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for Composite Materials to Rank-One Convex,
Non-quasiconvex Functions
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Communicated by F. OTTO

Abstract

Examples of non-quasiconvex functions that are rank-one convex are rare. In
this paper we construct a family of such functions by means of the algebraic methods
of the theory of exact relations for polycrystalline composite materials, developed
to identify G-closed sets of positive codimensions. The algebraic methods are
used to construct a set of materials of positive codimension that is closed under
lamination but is not G-closed. The well-known link between G-closed sets and
quasiconvex functions and sets closed under lamination and rank-one convex func-
tions is then used to construct a family of rotationally invariant, nonnegative, and
2-homogeneous rank-one convex functions, that are not quasiconvex.
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1. Introduction

Problems of existence and necessary and sufficient conditions for minimizers in
variational problems with multiple integrals lead to the concept of quasiconvexity
[2,43].
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Definition 1.1. We say that a function W : R”*? — R is quasiconvex at F €
Rde if

AW(F + V) — W(F)}dx =20
Rd

for every ¢ € C° (R4; R™). A function W (F) is called quasiconvex if it is quasi-
convex at every F € R"*4,

Itis well-known that quasiconvex functions have to be rank-one convex [43] (that is
convex along any line joining F'| and F, provided F| — F7 has rank 1). Whether
or not the converse is true was an open question for a long time, until Sverdk’s
counterexample [49] settled it. Even so, examples like Sverak’s are rare, and the
cases m = 2, d = 2 are still open. There are also no examples of rotationally
invariant nonnegative functions W (F), that is the ones that satisty W(FR) =
W(F) for all F € R"*? and all R € SO(d). In this paper we give an example of
a rotationally invariant function W (F) for the case d = 2, m = 8. Our example
has an intriguing 2 x 2 “flavor”. Specifically, we regard 8 x 2 matrices F as 2 x 2
quaternionic matrices via a natural identification between R* and H—the set of all
quaternions:

R* 3¢ = (0, 91,92, 43) = q = qo +iq1 + g2 + g3 € H. (LD

The image of a vector, denoted by a bold letter, under the map (1.1), will consistently
be denoted by the same letter in normal font.

To give a simple and explicit formula for one of our examples W (F), it will
be helpful to think of F as the gradient of f(x,y) = (u(x,y), v(x,y)), where
functions u(x, y) and v(x, y) are quaternion-valued. Then the 2 x 2 quaternionic
matrix

ou Jdu

_ | ax 9y
Vf= dv  Jdv
dx dy

is identified with areal 8 x 2 matrix F, via (1.1). In order to streamline the notation,
we define a quaternion-valued “inner product” on H?:

, = uruz + vz, (1.2)
U1 v2 2

and the corresponding norm || f ||]?ﬂz = (f, f)m2, where quaternionic conjugation
is defined by

g =qo+iq1 +)q2 + tg3 = q0 — iq1 — jq2 — tq3. (1.3)
We will prove that the function W (F), given by

W(Vf) =/detu(VFTVS) = \/ ‘

2 2

af 2 _‘ af of
ax . (a_x’E)Hz
(1.4

of
dy

H2
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is rank-one convex, but not quasiconvex.! Specifically, we will show that W (F) is
not quasiconvex at F' = I,—the quaternionic 2 x 2 identity matrix. We note that
the non-commutativity of quaternion multiplication plays a key role here. Indeed,
if f were C?-valued, then the determinant of the product of two complex matrices
can be written as the product of their determinants, and W (V f) would be equal to
| det(V f)|, which is, obviously, polyconvex. Another observation is that W (F) = 0
with equality if and only if either

Fii=F;p=0,0r F11 = Fo; =0, or Fip = Fp; =0, or Fﬁlel = F1721F22.
(1.5)
This statement is easy to obtain from the well-known conditions of equality for the
triangle and the Cauchy-Schwarz inequalities in Euclidean spaces:

[, V| = lurv1 + u2v2| < Jui|[01] + |uzllv2] = llullg vl

Conditions (1.5) include the case when the corresponding 8 x 2 matrix F has rank
1 (this is characterized by (1.5) with the additional requirement that Fy1 F 1_2] be
real), but describe a larger, 12-dimensional, cone in R8%2,

The relatively non-technical proof of failure of quasiconvexity of (1.4) pre-
sented here comes as a consequence of the theory of exact relations for composite
materials [13,14,18]. A direct proof of rank-one convexity of (1.4) is also given in
Appendix B. The connection between homogenization and quasiconvexity is well-
known [25-27] (see also [41, Section 31.4]), where the corresponding problem is to
produce a microstructure whose effective behavior cannot be attained by laminates
made with the same constituents. The homogenization problem is harder, since it
can be regarded as a particular case of quasiconvexification. In fact, Milton’s ex-
ample of a composite that cannot be mimicked by a laminate [41, Sections 31.8-9]
uses Sverak’s counterexample to guide the explicit construction. In this paper we
solve a purportedly harder problem: finding SO(2)-invariant (polycrystalline) exact
relations that are valid for all laminates but not for arbitrary microstructures.

As the name implies, the term “exact relation” refers to a microstructure-
independent (that is exact) relation linking effective tensors of composite materials
with tensors of material properties of their constituents. It is well-known that prop-
erties of composite materials depend strongly on the microstructure. In fact, in a
generic case the knowledge of properties of constituent materials and their volume
fractions alone cannot be used to determine a single equation that must be satis-
fied by effective tensors of composites. Nevertheless, the literature on composite
materials abounds with beautiful microstructure-independent formulas that hold in
special, non-generic circumstances. Examples are known in virtually every physical
context, such as conductivity [11,12,23], elasticity [10,20,31,32], piezoelectricity
[4,6], thermoelasticity [19,28,45,47], thermoelectricity [1,48] or even for thermo-
electroelastic composites [5,9]. (See a review by Milton [40].) The general theory
of exact relations, developed in [13,14,18], created a machinery for systematic

1 Of course one can also write this function in conventional notation. However, once
the quaternionic products are expanded out, the expression under the square root becomes
unwieldy, losing both its simplicity and structure.
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computation of all such formulas. The idea was to identify equations satisfied by
effective tensors of simple laminates, whereby two constituent materials are com-
bined in layers perpendicular to a given unit vector (lamination direction). Once
such an equation is discovered, one needs to decide whether or not it is valid for all,
not just laminar, microstructures. The general theory provides a simple algebraic
sufficient condition. While there is a strong algebraic evidence that this sufficient
condition should not be a consequence of stability under lamination, each and every
laminate exact relation (or L-relation), within classical physical contexts mentioned
above, is known to satisfy them. This “mystery” is explained by the fact that our
physical examples have a relatively low dimensionality, from the algebraic point
of view, with “no room” for counterexamples. Hence, in order to produce a desired
example of an L-relation, which is not exact, we consider multifield composite
materials [34-36], coupling 4 curl-free and 4 divergence-free fields in two space
dimensions.? The main tool is a different, purely algebraic condition, derived in
[14], that is necessary for an equation to hold for all microstructures, and that does
not come from the study of laminates. Once the example of an L-relation that is not
exact has been found, we utilize the well-known connection between homogeniza-
tion and quasiconvexification to produce explicit examples of rotationally invariant
rank-one convex, non-quasiconvex functions, one of which is given in (1.4). We
remark that our method produces rotationally invariant 2-homogeneous functions
that are certifiably rank-one convex or quasiconvex in a systematic manner. The
method can in principle be reversed to produce a direct, albeit long and arduous
proof of failure of quasiconvexity of particular functions. A direct proof of rank-one
convexity of (1.4), given in Appendix B, is ad hoc and unrelated to the construction
process.

