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Abstract. This paper presents a simple proof of W 2,2
loc

regularity of Lipschitz
uniform local minimizers of vectorial variational problems. The method is
based on the idea that inner variations provide constraints on the structure of
singularities of local minimizers.

1. Introduction

Consider the problem of minimizing a variational functional

(1.1) E[y] =

∫

Ω

W (x,y(x),∇y(x))dx,

over vector fields y : Ω → R
m, where Ω is an open and bounded subset of Rd. Such

problems (for various values of d and m) arise in many contexts. The problems
in classical Calculus of Variations, corresponding to d = 1 are well known. The
Plateau problem of finding a surface of least area, corresponding to m = 3, d = 2
is often studied for arbitrary m and d. The problems arising in nonlinear elasticity
correspond to m = d = 3. In many examples, the energy density W might reason-
ably1 be assumed to be a smooth nonnegative function, while we are interested in
minimizing E[y] over all y ∈ C1(Ω;Rm) with prescribed C1 boundary values (the
boundary of Ω might also be assumed to be of class C1). These nice assumptions
(each of which can be rightfully questioned) do not spare us the ensuing difficulties,
though.

The first most fundamental question one needs to answer is that of the existence
of a minimizer. The idea is to consider a minimizing sequence yn and extract a
convergent subsequence. At first glance this strategy fails because imposing natural
growth conditions on W does not guarantee compactness (or even boundedness) of
{yn} in C1. The idea is then to relax the topology on the space of vector fields
to the point where compactness of {yn} can be guaranteed. This idea gave rise to
Sobolev spaces W 1,p and weak topologies on them [16]. Extracting a convergent
subsequence we succeed in obtaining a limit y∗ and . . . a new problem on our
hands: in the new topology the functional E[y] is no longer continuous and no
simple relation exists between E[y∗] and the limit of E[yn]. Tonelli [24, 25] saves
the day by observing that in order to conclude that y∗ minimizes E[y] we only need
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sequential weak lower semicontinuity (s.w.l.s.c.) of E[y]:

E[y∗] ≤ lim
n→∞

E[yn].

The question of what features of W ensure s.w.l.s.c. ushered in the modern era
of Calculus of Variations. The answer, given by Morrey [15], was quasiconvexity
of the map F �→ W (x,y,F ), for every fixed x and y. This condition reduces to
convexity when d = 1 or m = 1, but is strictly weaker, when d > 1 and m > 1.
However, adding quasiconvexity to our list of standard assumptions on W does not
end our quest for existence. Unfortunately, when we have weakened the topology
of the y-space to make the minimizing sequence compact we have also extended
the space of admissible functions from C1(Ω;Rm) to W 1,p(Ω;Rm) (the closure of
C1 in the new topology). Our final task is therefore to endeavor to prove that the
minimizer y∗ ∈ W 1,p(Ω;Rm) must in fact be in C1(Ω;Rm) by virtue of delivering
a minimum to E[y].

The past 75 years have seen a true appreciation of how deep and nuanced this
problem is, together with spectacular progress in understanding regularity of mini-
mizers. Whenm = 1 De Giorgi-Nash-Moser theory [4,17,19] guarantees smoothness
of all extremals of (1.1), provided certain natural growth conditions on W (in addi-
tion to uniform convexity) are satisfied. When d = 2, m ≥ 1, and F �→ W (x,y,F )
is uniformly convex, Morrey [16] has shown that extremals of (1.1) must be smooth.
However, when d > 1 and m > 1 the assumption of convexity on W is no longer
natural and needs to be replaced with a weaker quasiconvexity property. However,
such a relaxation of convexity assumptions changes the regularity game drastically.
In [18, see Proposition 4.2] Müller and Šverák have shown that W 1,2 extremals of
uniformly quasiconvex integrands need not be of class W 1,2+ǫ for any ǫ > 0. This
shows that passing from uniform convexity to uniform quasiconvexity requires us
at the same time to switch from extremals to minimizers. This idea turned out
to be fruitful, since, as we will see, true minimizers enjoy a lot more regularity
than arbitrary extremals. Partial regularity results of Evans [6] and Kristensen and
Taheri [13] guarantee smoothness of minimizers or local minimizers on an open,
dense subset of Ω—a property not enjoyed by the extremals in general. We empha-
sise that partial regularity of minimizers is not a partial result. In fact, minimizers
of functionals (1.1) cannot be expected to be smooth when d ≥ 3 and m ≥ 2,
even if W = W (F ) is uniformly convex. The minimal, though not the earliest,
examples are found in the work of Šverák and Yan [21, 22], showing that Lipschitz
minimizers do not have to be smooth and that the W 1,2 minimizers do not have to
be Lipschitz, if d ≥ 3, and do not even have to be bounded if d ≥ 5. We conclude
that it is impossible to prove existence of smooth minimizers in full generality for
uniformly quasiconvex (or even convex) variational problems. Singular minimizers
of regular variational functionals are not necessarily a purely mathematical artifice.
For example, in nonlinear elasticity they are the basis of cavitation theory [3, 20].
To finish the discussion we point out a sharp dichotomy exhibited by regularity of
minimizers, or even extremals of uniformly quasiconvex problems. The results of
Agmon, Douglis and Nirenberg [1, 2, 5] show that an extremal must either be as
smooth as W (including analyticity) or not be in C1.

