IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 1

Jointly Optimal Routing and Caching
for Arbitrary Network Topologies

Stratis Ioannidis Member, IEEE, and Edmund Yeh Senior Member, IEEE

Abstract—We study a problem of minimizing routing costs by
jointly optimizing caching and routing decisions over an arbitrary
network topology. We cast this as an equivalent caching gain
maximization problem, and consider both source routing and
hop-by-hop routing settings. The respective offline problems are
NP-hard. Nevertheless, we show that there exist polynomial time
approximation algorithms producing solutions within a constant
approximation from the optimal. We also produce distributed,
adaptive algorithms with the same approximation guarantees.
We simulate our adaptive algorithms over a broad array of
different topologies. Our algorithms reduce routing costs by
several orders of magnitude compared to prior art, including
algorithms optimizing caching under fixed routing.

Index Terms—Caching, forwarding, routing, distributed opti-
mization, convex relaxation, pipage rounding.

I. INTRODUCTION

Storing content in a network to serve download requests is
a problem as old as the Internet itself, arising in information-
centric networks (ICNs) [2], [3], content-delivery networks
(CDNs) [4], [5], web-cache design [[6]—[8]], wireless/femtocell
networks [9]-[11]], and peer-to-peer networks [12], [[13]]. Mo-
tivated by these applications, we study a caching network,
i.e., a network of nodes augmented with additional caching
capabilities. In such a network, some nodes act as designated
content servers, permanently storing content and serving as
“caches of last resort”. Other nodes route requests towards
these designated servers. If an intermediate node in the route
towards a server caches the requested content, the request is
satisfied early, and a copy of the content follows the reverse
path towards the request’s source.

This abstract setting naturally captures the above applica-
tions. For example, in the case of ICNs, designated servers
correspond to traditional web servers permanently storing con-
tent, while nodes generating requests correspond to customer-
facing gateways. Intermediate, cache-enabled nodes corre-
spond to storage-augmented routers in the Internet’s back-
bone: such routers forward requests but, departing from tra-
ditional network-layer protocols, immediately serve requests
for content they store. An extensive body of research, both
theoretical [7]], [14]-[20] and experimental [2], [[6]-[8]l, [21],
has focused on modeling and analyzing caching networks in

Manuscript received December 10, 2017; revised April 8th, 2018.

This work was supported in part by the National Science Foundation under
Grant CNS-1718355, Grant CNS-1423250, and in part by a Cisco Systems
Research Grant. This is an extended version of a paper that appeared in the
4th ACM Conference on Information-Centric Networking (ICN 2017) [[1].
(Corresponding author: Stratis loannidis.)

The authors are with the Department of Electrical and Computer En-
gineering, Northeastern University, Boston, MA, 02115 USA (e-mail:

ioannidis@ece.neu.edu, eyehl@ece.neu.edu).

which routing is fixed: a request follows a predetermined route,
e.g., the shortest path to the nearest designated server. Given
routes to be followed and the demand for items, the above
works determine (theoretically or empirically) the behavior of
different caching algorithms deployed over intermediate nodes.

It is not a priori clear whether fixed routing and, more
specifically, routing towards the nearest server is a justified
design choice. This is of special interest in the context of
ICNs, where delegating routing decisions to another protocol
amounts to an “incremental” ICN deployment. For example,
in such a deployment, requests can be routed towards the
nearest designated server according to existing routing pro-
tocols such as OSPF or BGP [22]]. An alternative is to jointly
optimize both routing and caching decisions simultaneously,
redesigning both caching and routing protocols from scratch.
This poses a significant challenge as joint optimization is
inherently combinatorial: indeed, jointly optimizing routing
and caching decisions with the objective of, e.g., minimizing
routing costs, is an NP-hard problem, and constructing a
distributed approximation algorithm is far from trivial [9],
[20], [23]I, [24]l.

This state of affairs gives rise to the following ques-
tions. First, is it possible to design distributed, adaptive,
and tractable algorithms jointly optimizing both routing and
caching decisions over arbitrary cache network topologies,
with provable performance guarantees? Second, presuming
such algorithms exist, do they yield significant performance
improvements over fixed routing protocols? Answering this
question in the affirmative may justify the potential increase
in protocol complexity due to joint optimization. It can also
inform future ICN design, settling whether an incremental
approach (in which routing and caching are separate) suffices.

Our goal is to provide rigorous, comprehensive answers to
these two questions. We make the following contributions:

« By constructing a counterexample, we show that fixed
routing (and, in particular, routing towards the nearest
server) can be arbitrarily suboptimal compared to jointly
optimizing caching and routing decisions. Intuitively,
joint optimization affects routing costs drastically because
exploiting path diversity increases caching opportunities.

« We propose a formal mathematical framework for joint
routing and caching optimization. We consider both
source routing and hop-by-hop routing strategies, the
two predominant classes of routing protocols over the
Internet [22].

o We study the offline version of the joint routing and
caching optimization problem, which is NP-hard, and
construct a polynomial-time 1 — 1/e approximation algo-
rithm. Our proposed algorithms first relaxes the integral

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 2

problem to a convex optimization problem. The resulting
solution is subsequently rounded to produce an integral
solution.

« We provide a distributed, adaptive algorithm that con-
verges to joint routing and caching strategies that are,
globally, within a 1 — 1/e approximation ratio from the
optimal. Our distributed implementation amounts to a
projected gradient ascent (PGA) over the convex re-
laxation used in our offline algorithm, coupled with a
randomized rounding technique.

o We evaluate our distributed algorithm over 9 synthetic
and 3 real-life network topologies, and show that it
significantly outperforms the state of the art: it reduces
routing costs by a factor between 10 and 1000, for a broad
array of competitors, including both fixed and dynamic
routing protocols.

The remainder of this paper is organized as follows. We review
related work in Section[[I] and present our mathematical model
of a caching network in Section [[TI] The suboptimality of fixed
routing is shown in Section [[V] while our offline and online
algorithms are presented in Sections [V] and respectively,
under source routing. Extensions to hop-by-hop routing are
discussed in Section [VIII A numerical evaluation of our
algorithms over several topologies is presented in Section [VIII]
and we conclude in Section [[X]

II. RELATED WORK

There is a vast literature on individual caches, serving as
fast secondary memory devices, and the topic is classic (see,
e.g., [25]-[27]). Nevertheless, the study of networks of caches
still poses significant challenges. A central problem is that,
even if arriving traffic in a cache is, e.g., Poisson, the outgoing
traffic is often hard to describe analytically, even when caches
implement simple eviction policies. This is true for several
traditional eviction policies, like Least Recently Used (LRU),
Least Frequently Used (LFU), First In First Out (FIFO), and
Random Replacement (RR). The Che approximation [7[], [14],
a significant breaktrough, approximates the hit rate under
several eviction policies by assuming constant occupancy
times. This approximation is accurate in practice [14], and
its success has motivated extensive research in so-called time-
to-live (TTL) caches. A series of recent works have focused on
identifying how to set TTLs to (a) approximate the behavior of
known eviction policies, (b) describe hit-rates in closed-form
formulas [[7]], [15]-[17], [28]. Despite these advances, none of
the above works address issues of routing cost minimization
over multiple hops, which is our goal.

A simple, elegant, and ubiquitous algorithm for populating
caches under fixed routing is path replication [12], sometimes
also referred to as “leave-copy-everywhere” (LCE) [[6]: once
a cache hit occurs, every downstream node receiving the
response caches the content, while eviction happen via LRU,
LFU, FIFO, and other traditional policies. Several variants
exist: in “leave-copy-down” (LCD), a copy is placed only
in the node immediately preceding the cache where the hit
occurred [6], [29], while “move-copy-down” (MCD) also
removes the present upstream copy. Probabilistic variants have

also been proposed [30]. Several works [6], [21]], [30]-[32]
experimentally study these variants over a broad array of
topologies. Despite the simplicity and elegance inherent in
path replication, when targeting an optimization objective
such as, e.g., minimizing total routing costs, all of the above
variants, combined any of the traditional eviction policies, are
known to be arbitrarily suboptimal [20].

In their seminal paper [12] introducing path replication,
Cohen and Shenker also introduced the abstract problem of
finding a content placement that minimizes routing costs. The
authors show that path replication combined with a constant
rate of evictions leads to an allocation that is optimal, in
equilibrium, when nodes are visited through uniform sampling.
Unfortunately, optimality breaks down when uniform sampling
is replaced by routing over graph topologies [20]. Several pa-
pers have studied the offline cost minimization under restricted
topologies [9], [23], [24]], [33]-[35]. With the exception of [I],
these works model the network as a bipartite graph: nodes
generating requests connect directly to caches in a single
hop, and algorithms do not readily generalize to arbitrary
topologies. In general, the pipage rounding technique of Ageev
and Sviridenko [36] yields again a constant approximation
algorithm in the bipartite setting, while approximation algo-
rithms are also known for several variants of this problem [23]],
[24], [33], [34)]. Excluding [24], all these works focus only
on centralized solutions of the offline caching problem; none
considers jointly optimizing caching and routing decisions.

Joint caching and routing has been studied in restricted
settings. The benefit of routing towards nearest replicas, rather
than towards nearest designated servers, has been observed
empirically [37]-[39]. Deghan et al. [S]], Abedini and Shakko-
tai [40], and Xie et al. [41] all study joint routing and content
placement schemes in a bipartite, single-hop setting. In all
cases, minimizing the single-hop routing cost reduces to
solving a linear program; Naveen et al. [10] extend this to
other, non-linear (but still convex) objectives of the hit rate,
still under single-hop, bipartite routing constraints. None of
these approaches generalize to a multi-hop setting, which
leads to non-convex formulations (see Section [[II-F); address-
ing this lack of convexity is one of our technical contribu-
tions. A multi-hop, multi-path setting is formally analyzed by
Carofiglio et al. [39]] under restricted arrival rates, assuming
that requests by different users follow non-overlapping paths.
Our approach addresses the problem in its full generality, for
arbitrary topologies, arrival rates, and overlapping paths.

When routes are fixed, and only caching decisions are
optimized, maximizing the caching gain amounts to maxi-
mizing a submodular function subject to matroid constraints
[O, [20]. Problems with structure appear in many impor-
tant applications related to combinatorial optimization [42]—
[46]; for an overview of the topic, see Krause and Golovin
[47]. Though generic submodular maximization subject to
matroid constraints is NP-hard, several known approximation
algorithms exist in the so-called value oracle model (i.e.,
assuming access to a poly-time oracle that evaluates the
submodular objective). Nemhauser et al. [43] show that the
greedy algorithm produces a solution within 1/2 of the optimal.
Vondrék [44] and Calinescu et al. [45]], [46] show that the so-

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 3

called continuous-greedy algorithm produces a solution within
(1 —1/e) of the optimal in polynomial time, which cannot be
further improved [48]].