The paper is organized as follows. In Section 2 we state and prove all neces-
sary facts from the theory of exact relations. The interested reader can consult the
books [17,41] for discussions of the origin and other applications of some of the
ideas and constructions from the theory. In Section 3 we introduce multifield ma-
terials coupling 4 curl-free fields to 4 divergence-free fields and discuss exact and
L-relations for composites in that context. In particular, we exhibit an L-relation
that is not exact. In Section 4 we use the well-known links between homogenization
and quasiconvexification to construct a family of nonnegative, rotationally invari-
ant, rank-one convex, but non-quasiconvex functions of which function (1.4) is a
member.

2. General Theory of Exact Relations

2.1. Periodic Composites

The standard references [3,21] for the mathematical theory of composite ma-
terials emphasize homogenization theorems and deal primarily with conducting

2 Curiously, the same construction in three space dimensions does not produce any coun-
terexamples, because, as was proved in [18], all L-relations for three dimensional multifield
polycrystalline composites are exact.
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and elastic composites. Homogenization in other physical contexts, such as piezo-
electricity or thermoelasticity, is very similar. This similarity has been noted and
incorporated into an abstract Hilbert space framework [8,24,37-39,42] encom-
passing all coupled field composites. In this framework materials are assumed to
respond linearly to an applied field E (x), producing in response a “flux field”
J(x) = LE(x), whereby their material properties are described by a linear op-
erator L on a finite dimensional inner product space 7, where the physical fields
take their values. For example, 7 = R? for d-dimensional conducting composites,
because the electric field e(x) and the resulting current field j (x) are R?-valued. In
d-dimensional elasticity, 7 = Sym(R%)—the space of symmetric d x d matrices,
because the strain field e (x) and the resulting stress field o (x) are Sym(Rd )-valued.
In almost every physical context the tensor of material properties L is a symmetric
operator on 7. It is also required to be positive definite, that is L € Sym™ (7).
The linear homogeneous differential constraints satisfied by the physical fields E
and J can be conveniently written as linear algebraic constraints satisfied by the
formal Fourier transforms of these fields: E(§) € £, ® C, J(§) € J, ® C, where
n = £/|&|. For example, in the context of conductivity an electric field E must be
curl-free and the current field J, divergence-free. In this case,

En=Rn, Jp={jeR:j - n=0)} (2.1)
Similarly, for linear elasticity,
Er=u@n+nQu:uckR?, Jy,={oecSym®R):on=0}, (22

corresponding to the differential constraints & = (Vu + (Vu)7)/2, V- ¢ = 0 for
the strain and the stress, respectively.

It is easy to verify for both conductivity and elasticity that £, and J, are
orthogonal complements of one another:

T=6,0Tn, neRi |n=1. (2.3)

It turns out that this property is universal, as it holds in every other physical context,
such as piezoelectricity or thermoelasticity [39].

The microstructure of a periodic composite with period cell Q0 = [0, 117 is
completely described by the local tensor L : Q — Sym™ (7). The effective
tensor L*¥ € Sym™ (7) of such a periodic composite can be defined as an H-limit
[44] of the sequence L,(nx), as n — oo, where L, stands for the Q-periodic
extension of L(x) to R?. The effective tensor can be determined either by solving
a periodic “cell problem” [3,41] (see equation (A.5) in Appendix A), or, and this is
what we will use instead, by an explicit formula for the Milton W-transformation
of L* [39]. The W-transformation is an invertible fractional-linear transformation
defined on Sym™ (7)), and it involves an arbitrary reference tensor Ly € Sym™ (7),
that can be regarded as a “preconditioner”, since the effective tensor L* does not

3 The period cell Q can be an arbitrary parallelepiped. We choose QO = [0, 119, corre-
sponding to the lattice 74 because the dual lattice is also Z< in this case, resulting in simpler
notation. However, all results can be reformulated for an arbitrary parallelepiped of periods.
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depend on it, and which can thus be chosen to make the calculation of L* more
robust, for example, or to serve any other purpose.

In order to define the W-transformation we introduce a family of symmetric
linear maps (see Appendix A)

To(m) =Ly'T'm) € Sym(7), neR? |n|=1, (2.4)

where I'’(n) is a possibly non-orthogonal projection operator onto Lo&, along 7.
Following [39], we define transformations W, : Sym™*(7) — Sym(7), |n| = 1,
by

-1 -1
Wa(L) = [I+ (L = Lo)To(m)] " (L = Lo) = (L = Lo) [I + To(m)(L — Lo)] ",

(2.5)
where | denotes the identity operator on 7. Lemma A.1 shows that the linear maps
I+ (L — Lo)T(n) are invertible for any L € Sym™ (7). Moreover, the map W, (L)
is a diffeomorphism from Sym™ (7") onto its image. This is proved in Lemma A.2.
Finally, Lemma A.3 establishes the formula for L* that will be used in the subsequent
analysis:

Wi (L*) = (W (L) (I = A Wa (L)) ™), (2.6)

where (-) denotes average over the period cell [0, 114, Operators Ay, |n| = 1 are
Fourier multiplier operators on L2 ([0, 11¢: T)—the set of [0, 1]¢ -periodic locally

per
L? vector fields, defined by

o A d
Wi {A,,(k)h(k), ke zd\ {0} 07
0, k=0,
where
A, (k) = To(n) — Ty (%) . kez\{0). (2.8)

Formula (2.6) is understood in the sense that for any constant vector ¢t € 7,
Wa (Lt = (Wy(L(x)u(x)),
where u(x) is the unique Lger([O, 114; T) solution of the operator equation
(I=AW,(LHu =1t, (2.9)

where ¢ is now understood as a (constant) vector field in L%er ([0, 114: 7). The
unique solvability of (2.9) is established in Lemma A.3.

We remark, that even though the mapping W, (L) and the operator A, involve a
unit vector n and a reference medium Lo, the effective tensor L* defined by (2.6) is
independent of both. We now recall the definition of G-closure of a set of materials,
[29].
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Definition 2.1. The G-closure G(U) of a compact subset U C Sym™(7) is the
relative closure in Sym™(7) of the set of all effective tensors L* of all possible
periodic composites, made with materials from the set U.* A subset of Sym™ (7
is G-closed if it is relatively closed in Sym™(7") and contains G-closure of any of
its compact subsets.

In this paper we deal exclusively with polycrystalline composites for which the set
U of admissible materials must be SO(d) invariant.

Generically, the set G(U) has a nonempty interior in Sym™(7), even if U
consists of only 2 points [30]. We are interested in special, non-generic situations,
where G(U) is a submanifold of Sym™ (7") of nonzero co-dimension.

Definition 2.2. The submanifold M of Sym™ (7") of positive codimension is called
an exact relation if the effective tensor L* of a periodic composite, whose con-
stituents are taken from any compact subset of M, must lie in M, regardless of the
microstructure. Equivalently, submanifold M is an exact relation if and only if it is
G-closed.

2.2. L-Relations and Jordan Multialgebras

In order to identify all exact relations we test a prospective submanifold M
by taking two arbitrary points {L;,L,} € M and forming a simple laminate—a
composite consisting of layers of material L; alternating with layers of material
L,. The geometry of a simple laminate is described by the direction of lamination
n € S ! (d = 2 or 3) and the volume fractions 6y, 6 = 1 — 6; of L; and L,,
respectively. Every simple laminate can be regarded as a periodic composite, if we
choose a period cell to be a cube with n being normal to one of its faces. By analogy
with G-closed sets we define L-closed sets.

Definition 2.3. A set of materials U C Sym™(7) is called L-closed if U is rel-
atively closed in Sym™ (7) and contains effective tensors of all simple laminates
made with any two materials {L;,L,} C U, taken in any volume fraction and
arbitrary orientation of layers.

Restricting our attention only to laminate microstructures we formulate the
notion of lamination exact relation or L-relation.

