough flexibility to be applicable to a wide family of shells, and especially to 

cylindrically-shaped shells (the ones that have no boundary in one of the principal directions). The main idea is to first 
prove an inequality that is a hybrid between the first and second Korn inequalities (we call it “first-and-a-half Korn 

inequality” for this reason) by “assembling” it from its two-dimensional versions corresponding to cross-sections of 
the shell by curvilinear coordinate surfaces. The first Korn inequality is then a consequence of the first-and-a-half 
Korn inequality and an estimate on the normal component of u ∈ Vh. We believe that this general methodology will 
work for broad classes of shells, even though the Gaussian curvature does affect both the final results and the validity 

of some of the technical steps in the proof, which must be suitably modified in each particular case. For example, the 

assumption of zero Gaussian curvature is essential for all main results in Section 3.

2. Preliminaries

Consider a shell whose mid-surface is of class C2. Suppose z and θ are coordinates on the mid-surface of the shell, 
such that z = constant and θ = constant are the lines of principal curvatures. Here θ will denote the circumferential 
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coordinate and z—the longitudinal for cylindrically shaped shells. In the case of a straight circular cylinder, θ and z

are the standard cylindrical coordinates. Let r(θ, z) be the position vector of the shell’s mid-surface. Introducing the 

normal coordinate t , we obtain the set of orthogonal curvilinear coordinates (t, θ, z), related to Cartesian coordinates 
via

x = R(t, θ, z) = r(z, θ) + tn(z, θ),

where n is the outward unit normal, and R(t, θ, z) is the position vector of a point in space with coordinates (t, θ, z). 
In this paper we will study shells of uniform thickness h, given in (t, θ, z) coordinates by

Ch = {R(t, θ, z) : t ∈ Ih, θ ∈ [0,p], z ∈ [l,L], R(t,0, z) = R(t,p, z)}, Ih =
[

−
h

2
,
h

2

]

. (2.1)

We denote

A2
z = |r ,z|2, A2

θ = |r ,θ |2

the two nonzero components2 of the metric tensor of the middle surface. The two principal curvatures will be denoted 

by κz and κθ . Their signs are chosen in such a way that kz and kθ are positive for a barrel-shaped shells, like a sphere. 
The four functions Aθ , Az, κθ , and κz satisfy the Codazzi–Gauss relations (see e.g. [17, Section 1.1])

∂κz

∂θ
= (κθ − κz)

Az,θ

Az

,
∂κθ

∂z
= (κz − κθ )

Aθ,z

Aθ

, (2.2)

∂

∂z

(

Aθ,z

Az

)

+
∂

∂θ

(

Az,θ

Aθ

)

= −AzAθκzκθ , (2.3)

and define the Levi-Civita connection on the middle surface of the shell via the following derivation formulas

∇ezez = −
1

AzAθ

∂Az

∂θ
eθ − κzn, ∇ezeθ =

1

AzAθ

∂Az

∂θ
ez, ∇ezn = κzez,

∇eθ eθ = −
1

AzAθ

∂Aθ

∂z
ez − κθn, ∇eθ ez =

1

AzAθ

∂Aθ

∂z
eθ , ∇eθ n = κθeθ .

Using these formulas we can compute the components of gradu in the orthonormal basis et , eθ , ez:

gradu =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ut,t

ut,θ − Aθκθuθ

Aθ (1 + tκθ )

ut,z − Azκzuz

Az(1 + tκz)

uθ,t

Azuθ,θ + AzAθκθut + Aθ,zuz

AzAθ (1 + tκθ )

Aθuθ,z − Az,θuz

AzAθ (1 + tκz)

uz,t

Azuz,θ − Aθ,zuθ

AzAθ (1 + tκθ )

Aθuz,z + AzAθκzut + Az,θuθ

AzAθ (1 + tκz)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We will now specialize to the particular case of zero Gaussian curvature κz = 0. In this case, equations (2.2)–(2.3)
can be solved explicitly in terms of four arbitrary smooth functions B(z), a(θ), b(θ), c(θ):

Az = B ′(z), Aθ = a(θ)B(z) + b(θ), κθ =
c(θ)

Aθ

. (2.4)

We require that Az, Aθ and c(θ) be strictly positive functions of their variables on the mid-surface of the shell. Hence, 
for shells of zero Gaussian curvature the formula for gradu simplifies:

gradu =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ut,t

ut,θ − c(θ)uθ

Aθ + tc(θ)

ut,z

Az

uθ,t

uθ,θ + c(θ)ut + a(θ)uz

Aθ + tc(θ)

uθ,z

Az

uz,t

uz,θ − a(θ)uθ

Aθ + tc(θ)

uz,z

Az

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.5)

2 The principal directions are mutually orthogonal.
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Table 1
Functions B(z), a(θ), b(θ) and c(θ) for cylinders and cones.