Under the value oracle model, the continuous-greedy al-
gorithm requires random sampling to estimate the gradient
of the so-called multilinear relaxation of the objective. For
the specific objective of maximizing the caching gain under
fixed routing, the concave relaxation technique of Ageev and
Sviridenko [36] attains the 1 — 1/e approximation ratio while
eschewing sampling; this is shown in [9] for homogeneous
caches and a specific class of topologies, and generalized to
heterogeneous caches and arbitrary topologies in [20].

Jointly optimizing routing and caching decisions is not a
submodular maximization problem subject to matroid con-
straints. Nevertheless, we show that that a variant the technique
by Ageev and Sviridenko [36] can be used to obtain a poly-
time approximation algorithm, that also lends itself to a dis-
tributed, adaptive implementation. We show this by extending
[20] to incorporate routing decisions, both through source and
hop-by-hop routing. Crucially, our evaluations in Section [VIII|
show that jointly optimizing caching and routing significantly
improves performance compared to fixed routing, reducing the
routing costs of [[20] by as much as three orders of magnitude.

III. MODEL

We begin by presenting our formal model, extending [20]] to
account for both caching and routing decisions. Our analysis
applies to two routing variants: (a) source routing and (b)
hop-by-hop routing. In both cases, we study two types
of strategies: deterministic and randomized. For example, in
source routing, requests for an item originating from the same
source may be forwarded over several possible paths, given
as input. In deterministic source routing, only one is selected
and used for all subsequent requests with this origin. In
contrast, a randomized strategy samples a new path to follow
independently with each new request. We also use similar
deterministic and randomized analogues both for caching
strategies as well as for hop-by-hop routing strategies.

Randomized strategies subsume deterministic ones, and are
arguably more flexible and general. This begs the question:
why study both? There are three reasons. First, optimizing
deterministic strategies naturally relates to combinatorial tech-
niques such as [|36[], which we can leverage to solve the offline
probem. Second, the online, distributed algorithms we propose
to construct randomized strategies in fact mirror our solution
to the offline, deterministic problem: they leverage the same
convex relaxation. Finally, and most importantly: deterministic
strategies turn out to be equivalent to randomized strategies!
As we show in Thm. [3] the smallest routing cost attained by
randomized strategies is exactly the same as the one attained
by deterministic strategies.

A. Network Model and Content Requests

Consider a network represented as a directed, symmetri
graph G(V, E). Content items (e.g., files, or file chunks) of

A directed graph is symmetric when (i, j) € E implies that (j, i) € E.

TABLE I
NOTATION SUMMARY

Common Notation

G(V,E) Network graph, with nodes V and edges E
C Item catalog
cy Cache capacity at node v € V
Wy Weight of edge (u,v) € E
R Set of requests (i, s), with i € C and source s € V
Ai,s) Arrival rate of requests (i, s) € R
S; Set of designated servers of i € C
Xvi Variable indicating whether v € V stores i € C
&vi Marginal probability that v stores i
X Global caching strategy of x,,;s, in {0, 1}IVIxicl
=) Expectation of caching strategy matrix X
T Duration of a timeslot in online setting
Wy weight/cost of edge (u, v)
supp(-) Support of a probability distribution
conv(-) Convex hull of a set
Source Routing
Pi,s) Set of paths request (i, s) € R can follow
Psr Total number of paths
p A simple path of G
kp(v) The position of node v € p in path p.
T(i,s),p Variable indicating whether (i, s) € R is forwarded over
P € Pa,s)

P, s).p Marginal probability that s routes request for i over p
r Routing strategy of r(; s), ps, in {0, 1} 2G9)erR Pl
P Expectation of routing strategy vector r
Dsr Feasible strategies (r, X) of MAXCG-S
RNS Route to nearest server
RNR Route to nearest replica

Hop-by-Hop Routing
GO DAG with sinks in S;
E® Edges in DAG G
G Subgraph of G including only nodes reachable from s
SD(“I.’S) Set of paths in G>%) from s to u.
Pyy Total number of paths
r,(j‘z Variable indicating whether u forwards a request for i to v
pg‘), Marginal probability that u forwards a request for i to v
r Routing strategy of r,"“,s, in {0, 1}Ziec IED]
o) Expectation of routing strategy vector r
Dun Feasible strategies (r, X) of MAXCG-HH

equal size are to be distributed across network nodes. Each
node is associated with a cache that can store a finite number
of items. We denote by C the set of possible content items, i.e.,
the catalog, and by ¢, € N the cache capacity at node v € V:
exactly ¢, content items can be stored in v. The network serves
content requests routed over the graph G. A request (i, s) is
determined by (a) the item i € C requested, and (b) the source
s € V of the request. We denote by R € C X V the set of all
requests. Requests of different types (i, s) € R arrive according
to independent Poisson processes with arrival rates A;) > 0,
@i, s) eR.

For each item i € C there is a fixed set of designated
server nodes S; C V, that always store i. A node v € §;
permanently stores i in excess memory outside its cache. Thus,
the placement of items to designated servers is fixed and
outside the network’s design. A request (i, s) is routed over a
path in G towards a designated server. However, forwarding
terminates upon reaching any intermediate cache that stores
i. At that point, a response carrying i is sent over the reverse
path, i.e., from the node where the cache hit occurred, back to
source node s. Both caching and routing decisions are network
design parameters, which we define formally below.

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 4

Fig. 1.
left, source node u on the bottom left can choose among 5 possible paths to
route a request to one of the designated servers storing ¢ (s, s2). In hop-by-
hop routing, each intermediate node selects the next hop among one of its
neighbors in a DAG whose sinks are the designated servers.

Source Routing vs. Hop-by-Hop routing. In source routing, shown

B. Caching Strategies

We study both deterministic and randomized caches.
Deterministic caches. For each node v € V, we define v’s
caching strategy as a vector x, € {0, 1}!C!, where x,; € {0, 1},
for i € C, is the binary variable indicating whether v stores
content item i. As v can store no more than c, items:

YiecXxvi < ¢y, forallveV. (1)

The global caching strategy is the matrix X = [xy;]vev.iec €
{0, 1}VIXICI whose rows comprise the caching strategies of
each node.

Randomized caches. In randomized caches, the caching
strategies x,,, v € V, are random variables. We denote by:

&vi = Plxy; =11 = E[x, ;1 € [0,1], fori e C, 2)
the marginal probability that node v caches item i, and by
E = [&vilveviiec = EIX] € [0, 1]VXIC), 3)

the corresponding expectation of the global caching strategy.

C. Source Routing Strategies

Recall that requests are routed towards designated server
nodes. In source routing, for every request (i,s) € C XV,
there exists a set P(;) of paths that the request can follow
towards a designated server in S;. A source node s can forward
a request among any of these paths, but we assume each
response follows the same path as its corresponding request.

Formally, a path p of length |[p| = K is a sequence
{p1,p2,...,px} of nodes prx € V such that (pg, pr+1) € E,
for every k € {1,...,|p| — 1}. We make the following natural
assumptions on the set of paths P(;). For every p € P):
(a) p starts at s, i.e., p; = 5;

(b) p is simple, i.e., it contains no loops;

(c) the last node in p is a designated server for item i, i.e.,
if |p| = K, px € S;; and

(d) no other node in p is a designated server for i, i.e., if
Ipl =K, pr ¢ S;, fork=1,...,K—1.

These properties imply that a request routed over a path

D € P, s) is always satisfied as, in the worst case, an item

is retrieved at the terminal designated server. Given a path p

and a v € p, we denote by k,(v) the position of v in p; i.e.,

kp,(v) equals to k € {1,...,[pl} such that p; =v.

Deterministic Routing. Given sets P(;), (i,5) € R, the

routing strategy of a source s € V w.rt. request (i,s) € R

is a vector r(;s) € {0, 1}!P6.! where ra,s)p € 10,1} is a

binary variable indicating whether s selected path p € P;).
These satisfy:

Z Fisyp = 1, for all (i,s) € R, 4)
PEP.s)

indicating that exactly one path is selected. Let

P = > 1Py (5)

(i,s)eR

be the total number of paths. We refer to the vector

r=[ras.pliser pepyy, €10, 1175 ©)

as the global routing strategy.

Randomized Routing. In randomized routing, variables r(;),
(i,s) € R are random. That is, we randomize routing by
allowing requests to be routed over a random path in P; s,
selected independently of all past routing decisions (at s or
elsewhere). We denote by

PG,s),p = Plr,s),p = 11 = Elri,s),pl, for pe P, (1)
the probability that path p is selected by s, and by

P =[PG.s).pllis)er pery s, = Elr] € [0, 1175 (8)

the expectation of the global routing strategy r.

Remark. We make no a priori assumptions on Psg, the total
number of paths used during source routing. The complexity
of our offline algorithm, and the rate of convergence of our
distributed, adaptive algorithm depend on Psy (see Lemma |§[)
In practice, if the number of possible paths is, e.g., exponential
in |V|, it makes sense to restrict each P; 5 to a small subset
of possible paths, or to use hop-by-hop routing instead. As
discussed below, the later restricts the maximum number of
paths considered.

As we treat path sets Py; s as inputs, our algorithms and per-
formance guarantees apply irrespectively of how these paths
are constructed or selected. That said, there exist both cen-
tralized and distributed algorithms for constucting such multi-
path alternatives, such as k-shortest path algorithms [49], [50],
equal cost multipath routing (ECMP) [51]], [52]], and multipath
distance vector routing [53]], [[54)]. All of these include inherent
caps on the multiplicity of alternative paths discovered, and
can thus be used to construct a input instance to our problem
whose Pgr is polynomial in the number of nodes.

D. Hop-by-Hop Routing Strategies

Under hop-by-hop routing, each node along the path makes
an individual decision on where to route a request message.
When a request for item i arrives at an intermediate node
v € V, node v determines how to forward the request to one
of its neighbors. The decision depends on i but not on the
request’s source. This limits the paths a request may follow,
making hop-by-hop routing less expressive than source rout-
ing. On the other hand, reducing the space of routing strategies
reduces complexity. In adaptive algorithms, it also speeds up
convergence, as routing decisions w.r.t. i are “learned” across
requests by different sources.