Definition 2.4. A submanifold M of positive co-dimensionin Sym™ (7)) is called an
L-relation if the effective tensor L* of a simple laminate made with any {L;, L} C
M is in M for any choice of lamination direction and volume faction. Equivalently,
submanifold M is an L-relation if and only if it is L-closed.

If L(x) is the local tensor of a simple laminate with lamination direction n, then
L(x) depends only on x -r. Therefore, since A,,(n) = 0, we have A, W, (L(x)) = 0,
due to (2.7). In this case formula (2.6) simplifies [39,41]:

Wa(L™) = 01 Wa(Ly) + 0, Wa(Lo). (2.10)

4 G-closure of any set is independent of the choice of a period cell parallelepiped.
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Geometrically, this means that W, -images of G-closed sets must be convex (for any
choice of n and Ly). It also means (together with other results from Appendix A)
that L-closed sets (and a fortiori G-closed sets) are diffeomorphic images of convex
sets. In particular, the image of Sym™ (7)) under the map W, is an open convex
subset of Sym(7'), containing 0 = W, (Lg).

If a submanifold M is an L-relation, then (2.10) implies that W,,(IM) must be
a convex subset of Sym(7’) and, at the same time, a submanifold of Sym(7') of
the same dimension as M. Therefore, W,, (M) must be a convex subset of an affine
subspace of Sym(7). If we choose the reference tensor Ly so that Ly € M, then
W,, (M) will be a convex subset, with nonempty relative interior, of a subspace

I1,, = Span{W, (L) : L € M} C Sym(7),

since Wy (Lo) = 0, according to (2.5). In that case the differential of W, at Lg
will be an isomorphism between the tangent space to M at Ly and IT,,. We easily
compute that the differential of W,, at L is the identity transformation. Thus, the
subspaces I1,, do not depend on n, since they all coincide with the tangent space to
M at Ly. Accordingly, we will denote by IT the tangent space to M at Ly. Then, the
transformation @, , = Wy, 0 W, ! would map a small neighborhood O of 0 € T1
to a neighborhood of 0 € 1. We compute

Dy n(K)=1[1— KA, (m)]~ 'K, KeOcCIl. (2.11)

For sufficiently small K we can expand (2.11) into the Neumann series and conclude
that KA,,(m)K € IT for all K € IT and all unit vectors m. From this it is not difficult
to obtain the characterization of all L-relations. (See [18] or [41, Chapter 17] for
details.)

Theorem 2.5. Let T1 be a subspace in Sym(7) and nq be a fixed unit vector. We
also define the subspace

A = Span{l'o(n) — To(no) : |n| = 1}, (2.12)
where T'o(n) is defined in (2.4). The submanifold M, given by the formula
M = {L € Sym™(T) : Wy, (L) € TT}, (2.13)

is an L-relation if and only if the subspace 11 is a Jordan A-multialgebra, meaning
that

1
Ki xa Ky = E(KlAKz +KAK)) e IT, V{K, K} CII, Ae A (2.14)

Jordan algebras first appeared in early versions of quantum mechanics [22]. In
particular, subspaces of Sym(7) that are closed with respect to any of the multipli-
cations (2.14), are examples of Jordan algebras. Theorem 2.5 requires subspaces
I1, defining L-relations, to be closed with respect to an entire family of Jordan
multiplications. For this reason we call such subspaces Jordan A-multialgebras.
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2.3. Stability Under Homogenization

From formula (2.6) we can obtain a criterion of stability under homogenization
via the Neumann series, [18].

Lemma 2.6. A submanifold M, given by (2.13), is G-closed if and only if
((K(x) Ang)'K(x)) € M (2.15)

for every k = 0 and K € L®([0, 11¢; TI¢), where TIc = {K; + iKs | {Ki, Ky}
[T} is the complexification of T1, and (-) denotes average over the period cell.

We remark, that when k& = 1 condition (2.15) is equivalent to (2.14). In order to
apply Neumann series expansion to (2.6) we need to relate periodic composites
with arbitrary K(x) to the ones where K(x) is uniformly small.

Lemma 2.7. Suppose M is given by (2.13), where I1 is a Jordan A-multialgebra.
Let us assume that there exists € > 0, suchthat L* € M for every periodic composite
L(x) € M, satisfying |Wp,(L(x))| < €. Then M is an exact relation in the sense of
Definition 2.2.

Proof. Let K C M be a compact subset and L(x) € K for all x € Q. Then
K(x) = Wy, (L(x)) is a uniformly bounded function, satisfying K(x) € I1. Thus,
there exists § > 0 so small that for every 0 < 6 < § we have, 0|K(x)| < e.
Let Lo(x) = Wn’o1 (6K(x)). Then, by the lamination formula (2.10), for each fixed
x € Q, the effective tensor of the laminate of two materials L(x) and Lo, taken
in volume fractions 8 and 1 — 0, respectively, with lamination direction ng, will
be Lg(x). Theorem 2.5 then implies that Ly (x) € M, for every 0 < 6 < 1, and
every x € Q. By assumption, L; € M for every 0 < 6 < §. That means that
f©0) = (W (L), P)sym(z) = O forevery 0 = 6 < & and every P € [1+— the
orthogonal complement to IT in Sym(7). By formula (2.6)

Wao (L) = (Kx) O = A K(x) ™) V6 € (0, 1].

By Lemma A.3 all operators ! — A, K must be invertible on L2(Q; 7) for all
6 € (0, 1]. Thus, 6~1 is not in the spectrum of A,,K for all & € (0, 1], but then
the function f () must be analytic on a neighborhood of 6 € [0, 1] in the complex
plane [46]. It follows that f(#) = O for all & € [0, 1], since f(#) = O for all
0 < 6 < §. This proves that Wy, (L*) € IT, which implies that L* e M. O

We are now ready to prove Lemma 2.6.

Proof of Lemma 2.6. If M is G-closed, and K € L®°(Q; I) then for sufficiently
small (in absolute value) € we have L. (x) = W,;)l (eK(x)) € M. Hence, L} € M,
which, in turn, implies that Wy, (L) € I1. Expanding (2.6) into the Neumann series

Wao (L) = ) e TH((KAR) K (x)), (2.16)
k=0



616 YURrRY GRABOVSKY

we conclude that (2.15) must hold for every K € L*°(Q; IT). To prove that (2.15)
holds for every K € L*°(Q; I¢), we take any {K;, Ky} € L*®°(Q; IT), » € C, and
define K (x) = K;(x) + AK;(x). Observe that K; € L*°(Q; IT) for any A € R,
and therefore, for any P € I+, and any k = 1 we have

P = (KiAug) Ko (X)), P)symz) =0, A eR.

Observe that p(X) is a polynomial in A. Therefore, if it vanishes on R it must also
vanish on C. Hence, p(i) = 0, and (2.15) is proved for any K € L*°(Q; I¢).

Conversely, if (2.15) holds for every K € L*°(Q; I1¢), then formula (2.16)
proves that Wy, (L*) € II, provided L(x) € M and K(x) = Wy, (L(x)) is suffi-
ciently small. Lemma 2.7 now guarantees that M is G-closed. O

We now turn to the formulation of a nice algebraic sufficient condition on the
subspace IT C Sym(7) for (2.15) to hold for all k = 1.

Definition 2.8. A subspace I1" C End(7) is called an associative .A-multialgebra,
if K{AKy € IT' for all {K;, Ko} Cc IT" and all A € A.

Theorem 2.9. Suppose that Tl is an associative A-multialgebra. Let TT = T1' N
Sym(7). Then the submanifold M, given by (2.13) is an exact relation in the sense
of Definition 2.2.