B(z) a(θ) b(θ) c(θ)

cylinders z 0 1 κ(θ)

cones z 1 0 (σ (θ),σ ′(θ),σ ′′(θ))

In the case of shells, the thickness variable t is uniformly small. We therefore introduce the simplified gradient

∇u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ut,t

ut,θ − c(θ)uθ

Aθ

ut,z

Az

uθ,t

uθ,θ + c(θ)ut + a(θ)uz

Aθ

uθ,z

Az

uz,t

uz,θ − a(θ)uθ

Aθ

uz,z

Az

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.6)

We note that in (2.6) the components ut , uθ and uz are still functions of (t, θ, z).
To be more specific we give two examples of zero Gaussian curvature shells: cylinders and cones. A cylinder is 

described by a simple, smooth closed curve of length p in the xy-plane. Let ρ(θ), θ ∈ [0, p) be the position vector 
of this curve, parametrized by its arc-length. The position vector of the middle surface of the shell is then given by 

r(θ, z) = ρ(θ) + zez, where ez is the unit vector perpendicular to the xy-plane, i.e. the unit vector in the z-direction. 
It is easy to verify that θ = constant and z = constant are lines of curvature and κθ = κ(θ) is the curvature of curve 

ρ(θ) in the plane, whose sign is chosen to be positive for a circle.
A second example is a cone with vertex at the origin. A cone is described by a simple, smooth closed curve of 

length p lying in the northern hemisphere of a unit sphere centered at the origin. Let σ(θ), θ ∈ [0, p) be the arc-length 

parametrization of this curve. In this case the middle surface of the shell is given by r(θ, z) = zσ (θ). Once again, it is 
easy to verify that θ = constant and z = constant are lines of curvature and

κθ =
(σ (θ),σ ′(θ),σ ′′(θ))

z
,

where (a, b, c) = a · (b × c) is the triple-product of 3 vectors in space. We summarize the data for cylinders and cones 
in Table 1.

In this paper all norms ‖ · ‖ are L2 norms. However, because of the curvilinear coordinates we will use several 
different flavors of the L2 inner product and the corresponding norm. For f, g : Ch → R we define the L2 inner 
product

(f, g)Ch
=

∫

Ch

f (x)g(x)dx =
∫

Ih

L
∫

l

p
∫

0

AzAθfgdθdzdt,

which gives rise to the norm ‖f ‖.

‖f ‖2 = (f,f )Ch
=

∫

Ih

L
∫

l

p
∫

0

AzAθf
2dθdzdt. (2.7)

In cross-sections θ = constant we use

‖f ‖2
θ =

∫

Ih

L
∫

l

Azf
2(t, θ, z)dzdt. (2.8)

We will also use the Euclidean version of the norm on cross-sections
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‖f ‖2
0 =

α2
∫

α1

β2
∫

β1

f 2(α,β, γ )dαdβ, (2.9)

where {α, β, γ } = {t, θ, z} and αi , βi , i = 1, 2 are the corresponding limits of integration. In each case it will be clear 
which variable t , θ or z plays the role of the fixed variable γ . Of course, due to uniform positivity of Aθ and Az the 

norms ‖f ‖γ and ‖f ‖0 are obviously equivalent. In particular, all inequalities involving one type of norm will also be 

valid for another. Finally, all constants that are independent of u and h will be denoted by C. Once this is understood, 
such abuse of notation does not lead to any ambiguity.

3. Main results

We formulate our Korn inequalities for vector fields u satisfying specific boundary conditions at the two edges of 
the shell. We define

V 1
h = {u ∈ W 1,2(Ch;R3) : uz(t, θ, l) = uθ (t, θ, l) = uθ (t, θ,L) = 0}, (3.1)

and

V 2
h = {u ∈ V 1

h : ut (t, θ, l) = 0}. (3.2)

We note that p-periodicity of functions in V 1
h is built in by definition of Ch. We state our main results as a sequence 

of related theorems.

Theorem 3.1. Suppose κz = 0 on Ch. Then there exist a constant C independent of h, such that for every u ∈ V 2
h ,

‖gradu‖2 ≤ C

(‖ut‖‖(gradu)sym‖
h

+ ‖(gradu)sym‖2
)

, (3.3)

‖gradu‖2 ≤
C

h2
‖(gradu)sym‖2, (3.4)

for all h ∈ (0, 1).

We note that in Theorem 3.1 we placed no constraints on the behavior of the other principal curvature κθ . This 
freedom is compensated by requiring that u belong to a smaller subspace V 2

h of W 1,2(Ch; R3). In fact, if κθ vanishes on 

an open subset of the middle surface of the shell then, according to Theorem 3.3, the bound in (3.4) is asymptotically 

sharp as h → 0.
If we demand that the curvature κθ does not change sign (i.e., be uniformly positive for cylindrically-shaped shells), 

then not only can the first Korn inequality (3.4) be improved, but its domain of validity can be extended from V 2
h to 

V 1
h .

Theorem 3.2. Suppose that κz = 0 and κθ �= 0 on Ch. Then there exists a constant C independent of h, such that for 
every u ∈ V 1

h , inequalities (3.3) and

‖gradu‖2 ≤
C

h
√

h
‖(gradu)sym‖2, (3.5)

hold for all h ∈ (0, 1).