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 5

To ensure loop-freedom, we must assume that forwarding
decisions are restricted to a subset of possible neighbors in G.
For each i € C, we denote by G (V, E®)) a graph that has
the following properties:

(@) G is a subgraph of G, i.e., E¥) C E;

(b) G is a directed acyclic graph (DAG); and

(¢) (¢) a node v in G¥ is a sink if and only if it is a

designated server for i, i.e., v € S;.

We assume that every node v € V can forward a request for
item i only to a neighbor in GV, Then, the above properties
of G ensure both loop freedom and successful termination.
Deterministic Routing. For any node s € V, let G®*) be the
induced subgraph of G which results from removing any
nodes in G) not reachable from s. For any u in G%*), let
P, be the set of all paths in G35 from s to u, and denote
the total number of paths by

Pa= > > 1Pl ©)

(i,5)€C uev

We denote by r,(jv) e {0,1}, for (u,v) € ED i e C, the
decision variable indicating whether u forwards a request for
i to v. The global routing strategy is r = [r},"v)]iec,(u,v)ew €
{0, 1}Zrec IEC1 and satisfies

D, =t

vi(u,v)eE®

forall veV,ieC. (10)

Note that, in contrast to source routing strategies, that have
length Psg, hop-by-hop routing strategies have length at most
ICIE].

Randomized Routing. As in source routing, we also consider
randomized hop-by-hop routing strategies, whereby each re-
quest is forwarded independently from previous routing deci-
sions to one of the possible neighbors. We again denote by

o =[picc.wmer® = [EBIrENice. e
. O EW®
= [P[’";(fv) — 1]]iec’(u’v)€E(,.) € [0, 1]216(, |E I’

the vector of corresponding (marginal) probabilities of routing
decisions at each node v.

Remark. Given G and S;, G®) can be constructed in polyno-
mial time using, e.g., the Bellman-Ford algorithm [55]]. Indeed,
requiring that v forwards requests for i € C only towards
neighbors with a smaller distance to a designated server in
S; results in such a DAG. A distance-vector protocol [22]
can form this DAG in a distributed fashion. This need only
be executed once, before any subsequent caching and routing
optimization algorithms are executed. Other constructions are
also possible. For example, one could determine a potential
function for each node, where S; has zero potential, and con-
sidering only edges that decrease the potential. Our proposed
algorithms work for arbitrary DAGs, irrepectively of how they
are produced (i.e., even if the potential function is not the dis-
tance to S;), though in practise it would be preferable to, e.g.,
take into account edge weights when computing distances,
which we introduce below in Sec. [[TI-F] That said, once DAGs
G have been constructed, our algorithms can be executed
with these as inputs.

(1)

E. Offline vs. Online Setting

To reason about the caching networks we have proposed,
we consider two settings: the offline and online setting. In the
offline setting, all problem inputs (demands, network topology,
cache capacities, etc.) are known apriori to, e.g., a system
designer. At time ¢ = 0, the system designer selects (a) a
caching strategy X, and (b) a routing strategy r. Both can be
either deterministic or randomized, but both are also static:
they do not change as time progresses. In the case of caching,
cache contents (selected deterministically or at random at 7 =
0) remain fixed for all # > 0. In the case of routing decisions,
the distribution over paths (in source routing) or neighbors (in
hop-by-hop routing) remains static, but each request is routed
independently of previous requests.

In the online setting, no a priori knowledge of the demand,
i.e., the rates of requests A), (i,s) € R is assumed. Both
caching and routing strategies change through time via a dis-
tributed, adaptive algorithm. Time is slotted, and each slot has
duration T > 0. During a timeslot, both caching and routing
strategies remain fixed. Nodes have access only to local infor-
mation: they are aware of their graph neighborhood and state
information they maintain locally. They exchange messages,
including both normal request and response traffic, as well
as (possibly) control messages, and may adapt their state. At
the conclusion of a time slot, each node changes its caching
and routing strategies. Changes made by v depend only on its
neighborhood, its current local state, as well as on messages
that node v received in the previous timeslot. Both caching
and routing strategies during a timeslot may be deterministic
or randomized. Note that implementing a caching strategy at
the conclusion of a timeslot involves changing cache contents,
which incurs additional overhead; if T is large, however, this
cost is negligible compared to the cost of transferring items
during a timeslot.

F. Optimal Routing and Caching

We are now ready to formally pose the problem of jointly
optimizing routing and caching. We pose here the offline prob-
lem in which problem inputs are given; nevertheless, we will
devise distributed, adaptive algorithms that do not a priori
know the demand in Section [V1l

To capture costs (e.g., latency, money, etc.), we associate
a weight wy,, > 0 with each edge (u,v) € E, representing
the cost of transferring an item across this edge. We assume
that costs are solely due to response messages that carry an
item, while request-forwarding costs are negligible. We do not
assume that w,, = w,,. We describe the cost minimization
objectives under source and hop-by-hop routing below.
Source Routing. The cost of serving a request (7, s) € R under
source routing is:

Ipl=1

k
Z Wpipk]_[(1 - Xpi). (12)

k’=1

CEVX) = > Fsp
P EP(,',S) k=1

Intuitively, (T2) states that C{-*) includes the cost of an edge
(pr+1, px) in the path p if (a) p is selected by the routing
strategy, and (b) no cache preceding this edge in p stores i.

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 6

In the deterministic setting, we seek a global caching and
routing strategy (r, X) minimizing the aggregate expected cost,
defined as:

Csn(nX) = > Aa0CE (. X), (13)
(i,s)eR
with C{%%) given by (T2). That is, we wish to solve:
MINCOST-SR
Minimize: Cgg(r, X) (14a)
subj. to: (r, X) € Dsr (14b)

where Dgz € RFPs= x RIVIXICH is the set of (r, X) satisfying
the routing, capacity, and integrality constraints, i.e.:

2ieC Xvi = Cys Yv eV, (15a)
Ypepuy Misp =1 Yi5) €R, (15b)
xypi € {0, 1}, YveV,ieC, (15¢)
ri,s),p € 10,1}, Vp € Pu.sy, (i, s) € R, (15d)

This problem is NP-hard, even in the case where routing is
fixed: see Shanmugam et al. [9] for a reduction from the 2-
Disjoint Set Cover Problem.

Hop-By-Hop Routing. Similarly to (I2), under hop-by-hop
routing, the cost of serving (i, s) can be written as:

2,

Wou -rl(f‘f(l — Xui) ...

CY (r, X) =

(u,v)eG:s)
lpl-1 (16)
Z l_[rglzlpk’n (- xpk'i)'
PeP|) k'=1
We wish to solve:
MINCOST-HH
Minimize: Cyy(r, X) (17a)
subj. to: (r,X) € Duy (17b)

where Cun(r,X) = Y s)eRr A(i,s)Cé'gs)(r, X) is the expected
routing cost, and Dyy is the set of (r,X) € RZicc IEV]
RIVIXICI satisfying the constraints:

2liec Xvi = Cy, Yv eV, (18a)
Sumern =1 WveV,ieC, (18b)
xvi € 10,1}, VveV,ieC, (18¢)
rd) €{0,1}, Vu,v) e EDjieC. (18d)

Randomization. The above routing cost minimization prob-
lems can also be stated in the context of randomized caching
and routing strategies. For example, in the case of source
routing, assuming (a) independent caching strategies across
nodes selected at time ¢ = 0, with marginal probabilities given
by E, and (b) independent routing strategies at each source,
with marginals given by p (also independent from caching
strategies), all terms in Csg contain products of independent

random variables; this implies that:
E[Csr(r, X)] = Csr[E[r], E[X]] = Csr(p, E), (19)

where the expectation is taken over the randomness of both
caching and routing strategies. The expected routing cost thus

depends on the routing and caching strategies only through the
expectations p and E. This has the following consequence:

Lemma 1: Under randomized routing and caching strategies,
problem MINCOST-SR becomes

i Csr(p, B), 20
L sr(p, E) (20)

while problem MINCOST-HH becomes
CHH(p’ E)a > (21)

min
(p,E)econv(Dar)

where conv(Dsr), conv(Dyy) are the convex hulls of Dgg,
Dy, respectively.

Proof: We prove this for source-routing strategies; the
proof for hop-by-hop strategies follows a similar argument.
Consider a randomized routing strategy r and a randomized
caching strategy X, such that (r, X) € Dsr. Let p = E[r] and
Z = E[X]. Then (r,X) € Dsr readily implies that (p,E) €
conv(Dsg); moreover, by (19), its expected routing cost would
be exactly given by Csr(p,E), so a randomized solution to
MINCOST-SR immediately yields a solution to the relaxed
problem. To complete the proof, we need to show that any
feasible solution (p,E) € conv(Dsr), We can constuct a
MINCOST feasible pair of randomized strategies (r, X) € Dsr
whose expectations are precisely (p, Z); then, by (19), it must
be that E[Csz(7, X)] = Csr(p, X). Note that this construction
is trivial for routing strategies: given (p,Z) € conv(Dsr),
we can construct a randomized strategy r by setting r(;) for
each (i, s) € R to be an independent categorical variable over
P(i,s) with P[r(i,s),,, =1] = Pi,s),p> for p € P(i,s)~ It is less
obvious how to do so for caching strategies; nevertheless, the
technique by [20]], [56] discussed in Section achieves
precisely the desired property: given a feasible =, it produces a
feasible randomized integral X, independent across nodes that
(a) satisfies capacity constraints exactly, and (b) has marginals
given by =. []
The objective functions Csr, Cyy are not convex and, therefore,
the corresponding relaxed problems are not convex optimiza-
tion problems. This is in stark contrast to single-hop settings,
that often can naturally be expressed as linear programs [J5],
[10], [40].

G. Fixed Routing
When the global routing strategy r is fixed, (I4) reduces to

Minimize: Csg(r, X)

X satisfies (TI5a) and (I5¢).

MINCOST-HH can be similarly restricted to caching only. We
studied this restricted optimization in earlier work [20]. In
particular, under given global routing strategy r, we cast (22)
as a maximization problem as follows. Let Cj = Csgr(r,0) =
2i.s)er Ai,s) Zpeqn(i,.v{(i,s),pZ,'(”:‘{lwph,pk be the cost when
all caches are empty (i.e., X is the zero matrix). Note that
this is a constant that does not depend on X. Consider the
following maximization problem:

Fir(X) = Cj = Cer(r, X)

X satisfies (I5a) and (I5c).