The questions of existence and ensuing questions of regularity probe the funda-
mental structure of variational functionals. However, regularity theorems can also
serve a practitioner searching for a minimizer of a specific variational functional.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HIGHER REGULARITY OF UNIFORM LOCAL MINIMIZERS 5217

For example, one might be able to come across vector fields y satisfying the Euler-
Lagrange equations for E[y] (in the weak sense, if y is not of class C2). How can
one tell if such y(x) is a (local) minimizer of (1.1)? If y(x) fails to possess the
mandatory regularity, then such a solution cannot be a minimizer. An example of
this when m = d = 2 is given in Section 7 of [13].

On the “smooth side” of the regularity dichotomy the sufficiency question can
be given a more satisfactory answer. Specifically, if the smooth extremal y(x) of
a uniformly quasiconvex functional has uniformly positive second variation, then,
according to [10, 11], there exists a constant β > 0, such that

(1.2) lim
n→∞

ΔE[φn]

‖∇φn‖22
≥ β

for every sequence φn
∗

⇀0 in W 1,∞
0 (Ω;Rm), where ΔE[φ] = E[y+φ]−E[y]. Estab-

lishing a similar sufficiency result for the singular part of the regularity dichotomy is
an important open problem. We begin attacking it by “reverse-engineering” (1.2),
i.e., by asking what conditions should the pair (W,y) satisfy if (1.2) is known to
hold. In view of the sufficiency theorems for smooth extremals in [10,11], the extra
conditions coming from (1.2) must be in the form of constraints imposed on singu-
larities of ∇y. In other words, they may be regarded as regularity results for local
minimizers. Indeed, in this paper we prove that if y(x) is Lipschitz continuous and

satisfies (1.2), then y ∈ W 2,2

loc
(Ω;Rm). Even though, this statement is a regularity

theorem, its proof is remarkably simple and transparent, with no need for delicate
estimates that are ubiquitous in regularity papers.

We note that when F �→ W (x,y,F ) is uniformly convex and satisfies appropri-
ate growth conditions (which need not be imposed if the extremal is known to be
Lipschitz), then, according to [7], all continuous2 W 1,2 extremals must be of class

W 2,2

loc
. The same conclusion becomes false if convexity is replaced with quasicon-

vexity, as stated in Proposition 4.2 in [18].
In regularity theory the main structural assumption on the energy density W

is either uniform convexity or quasiconvexity. Our result makes such structural
assumptions only implicitly via (1.2). For example, as in [12, 23], one can show
that (1.2) implies uniform quasiconvexity of F �→ W (x,y,F ) at almost every F in
the effective range of ∇y, but not globally, as is customarily assumed in regularity
papers, such as [6, 13].

The idea of the proof of our regularity theorem comes from the well-known
observation that inner variations lead to the Noether equation (2.5) in the same way
outer variations lead to the Euler-Lagrange equation. If the extremal is Lipschitz
and W 2,2

loc
, then the Euler-Lagrange equation implies the Noether equation via the

Noether formula (2.6). Our idea, studied more systematically in [9], is that inner
variations could be understood as motions of singularities. Thus, singularities in
the example of Šverák and Yan [21], where the minimizer is Lipschitz and of class
W 2,2, are not detectable by variational means.

In this paper we use the following notation. |a| denotes the Euclidean norm,

if a is a vector and |A| denotes the Frobenius norm
√

Tr (AAt) if A is a matrix.
‖f‖p denotes the Lp norm of |f(x)|. We use 〈A,B〉 to denote the Frobenius
inner product Tr (ABt) of two matrices of the same shape. We also use index-free

2If W = W (F ), then continuity of an extremal need not be imposed.
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subscript notation for derivatives, such as Wx or WF for
∂W

∂xα

, α = 1, . . . , d or

∂W

∂Fiα

, i = 1, . . . ,m, α = 1, . . . , d, respectively.

2. W 2,2

loc
-regularity

In this paper we are interested in local properties of minimizers (or local mini-
mizers) of (1.1). We are going to investigate them by examining the effect on E[y]
of variations supported in balls in Ω, since interior regularity can be described in
terms of properties of y(x) an every ball in Ω. Therefore, the geometry of the open
set Ω in (1.1) is irrelevant for our purposes. Hence, without loss of generality, we
can assume that Ω is a ball in R

d. Let W : Ω × R
m × M → R be a continuous,

bounded from below function, where M = R
m×d.