Proof. The idea is to use the algebraic property of IT to prove (2.15) forall k > 1.
Our first observation is that it is sufficient to prove that if K € L ([0, 1]%; H(’C)
then (KA,)*K e L?([0,1]9; TI};) for all k > 1. This statement is proved by
induction in k. It is amusing that it is the induction step that is almost trivial,
while the case k = 1 is the only part that requires a proof. Indeed, suppose that
T = (KARFK € L2([0, 119; H(C). Then Ty = KA, Tg. The conclusion for the
induction step follows from from a slightly expanded statement for k = 1.

Lemma 2.10. Suppose that K; € L>®([0,1]9; TI.) and Ky € L*([0, 11%; TTp).
Then K1 Ay Ky € L?([0, 119; TI).

Proof. If K, € L*([0, 1]1%; IT}) then Ky (k) e T for all k € Z¢. We compute

KidaK)@) = > KA (k)Ka (k) k.
keZ4\{0}

It remains to observe that every term in the above expansion is in IT{. for almost
every x € [0, 117, since A, (k) € A. O

Now, if L € L2°([0, 1]9; M), then K = W,,(L) € L>([0, 1]¢; IT). We have proved
that formula (2.6) implies that W, (L*) € IT{.. But we also know that W, (L*) €
Sym(7). Thus,

Wau (L") € Tz N Sym(7) = I1.

The theorem is proved now. O
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Remark 2.11. From an algebraic point of view it may be regarded as surprising that
in every two and three dimensional physical context from conductivity to piezo-
electricity every subspace satisfying (2.14) also satisfies conditions in Theorem 2.9
[14,16,18]. From the analysis point of view, this might not be as surprising, since,
as this work shows, each L-relation that is not closed with respect to homogeniza-
tion would generate examples of rank-one convex non-quasiconvex functions, and
such examples are rare.

Now we are going to obtain a new algebraic condition that is necessary for
stability under homogenization, but is not a consequence of (2.14). While our con-
struction produces a new necessary condition in any number of space dimensions,
only in 2D can it be formulated in a practically useful form.>

Theorem 2.12. If d = 2 and M, given by (2.13), is an exact relation, then, in
addition to (2.14), it must satisfy

KiAIK2A2 K3 + K3AsKp ALK € TTL (2.17)
Sfor any {Ki, Ky, K3} € Tl and {A1, Ay} C A

This theorem was proved in [14] as a consequence of a more sophisticated result,
which we do not need here. For this reason we give a direct (and simpler) Proof of
Theorem 2.12.

Proof. To prove the theorem we choose
K(x) = Kie?™ 1+ 4 Kye? 2% 4 Kye? % ¢ 1[0, 1% Tg),  (2.18)

where {K;, Ky, K3} ¢ T and {11, I2, I3} C Z* will be specified now.

First we observe that any unit vector n € R? can be approximated with any
degree of accuracy by a vector n = ko/|kg| for some ko € 72. In that case
Aj; (ko) = 0,accordingto (2.8). Next we choose k| € 72 thatis linearly independent
with k. Finally we choose arbitrary {mg, m;} C Z\{0} and define

Iy =mky, 1l =—-moko—miky, I3=moko.

It is obvious that with the choices described above, all 3 vectors / ; are nonzero and
distinct. Now we substitute (2.18) into (2.15) for k = 3 and n replaced with n and
obtain (taking into account that A; (I3) = 0)

KoA; (1)K3A; TDK1 + KAz 1D K3A; (1)Ko € TTL

Next we note that

ki mok0+m1k1>
A, =A; 1 — ), ALy =A; | ————— ).
n( 1) n(|k1|> n( 2) n<|m0k0+m1k1|

5 Just for the record, the corresponding condition in three dimensions is (2.17), except the
subspace A is replaced with a family of subspaces Ap, |p| = 1, where Ap is defined by
(2.12) in which both vectors n and ny must be orthogonal to p.
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For any unit vector # € R? we can choose ki € Z? and linearly independent with
ko, such that # = k1 /|k| approximates u with any degree of accuracy. Then
moko + mky sN +ru n|ko| mi
= -, = , r = .
Imoko +miki|  |sN +ru| kil Imo]

s = sign(my).

By our construction the vectors & and N are linearly independent in R?. It is now
clear that for any unit vector v € R? we can choose the sign s and a nonzero rational
number 7, so that v = (sN + ru)/|sN + ru| approximates v with any degree of
accuracy. Hence, we conclude that

KaAi (0)K3A; @)K + KAz @)K3A; (9)K; € TT
The function
S' x S' 5 (n, m) > Ay(m) = To(n) — To(m)
is continuous and therefore
KaAn (0)K3A, (@)K + KAy ()K3A, (0)K; € T1,
for any unit vectors n, u and v in R?. Fixing n and u and varying v we obtain that
Ko A KA, (w)K; + KA, ()K3A Ky e TT

for any {K;, K, K3} C 1, A| € A and any unit vectors n and u. Fixing A; and n,
and varying u we obtain (2.17). O

If the set of admissible constituent materials contains anisotropic ones, then it
is usually natural not to insist that such a material be used only in one fixed orienta-
tion. Mathematically speaking, if L is a tensor of a constituent material, then every
rotation of L, denoted symbolically by R - L, R € SO(d), must be admissible.
Composites like these are called polycrystalline. Restricting attention only to the
polycrystalline composites means that we are interested only in rotationally invari-
ant exact relation submanifolds M. Since a polycrystal with statistically isotropic
texture must be isotropic (fixed point of SO(d) action), we conclude that M must
contain an isotropic tensor Ly, which we will use as a reference medium in the
definition of the W-transformation (2.5). In that case, it is easy to see that both
subspaces IT and .A must be rotationally invariant.

3. Case Study: Multifield Composite Materials

Multifield materials were considered in [35,36]. In this context N coupled po-
tential fields E = (V¢1, ..., V¢n) induce N conjugate fluxes J = (j{,..., jn)
satisfying

For example, thermoelectric materials fit in this context with N = 2.
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Mathematically speaking, we choose
T=R'®..eR'ZRVQR!, u®x <o (ux,...,uyx)e7, xecRY,
~— —
N

with the inner product, defined most succinctly by the formula
@®x v®y7 =@ -v)x-y), Vo) CRY Vix y) cR

in terms of the dot products in RN and R, respectively.® The family of subspaces
&y is given by

€n={u®n:ueRN}, neSl

Each member of the family of subspaces J, is the orthogonal complements of &,.
Explicitly,

In={U1-- JN) €T jy-n=-=jy -n=0}
Rotations R € SO (d) act simultaneously on each copy of R in 7. Specifically,
R-u®x)=u® Rx, ueRN, x € R,

For simplicity we chose Ly = |—the identity operator on 7 . In this case we easily
compute [18]:

A={IN®A:AeSym@R?), TrA =0},

where Iy denotes the N x N identity matrix. Here for X EndRV) and Y €
End(R?) the operator X ® ¥ on RV ® R? is uniquely defined by the property
XY)(u®@x)=Xu®Yx.

3.1. Polycrystalline L-Relations

In order to identify all polycrystalline L-relations we need to find all rotation-
ally invariant Jordan A-multialgebras in Sym(7"). For the case d = 3, all SO(3)-
invariant Jordan A-multialgebras have been computed in [18], where it was shown
that all SO(3)-invariant L-relations satisfy sufficient conditions of Theorem 2.9,
and hence are exact in the sense of Definition 2.2.