(22a)

subj. to: (22b)

Maximize: (23a)

subj. to: (23b)

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 7

This problem is equivalent to (22), in that a feasible solution
to (23) is optimal if and only if it also optimal for (22). The
objective FZ,(X), referred to as the caching gain in [20], is
monotone, non-negative, and submodular, while the set of con-
straints on X is a set of matroid constraints. As a result, for any
r, there exist standard approaches for constructing a polyno-
mial time approximation algorithm solving the corresponding
maximization problem within a 1 — 1/e factor from its
optimal solution [9], [20], [45]. In addition, we show in [20]]
that an approximation algorithm based on a technique known
as pipage rounding [|36]] can be converted into a distributed,
adaptive version with the same approximation ratio.

As discussed in Section [V] we also approach the joint rout-
ing and caching problem by casting it as an equivalent caching
gain maximization problem. In contrast to the fixed routing set-
ting, the objective function Csg(r, X), expressed as a function
of both caching and routing strategies, is neither monotone
nor supermodular, and there is no constant C such that the
function C — Csg (7, X) is monotone and submodular. In addi-
tion, constraints @ do not form a matroid. One of our main
contributions is to show that, in spite of these issues, it is still
possible to construct a constant approximation algorithm for
the maximization of an appropriately defined caching gain;
moreover, the intuition behind this algorithm leads again to a
distributed, adaptive implementation, as in [20].

H. Greedy Routing Strategies

In the case of source routing, we identify two “greedy”
deterministic routing strategies, that are often used in prac-
tice, and play a role in our analysis. We say that a global
routing strategy r is a route-to-nearest-server (RNS) strategy
if all paths it selects are least-cost paths to designated servers,
irrespectively of cache contents. Formally, » is RNS if for all
(i, s) €R, r(,s),p = 1 for some

Ipl-1

preargming,cp 37 (24)

Pk+1-Pk>

while r(;), = 0 for all other p € P s s.t. p # p*. Simi-
larly, given a caching strategy X, we say that a global routing
strategy r is route-to-nearest-replica (RNR) strategy if, for all
(i, s) €R, r,s),pr = 1 for some

Ipl-1

k=1 (25)

s : k
p* € argmin Wper.pil Lz (1= Xpoi)s

PEP,s)

while 7 5) p = 0 for all other p € P(; 5 s.t. p # p*. In con-
trast to RNS strategies, RNR strategies depend on the caching
strategy X. Note that RNS and RNR strategies can be defined
similarly in the context of hop-by-hop routing.

IV. ROUTING TO NEAREST SERVER IS SUBOPTIMAL

A simple approach, followed by most works that optimize
caching separately from routing, is to always route requests to
the nearest designated server storing an item (i.e., use an RNS
strategy). It is therefore interesting to ask how this simple
heuristic performs compared to a solution that attempts to
solve (I4) by jointly optimizing caching and routing. It is
easy to see that RNS and, more generally, routing that ignores
caching strategies, can lead to arbitrarily suboptimal solutions.
In other words, routing to the nearest server can incur a cost

Fig. 2. A simple diamond network illustrating the benefits of path diversity.
A source node s generates requests for items 1 and 2, permanently stored
on designated server ¢. Intermediate nodes on the are two alternative paths
towards ¢ have capacity 1. Numbers above edges indicate costs. Under RNS,
requests for both items are forwarded over the same path towards ¢, leading
to a ®(M) routing cost irrespective of the caching strategy. In contrast, the
jointly optimal solution uses different paths per item, leading to an O(1) cost.

that arbitrarily larger than the cost of a strategy (r, X) that is
jointly optimized:

Theorem 1: For any M > 0, there exists a caching network
for which the route-to-nearest-server strategy r’ satisfies

M+1

min Csr (7, X)/(r,)I(I}iE%SR Csr(r, X) > (26)

X:(r’',X)eDsr

Proof: Consider the simple diamond network shown in
Fig. 2l A source node s generates requests for items 1 and
2 (i.e., R = {(1,5),(2,5)}), that are permanently stored on
designated server f, requesting each with equal rate A(j5) =
Aas) = Isec™l. The path sets P), i = 1,2, are identical,
and consist of the two alternative paths towards ¢, each passing
through an intermediate node with cache capacity 1 (i.e., able
to store only one item). The two paths have routing costs
M+1 and M +2, respectively. Under the route-to-nearest server
strategy r’, requests for both items are forwarded over the path
of length M +1 towards ¢; fixing routes this way leads to a cost
M +1 for at least one of the items. This happens irrespectively
of which item is cached in the intermediate node. On the other
hand, if routing and caching decisions are jointly optimized,
requests for the two items can be forwarded to different paths,
allowing both items to be cached in the nearby caches, and
reducing the cost for both requests to at most 2. []
The example in Fig. 2] illustrates that joint optimization of
caching and routing decisions benefits the system by increas-
ing path diversity. In turn, increasing path diversity can in-
crease caching opportunities, thereby leading to reductions in
caching costs. This is consistent with our experimental results
in Section [VIII

V. OFFLINE SOURCE ROUTING
Motivated by the negative result of Thm. [T, we turn our
attention to solving the offline problem MINCOST-SR. As in
the fixed-routing setting described in Section we first
cast this as a maximization problem. Let Cy be the constant:

0 lpl-1
Cor = 2is)eR Alis) LpePy. kazl Wpisipi: 27)

Then, given a pair of strategies (r, X), we define the expected
caching gain Fsg(r, X) as follows:

Fsa(r, X) = C2 — Csr(r, X)), (28)

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 8

where Csy is the aggregate routing cost given by (I3). Note
that Fsr(r, X) > 0. We seek to solve the following problem,
equivalent to MINCOST-SR:

MAXCG-S
Maximize: Fsr(r, X) (29a)
subj. to: (r, X) € Dgg. (29b)

The selection of the constant C(S)R is not arbitrary: this is
precisely the value that allows us to approximate Fsg via the
concave relaxation Lgg below (c.f. Lemma [Z). Moreover, in
Sec. [VIII| we show that, in spite of attaining approximation
guarantees w.r.t. Fsg rather than Csg, the resulting approx-
imation algorithm has excellent performance in practice in
terms of minimizing routing costs. In particular, we can reduce
routing costs by a factor as high as 103 compared to fixed
routing policies, including the one described in [20].

A. Offline Approximation Algorithm

Its equivalence to MINCOST-SR implies that MAXCG-S
is also NP-hard. Nevertheless, we show that there exists a
polynomial time approximation algorithm for MAXCG-S. Fol-
lowing [36], the technique for producing an approximation
algorithm to solve MAXCG-S is to: (a) relax the combinatorial
joint routing and caching problem to a convex optimization
problem, (b) solve this convex relaxation, and (c) round the
(possibly fractional) solution to obtain an integral solution
to the original problem. To that end, consider the concave
function Lgg : conv(PDsr) — R, defined as:

Ipl=1

Lsa(pB) = Y A

(,5)€R

Wpisipk *
PEPi,s) k=1

min {1, 1 = p 5, p + Xk Epril)-

Then, Lsy closely approximates Fsx:
Lemma 2: For all (p,E) € conv(Dsr),

(I-1/e) Lsr(p, B) < Fsr(p, E) < Lsr(p, B).

Proof: This follows from the Goemans-Williamson in-
equality [20], [57]], which states that, for any sequence of
y; €[0,1],i € {l,...,n}:

(30)

1 n n n
(1-2)ymin(L,)"y} < 1= [[=y0) < minfL,) y). 31)
i i=1 i=1

The lower bound was proved by Goemans and Williamson (see
Lemma 3.1 in [57], and Eq. (16) of Ageev and Sviridenko [36]]
for a shorter derivation). The upper bound follows easily from
the concavity of of the min operator (see Thm. 2 of Ioannidis
and Yeh [20]). To see this, let t; € {0,1}, i € {l,...,n},
be independent Bernoulli random variables with expectations
E[?;] = y;. Then:

n

1- l_[(l _yi) =P[il‘[> O] =E[min{1,Zn:ti}]
i=1 i=1

i=1

< min{1,) Elr;]} = min {1,y v}
i=1 i=1

Algorithm 1 OFFLINE APPROXIMATION ALGORITHM

1: Find (p*, E*) € arg max (p.E)econv(Dsr) LSR(P, =)

2: Fix p*, and round E* as in Lemma |3| to obtain integral, feasible
X' s.t. Fsp(p*, X’) 2 Fsr(p",Z%)

3: Fix X/, and round p* as in Lemma [d] to obtain integral, feasible
r’ st . FSR(V,, X’) > FSR(p*,X/)

4: return (r’, X’)

where the inequality holds by Jensen’s inequality and the fact
that min{1, -} is concave. The lemma therefore follows by ap-
plying inequality to every term in the summation making
up Fsg, to all variables &,;, v € V,i € C, and 1 - pg 5. p,
(i5) € R, p € Piys)- -

Constructing a constant-approximation algorithm for MAXCG-

S amounts to the following steps. First, obtain

(p",E") e argmax Lsr(p,E). (32)

(p,E)econv(Dsr)

As Lgr is concave function and conv(PDsr) is convex, the
above maximization is a convex optimization problem. In fact,
it can be reduced to a linear program [20], so it can be solved
in polynomial time [58]]. Second, round the (possibly frac-
tional) solution (p*, E*) € conv(Dsr) to an integral solution
(r, X) € Dsr such that Fsg(r, X) > Fsr(p*, E"). This round-
ing is deterministic and takes place in polynomial time. The
above steps are summarized in Algorithm (1] for which the
following theorem holds:

Theorem 2: Algorithm [I|terminates within a number of steps
that is polynomial in |V], |C|, and Psg, and produces a strategy
(r",X") € Dqr such that

FSR(r/,X/) > (1-1/e) maxr, X)e Dsx Fsr(r, X).

Proof: We first prove the following two auxiliary lemmas.
First, a feasible fractional solution can be converted—in polyno-
mial time—to a feasible solution in which only p is fractional,
while increasing Fsg.

Lemma 3 ([9)]): Given any (p, Z) € conv(Dsg), an integral
X such that (p, X) € conv(Dsr) and Fsg(p, X) > Fsr(p, E)
can be constructed in O(|V|?|C|Psr) time.