In fact, inequalities (3.3) and (3.5) are asymptotically sharp.

Theorem 3.3 (Existence of optimal ansatzen).

(i) Suppose that both curvatures κθ and κz vanish on an open subset � of the middle surface of the shell. Then there 

exist C∞ nonzero vector fields uh, compactly supported in � × Ih, and a constant C independent of h, such that

‖(graduh)sym‖2 ≤ Ch2‖graduh‖2, for all h ∈ (0,1). (3.6)
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(ii) Suppose that κz = 0 and κθ > 0 on Ch. Then there exist nonzero vector fields uh, vanishing at z = l, L, and a 

constant C independent of h, for which

‖(graduh)sym‖2 ≤ Ch
√

h‖graduh‖2, for all h ∈ (0,1). (3.7)

Remark 3.4. Our results are formulated for shells cut along the coordinate surfaces. However, they are also valid for 
any shell Ch bounded by the surfaces z = z(t, θ) and z = Z(t, θ), where the spaces V 1

h , V 2
h are defined by (3.1) and 

(3.2) respectively, except the indicated components of u vanish on the surfaces z = z(t, θ) and z = Z(t, θ), instead of 
z = l and z = L. This is because there exists shells C−

h ⊂ Ch ⊂ C
+
h , such that the shells C±

h are bounded by surfaces 
z = constant. But then the ansatz from Theorem 3.3 supported in C

−
h gives an upper bound on the Korn constant of Ch

that scales as h3/2 (or as h2). At the same time every function in V 1
h or V 2

h of Ch can be extended (by extending the 

relevant components of u by zero) to a function in V 1
h or V 2

h of C+
h , giving the lower bound on the Korn constant that 

scales as h3/2 (or as h2).

Remark 3.5. Our main results hold not only for cylindrical shells (i.e. p-periodic displacements u), but also for 
“open” shells, where periodicity of u is replaced either by

uθ (t,0, z) = uθ (t,p, z) = 0, (3.8)

or by

ut (t,0, z) = ut (t,p, z) = uz(t,0, z) = uz(t,p, z) = 0. (3.9)

In both cases we can apply our theory to 2p-periodic vector fields, obtained by the odd 2p-periodic extension of uθ

and even 2p-periodic extension of all other functions, in the case of boundary conditions (3.8); and odd 2p-periodic 

extension of both ut and uz, and even 2p-periodic extension of all other functions, in the case of boundary conditions 
(3.9). In each case, it is easy to check that every component (in (t, θ, z) coordinate system) of ∇u and e(u) = (∇u +
(∇u)T )/2 will either be even or odd in θ , making squares of their L2 norms on Ih × [−p, p] × [l, L] be double those 

on Ih × [0, p] × [l, L].

4. Proofs of Theorems 3.1 and 3.2

Our strategy is to prove a first-and-a-half Korn inequality (3.3) for the simplified version ∇u of gradu, given 

by (2.6)

‖∇u‖2 ≤ C

(

‖ut‖‖e(u)‖
h

+ ‖e(u)‖2
)

, (4.1)

where

e(u) =
1

2

(

∇u + (∇u)T
)

.

We then show that (4.1) implies (3.3). In order to prove (4.1) we apply the method, introduced in [3], of assembling 

(4.1) from the analogous two-dimensional inequalities corresponding to the three coordinate surface cross-sections 
of the shell. Most of the proof is done for u ∈ V 1

h and without any additional assumptions on the sign of κθ . When 

additional assumptions become necessary, they will be explicitly stated. Also, in what follows we will use a classical 
density argument implicitly, by conducting the proofs for smooth vector fields and then observing that we can pass to 

the limit in the final inequalities when a W 1,2 vector field is approximated by a sequence of C∞ ones with the same 

boundary conditions.

4.1. The t = const cross-section

The Korn-type inequality corresponding to t = const cross-section involves θθ , θz, zθ , and zz components of the 

gradient. The first-and-a-half Korn inequality in this case is stated in the following lemma.
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Lemma 4.1. The following inequality is valid whenever u ∈ V 1
h .

‖(∇u)θz‖2 + ‖(∇u)zθ‖2 ≤ C‖e(u)‖(‖e(u)‖ + ‖ut‖). (4.2)

Proof. Observing that

‖(∇u)θz‖2 + ‖(∇u)zθ‖2 = 4‖e(u)θz‖2 − 2((∇u)θz, (∇u)zθ )Ch
,

we conclude that it is sufficient to prove

|((∇u)θz, (∇u)zθ )Ch
| ≤ C‖e(u)‖(‖e(u)‖ + ‖ut‖). (4.3)