Whend = 2 it will be convenient to identify the physical space R? with complex
numbers, so that x = (x1, x2) — x = x] + ix, € C.” Then

’TERN@RzERN@CE(CN, u®xr—>u®xr—>(ulx,...,uNx)e(CN.
(3.1)

6 If we identify 7 = RN @ R4 with the space of N x d matrices, then this inner product
coincides with the Frobenius inner product Tr (A B Ty,

7 The image in C of a vector in R2, denoted by a bold letter, is represented by the same
letter in normal font.
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The utility of this isomorphism of 2 N-dimensional real vector spaces comes from
the alternative interpretation of CV as a complex vector space. In order to char-
acterize all rotationally invariant subspaces in Sym(7") we observe that rotations
Ry of R? through the angle 6 counterclockwise act on vectors u € 7 = CV by
Ry -u = ¢!%u. Every K € Sym(7) is uniquely determined by a complex Hermitian
N x N matrix X and a complex symmetric N x N matrix Y by the rule

Ku=Xu+Yu, wuecCV.

Henceforth, we will write K(X, Y) to indicate this parametrization of Sym(7’). In
this notation

K(X1, YDK(X2, Y2) = K(X1 X2 + 1 Yf, X1 Y2 + V1 XD), (3.2)

T .. . . . .
where Y# =Y~ denotes Hermitian conjugation.® We easily compute the action
of rotations Ry on K(X, Y):

Ry -K(X,Y) = KX, e¥%Y). (3.3)
Therefore, if IT is an SO(2)-invariant subspace of Sym(7) then
O=Tywy={X.Y): X eV cHC), Y eWc Sym(C"))},

where V can be any subspace of H(C")—the set of all complex Hermitian N x N
matrices, regarded as a real vector space, and W can be any subspace of Sym (C")—
the set of all complex symmetric N x N matrices, regarded as a complex vector
space.

In order to identify L-relations we need to compute all Jordan .A-multialgebras,
where in our new notation

A ={K(,zIy) :z € C}.

Using multiplication rule (3.2) we determine that a subspace Iy w is a Jordan
A-multialgebra if and only if

Y24+ xxTew, YX+XYf cevVioralXeV, YeW. (3.4)

In contrast with the three dimensional case, where all rotationally invariant Jordan
A-multialgebras have a simple characterization (see [18]), the set of solutions of
(3.4) is unknown, in general. It in not hard to verify that the necessary condition
(2.17) is equivalent to

iIX1 X3 X3+ (X X3 x)P ev, VX1, X2, X3} CV, (3.5)

provided that (3.4) holds as well.

8 We do not use the standard notation Y* to avoid confusion with our notation for the
effective tensor.
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3.2. L-Relation that is not Exact

In this section we present an example of the subspace Iy that satisfies (3.4),
but fails (3.5), when N = 4. The case N = 4 is special because we can regard
vectors in R* as quaternions via (1.1).

T=R'QR>=R>®@R* =R R* = H. (3.6)
Explicitly, for x = (x1, x2) € R2, u e R*
URX <> X Qu < (x1u, xou) <> (x1u, xou) € H?,

where u € H corresponds to u € R*, via (1.1). The new representation (3.6) of T
does not replace the old one (3.1). Instead, both will be used.

The utility of the isomorphism (3.6) of 8-dimensional real vector spaces comes
from the multiplicative properties of quaternions. Using the identification (1.1)
between H and R* we first define an R-linear transformation Q : H — End(R*)
by

O@h=g, g=qh, (h.g)CRY {g.h q)CH (3.7)

It is easy to see that Q(g)Q(h) = Q(gh) and Q(q)T = Q(g). Next, we regard

End(R*) as a subset of Endc (C*) by regarding real entries in 4 x 4 matrices in

End(R*) as complex numbers. Thus, every operator in End(R*) can be canoni-

cally viewed as an operator in Endc (C*). Applying this interpretation to operators

Q(h) € End(R*) and using the original representation (3.1) of 7 as C* (understood

as a real vector space), we obtain the mapping 9 : H — Endc¢ (C* c Endgr(7).
To describe our example, we take I1 = Iy w, where

V ={iQqg) :q € H, Re(g) =0} c H(CY, W ={als:a e C}C Sym(C*.

(3.8)
Let us verify that IT is a Jordan .A-multialgebra by checking (3.4). For X = iQ(q)
and Y = al4 we compute

Y24+ XXT =a’14+iQ(9)iN@) = a* 14 — Q(|q*) = (@ — g1 s € W,
YX + XY" =4aiQ(q) +aiQ(g) =2iRe(@)Q(q) € V.

We also verify that (3.5) fails. For this purpose we take
X1 =iQ@0), X=i90(), X3=iQ(®),
where i, j, € are the imaginary quaternionic units. We compute
iX]X2TX3 = i(iQ1)iQ—)iN®) = i*Q(—ijt) = Q(1).
Thus,
iX1XIX5+ (X1 X7 x)% =9@2) ¢ V.

In order to describe the submanifold M determined by SO(2)-invariant Jordan
A-multialgebra ITy w and Lo = |, given by (3.8) we use representation (3.6) of
T . Then, the action of operators K(X,Y) = K(iQ(q), (a1 + iax)Is) € Ty w
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on 7 = C* can also be described as the action of 2 x 2 quaternionic Hermitian

matrices
a a) —
KX ¥)=| 1 (3.9)
a +q —ai

on 7 = H2.? Observing that To(n) = n @ n € H>*?, where n € R? is now
interpreted as a vector in H? both of whose components happen to be real, we can
compute M, given by (2.13), working only with 2 x 2 quaternionic matrices. The
calculations are fairly straightforward and entirely analogous to 2D conductivity
[13-15], where TT = {K € Sym(R?) : Tr K = 0} was shown to correspond the
well-known Keller-Dykhne exact relation [11,12,23]. In our case of 2D “quater-
nionic materials”

L h
M==L=|:E i|:)\>0,/L>O,heH,detH(L)=AM—|h|2=1.
"

(3.10)
Of course, detyr(L) is set to 1 in (3.10) only for simplicity. It can be any positive
constant.
The consequence of our theory of exact relations developed in Section 2 is the
following corollary.

Corollary 3.1. Let M be given by (3.10). Then, for every 6 > 0 there exists a
measurable function L : [0,11> — M, such that |L — |||z < 8 and L* ¢
M. However, effective tensors of all simple laminates made with any materials
{Li, L} € M, taken in any volume fraction and arbitrary orientation of layers,
belong to M.

Indeed, by construction of the manifold M and Theorem 2.12, the manifold
M is not G-closed. Then, the first statement in Corollary 3.1 is a consequence of
Lemma 2.7 and the fact that W, (for any n and Ly = |) maps a small neighborhood
of I € Minto a small neighborhood of 0 € IT. The second statement in Corollary 3.1
follows from Theorem 2.5.

For our purposes Corollary 3.1 needs to be augmented by a positive result,
placing the effective tensor L* into a submanifold M that contains M but has
only one more dimension than M. This submanifold corresponds to the Jordan

A-multialgebra
~ a q
M=q_ e, B} CR, g € Hy,
q B

of which ITy w, givgp by (3.8), is a subspace in view of (3.9). It is easy to see
that computation of M via (2.13) can proceed entirely in the framework of 2 x 2

9 They are Hermitian because in (3.8) ¢ must be purely imaginary and hence, ap — g =
ay +q.
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quaternionic matrices resulting in

~ A h
M:{L:[E i|:A>0,;L>0,h€H, detH(L)>0}. (3.11)
m

The fact that M is an exact relation is a consequence of Theorem 2.9, where IT' =
H2*? is the algebra of all 2 x 2 quaternionic matrices. It is also an associative A-
multialgebra, since A C H?*2. It only remains to notice that IT = IT' N Sym(7).

4. Homogenization, Rank-One Convexity and Quasiconvexity

We are finally ready to construct examples of rank-one convex, non-quasiconvex
functions, of which (1.4) will be a member. We recall the well-known connection
between rank-one convex functions and L-closed sets, and quasiconvex functions
and G-closed sets [41, Sections 31.4-5]. In the context of multifield materials
considered in Section 3 these results (or rather those results that we need) are
summarized in the following theorem.