Proof: This is proved in [9]] for fixed routing strategies;
for completeness, we repeat the proof here. Given a fractional
solution (p,E) € Dsg, there must exist a v € V that con-
tains two fractional values &,;, &,;7, as capacities are integral.
Restricted to these two variables, function Fgsy is an affine
function of &,;, &,v. That is,

Fin(p.E) = Aéyi + Béyw + C = F™ (Guiéur),

where constants A, B, C depend on p and Z_(,;,; (the val-
ues of E excluding &,;,&y7), but not on &,;,&,;». Hence,
Fg’é"”,(gvi, &, is maximized at the extrema of the polytope
in R? implied by the capacity and [0, 1] constraints involving
variables &,;, &, alone. Formally, consider the polytope:

DU E i) = {(Evi o) € 10111 Y &5 = ¢} <R
jec
Then, the optimization:

max FG" (Evis évir)

(Eviryin €D E ivi)

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 9

has a solution that is an extremum of Z)g;’”'/) (E—(vi,vi))- That
is, there exists an optimal solution to this problem where either
&vi or &, is integral (either O or 1). Finding this solution
amounts to testing two cases and seeing which of the two
maximizes Fsvé"”/ (and thereby also Fsg): (a) the case where a
value 6 = min{é,;, 1 =&/} is subtracted from &,; and added to
&7, and (b) the case where ¢’ = min{1-¢,,;, &,;+} is subtracted
from &,;» and added to &,;.

The above imply that there exists a way to transfer equal
mass from one of the two fractional variables &,;, &, to the
other so that (a) one of them becomes integral (either O or
1), (b) the resulting E’ remains feasible, and (c) Fsg does
not decreaseE] Performing this transfer of mass reduces the
number of fractional variables in E by one, while maintaining
feasibility and, crucially, either increasing Fsgz or keeping it
constant. This rounding can be repeated so long as E remains
fractional: this eliminates all fractional variables in at most
O(|V]|C]) steps. Each step requires at most two evaluations of
Fr for each of the two cases, which can be done in O(|V|Psr)
time. Note that the pair of fractional variables selected each
time is arbitrary: the order of elimination (i.e., the order with
which pairs of fractional variables are rounded) leads to a
different rounding, but all such roundings are (a) feasible and,
(b) either increase Fsy or keep it constant. [|
The routing strategy p can also be rounded in polynomial time,
while keeping the caching strategy X fixed:

Lemma 4: Given any (p,Z) € conv(Dsr), an integral r
s.t. (r,2) € conv(Dsr) and Fsr(r,Z) > Fsr(p, E) can be
constructed in O(|V|Psr) time. Moreover, if = is integral, then
the resulting r is a route-to-nearest-replica (RNR) strategy.

Proof: Given (p,E) € conv(Dsr), notice that, for fixed
E, Fsg is an affine function of the routing strategy p. All
coefficients involving variables p; s).p, p € P,s), are non-
negative, and the set of constraints on p is separable across
requests (i, s) € R. Hence, given E, maximizing Fsg wW.r.t. p
can be done by selecting the path p* € P(; ;) with the highest
coefficient of Fsg, for every (i,s) € P; this is precisely the
lowest cost path, i.e., p(*l.’s) € P, s) 1s such that

lpl-1 k
Py =argmin " wpp [[A=&poid. 33
PEPlUs) =] k=1

Hence, given E, setting p(,s),p+ = 1, and p(; 5, = 0 for all
remaining paths p € P(;) s.t. p # p* can only increase Fsg.
Each p* can be computed in O(|P; s ||V|) time and there is
most O(R) such paths. This results in an integral, feasible
strategy r, and the resulting Fsy either increases or stays con-
stant, i.e., (r,2) € conv(PDsr) and Fsr(r,E) > Fsr(p, E).
Finally, if & = X for some integral X, then the selection
of each strategy p* through (33) yields precisely a route-to-
nearest-replica routing for (i, s).]

To conclude the proof of Theorem [2] note that the com-
plexity statement is a consequence of Lemmas [3] and] By
construction, the output of the algorithm (#’, X”) is such that:
Fsr(r’,X") > Fsr(p*,E"). Let

(r*,X") € argmax Fsg(r, X)
(r,X)€Dsx

2This property is called e-convexity by Ageev and Sviridenko [36].

be an optimal solution to MAXCG-S. Then, by Lemma [2 and
the optimality of (p*, X*) in conv(Dsgr):

e
e—1

Together, these imply that the constructed (r’, X”) is such that
Fsr(r’, X') > (1 —1/e)Fsr(r*, X¥). n

Fsr(r', X") < Lsr(r*, X*) < Lgr(p*,E) <

FSR(p*7 E*)

B. Implications: RNS and an Equivalence Theorem

Lemma [4] has the following immediate implication:

Corollary 1: There exists an optimal solution (#*, X*) to
MAXCG-S (and hence, to MINCOST-SR) in which r* is an
route-to-nearest-replica (RNR) strategy w.r.t. X*.

Proof: Let (r*, X*) be an optimal solution to MAXCG-S
in which r* is not a RNR strategy. Then, by Lemma[] we can
construct an r’ that is an RNR strategy w.r.t. X such that (a)
Fsr(r', X™) 2 Fsr(r*, X*) and (b) (r', X™) € Dgr. As (r*, X¥)
is optimal, so is (r/, X*). [|
Although, in light of Thm. [T] Cor. [I] suggests an advantage of
RNR over RNS strategies, its proof is non-constructive, not
providing an algorithm to find an optimal solution, RNR or
otherwise.

We can also show the following result regarding random-
ized strategies. For u a probability distribution over Dgg, let
E, [Csr(7, X)] be the expected routing cost under p. Then, the
following equivalence theorem holds:

Theorem 3: The deterministic and randomized versions of
MINCOST-SR attain the same optimal routing cost, i.e.:

min Csr(r, X) = C , =
(r,X)eDsr SR() (p,E)econv(Dsr) SR(p) (34)
= min E,[Csr(r, X)]
psupp(u)=Dsr
Proof: Clearly,
min Cgsr(r, X) > min C , =
(r,X)€Dsr SR() (p,E)econv(Dsr) SR('D)
as DSR C CODV(DSR). Let
(p"E e argmin Csn(p.E)= argmax Fae(p, E).

(p,E)econv(Dsr) (p,E)econv(Dgr)

Then, Lemmas 3] and [4] imply that we can construct an integral
(l"”, X”) S DSR S.t.

Fsr(r’,X") 2 Fsr(p", E"). (35)

Hence,

: C X C 7" X// C K =
< < =),
o in sr(r, X) < Csr(r", X") < Csr(p',EY)
and the first equality holds.
Note that for y* € argmin ;.00 ()=0.. Ep[Csr(r, X)], and

(r*, X*) = argmin (, x)cp.. Csr(r, X), we have that
E, [Csr(r,X)] = min
H [Cor)] p:supp(p)=Dsr

< min Cs(r,X
(r.X)€Dgr s(r, X)

= CSR("*7X*),

Ep [Csr(r, X)]

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 10

as deterministic strategies are a subset of randomized strate-
gies. On the other hand,

Ee[Cox(nX)1= D, (X)) Can(r, X)

(r,X)€Dsz
> Cor(r, XY D (X))
(r,X)eDsr
= Csr(r, X").
and the second equality also follows.]

The first equality of the theorem implies that, surprisingly,
there is no inherent advantage in randomization: although
randomized strategies constitute a superset of deterministic
strategies, the optimal attainable routing cost (or, equivalently,
caching gain) is the same for both classes. The second equality
implies that assuming independent caching and routing strate-
gies is as powerful as sampling routing and caching strategies
from an arbitrary joint distribution. Thm. [3] generalizes Thm. 5
of [20], which pertains to optimizing caching alone.

VI. ONLINE SOURCE ROUTING

The algorithm in Thm. [J] is offline and centralized: it as-
sumes full knowledge of the input, including demands and
arrival rates, which are rarely available in practice. To that
end, we turn our attention to solving MAXCG-S in the on-
line setting, in the absence of any a priori knowledge of the
demand. Our main contribution is to show that an expected
caching gain within a constant approximation of the optimal
solution to the offline problem MAXCG-S can be attained in
steady state by a distributed, adaptive algorithm:

Theorem 4: There exists a distributed, adaptive algorithm
constructing randomized strategies (r®, X®)) e Dy at the
k-th slot that satisfy

lim E[Fsr GO X*)] > (1 -1/e) max Fsx(r, X). (36)
k—oo (r,X)eDsr

Note that, despite the fact that the algorithm has no prior
knowledge of the demands, the guarantee provided is w.r.t. an
optimal solution of the offfine problem (29). Our algorithm
naturally generalizes [20]: when the path sets #(; s) are sin-
gletons, and routing is fixed, our algorithm coincides with
the cache-only optimization algorithm in [20]]. Interestingly,
the algorithm casts routing and caching in the same control
plane: the same quantities are communicated through control
messages to adapt both the caching and routing strategies.

A. Algorithm Overview

Before proving Thm. [we first give a brief overview of
the distributed, adaptive algorithm that attains the approxima-
tion ratio of the theorem, and state its convergence guarantee
precisely. Intuitively, the algorithm that attains the guarantees
of Thm. [4] solves the problem:

Lsr(p, E), 37

ma
(p,E)econv(Dsr)
where function Lgg : conv(Dsr) — R, is the approximation
of the caching gain Fsg given by (30). Recall that, in contrast
to (20), is a convex optimization problem by the concavity
of Lgr. Our distributed adaptive algorithm effectively performs

a projected gradient ascent to solve the convex relaxation
in a distributed, adaptive fashion. The concavity of Lsg ensures
convergence, while Lemma [2| ensures that the caching gain
attained in steady state is within an 1 — % factor from the
optimal.

In more detail, recall from that, in the online setting,
time is partitioned into slots of equal length T > 0. Caching
and routing strategies are randomized as described in Sec.
at the beginning of a timeslot, nodes place a random set of
contents in their cache, independently of each other. During
a timeslot, new requests are routed upon arrival over random
paths, selected independently of (a) all past routes followed,
and (b) of past and present caching decisions.

Nodes in the network maintain the following state informa-
tion. Each node v € G maintains locally a vector &, € [0, 1]|C|,
determining its randomized caching strategy. Moreover, for
each request (i,s) € R, source node s maintains a vector
PG.s) € 10,1171 determining its randomized routing strat-
egy. Together, these variables represent the global state of the
network, denoted by (p, E) € conv(Dgr). When the timeslot
ends, each node performs the following four tasks:

1) Subgradient Estimation. Each node uses measurements
collected during the duration of a timeslot to construct esti-
mates of the gradient of Lgr w.r.t. its own local state variables.
As Lgy is not everywhere differentiable, an estimate of a
subgradient of Lgr is computed instead.

2) State Adaptation. Nodes adapt their local caching and
routing state variables &,, v € V, and p(; s), (i, s) € R, pushing
them towards a direction that increases Lgg, as determined
by the estimated subgradients, while maintaining feasibility in
conv(Dgr).