We have, that

((∇u)θz, (∇u)zθ )Ch
=

∫

Ih

L
∫

l

p
∫

0

AθAz

uθ,z

Az

uz,θ − a(θ)uθ

Aθ

dθdzdt =
∫

Ih

(I1(t) − I2(t))dt,

where

I1(t) =
L

∫

l

p
∫

0

uθ,zuz,θdθdz,

and

I2(t) =
L

∫

l

p
∫

0

a(θ)uθuθ,zdθdz =
1

2

p
∫

0

a(θ)

L
∫

l

(u2
θ ),zdz = 0,

since uθ = 0 at z = l and z = L.
Let us estimate I1(t). The idea is first to observe that

L
∫

l

p
∫

0

uθ,zuz,θdθdz = −
L

∫

l

p
∫

0

uθuz,θzdθdz =
L

∫

l

p
∫

0

uθ,θuz,zdθdz,

where p-periodicity of uz and uθ has been used in the last equality, and then express uθ,θ and uz,z in terms of 
(∇u)θθ = e(u)θθ and (∇u)zz = e(u)zz, respectively. Thus,

∫

Ih

I1(t)dt =
(

e(u)zz, e(u)θθ −
a(θ)

Aθ

uz − κθut

)

Ch

. (4.4)

Applying the Schwartz inequality we obtain
∣

∣

∣

∣

∣

∣

∣

∫

Ih

I1(t)dt

∣

∣

∣

∣

∣

∣

∣

≤ C‖e(u)‖(‖e(u)‖ + ‖ut‖ + ‖uz‖). (4.5)

By the Poincaré inequality, applicable, since uz = 0 at z = l,

‖uz‖ ≤ C‖uz,z‖ ≤ C‖e(u)‖. (4.6)

Using this inequality in (4.5) we obtain the desired bound (4.2). ✷
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4.2. The θ = const cross-section

Lemma 4.2. The following inequality is valid whenever uz(t, θ, l) = 0.

‖(∇u)tz‖2 + ‖(∇u)zt‖2 ≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖e(u)‖2
)

. (4.7)

Let us show that Lemma 4.2 is an immediate consequence of the same two-dimensional inequality in Cartesian co-
ordinates, proved in [3, Theorem 3.1]. It states that if h ∈ (0, 1), φ = (u, v) ∈ H 1(Ih × (l, L); R2) satisfies v(x, l) = 0, 
x ∈ Ih in the sense of traces, then

‖∇cφ‖2
0 ≤ C‖ec(φ)‖0

(

‖u‖0

h
+ ‖ec(φ)‖0

)

, (4.8)

where

∇cφ =
[

u,x u,y

v,x v,y

]

, ec(φ) =
1

2

(

∇cφ + (∇cφ)T
)

.

Lemma 4.2 says that the same statement holds in our curvilinear coordinates, where ∇u is given by (2.6).

Proof of Lemma 4.2. We first prove inequality (4.7) for each fixed θ ∈ [0, p]:

‖(∇u)tz‖2
θ + ‖(∇u)zt‖2

θ ≤ C

(

‖ut‖θ · ‖eθ (u)‖θ

h
+ ‖eθ (u)‖2

θ

)

, (4.9)

where

‖f ‖2
θ =

∫

Ih

L
∫

l

Azf (t, θ, z)2dzdt, eθ (u) =

⎡

⎢

⎢

⎢

⎣

ut,t

1

2

(

ut,z

Az

+ uz,t

)

1

2

(

ut,z

Az

+ uz,t

)

uz,z

Az

⎤

⎥

⎥

⎥

⎦

.

Then inequality (4.7) is obtained by integrating (4.9) over θ ∈ [0, p], and using uniform positivity and boundedness 
of Aθ and Az together with the Schwartz inequality, so that

p
∫

0

‖f ‖θ‖g‖θdθ ≤ C‖f ‖‖g‖.

Let

G =

[

ut,t ut,z

Azuz,t (Azuz),z

]

, E =
1

2
(G + GT ).

Then, by (4.8) applied to φ = (ut , Azuz), we obtain

‖G‖2
0 ≤ C‖E‖0

(

‖ut‖0

h
+ ‖E‖0

)

. (4.10)

By uniform positivity and boundedness of Aθ , Az norms ‖ · ‖0 and ‖ · ‖θ are equivalent. Hence,

‖(∇u)tz‖2
θ + ‖(∇u)zt‖2

θ ≤ C(‖Gtz‖2
0 + (‖Gzt‖2

0) ≤ C‖G‖2
0.

Applying (4.10), we prove the lemma, if we show that

‖E‖0 ≤ C‖eθ (u)‖θ . (4.11)

We estimate

‖E‖2
0 ≤ C(‖ut,t‖2

θ + ‖uz,z‖2
θ + ‖uz‖2

θ ) +
1

2
‖ut,z + Azuz,t‖2

0.
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By the Poincaré inequality ‖uz‖2
θ ≤ C‖uz,z‖2

θ , so that

‖E‖2
0 ≤ C‖eθ (u)‖2

θ +
1

2
‖ut,z + Azuz,t‖2

0.