Theorem 4.1. In the context of multifield materials of Section 3, let U C Sym™ (7))
be a compact subset. For any e € T = RN ® R? we define

W (e) in 1(Le e)
= min —(Le, .
LeU 2 7

i. If U is L-closed then W (e) is rank-one convex.
ii. In general

1
OW(e) = min —(Le,e)T, 4.1)
LeGU) 2

where QW (e) is the quasiconvex envelope of W (e) [7], and G(U) is the G-
closure of U.'0

In Section 3.2 we have constructed the set M, given by (3.10) that is L-closed, but not
G-closed. We cannot apply Theorem 4.1 to M directly, because M is noncompact.
However, recall that the sets

B, = {L esymt(T):yl <L < y‘ll}, y € (0, 1)

are G-closed [44]." Thus, the sets

M, =MNB,, ye(©]1)

10 This statement follows from the variational principle for the energy of a periodic com-
posite: (L*e, e)7 = ming ((L(x)(Vé + e), V¢ + e)7), where the minimum is taken over

[0, 119-periodic vector fields ¢ € W1-2([0, 11¢; RN).

' Due to symmetry of operators in B, we can also write that B, =
[L L=yl L7 2> yl} N Sym™ (7), representing By as an intersection of two G-closed
sets.
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are L-closed, but not G-closed (due to Corollary 3.1), while the sets
M, =MNB,, ye@©1)

are G-closed.
To produce our example we will use the “doubling trick” of Milton, where
LeSym™(7T)actsonT & 7T, via

TdT > (e,er) — D(L)(e1,er) = (Ley,Ler) e THT. 4.2)

The key observation is that “doubling” commutes with homogenization: D(L)* =
D(L*) for any periodic composite with local tensor L(x). Hence, instead of 7 = H?
we work with 7 @ 7 = H2*2, where the pair (e1,e2) € 7T 7T = H? & H2 is
identified with the 2 x 2 quaternionic matrix [eq, e2] € H2*2, whose columns are
vectors e and e>. In particular, for E = [eq, e2] € H2*2 we define

1
®,(E) Efgﬁf (D(L)(e1, e2), (e1,e2))TaT

}'12

|
= min {(Ley, e1)7 + (Lez, e2)7
2 LeMV

We can rewrite ®, (E) in terms of the quaternion-valued inner product (-, -)y2,
defined in (1.2):

r .
®, (E) = - min Re{(Ler, e1)e + (Lea, €2)p2},
2 LeM,
which, in turn, allows us to represent ®,, (E) in terms of products of 2 x 2 quater-
nionic matrices:

1
®y (E) = 5 min ReTrg(LEET), y >0, (4.3)
14

where Tr g (X) denotes the sum of the two quaternions on the main diagonal of a
2 x 2 quaternionic matrix X. The Hermitian conjugate E* is defined in the usual
way, except complex conjugation is replaced with quaternionic conjugation (1.3).

Each column of E is an element of 7—the space of field values of 4-tuples
of curl-free fields (V¢1, ..., Vga). If we regard vector u = (¢1, ¢2, @3, pa) as a
quaternion u, then in representation (3.6) Vu € 7 is identified with (uy, uy) €
H?2, where subscripts indicate partial derivatives. Using another H-valued function
v(x, y) to generate the second copy of 7 we obtain the underlying interpretation
of the 2 x 2 quaternionic matrix E:

E = ["* v"] e 2 = (v, (4.4)
u

y Uy

where f(x, y) = (u(x, y), v(x, y)) € H%.

12 The inner product on a direct sum V @ W of inner product spaces is canonically defined
by (v, w), @', w))vew = @, )y + (w, w)y.
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Theorem 4.2. For every y € (0, 1) functions ®,,(E) are rank-one convex, but not
quasiconvex, where E is interpreted via (4.4). Specifically, Q®, (1) < @, (12).

Rank-one convexity of ®,, follows from Theorem 4.1(i). In order to prove that these
functions are not quasiconvex we will use part (ii) of Theorem 4.1, which requires
more information about geometry of G (M) beyond the facts that G(M,,) ¢ M
and G(M,) C M . We will organize the proof of non-quasiconvexity of functions
®,, into a sequence of lemmas.

The key result here is the following analog of Mendelson’s duality link [33].

Lemma 4.3. Ler L € L%([0, 112, M). Let E(x) = L(x), be the tensor, whose
components are quaternionic conjugates of the corresponding components of L(x).

Then o
o L*
L= FREE 4.5)

where dety is defined in (3.10). In particular,
detg (L*) detg (D)%) = 1. (4.6)

Proof. Suppose that the [0, 1]2-peri0dic fields e, j € L2([0, 1]2; T) solve the
periodic cell problem

jx)=Lx)e(x), V-j=0, Vxe=0, (e =ep, 4.7

where (-) denotes the average over the period cell. Then (j) = L*eq. Let

0 -1
R, = € H>*2.

Then ¢’ = R j is a curl-free field and j° = R e is divergence-free. Thus, €’(x)
and j’(x) also solve the cell problem (4.7), where L(x) is replaced with

- L)
Lax) =R, Lx) 'R} = ﬁf-)(x) 4.8)

and ey with
e, =R.L(j) =RiL"eo.
Computing (j') = R e we conclude that
(D)*RiL*eo = Ry eo.
Since, eo € H? is arbitrary we conclude that

*

0* =Ry (LY 'R = .
wL* 1L dotz L*

It remains to observe that if L(x) € M then E(x), given by (4.8) is equal to L(x),
and the lemma is proved. O
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Lemma 4.4. For every y € (0, 1) there are tensors {Ly,L_} C G(M,) C My
such that detgg Ly > 1 and detgL_ < 1.

Proof. Observing that for every y € (0, 1) the sets 3,, contain | in their interior,
we apply Corollary 3.1 and conclude that there exists a measurable function L €
L%([0, 11>; M »), such that L* ¢ M. By construction, L* € G(M ) C M. Hence,
dety L* # 1. Observe that L=Le L°([0, 11%; M »)- But then (L)* e G(M,) C
M. By Lemma 4.3

1

det]]-]l(i:)* = m

Thus, if dety L* < 1, then detyy(L)* > 1, and if detyg L* > 1, then det(L)* < 1.
The lemma is proved. O

Lemma 4.5. Foreveryy € (0, 1) there exists § > 0 such that {(1+)I, (1—8)I} C
G(M,).

Proof. Let {Ly,L_} C G(M,) be as in Lemma 4.4. Let ng be a fixed unit vector
and Kx = Wy, (L+). Then (K, K_} C I\ I1. In particular, it is easy to verify that
TryKy > 0 and Tr ygK_ < 0. Next, we note that the set W,,,(G(M,)) is convex,
and contains W, (M, ), whichis aneighborhood of 0in IT = {K € M:TruK = 0}.
It also contains K. It is clear that the convex hull of K4, K= and Wy, (M, ) contains
a neighborhood of 0 in I. But then G(M,,) must contain a neighborhood of | in
M. The statement of the lemma follows. 0O

Proof of Theorem 4.2. To prove Theorem 4.2 we are going to show that 0., (I2) <
@, (1) for every y € (0, 1). Indeed, observing that l e M, forevery y € (0, 1),
we have

1 1
—inf Tryl < = inf Tryl =&, (1) < 1.
2 LeM 2 LeM,

It only remains to observe that
I,
— inf TryL =1,
2 LeM
and is achieved at L = |. We can now use Theorem 4.1(ii) and obtain

1
0P, (1) = 5 m(m )TrHL<1—8 <1=a,(Iy),
V

where we have used the fact that L = (1 — §)l € G(M,), according to
Lemma4.5. O

We observe that the sets M, become larger when y is decreasing. Therefore
@, (E) = @,,(E), when y; < y». Then

1
®o(E) = lim ®,(E) = inf &, (E)= - inf SﬁeTrH(LEEH). 4.9)
y—0 ye(,1) 2 LeM
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Thus,

QPo(I2) = QP,(I2) < @, (I2) =1 = Do(I7).