3) State Smoothening. Nodes compute “smoothened” ver-
sions &,, v € V, and Pa,s), (i,) € R, interpolated between
present and past states. This is needed on account of the non-
differentiability of Lgg.

4) Randomized Caching and Routing. After smoothening,
each node v reshuffles the contents of its cache using the
smoothened caching marginals &,, producing a random place-
ment (i.e., caching strategy x,) to be used throughout the next
slot. Moreover, each node s € V routes requests (i,s) € R
received during next timeslot over random paths (i.e., routing
strategies r(; sy) sampled in an i.i.d. fashion from the smoothened
marginals p,).

Pseudocode summarizing these steps of the algorithm is

provided in Alg.
Convergence Guarantees. Together, the four tasks above en-
sure that, in steady state, the expected caching gain of the
jointly constructed routing and caching strategies is within a
constant approximation of the optimal solution to the offline
problem MAXCG-S. The proof of the convergence of the
algorithm relies on the following key lemma, proved in Sec-
tion [VI-EL

Lemma 5: Let (ﬁ(k), 20)) € conv(Dsr) be the smoothened
state variables at the k-th slot of Algorithm [2} and
Lsx(p,E).

(p",E") € argmax

(p,E)econv(Dsr)

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 11

Then, for yx the step-size used in projected gradient ascent,
2 2 vk 2
D7+ M™ Y 1kpa) Ve

k
2 2= 1ky2) Ve

&r = E[Lsr(p",E") — Lsp (5%, E0)] <

[l

where

D= \/2|V|rvn€a&< ¢y +2|R], and

1
M= W|V|A\/(|VI|CIP§R + [RIPsz) (1 + 2=0).

In particular, if y; = 1/Vk, then &, = O(1/Vk).

Lemma [5] establishes that Algorithm [2] converges arbitrarily
close to an optimizer of Lgr. As, by Lemma [2} this is a close
approximation of Fsg, the limit points of the algorithm are
with the 1 —1/e from the optimal. Crucially, Lemma [5] can be
used to determine the rate of convergence of the algorithm,
by determining the number of steps required for &; to reach a
desired threshold 6. Moreover, through quantity M, Lemma [3]
establishes a tradeoff w.r.t. T increasing T decreases the error
in the estimated subgradient, thereby reducing the total number
of steps till convergence, but also increases the time taken by
each step.

The convergence guarantee in Lemma [5] holds under the
assumption that (a) although unknown, demands are stationary,
and (b) yx converges to zero. In practice, we would prefer
that caches adapt to demand fluctuations. To achieve this,
one would fix y to a constant positive value, ensuring that
Algorithm [2] tracks demand changes. Though convergence to
a minimizer is not guaranteed in this case, the algorithm is
nonetheless guaranteed to reach states concentrated around an
optimal allocation (see, e.g., Chapter 8 of Kushner & Yin [59]).

In the remainder of this section we describe in detail the
constituent four steps of the algorithm (namely, subgradient
estimation, state adaptation, smoothening, and random sam-
pling). These are presented in Sections to re-
spectively. We present proofs of Lemma [5] and of Thm. {4
in Sections [VI-E] and [VI-F respectively. Finally, we propose
a modification that reduces overhead due to control messages
in Section

B. Subgradient Estimation

We now describe how to estimate the subgradients of Lgy
through measurements collected during a timeslot. These esti-
mates are computed in a distributed fashion at each node, us-
ing only information available from control messages travers-
ing the node. Let (p®),2%®)) € conv(Dsr) be the pair of
global states at the k-th measurement period. At the conclusion
of a timeslot, each v € V produces a random vector z, =
2 (p®),2®)) € R!°! that is an unbiased estimator of a subgra-
dient of Lsg w.r.t. to &,. Similarly, for every (i, s) € R, source
node s produces a random vector ¢, s) = q(i,x)(p(k), =Ry ¢
R!”@»! that is an unbiased estimator of a subgradient of Lsg
with respect to (w.r.t.) p(,s). Formally,

Elz, (0", E*)] € 8¢, Lor (o™, V),
Elqi,s)(p*. 2N € 8, Lsr (0™, 2D,

(38)
(39)

where dg, Lsr(p,B), 0p; ,,Lsr are the sets of subgradients
of Lsg wrt. &, and p(), respectively. To produce these
estimates, nodes measure the upstream cost incurred at paths
passing through it using control messages, exchanged among
nodes as follows:

1) Every time a node s generates a new request (i, s), it
also generates additional control messages, one per path
p € P,s). The message corresponding to path p is to
be propagated over p, and contains a counter initialized
to 1— Pa,s),p T Esi.
When following path p, the message is forwarded until
anodeu € pst. 1—p o) p +Z]qu) &pei > 1is found,
or the end of the path is reached. To keep track of this,
every v € p traversed adds its state variable &,; to the
message counter.
Upon reaching either such a node u or the end of the
path, the control message is sent down in the reverse
direction. Initializing its counter to zero, every time it
traverses an edge in this reverse direction, it adds the
weight of this edge into a weight counter.
Every node on the reverse path “sniffs” the weight counter
of the control message, learning the sum of weights of
all edges further upstream towards u; that is, recalling
that k, (v) is the position of visited node v € p, v learns
the quantity:

1

lpl-
Z Wpirap 1(1

k'=ky(p)

where 1(E) is 1 if and only if E is true and 0 o.w.

In addition, the source s of the request, upon receiv-
ing the message sent over the reverse path, “sniffs” the
quantity:

2)
3)

4)

ty; =

v

~ Plisip +) Epei 1), (40)
=1

5)

Ipl-1

©

Li,s),p == Z Wpirapir 1 (1 ~Pa.s)p +Z§Pfi <1). 4D
k=1 =1

This is the (negative of) the sum of weights accumulated

by the control message returning to the source s.

An example illustrating the above five steps can be found in
Fig. 3| Let 7,; be the set of quantities collected in this way
at node v regarding item i € C during a measurement period
of duration 7. At the end of the timeslot, each node v € V
produces z, as follows:

Zvi = Drery HT,

Similarly, let 7(;.), be the set of quantities collected in this
way at source node s regarding path p € $(; 5 during a mea-
surement period of duration 7. At the end of the measurement
period, s produces the estimate ¢(;, s):

ieC. (42)

disrp = Seern, /T, i€C. (43)

We show that the resulting z,, ¢, satisfy (38) and (39),
respectively, in Lemma [6]

In the above construction, control messages are sent over
all paths in P;). It is important to note however that when
sent over paths p such that p;), = 0 control messages do
not travel far: the termination condition (the sum exceeding

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 12

T(i,5),p = 0-8 T(i,s)p = 0.8

Fig. 3. Example of control message trajectory over a path. When node s generates a request (i, s) € R, it also generates a control message for every path
p € P,s). indicated by thick red edges. In (a), the control message counter is initialized to (1 -7, 5),p) +&si =1-0.8+0.1 =0.3 by s. It is is forwarded
upstream on p to node v, that adds its own caching state variable w.r.t. item i, namely &,,; = 0.3, to the counter. As the sum is below 1.0, the message is
forwarded upstream, until it reaches node u with &,; = 0.9. As the total sum is now 1.5 > 1.0, the propagation over p terminates, and a response is sent
downstream by u. The response is shown in (b), accumulating the weights of edges it traverses. Nodes in its path, namely v and s, sniff this information,
as shown in (c), and collect measurements #,,;, ts; to be added to the averages estimating ¢, ; Lsr and Og; Lsr, respectively. The source s also collects

measurement #(;) p = Gs)p

1) is satisfied early on. Messages sent over unlikely paths are
thus pruned early, and “deep” propagation only happens in
very likely paths. Nevertheless, to reduce control traffic, in
Section [VI-G| we modify the algorithm to propagate only a
single control message over a single path.

C. State Adaptation and Smoothening

Having estimates Z = [z,]vev, ¢ = [9(,s)],5)er, the global
state is adapted as follows: at the conclusion of the k-th period,
the new state (p**+D Z*+D) is computed as:

Pronv(Den) (PO yEg(p%),), 204y Z(p®), 2R))), (44)

where yi = 1/\/% is a gain factor and Pconv(ns,) 1s the
orthogonal projection onto the convex set conv(Dsg). Note
that this additive adaptation and corresponding projection is
separable across nodes and can be performed in a distributed
fashion: each node v € V adapts its own relaxed caching
strategy, each source s adapts its routing strategy, and all nodes
project these strategies to their respective local constraints
implied by (I3b),(I3d), and the [0, 1] constraints. Note that
these involve projections onto the rescaled simplex, for which
well-known linear algorithms exist [60]. Upon performing the
state adaptation (@, each node v € V and each source s, for
(i, s) € R, compute the following “sliding averages” of current
and past states:

(k) - ()
=35 k) VEEY /[Z[& L Vel 45
A =Sy ven LS v (46)

This is necessary because of the non-differentiability of Lsg
[61]. Note that (p%),2%)) € conv(Dgr), as a convex com-
bination of elements of conv(Dsgr).

D. Randomized Caching and Routing.

The resulting (5%, %)) determine the randomized rout-
ing and caching strategies at each node during a timeslot.
First, given 5%), each time a request (i, s) is generated, path
D € P,s) is used to route the request with probability o, s),p,
1ndependently of past routing and caching decisions. Second,
given fv k) each node v € V reshuffles its contents, placing

~tsi, to be used in the average estimating 0 ; L.

Ty =N

Fig. 4. Construction of a feasible randomized caching strategy x, that
satisfies marginals P[x,; = 1] = &,;, where Y ;cc €vi = cy. In this example,
cy =3,and C = {1,2,3,4}). Given &,, 4 rectangles of height 1 each are
constructed, such that the i-th rectangle has length &,; € [0, 1], and the total
length is c,. After placing the 4 rectangles in a 3 X 1 box, cutting the box
at z selected u.a.r. from [0, 1], and constructing a triplet of items from the
rectangles it intersects, leads to an integral caching strategy with the desired
marginals.

items in its cache independently of all other nodes: that is,
node v selects a random strategy x(vk) e {0,1}!¢l sampled
independently of any other node in V.