It remains to observe that

‖ut,z + Azuz,t‖0 =
∥

∥

∥

∥

√

Az

(

ut,z

Az

+ uz,t

)∥

∥

∥

∥

θ

≤ C‖eθ (u)‖θ . ✷

4.3. The z = const cross-section

Lemma 4.3. Let u ∈ V 1
h . Then there exists a constant C > 0, independent of h, so that

‖(∇u)tθ‖2 + ‖(∇u)θt‖2 ≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖ut‖2 + ‖e(u)‖2
)

. (4.12)

Proof. As before, we will show that (4.23) is a consequence of a two-dimensional Korn-type inequality. However, 
before we can proceed with this strategy, we observe that the term with uz in the θθ -component of ∇u can be easily 

discarded due to the Poincaré inequality (4.6). Indeed, suppose we have proved (4.23), where e(u) is replaced with 

e′(u), where all components are the same as in e(u), except

e′(u)θθ =
uθ,θ + c(θ)ut

Aθ

.

Then

‖e′(u)‖ ≤ ‖e(u)‖ + C‖uz‖ ≤ C‖e(u)‖,

so that

‖(∇u)tθ‖2 + ‖(∇u)θt‖2 ≤ C

(

‖ut‖ · ‖e′(u)‖
h

+ ‖ut‖2 + ‖e′(u)‖2
)

≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖ut‖2 + ‖e(u)‖2
)

.

Next we prove the two-dimensional Korn-type inequality.

Theorem 4.4. Let

V =
{

φ = (u, v) ∈ W 1,2(Ih × (0,p);R2) : u(x, ·) is p − periodic
}

and let

G(φ) =

[

u,x a1(y)u,y + b1(y)v

v,x a2(y)v,y + b2(y)u

]

, E(φ) =
1

2
(G + GT ), (4.13)

where a1, a2, b1, b2 are Lipschitz continuous functions in [0, p], such that a1(y) and a2(y) do not vanish on [0, p]. 
Then,

‖G‖2 ≤ C

(

‖u‖‖E‖
h

+ ‖E‖2 + ‖φ‖2
)

, (4.14)

where

‖f ‖2 =
h/2
∫

−h/2

p
∫

0

f 2(x, y)dydx.

The proof is based on the sharp inequality for harmonic functions [3, Lemma 4.3], see also [7, Theorem 1.1], which 

we formulate here for the sake of completeness.
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Lemma 4.5. Let Rh = (−h
2 , h2 ) × (0, p). Suppose w ∈ H 1(Rh) is harmonic in Rh and satisfies the boundary condition 

w(x, 0) = w(x, p) in the sense of traces. Then

‖w,y‖2 ≤
2
√

3

h
‖w‖‖w,x‖ + ‖w,x‖2. (4.15)

Proof of Theorem 4.4. The first step is to replace u(x, y) by its harmonic extension in Rh by defining w ∈ H 1(Rh)

to be the unique solution of the Dirichlet boundary value problem
{

△w = 0, (x, y) ∈ Rh

w = u, (x, y) ∈ ∂Rh.
(4.16)

By the Poincaré inequality,

‖u − w‖ ≤ h‖∇(u − w)‖. (4.17)

Next, we express △(u − w) = △u in terms of E(x, y), defined in (4.13), by eliminating all derivatives, except u,y :

△(u − w) = E11,x +
2E12,y

a1
−

1

a1a2
(E22,x − b2E11 + b1E22) + R(x, y), (4.18)

where

R(x, y) =
b1b2u − a2a

′
1u,y − a2b

′
1v

a1a2
.

Now we multiply (4.18) by u − w and integrate by parts over Rh using the fact that u − w vanishes on ∂Rh:

‖∇(u − w)‖2 =
∫

Rh

[

E11(u,x − w,x) +
2E12(u,y − w,y)

a1
−

E22(u,x − w,x)

a1a2
+ (u − w)Q(x, y)

]

dxdy,

where Q(x, y) is a linear combination of E11, E12, E22, u, v and u,y with uniformly bounded coefficients. Estimating 

‖u − w‖ by (4.17) we obtain, after division by ‖∇(u − w)‖,

‖∇(u − w)‖ ≤ Ch

(

‖E‖
h

+ ‖u‖ + ‖v‖ + ‖u,y‖
)

. (4.19)

Our last task is to estimate ‖u,y‖. This is done by replacing u with w, estimating ‖w,y‖ using (4.15), and returning 

back to u, while controlling the incurred errors by (4.17) and (4.19).