This shows that the function ®o(E) defined by (4.9) is not quasiconvex at E = I.
However, it must be rank-one convex as a limit of rank-one convex functions.
To conclude, it only remains to compute the explicit form of functions ®,, (E),
y € [0, 1). It will be convenient to give the answer in terms of the components of

Lemma 4.6.
D) (E) = \/detH(EEH) = \/oqaz — 1912, (4.10)
2
Vejas —g1?, if oy — Iq]* = (;}I&Z)) ,
Py (E) = , o] +ay p [ o (a1—a)2 herwi
+(V)T —J_(¥)/lql +( 5 ) , otherwise,
4.11)
where
1/1
Ji(y) = 3 (— + J/> .y €1 (4.12)
Y
Proof. We first observe that
A h 5
M, = z A —hT =1, A>0, u>0,2+pn<2J10(y) ¢,
u
where J (y) is the Joukowski function defined in (4.12). If
A h o
L=|_ , EE"=|_ 1 ,
h u q a2
then
ReTr (LEE™) = Aoy + pas + 2%e(hg). (4.13)

If we fix A > Oand u > 0, sothat A + u < 2J,(y), then L € M, for any
h € H for which |h| = 4/Au — 1. Observing that fe(hg) is just a dot product of
corresponding vectors {h, g} C R* and |h| is just the length of the vector h, we
can minimize Ne(hq) over all directions of ki, obtaining the formula

20,(E) = min {Aar + par — 2/ Aun — 1lql},
0<A+n=2J4(y)
yyTEa|

The minimum is achieved at a critical point

o2 o]

R ——— M* R e
Vaiar — g2 Vajay — g

Ay = (4.14)
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when A, + . < 2J4+(y), or equivalently, when

o1+ oy 2
g1 < ajan — ( ) . (4.15)
2J1(y)
Otherwise, the minimum is achieved on the line A + u = 2J,(y) at
J_ ()1 — a2) J_(y) (a1 —a2)

r=Ji(y) — w=Jy(y)+

VHIP + (1 — an)? VAP + (a1 — a)?

Substituting these values into (4.13) we obtain (4.11). O
In order to connect (4.10) with (1.4) we use formula (4.4) and compute

2
EEH:[ [P =2 (fx,fymz] o(E) = \/detm((V TP,

FoFom 1yl
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Appendix A. The Equation for the Effective Tensor of a Periodic Composite

In this section we are going to give a rigorous derivation of (2.6) starting with the
periodic cell problem. In order to formulate a general version of the cell problem
we recall [39] that the linear differential constraints satisfied by the [0, 114 -periodic
fields E and J are described in terms of their Fourier coefficients

E(k):f E(x)e ¥ kgy, f(k):/ Jx)e Txkgy  kezd.
(0,114

0.1 (A.1)
Namely,

EegperEBU, Jegpereauy

where U is the space of uniform (constant) vector fields in Lf)er([O, 114; 7) and

per

Eper = {E eL? ([0,11%7): E0) =0, Ek) e Er ®C, k# 0},
(A.2)

Tper = {J € L2,.(10. 11:T) : J(0) =0, Jh) e Ty ®C, k# 0} .
(A.3)

The subspaces &, and J,, of 7 are required to satisfy (2.3). For example, &, and
Jn for conductivity and elasticity are given in (2.1) and (2.2), respectively.



From Microstructure-Independent Formulas for Composite Materials 629

We also have a corresponding orthogonal decomposition of Lger([O, 11 7):

L}%er([os 1]d§ T) = 5per ® jper oUu.

Let the tensor of material properties in the period cell L € ngr([o, 11%; Sym(7))
be strictly, uniformly positive definite, i.e satisfy

(Lx)e. o) Z allelF. Vxel0.1]. (Ad)
Lax—Milgram lemma guarantees that the periodic cell problem

has a unique solution for every given eg € 7. Then the effective tensor L* is defined
by its action on eq via
L*eo = (LE), (A.6)

where (-) denotes the average over the period cell. It is well-known that the effective
tensor L*, defined by (A.6) is symmetric and positive definite. However, for our
purposes we will need formula (2.6) for L*. Before we prove (2.6) we show that
the W-transformation is always well-defined on Sym™ (7).

Lemma A.1. Let Ly € Sym™ (7). Then, for every unit vector n the operators
M=1-(Ly—L)Tom) =1—T'(n) + LL, 'T'(n) (A.7)
are invertible for every L € Sym™ (7). In addition, {To(n), W, (L)} C Sym(T).

Proof. We note that 7 = Lo&, ® Jy, since the dim(Lo&,) = dim &, and L&, N
Jn = {0}. Indeed, if j = Lge € J, for some e € &, then (Loe, e)7 = (j, e)7 =
0. Thus, e = 0, since Ly € Sym™ (7).

Now, let ¢ € 7 be such that M¢ = 0. We write t = Lge + j, where e € &, and
J € Jn. Then 0 = Mt = Le + j. Taking the inner product with e we obtain
(Le,e)7 = 0, so that e = 0, since L € Sym™ (7). Thus, ¢ = 0 and, hence, the
matrix M must be invertible.

To prove that [ (n) is symmetric we write for any w1, uy C 7

uy=j,+Loer, wur=j,+Lloes, fer,ex} C&, {j1,J2} C Tn-
Then T'g(n)u; = e, T'o(n)ur = e», so that
(Tomuy, uz)r = (e1, uz)7 = (e1, Loex)T = (Loer, e2)7 = (w1, To(m)uz) 7.

Finally, the symmetry of W, (L) follows from the symmetry of I'g(n) and the
formula

_ -1
Wa(L) = [1+ L = LoTom] ™" (L= Lo) = [(L — Lo + To(m)]
that holds on a dense subset of Sym™ (7). O

In fact, we can say more about the transformation W,,.



630 YURrRY GRABOVSKY

Lemma A.2. For any n € S*~ and Ly € Sym™(T), the map Wy, is a diffeomor-
phism from Sym™ (T') onto its image.

Proof. Let us first show that W, is a local diffeomorphism in the vicinity of any
L € Sym™ (7). This follows from the inverse function theorem and the explicit
calculation of the differential of W, (L). Using the first representation of W, (L)
from (2.5) we compute, for any & € Sym(7),

dWy(L)E =1+ (L - Lo)l"o(n)]_1 E(I=To(m) Wy (L)).

Then, using the second representation of W, (L) from (2.5) we obtain

AWy (L)E = [I+ (L= L)Tom)] " € [I + Tom)(L —Lo)] "

Lemma A.1 then implies that d W, (L) is an isomorphism on Sym(7) for any L €
Sym™ (7). To prove the lemma it only remains to show that Wy, is a bijection onto
its image. Indeed, if {L, L’} ¢ Sym™(7) and W, (L) = W, (L’), then, using both
representations of W, in (2.5), we obtain

[I4+ (L —LoTom] " (L—Lo) = (L' —Lo) [I+ Tom)(L —Lp)] .

Multiplying this equality on the right and on the left by | + To(n)(L’ — Lo) and
|+ (L — Lo)Lo(n), respectively, we obtainL = L'. O

We next prove that the operator inverse in (2.6) always exists.

Lemma A.3. Let K be a compact subset of Sym™ (7). Suppose L(x) € K for every
x € [0, 114. Then the operator T = | — A, Wy (L) is invertible on L%er([O, 114, 7).
Here W, (L) is understood as the multiplication operator Lger([O, N T)su—
Wi (L(x))u(x).