The random strategy x() satisfies the following two proper-
ties: (a) it is a feasible strategy, i.e., satisfies the capacity and
integrality constramts (]Tiﬁ[) and (T3d), and (b) it is consistent
with the marginals g—‘v ie., foralli € C, E[x(k) | §(k) g“‘).
We note that there can be many random cachlng strategies
whose distributions satisfy the above two properties. An effi-
cient algorithm generating such a distribution is provided in
and, independently, in . Given fék), a distribution
over (deterministic) caching strategies can be computed in
O(cy|C|log|C|) time, and has O(|C|) support; for the sake
of completeness, we briefly outline this below. We follow
the high-level description of here; a detailed, formal de-
scription of the algorithm, a proof of its correctness, and a
computational complexity analysis, can be found in [20].

The input to the algorithm are the marginal probabilities
£, €0,1],i € C s.it. Yjec &vi = ¢y, where ¢, € N is the
capacity of cache v. To construct a randomized caching strat-
egy with the desired marginal distribution, consider a rectangle
box of area ¢, X 1, as illustrated in Fig. El For each i € C,

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 13

Algorithm 2 PROJECTED GRADIENT ASCENT
1: Execute the following for each v € V and each (i, s) € R:

2: Pick arbitrary state (p(©,2©) € conv(Dsg).

3: for each timeslot k > 1 do

4: for eachv eV do

5: Compute the sliding average g?ék) through (@3).

6: Sample a feasible x(vk) from a distribution with
marginals 5.

Place items xf,k) in cache.
8: Collect measurements and, at the end of the timeslot,

compute estimate z,, f dg, Lsr (o, EX)) through @2).

~

9: Adapt fék) through (@4) to new state f‘(,kﬂ) in the
direction of the gradient with step-size yi, projecting
back to conv(Dsg).

10: end for

11: for each (i,s) € R do

12: Compute the sliding average ﬁiﬁ)s) through (46).

13: Whenever a new request arrives, sample p € P y)
from distribution [)8.‘%.

14: Collect measurements and, at the end of the times-

lot, compute estimate ¢ s) of Bp(i’s)LSR(pk, =)y
through (E;D

15: Adapt pzias) through (@4). to new state pg‘t;) in the
direction of the gradient with step-size yi, projecting
back to conv(Dsg).

16: end for

17: end for

place a rectangle of length &,; and height 1 inside the box,
starting from the top left corner. If a rectangle does not fit in
a row, cut it, and place the remainder in the row immediately
below, starting again from the left. As 3,;cc &vi = ¢y, this
space-filling method tessellates the ¢, X1 box. The randomized
placement then is constructed as follows: select a value in
z € [0, 1] uniformly at random, and “cut” the box at position
z. The value will intersect exactly ¢, distinct rectangles: as
&, < 1, no rectangle “overlaps’ with itself. The algorithm
then produces as output the caching strategy x, € {0,1}¢!
where:

if the line intersects rectangle i,

O0.W.

As the line intersects ¢, distinct rectangles, Y;cc Xvi = Cy,
so the caching strategy is indeed feasible. On the other hand,
by construction, the probability that x,; = 1 is exactly equal
to the length of the i-th rectangle, so the marginal probability
that i is placed in the cache is indeed P[x,; = 1] = &,;, and
the randomized cache strategy x, has the desired marginals.

E. Proof of Lemma

We first show that @2)) and (@3] are unbiased estimators of
the subgradient:

Lemma 6: The vectors z,, v € V, and ¢), (I,s) € R
constructed through coordinates @2)) and (@3)), satisfy:

Elzv] € 0¢, Lsr(p, B),

Moreover, E[||z,[13] < C), and E[llg,s)|13] < Ca, where

and Elgq)] € 0z, Lsr(p, E).

_ A
Ci = W2PVPICI(A” +),
21112 2 A
C, =W V|"P(A” + T)»
and constants W, P, and A are given by:
W = max Wij,

(i,))eE

P = max |P.sl and
(i,s)€R

A= D A

(i,5)eR

Proof: A vector ¢ € RIC! belongs to O¢, Lsr(p, B) if and
only if ¢; € [vaiLSR(p, =), ng.LSR(p, Z)], where:

6§W-LSR(/7’ E) = Z(i,S)E‘R /l(i,s) Zpef’(m)]lvep'
lpl-1
1

Wpirsiprr
k'=kp (v)

9, L (0.B) = Liis)er Ais) Lperq,y) Lvep:

Ipl-1

!
|*p<i,s>+Z’Z:1 Eppi <7

wpkl“pk']ll_p(i,s)"'zlz;] f[7([<1 !
k'=k, (v)
If Lgr is differentiable at (p, E) w.r.t &,;, the two limits coin-

cide and are equal to OBLS_R. It immediately follows from the

fact that requests are Poisson that E[z,;(p, E)] = mSR(p, =),
so indeed E[z, (Y)] € 0g, Lsr(p,E). To prove the bound on
the second moment, note that, for 7;; the number of requests
generated for i that pass through v during the slot, E[z\% 1=
SE(Sier, 021 < WLIVEE[T2] as 1 < WPIVI. On the
other hand, T,; is Poisson distributed with expectation

Z]lﬂpefo(,-,s) s.t. vep/l(i,s)T,
(i,s)eR

and the upper bound follows. The statement for ¢q(; 5) follows
similarly. []
We now establish the convergence of the smoothened marginals
to a global maximizer of L. Under #4), @3)) and {6), from
Theorem 14.1.1, page 215 of Nemirofski [61]], we have that

2 2 \k 2
D+ M Z[:Lk/ZJ Vs
k
ZZ,g:Lk/QJ Ye

Er <

s

where y; = «/LE’

D = max

x,y€conv(Dsr

e =yl = \IVimax2e, +2IR]

and

M= sup VELIZ(p. 2)I21 + Elllg(p. DB
0,2

From Lem. @ M < A/|V|Cy + |R|C, and Lemma follows. H

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 14

F. Proof of Theorem

By construction, conditioned on (5%, 2®)) the |V| + |R|
variables x,, v € V, and r(; s, (i, s), are independent. Hence,
conditioned on (ﬁ(k), Z®)), all monomial terms of Fsg involve
independent random variables. Hence,

E[Fsa(r®, X W) | g1, 20 = Fsa(p®), EW),
and, in turn,

Jim B[Fsz (), X©)] = lim B[Fs (5, 2],

Lemma [3 implies that, for v the distribution of (5%, £®)),
and Q the set of (p*,E*) € conv(Dsr) that are maximizers
of Lgg,

Jlim v® (conv(Dsz) \ Q) = 0.

By Lemma (2} Fsx(p", %) > (1-1/e) max(, x)eny, Fsu(r, X),
for any (p*,E2") € Q. The theorem follows from the above
observations, and the fact that Fsy is bounded in conv(Dsr)\
Q. [|

G. Reducing Control Traffic.

Control messages generated by the protocol can be reduced
by modifying the algorithm to propagate only a single control
message over a single path with each request. The path is
selected uniformly at random over paths in the support of
Pqi,s)- That is, when a request (i, s) € R arrives at s, a single
control message is propagated over p selected uniformly at
random from supp(p,s)) = {p € Pa,s) : PG,s),p > 0}. This
reduces the number of control messages generated by s by at
least a ¢ = [supp(p(,s))| factor. To ensure that (38) and (39)
hold, it suffices to rescale measured upstream costs by c. To do
this, the (single) control message contains an additional field
storing ¢. When extracting weight counters from downwards
packets, nodes on the path compute ¢, = ¢-t,;, and tEi,s),p =
C-1i,5)p» Where 1, t(; s),p are as in @0) and @I)), respectively.
This randomization reduces control traffic, but increases the
variance of subgradient estimates, also by a factor of c. This,
in turn, slows down the algorithm convergence; this tradeoff
can be quantified through, e.g., the constants in Lemma [5]

VII. Hor-BY-HOP ROUTING

The proofs for the hop-by-hop setting are similar, mutatis-
mutandis, as the proofs of the source routing setting. As such,
in our exposition below, we focus on the main technical dif-
ferences between the algorithms for the two settings.

Offline Setting. Define the constant:

0
CHH = Z(i,x)e'R /1(i,s) Z(u,v)eG“?” Wvulp(ui,sﬂ-

Using this constant, we define the caching gain maximization
problem to be:

MAxCG-HH
Maximize: Fuy(r, X) (47a)
subj. to: (1, X) € Dyy (47b)

where Fuu(r, X) = Cy = Sisyer A5 CL5Y (r, X) is the ex-
pected caching gain. This is again an NP-hard problem, equiv-
alent to (I7). We can again construct a constant approximation
algorithm for MAXCG-HH:

Theorem 5: There exists an algorithm that terminates within
a number of steps that is polynomial in |V|, |C]|, and Pyy, and
produces a strategy (r’, X’) € Dyy such that

FHH(r',X') > (1 - 1/6) max FHH(V,X)
(r,X)eDuy

H

Proof: Consider the function

LHH(p’ E) = Z(i,X)E'R /l(i,s) Z(u,v)EG“vS)ZPEP(':'.’S)WVM'

. [-1 [
min{1, 1-p + &+ D0 A=pl) L +Epaid).

As in Lemma [2] we can show that this concave function
approximates Fyy, in that for all (p, E) € conv(Dgy) :

(1-1/e)Luu(p, E) < Fua(p, &) < Luu(p, 2).

To construct a constant approximation solution, first, a frac-
tional solution

(p*’ E*) = arg max LHH(p7 E)’

(p,E)econv(Dyn)

can be obtained. This again involves a convex optimization,
which can be reduced to a linear program. Subsequently, the
solution can be rounded to obtain an integral solution (7, X) €
Dsr such that Fyy(r, X) > Fau(p*, E*). Rounding Z* follows
the same steps as for source routing. To round p*, one first
rounds each node’s strategy individually, i.e., for every v € V
and every i € C, we would pick the neighbor that maximizes
the objective. This again follows from the fact that, given
a caching strategy =, and given the routing strategies of all
other nodes, Fyy is an affine function of {r,(fv)}v:(uv)eEm, for
all u € V, with positive coefficients. Hence, keeping everything
else fixed, if each node chooses a cost minimizing decision,
this will round its strategy, and all nodes in V can do this
sequentially. The DAG property ensures that all requests even-
tually reach a designated server, irrespectively of the routing
strategies resulting from the rounding decisions. []
Online Setting. Finally, as in the case of source routing, we
can provide a distributed, adaptive algorithm for hop-by-hop
routing as well.