‖u,y‖2 ≤ 2‖u,y − w,y‖2 + 2‖w,y‖2 ≤ C

(

‖∇(u − w)‖2 +
‖w‖‖w,x‖

h
+ ‖w,x‖2

)

≤ C

(

‖∇(u − w)‖2 + ‖u,x‖2 +
1

h
(‖u‖ + h‖∇(u − w)‖)(‖u,x‖ + ‖∇(u − w)‖)

)

≤ C

(

‖∇(u − w)‖2 + ‖u,x‖2 +
‖u‖‖u,x‖

h
+

‖u‖‖∇(u − w)‖
h

)

≤ C

(

h2‖u,y‖2 + ‖E‖2 +
‖u‖‖E‖

h
+ ‖u‖2 + ‖v‖2 + ‖u‖‖u,y‖

)

,

where we took into account that u,x = E11. Estimating

C‖u‖‖u,y‖ ≤
1

2
‖u,y‖2 +

C2‖u‖2

2

and choosing h so small that Ch2 < 1/4 we obtain the inequality

‖u,y‖2 ≤ C

(

‖E‖2 +
‖u‖‖E‖

h
+ ‖u‖2 + ‖v‖2

)

, (4.20)

which holds for all sufficiently small h > 0. Observing that
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‖G‖2 = ‖E11‖2 + ‖E22‖2 + ‖G12‖2 + ‖2E12 − G12‖2,

we get the bound

‖G‖2 ≤ 7‖E‖2 + 3‖G12‖2,

while

‖G12‖2 = ‖a1(y)u,y + b1(y)v‖2 ≤ C(‖u,y‖2 + ‖v‖2).

This shows that (4.20) implies (4.14). ✷

If we apply this theorem to φ(t, θ) = (ut (t, θ, z), uθ (t, θ, z)) (for each fixed value of z) and then integrate over 
z ∈ [l, L], we obtain the inequality (taking into account the equivalence between the curvilinear norm (2.7) and the 

Euclidean norm)

‖(∇u)tθ‖2 + ‖(∇u)θt‖2 ≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖e(u)‖2 + ‖ut‖2 + ‖uθ‖2
)

. (4.21)

By the Poincaré inequality and (4.2) we obtain

‖uθ‖2 ≤ C‖(∇u)θz‖2 ≤ C‖e(u)‖(‖e(u)‖ + ‖ut‖). (4.22)

Combining this with (4.21) we obtain (4.12), which completes the proof of Lemma 4.3. ✷

Lemma 4.6. Suppose that either u ∈ V 2
h or u ∈ V 1

h and κθ > 0 on [0, p] × [l, L]. Then there exists a constant C > 0, 
independent of h, such that

‖(∇u)tθ‖2 + ‖(∇u)θt‖2 ≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖e(u)‖2
)

. (4.23)

Proof. If u ∈ V 2
h then we can just use the Poincaré inequality and (4.7) to estimate

‖ut‖2 ≤ C‖(∇u)tz‖2 ≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖e(u)‖2
)

. (4.24)

If u ∈ V 1
h , then the Poincaré inequality cannot be used. Instead we use uniform positivity of κθ and estimate ut by 

expressing it in terms of e′(u)θθ as follows:

ut =
Aθe

′(u)θθ − uθ,θ

Aθκθ

. (4.25)

Multiplying both sides of (4.25) by Aθκθut we obtain

Aθκθu
2
t = Aθute

′(u)θθ − (uθut ),θ + uθut,θ .

Replacing the obtained ut,θ by its expression ut,θ = Aθ (∇u)tθ + c(θ)uθ , and integrating over Ih × [0, p] × [l, L] we 

arrive at the estimate (using equivalence of various norms)

‖ut‖2 ≤ C(‖ut‖‖e(u)‖ + ‖uθ‖2 + ‖(∇u)tθ‖‖uθ‖).
Hence, replacing ‖uθ‖2 by its estimate from (4.22) and then using the inequality Cab ≤ a2/2 + C2b2/2, we obtain 

the bound

‖ut‖2 ≤ C(‖e(u)‖2 + ‖(∇u)tθ‖‖uθ‖). (4.26)

Using this inequality to estimate the term ‖ut‖2 in (4.12), we obtain

‖(∇u)tθ‖2 + ‖(∇u)θt‖2 ≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖(∇u)tθ‖‖uθ‖ + ‖e(u)‖2
)

.

Once again we apply the inequality Cab ≤ a2/2 + C2b2/2 to obtain

‖(∇u)tθ‖2 + ‖(∇u)θt‖2 ≤ C

(

‖ut‖ · ‖e(u)‖
h

+ ‖uθ‖2 + ‖e(u)‖2
)

.

Estimating ‖uθ‖2 via (4.22), we obtain the desired inequality (4.23). ✷
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4.4. Conclusion of the proof

The conclusion of the proof is conducted under the assumptions of Lemma 4.6, covering both Theorems 3.1
and 3.2. Combining the estimates (4.2), (4.7) and (4.23) we arrive at (4.1). However, ∇u and e(u) are the simplified 

versions of gradu and (gradu)sym. Thus, we need to show that (3.3) follows from (4.1). We will show that under 
the assumptions of Theorems 3.1 it is a consequence of (4.24), while under the assumptions of Theorems 3.2 it is a 

consequence of (4.26).
The main observation in either case is that components of gradu and ∇u are multiples of one another with coeffi-

cients that are independent of u. Thus, by direct calculation, we estimate

‖gradu − ∇u‖ ≤ Ch‖gradu‖, ∀u ∈ W 1,2(Ch;R3), (4.27)

from which we get additionally,

‖(gradu)sym − e(u)‖ ≤ ‖gradu − ∇u‖ ≤ Ch‖gradu‖, ∀u ∈ W 1,2(Ch;R3). (4.28)