Proof. By our assumptions and Lemma A.1 the operator ¥ is bounded. It remains to
prove that for every f € Lger([O, 11; T) there exists unique u € Lger([O, 114, 1),
such that ¥u = f. Then, by the Banach invertibility theorem this would imply that
T~! is a bounded operator on Lger([O, 119 7). Let Iy = LEIF’, where I/ is the

projection onto Lo&Eper along Jper @ U. Explicitly,

To (%)ﬁ(k), k e 79\ {0)
0, k=0,

Toh(k) = { (A.8)

Observe that, according to (2.7), operators A, can be expressed in terms of ['g:
Aph =To(m)h — To(n)(k) — Toh, Vh € Ly (10,11% 7). (A.9)

Using formulas (A.9) and (2.5) and for A, and W,,, respectively, we can rewrite
equation Tu = f as

To(Wa(Lw) = f — Tom)(Wa(Lu) — (I + Tom)(L —Lo) 'u.  (A.10)
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If equation (A.10) is satisfied then the right-hand side of (A.10) must belong to
Eper. Denoting it by e and the uniform field I'o(n) (W, (L)u) by e, we obtain the
relation between u and e

u=(I+Tom) (L —Lo))(f —e—eo). (A.1D)
Next, multiplying equation (A.10) on the left by Ly we obtain
I (Wa(Lu) = Lo(f — €0) — Lo(l + To(m)(L — Lo) 'u
Thus,
Wa(Lu — Lo(f — e0) + Lol + Tom) (L — Lo)"'u € Tpar U (A12)

Equation (A.12), together with e € &, is equivalent to (A.10).
Denoting the orthogonal projection onto Eyer by I'per and applying it to (A.12), we
obtain an equivalent form of (A.12):

Tper (LI + To(m)(L — Lo)) ~'a) = Tper(Lo ). (A.13)
Eliminating u, using (A.11) we rewrite (A.13) as
Fper(l—(e +eg)) = l_‘per((l- —Lo) f), e c gper' (A.14)

Equation (A.14), together with definition (A.11) of e, and
eo = Lo(n)(Wp(Lu), (A.15)

is equivalent to (A.10).

We note that by analogy with the cell problem (A.5) the Lax—Milgram lemma
guarantees that the operator Eyer 3 € > [per(Le) € Eper is invertible on Eper.
Hence, the solution e of (A.14) can be represented as e + e9 = e + E, where
€ € &per is the unique solution of

1—‘per(l-é) = 1ﬁper(('— - LO)f)s (A.16)

while E € Eyer ®U is the unique solution of the periodic cell problem (A.5), which
can be written as

Tper(LE) =0, (E)=¢ey, E€&ar®U. (A.17)

It only remains to find an explicit formula for eg € 7 in terms of f.
In order to determine eg we use (A.11) to compute

Wu(Lu = (L —Lo)(f — e — eo). (A.18)

Averaging (A.18) over the period cell, multiplying by I'g(n), and using (A.15) we
obtain

eo = Tom){((L — Lo)(f — e —eo)).

Replacing e + eg with ¢ + E we obtain

eo = To(n)((L — Lo)(f — &) — To(m)(L* — Lo)eo,
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where we took into account that E solves (A.5). This gives
eo = (I + Tom)(L* — L) 'Tom)((L — Lo)(f —&)). (A.19)

We have now established uniqueness, by showing that if u solves Tu = f, then it
has to be given by

u=(+Tom)(L—-Lo)(f —e+E), (A.20)

where e is the unique solution of (A.16) and E is the unique solution of (A.17),
where e( is given by (A.19). Existence follows by tracing our calculations back
and showing that if u(x) is defined by (A.20), then it must also satisfy (A.10). The
lemma is proved now. O

Formula (2.6) is now easily obtained by choosing f = f € U, in which case
(L —Lo)(fo — &) = (L* = Lo) fo.

and hence (A.19) results in

eo = fo— (I +Tom(L* —Lo) " fo. (A21)
Now, taking the average of (A.18) and replacing u with T~! f 0> We obtain
(Wa(L)T™" fo) = (L* = Lo)(fo — €0) = Wa(L*) fo, (A22)

where we used (A.21) to eliminate eg. Thus, formula (2.6) is established. We com-
ment that (2.6) represents a slight abuse of notation. What is meant by (2.6) is
(A.22), where on the left-hand side f € U is understood as a uniform field in
Lger([O, 114; T), while on the right-hand side £ is understood as a vector in 7.

Appendix B. A Direct Proof of Rank-One Convexity of (1.4)

In this section we will present a direct proof of rank-one convexity of

W(F) = y/detg(FFT) = V(FT), V(E)=/detg(EE").

The idea of the proof is based on the large group of symmetries of W (F). One
symmetry subgroup was built-in by the construction:

W(FR)=W(F), VR € SO(2).
The other is intimately linked with quaternionic algebra:
V(EQ)=V(E), VQeH*? 00" =1.. (B.1)

Both symmetries leave invariant the set of matrices E = n Q u, n € RZ, u e
H2, corresponding to rank-one 8 x 2 matrices F. It follows that it is sufficient
to prove that ¢ (€) is locally convex near € = 0 for every E € H>*2, where
¢(€) = V(E +€ey®eq). Here the lefte; ine; ® eg is (1,0) € S2, while the right
e) is (1,0) e H?. This observation follows from the homogeneity of W (F) and
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the fact that any u € H? can be mapped to |u|e; by a transformation Q, satisfying
0 0" = I,.1% (As well as the fact that any unit vector n € R? can be mapped into
e € $? by R € SO(2).) For points E, for which V(E) # 0 it is not difficult to
calculate ¢” (0):

V(E +eer ®e1)* = (IEai|* + |En)(Enl* + |En +€?)
—|E1nE» + E11Eay +€Ex|?

Hence,

p(e) = \/detJHI(EEH) +2eNe(|Ex*Erl — EnEnEn) + €*|Enl*.  (B2)
It is now easy to compute
— ’ | = 2
¢"(0) = V(E)™ (detH(EEH)|E22|2 — [|Ex|*Re(E11) — Re(E1nEnEa)] )

provided V(E) # 0. Expanding dety(EE™) we conclude that the inequality
¢”(0) = 0 is equivalent to the inequality Q(E) = 0, where

Q(E) = |En*(|E11 12| Ex|? + |E1)? | Ex)? — 20te(E11 E21 En En))
— 12
— [Re((E11Exy — Ex1En)En)]”.

We observe that Q(E) is quadratic with respect to E7;. Minimizing Q(E) over
E11 € H we conclude that Q(E) does not depend on the real part of Ej; and is
minimized at

Im(EnExnEn)

Eyy=——F7—F,
|Ex|

where in contrast to complex numbers we define Jm(q) = g — Ne(q). Itis a simple
calculation to verify that Q(E) = 0 at the minimizer. This conclusion holds,
provided Eyp # 0. If Eop = 0, then Q(E) = 0. To finish the proof of rank-one
convexity we need to examine the remaining case V (E) = 0. In this case it is not
hard to show that ¢ (¢) = |e|| E22|, which is convex. Indeed, in this case one of the
equations in (1.5) must hold, which implies that Ste(| Ex2|>E11 — E12Ex Eap) = 0,
but then formula (B.2) becomes ¢ (¢) = |€|| E22]|. The rank-one convexity of W (F)
has been established.

12 The set of transformations Q, satisfying (B.1) is a compact 10-dimensional Lie group
&. The B-orbit of e is a compact submanifold of the 7-dimensional unit sphere is H2. A
simple explicit calculation of the stabilizer of e € HZ in & shows that it is a 3-dimensional
Lie s;bgroup of & (isomorphic to SU(2)). Thus, the orbit e must be the entire unit sphere
in H~.
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