Definition 2.1. We say that y ∈ W 1,∞(Ω;Rm) is a uniform strong local mini-
mizer,3 if it satisfies (1.2).

For an L∞(Ω;RN ) vector field Y we define the essential range R(Y ) of values
of Y to be the intersection of all closed subsets K ⊂ R

N , such that Y (x) ∈ K
for a.e. x ∈ Ω. We further assume that for every x ∈ Ω the function W (x,y,F )
is twice continuously differentiable in (x,y,F ) variables on Ω × O, where O is a
neighborhood of R(Y ) in R

m × M, where Y = (y,∇y). We also assume that
W and its derivatives are uniformly continuous on Ω × O. Our goal is to obtain
regularity properties of uniform strong local minimizers of E[y]. We can now state
our main result.

Theorem 2.2. Suppose that y(x) is a uniform strong local minimizer of E[y].

Then y ∈ W 2,2

loc
(Ω;Rm).

Proof. To prove the theorem we consider inner variations

(2.1) x �→ x+ ǫh(x),

where h ∈ C1
0 (Ω;R

d). When |ǫ| < ‖∇h‖−1
∞

the map (2.1) is a diffeomorphism
of Ω onto itself. Indeed, extending h by zero to all of Rd we will obtain a local
diffeomorphism of Rd. It is also a global diffeomorphism because if x1 + ǫh(x1) =
x2 + ǫh(x2), then |x1 − x2| ≤ |ǫ|‖∇h‖∞|x1 − x2|. We conclude that x1 = x2, if
|ǫ| < ‖∇h‖−1

∞
. Now, if x ∈ Ω, while y = x + ǫh(x) �∈ Ω, then x �= y will both

get mapped onto y by the transformation (2.1), in contradiction to the established
injective property of (2.1). Variation (2.1) indicates that y(x) is replaced with a
“competitor” yǫ(x) = y(Xǫ(x)), where Xǫ(x) is the inverse of the diffeomorphism
x �→ x+ ǫh(x). The corresponding outer variation is

(2.2) φǫ(x) = y(Xǫ(x))− y(x) ∈ W 1,∞
0 (Ω;Rm)

and compares values of y and ∇y at neighboring points, naturally leading to regu-
larity constraints. Obviously, φǫ → 0 in C(Ω;Rm) and ∇φǫ is uniformly bounded.

Thus, φǫ
∗

⇀ 0 in W 1,∞(Ω;Rm). We conclude that the lower bound (1.2) applies. In
order to obtain regularity information on y(x) we supplement (1.2) with an upper
bound on ΔE[φǫ].

3Here we are using a slightly weaker version of the classical concept of a strong local minimizer
by allowing only the variations that are bounded in W 1,∞.
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The first observation is that property (1.2) implies that the function d(ǫ) =
ΔE[φǫ] has a local minimum at ǫ = 0. Therefore, d′(0) = 0, if d(ǫ) is differentiable
at ǫ = 0. At first glance it looks like we cannot differentiate under the integral
sign in E[y + φǫ], because ∇y(x) is not assumed to be differentiable (or even
continuous). However, if we make a change of variables x′ = Xǫ(x) we obtain

E[y + φǫ] =

∫

Ω

W (x′ + ǫh(x′),y(x′),∇y(x′)(I + ǫ∇h)−1) det(I + ǫ∇h)dx′,

which allows differentiation under the integral. In order to make our argument
more transparent we introduce the function

V (x,η,H) = W (x+ η,y(x),∇y(x)(I +H)−1) det(I +H)−W (x,y(x),∇y(x)).

Then

(2.3) d(ǫ) = ΔE[φǫ] =

∫

Ω

V (x, ǫh(x), ǫ∇h(x))dx.

Hence,

(2.4) 0 = d′(0) =

∫

Ω

{Vη(x,0,0) · h(x) + 〈VH(x,0,0),∇h(x)〉}dx.

We remark that equation (2.4) is equivalent to the well-known Noether equation

(2.5) −∇ · P ∗ +Wx = 0, P ∗ = WI − (∇y)tWF ,

understood in the sense of distributions. The d × d matrix P ∗ is encountered
in a vast array of applications under different names, such as Eshelby, energy-
momentum, or Hamilton tensor. In the classical smooth case there is a well-known
Noether formula

(2.6) −∇ · P ∗ +Wx = (∇y)t(∇ ·WF −Wy)

valid for all smooth functions y(x). It is a mathematical expression of our un-
derstanding that the only extra constraints provided by inner variations are the
constraints on singularities of ∇y(x). When y(x) is smooth, inner variations bring
nothing new. Using (2.4) we can write

ΔE[φǫ] =

∫

Ω

{V (x, ǫh, ǫ∇h)− ǫVη(x,0,0) · h− ǫ〈VH(x,0,0),∇h〉}dx.