Proof of Theorem 3.1. Observe, that t t , tz, zt and zz components of gradu and ∇u coincide. The analysis for the 

cross section θ = const involved only these components of the gradient. Thus, estimate (4.7) holds for gradu in place 

of ∇u. This implies (4.24) for (gradu)sym in place of e(u), i.e., we have

‖ut‖ ≤
C

h
‖(gradu)sym‖. (4.29)

This allows us to show that (4.1) implies (3.3). Combining (4.1), (4.27) and (4.28), we obtain

‖gradu‖2 ≤ C

(‖ut‖‖(gradu)sym‖
h

+ ‖ut‖‖gradu‖ + ‖(gradu)sym‖2
)

. (4.30)

Estimating

C‖ut‖‖gradu‖ ≤
1

2
‖gradu‖2 +

C2

2
‖ut‖2

we get

‖gradu‖2 ≤ C

(‖ut‖‖(gradu)sym‖
h

+ ‖ut‖2 + ‖(gradu)sym‖2
)

.

Finally, by (4.29)

‖ut‖2 ≤
‖ut‖‖(gradu)sym‖

h
,

and (3.3) follows. Combining estimates (4.29) and (3.3) we obtain (3.4). ✷

Proof of Theorem 3.2. In this case we proceed in the same way as in [3], proving the following lemma.

Lemma 4.7. Inequalities (4.1), (4.22), and (4.26) taken together, imply

‖∇u‖2 ≤
C

h
√

h
‖e(u)‖2. (4.31)

We postpone the proof of this virtually algebraic lemma and show that it implies (3.3) and (3.5).
Combining (4.31) with (4.28) we obtain

‖gradu‖2 ≤ C‖∇u‖2 ≤
C

h
√

h
(‖(gradu)sym‖2 + h2‖gradu‖2),

proving the first Korn inequality (3.5). Now, inequality (4.1) and (3.5) imply (3.3). Indeed, using the estimate

‖ut‖‖gradu‖ ≤
C‖ut‖‖(gradu)sym‖

h3/4
≤

C‖ut‖‖(gradu)sym‖
h
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in (4.30) we obtain (3.3). ✷

Proof of Lemma 4.7. We begin with the inequality (4.26),

‖ut‖2 ≤ C(‖e(u)‖2 + 2‖∇u‖‖uθ‖) ≤ C

(

‖e(u)‖2 + ǫ2‖∇u‖2 +
1

ǫ2
‖uθ‖2

)

for any ǫ > 0. The small parameter ǫ ∈ (0, 1) will be chosen later to optimize the resulting inequality. Estimating 

‖uθ‖2 by (4.22) we obtain for sufficiently small ǫ,

‖ut‖2 ≤ C

(

‖e(u)‖2 + ǫ2‖∇u‖2 +
1

ǫ2
(‖e(u)‖2 + ‖e(u)‖‖ut‖)

)

.

Estimating

C

ǫ2
‖e(u)‖‖ut‖ ≤

1

2
‖ut‖2 +

C2

2ǫ4
‖e(u)‖2,

we obtain

‖ut‖2 ≤ C

(

‖e(u)‖2

ǫ4
+ ǫ2‖∇u‖2

)

.

Thus,

‖ut‖ ≤ C

(

‖e(u)‖
ǫ2

+ ǫ‖∇u‖
)

. (4.32)

Substituting this inequality into (4.1), we obtain

‖∇u‖2 ≤ C

(

‖e(u)‖2

hǫ2
+

ǫ‖∇u‖‖e(u)‖
h

)

.

Estimating

Cǫ‖∇u‖‖e(u)‖
h

≤
1

2
‖∇u‖2 +

C2ǫ2‖e(u)‖2

2h2
,

we obtain the inequality

‖∇u‖2 ≤ C

(

1

hǫ2
+

ǫ2

h2

)

‖e(u)‖2.

We now choose ǫ = h1/4 to minimize the upper bound and obtain (4.31). ✷

5. Proof of Theorem 3.3

The ansatz in part (i) of the theorem is a classical Kirchhoff ansatz. The assumptions of part (i) say that the shell 
contains a plate, which means that we can introduce a local Cartesian coordinate system (x1, x2, x3) in which the 

(sub)plate be described as

Ph = {(x1, x2) ∈ � ⊂R
2, x3 ∈ Ih}.

In these Cartesian coordinates we construct the ansatz in terms of the function φ(x1, x2), compactly supported in �:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

uh
1 = −x3φ,x1 ,

uh
2 = −x3φ,x2 ,

uh
3 = φ(x1, x2).

(5.1)

Then
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∇uh =

⎡

⎢

⎣

−x3φ,x1x1 −x3φ,x1x2 −φ,x1

−x3φ,x1x2 −x3φ,x2x2 −φ,x2

φ,x1 φ,x2 0

⎤

⎥

⎦
, e(uh) =

⎡

⎢

⎣

−x3φ,x1x1 −x3φ,x1x2 0

−x3φ,x1x2 −x3φ,x2x2 0

0 0 0

⎤

⎥

⎦
.

This shows that

‖∇uh‖2 = ‖∇φ‖2 +
h2

12
‖∇∇φ‖2, ‖e(uh)‖2 =

h2

12
‖∇∇φ‖2.

Choosing a fixed nonzero φ ∈ C2
0(�) we establish (3.6). The ansatz (5.1) was found by looking for the ansatz in the 

form uh = v(x1, x2) + x3w(x1, x2). We then compute e(uh) = E0(x1, x2) + x3E1(x1, x2). The ansatz (5.1) is the 

general solution of the equations E0(x1, x2) = 0. The same idea could be applied to gradu, given by (2.5). However, 
the different structure of the gradient results only in trivial solutions of E0(θ, z) = 0. Nevertheless, the same idea 

works if we relax our requirements. Specifically, we can find an ansatz in which all components of E0(θ, z) vanish, 
except the zz-component. Accordingly, we look for the ansatz in the form uh = vh(θ, z) + twh(θ, z), so that

(graduh)sym = Eh
0(θ, z) + tEh

1(θ, z) + O(t2).

In accordance with our strategy we have the following system of equations
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wh
t = 0,

wh
θ = −

1

Aθ

(

∂vh
t

∂θ
+ c(θ)vh

θ

)

,

wh
z = −

1

Az

∂vh
t

∂z
,

vh
t = −

vh
θ,θ + a(θ)vh

z

c(θ)
,

−Aθv
h
θ,z = Az(v

h
z,θ − a(θ)vh

θ ).

(5.2)

The first four equations in (5.2) express wh and vh
t in terms of only two functions vh

θ and vh
z . The last equation relates 

vh
θ and vh

z , and needs to be solved. There are two mutually exclusive cases

• Case 1:

Az

Aθ

=
H(θ)

G(z)
, (5.3)

for some Lipschitz functions H(θ) and G(z). It is easy to see from formulas (2.4) that (5.3) is equivalent to 

a(θ) and b(θ) being linearly dependent, i.e. there exists a constant scalar λ0, such that either a(θ) = λ0b(θ) or 
b(θ) = λ0a(θ).

• Case 2: There exists an interval I = (θ1, θ2) ⊂ (0, p), such that a(θ) �= 0 and ρ′(θ) �= 0 for all θ ∈ I , where

ρ(θ) =
b(θ)

a(θ)
.

Case 1. It is easy to see from Table 1 that all cylinders and cones fall into this case. Under the assumption (5.3) the 

last equation in (5.2) has a general solution

vh
z = AθG(z)H(θ)φh

,z, vh
θ = −AθH(θ)2φh

,θ , (5.4)

expressing the ansatz in terms of a single potential φh(z, θ), which can be an arbitrary function with compact support.
Case 2. In this case we will assume that functions a(θ) and b(θ) are of class C3. Solving the last equation in (5.2)

with respect to vh
z,θ

vh
z,θ =

1

B ′(z)
(a(θ)B ′(z)vh

θ − (a(θ)B(z) + b(θ))vh
θ,z)
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we see that we need both a(θ)vh
θ and b(θ)vh

θ to be θ -derivatives of some θ -periodic smooth functions of (θ, z). Hence, 
we define

vh
θ =

ψh
,θ

a(θ)
,

where ψh(θ, z) is supported on I × (l, L). But then, we also need that ρ(θ)ψh
,θ be a θ -derivative of some θ -periodic 

smooth function of (θ, z). We then define

ψh =
φh

,θ

ρ′(θ)
,

where φh(θ, z) is supported on I × (l, L). These formulas yield the explicit ansatz that can be expressed in terms of a 

single potential φh(z, θ), which can be an arbitrary function with compact support. Specifically,
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

vh
θ =

1

a(θ)

∂

∂θ

(

φh
,θ

ρ′(θ)

)

,

vh
z =

B ′(z)φh
,θ + ρ′(θ)φh

,z − (B(z) + ρ(θ))φh
,θz

B ′(z)ρ′(θ)

. (5.5)

Finally, in order to obtain optimal upper bound on the Korn constant we use the same scaling analysis as in [3] and 

define φh(θ, z) in terms of the smooth, non-constant p-periodic in θ function �(θ, z). In Case 1 we just set

φh(θ, z) = �(n(h)θ, z),

where n(h) is the integer part of h−1/4. In Case 2 we define

φh(θ, z) = η(θ, z)�(n(h)θ, z),

where η(θ, z) is a smooth p-periodic in θ function, supported on I × (l, L). In both cases the constructed ansatz yields 
the upper bound K(Vh) ≤ Ch3/2 for any Vh containing all W 1,2 vector fields that vanish at z = l, L.
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