By the Taylor expansion theorem, there exists a constant K > 0, depending on W
and ‖∇y‖∞, such that for all h ∈ C1

0 (Ω;R
d) and all 0 < ǫ < ‖h‖−1

1,∞ we have

|V (x, ǫh, ǫ∇h)− ǫ(Vη(x,0,0),h)− ǫ(VH(x,0,0),∇h)| ≤ Kǫ2{|h|2 + |∇h|2}.

By the Poincaré inequality there exists a constant C > 0, depending on W , ‖F ‖∞
and Ω, such that

(2.7) lim
ǫ→0

|ΔE[φǫ]|

‖ǫ∇h‖22
≤ C

for all h ∈ C1
0 (Ω;R

d). Combining the upper bound (2.7) with (1.2), we obtain

(2.8) lim
ǫ→0

‖∇φǫ‖
2
2

‖ǫ∇h‖22
= lim

ǫ→0

ΔE[φǫ]

‖ǫ∇h‖22
ΔE[φǫ]

‖∇φǫ‖22

≤
C

β
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for all h ∈ C1
0 (Ω;R

d). Changing variables x′ = Xǫ(x) in the integral in ‖∇φǫ‖
2
2

we obtain

‖∇φǫ‖
2
2 =

∫

Ω

|F (x′)(I + ǫ∇h)−1 − F (x′ + ǫh(x′))|2 det(I + ǫ∇h)dx′,

where we have used the shorthand F (x) in place of ∇y(x). Our next lemma makes
it clear why inequality (2.8) is related to higher regularity of y(x).

Lemma 2.3. There exists a constant C > 0, depending only on the bound in (2.8)
and ‖F ‖∞, so that for all h ∈ C1

0 (Ω;R
d)

(2.9) lim
ǫ→0

1

‖ǫ∇h‖22

∫

Ω

|F (x)− F (x+ ǫh(x))|2dx ≤ C.

Proof. For sufficiently small |ǫ| we can estimate det(I + ǫ∇h) > 1/2 and therefore,

‖∇φǫ‖
2
2 ≥

1

2

∫

Ω

|[F (x′)− F (x′ + ǫh)(I + ǫ∇h)](I + ǫ∇h)−1|2dx′,

Observing that I + ǫ∇h is uniformly close to I we can choose |ǫ| so small that all
singular values of (I + ǫ∇h)−1 will be no smaller than 1/2. In that case

(2.10) ‖∇φǫ‖
2
2 ≥

1

4

∫

Ω

|F (x′)− F (x′ + ǫh)(I + ǫ∇h)|2dx′.

This follows from a simple inequality from the theory of matrices.

Lemma 2.4. Let σmin and σmax be the minimal and maximal singular values,

respectively, of a d× d matrix A. Then

σmin|B| ≤ |BA| ≤ σmax|B|

for all m× d matrices B.

Proof. |BA|2 = Tr (AAtBtB). Observe that AAt ≥ σ2
minI and

(2.11) |BA|2 = Tr ((AAt − σ2
minI)B

tB) + σ2
min|B|2.

By a theorem of Schur (see e.g. [14, Theorem 10.7]), the first term on the right
hand side of (2.11) is nonnegative, since the matrices AAt − σ2

minI and BtB are
symmetric and nonnegative definite. Similarly,

|BA|2 = σ2
max|B|2 − Tr ((σ2

maxI −AAt)BtB) ≤ σ2
max|B|2.

�

Using inequality |a+ b|2 ≤ 2|a|2 + 2|b|2, we have

|F (x)− F (x+ ǫh)|2 ≤ 2|F (x)− F (x+ ǫh)(I + ǫ∇h)|2 + 2‖F ‖2
∞
|ǫ∇h|2.

Integrating over Ω and combining with inequality (2.10) we obtain

lim
ǫ→0

1

‖ǫ∇h‖22

∫

Ω

|F (x)− F (x+ ǫh(x))|2dx ≤ 8 lim
ǫ→0

‖∇φǫ‖
2
2

‖ǫ∇h‖22
+ 2‖F ‖2

∞
.

Lemma 2.3 now follows from (2.8). �

It remains to observe that the conclusion of Theorem 2.2 is a consequence of
Lemma 2.3 and [8, Lemma 7.24]. �

Remark 2.5. An immediate consequence of the W 2,2

loc
regularity is the upper bound

of d − 2 on the Hausdorff dimension of the singular set of a uniform strong local
minimizer.
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