Theorem 6: There exists a distributed, adaptive algorithm
under which the randomized strategies sampled during the k-
th slot (r®, X®)) € Dy satisfy

lim E[Fas r©, X®)] > (1 - 1/e) max Fyu(r, X).

k—o0 (r,X)€eDsr

Proof: A distributed algorithm can be constructed by per-
forming projected gradient ascent over Lyy. Beyond the same
caching state variables &, stored at each node v € V, each
node v € V maintains routing state variables

p(ul) = [pg\))]v:(u,v)eE(") € [O’ 1]|E<l)|,

for each i € C, containing the marginal probabilities pﬁfg
that u routes request message for item i towards v € E@.
Time is slotted, and nodes perform subgradient estimation,
state adaptation, state smoothening, and randomized sampling

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 15

of caching and routing strategies. As the last three steps are
nearly identical to source routing, we focus below on how to
estimate subgradients, which is the key difference between the
two algorithms.

Whenever a request (i, s) € R is generated, a control mes-
sage is propagated in all neighbors of s in E(). These mes-
sages contain counters initialized to 1 — pgiv) + &5;. Each node
v € V receiving such a message generates one copy for each of
its neighbors in E® . For each neighbor u, v adds 1— p(vi,; +&y;
to the counter, and forwards the message to u if the counter
is below 1.0. Formally, a control message originating at s and
reaching a node v after having followed path p € G is
forwarded to u if the following condition is satisfied:

: Kk, (v)—1 i
1- pS/lL)t +&ui + ZZZI (1- pggpul + fp{i) <L

If this condition is met, v forwards a copy of the control
message to u; the above process is repeated at each of each
neighbors. If the condition fails for all neighbors, a response
message is generated by v and propagated over the reverse
path, accumulating the weights of edges it passes through.
Moreover, descending control messages are merged as follows.
Each node v waits for all responses from neighbors to which
it has sent control messages; upon the last arrival, it adds
their counters, and sends the “merged” message containing
the accumulated counter reversely over path p.

As before, messages on the return path are again “sniffed”
by nodes they pass through, extracting the upstream costs.
Their averages are used as estimators of the subgradients w.r.t.
both the local routing and caching states, in a manner similar
to how this was performed in source routing. As each edge is
traversed at most twice, the maximum number of control mes-
sages is O(IED|). As in the case of source routing, however,
messages on low-probability paths are pruned early. Moreover,
as in Section only a single message need be propagated
to a neighbor selected uniformly at random; in this case, the
message needs to also contain a field keeping track of the
product of the size of neighborhoods of nodes it has passed
through, and updated by each node by multiplying the entry
by the size of its own neighborhood. As in source routing, this
is used as an additional scaling factor for quantities t‘(,ib),, tyi.

|
We note again that the distributed, adaptive algorithm attains
an expected caching gain within a constant approximation
from the offline optimal.

VIII. EVALUATION

We simulate Alg. 2 over both synthetic and real networks.
We compare its performance to traditional caching policies,
combined with both static and dynamic multi-path routing.
Experiment Setup. We consider the topologies in Table
For each graph G(V, E), we generate a catalog of size |C]|,
and assign to each node v € V a cache of capacity c,. For
every item i € C, we designate a node selected u.a.r. from V
as a designated server for this item; the item is stored outside
the designate server’s cache. We assign a weight to each edge
in E selected u.a.r. from the interval [1, 100]. We also select
a random set of Q nodes as the possible request sources, and

generate a set of requests R € C X V by sampling exactly
|R| from the set C X Q, uniformly at random. For each such
request (i,s) € R, we select the request rate A(;) according
to a Zipf distribution with parameter 1.2; these are normalized
so that average request rate over all |Q| sources is 1 request
per time unit. For each request (i, s) € R, we generate |P(;)l
paths from the source s € V to the designated server of item
i € C. This path set includes the shortest path to the designated
server. We consider only paths with stretch at most 4.0; that
is, the maximum cost of a path in P(; 4y is at most 4 times the
cost of the shortest path to the designated source. The values
of |C|, IR] |QI, ¢y, and P(; s for each G are given in Table
Online Caching and Routing Algorithms. We compare the
performance of our joint caching and routing projected gradi-
ent ascent algorithm (PGA) to several competitors. In terms of
caching, we consider four traditional eviction policies for com-
parison: Least-Recently-Used (LRU), Least-Frequently-Used
(LFU), First-In-First-Out (FIF0), and Random Replacement
(RR). We combine these policies with path-replication [2]],
[12]: once a request for an item reaches a cache that stores the
item, every cache in the reverse path on the way to the query
source stores the item, evicting stale items using one of the
above eviction policies. We combine the above caching poli-
cies with three different routing policies. In route-to-nearest-
server (—S), only the shortest path to the nearest designated
server is used to route the message. In uniform routing (-U),
the source s routes each request (i, s) on a path selected uni-
formly at random among all paths in P). We combine
each of these (static) routing strategies with each of the above
caching strategies use. For instance, LRU-U indicates LRU
evictions combined with uniform routing. Note that PGA-S,
i.e., our algorithm restricted to RNS routing, is exactly the
single-path routing algorithm proposed in [20]. To move be-
yond static routing policies for LRU, LFU, FIFO, and RR, we
also combine the above traditional caching strategies with an
adaptive routing strategy, akin to our algorithm, with estimates
of the expected routing cost at each path used to adapt routing
strategies. During a slot, each source node s maintains an
average of the routing cost incurred when routing a request
over each path. At the end of the slot, the source decreases the
probability p(;,), that it will follow the path p by an amount
proportional to the average, and projects the new strategy to
the simplex. For fixed caching strategies, this dynamic routing
scheme converges to a route-to-nearest-replica (RNS) routing,
which we expect by Cor. [T] to have good performance. We
denote this routing scheme with the extension —D. Note that
all algorithms we simulate are online.

Experiments and Measurements. Each experiment consists
of a simulation of the caching and routing policy, over a
specific topology, for a total of 5000 time units. To leverage
PASTA, we collect measurements during the duration of the
execution at exponentially distributed intervals with mean 1.0
time unit. At each measurement epoch, we extract the current
cache contents in the network and construct X € {0, 1}VIXICI,
Similarly, we extract the current routing strategies p(;,s) for all
requests (i, s) € R, and construct the global routing strategy
p € [0,1]7s=. Then, we evaluate the expected routing cost
Csr(p, X). We report the average Csy of these values across

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 16

23 LRU-S @ LFU-S @ FIFO-S NN RR-S & PGA-S B9 LRU-U EER LFU-U (3 FIFO-U EX RR-U E= PGA-U B LRU-D LFU-D E=3 FIFO-D RR-D A PGA
T T T T T T
10°F
<
[O)4
[aY3%)
O a02k
N
P
S
10' : J
: 1 _
10 =il @ A m
expander erdos-renyi regular
T T T T T T
10°
<
O
[aTR%)
QO 102k
<
% od
Q

10!

LT

small-world

watts-strogatz

GA

Fig. 5. Ratio of expected routing cost Csg to routing cost CES

abilene dtelekom

under our PGA policy, for different topologies and strategies. For each topology, each of

the three groups of bars _corresponds to a routing strategy, namely, RNS/shortest path routing (-S), uniform routing (-U), and dynamic routing (-D). The
algorithm presented in is PGA-S, while our algorithm (PGA), with ratio 1.0, is shown last for reference purposes; values of of ngA are given in Table

TABLE II
GRAPH TOPOLOGIES, EXPERIMENT PARAMETERS, AND CONVERGENCE TIMES
Graph VI 1El ICl IRl 19| ¢ [|Pusl Cig® LRU-S PGA-S LRU-U PGA-U LRU PGA
cycle 30 60 10 100 10 2 2 20.17 0.47 865.29 0.47 436.14 6.62 148.20
grid-2d 100 360 300 1K 20 3 30 0.228 0.08 657.84 0.08 0.08 0.08 0.08
hypercube 128 896 300 1K 20 3 30 0.028 0.21 924.75 0.21 0.21 0.21 0.21
expander 100 716 300 1K 20 3 30 0.112 0.38 794.27 0.38 0.38 0.38 0.38
erdos-renyi 100 1042 300 1K 20 3 30 0.047 3.08 870.84 0.25 0.25 0.25 0.25
regular 100 300 300 IK 20 3 30 0.762 1.50 1183.97 0.05 8.52 0.05 11.49
watts—-strogatz 100 400 300 1K 20 3 2 35.08 11.88 158.39 7.80 54.90 19.22 37.05
small-world 100 491 300 1K 20 3 30 0.029 0.30 955.48 0.30 0.30 0.30 0.30
barabasi-albert | 100 768 300 1K 20 3 30 0.187 1.28 1126.24 1.28 6.86 1.28 7.58
geant 22 66 10 100 10 2 10 1.28 0.09 1312.96 1.85 12.71 0.09 14.41
abilene 9 26 10 90 9 2 10 0911 3.44 802.66 3.44 23.08 5.75 14.36
dtelekom 68 546 300 1K 20 3 30 0.025 0.30 927.24 0.30 0.30 0.30 0.30

measurements collected after a warmup phase, during 1000
and 5000 time units of the simulation; that is, if #; are the
measurement times, then

tii€lty, teot]

Csr(p(ti), X (11)).

teort — Iy

Performance w.r.t Routing Costs. The relative performance
of the different strategies to our algorithm is shown in Fig-
ure@ With the exception of cycle and watts-strogatz,
where paths are scarce, we see several common trends across
topologies. First, simply moving from RNS routing to uniform,
multi-path routing, reduces the routing cost by a factor of 10.
Even without optimizing routing or caching, simply increasing
path options increases the available caching capacity. For all
caching policies, optimizing routing through the dynamic rout-
ing policy (denoted by —-D), reduces routing costs by another
factor of 10. Finally, jointly optimizing routing and caching
leads to a reduction by an additional factor between 2 and
10 times. In several cases, PGA outperforms RNS routing
(including [20])) by 3 orders of magnitude.

Convergence. In Table [lI} we show the convergence time for
different variants of LRU and PGA. We define the convergence
time to be the time at which the time-average caching gain

reaches 95% of the expected caching gain attained at steady
state. LRU converges faster than PGA, though it converges to a
sub-optimal stationary distribution. Interestingly, both ~U and
adaptive routing reduce convergence times for PGA, in some
cases (like grid-2d and dtelekom) to the order of magni-
tude of LRU: this is because path diversification reduces con-
tention: it assigns contents to non-overlapping caches, which
are populated quickly with distinct contents.

IX. CONCLUSIONS

We have constructed joint caching and routing schemes
with optimality guarantees for arbitrary network topologies.
Identifying schemes that lead to improved approximation guar-
antees, especially on the routing cost directly rather than on
the caching gain, is an important open question. Equally im-
portant is to incorporate queuing and congestion. In partic-
ular, accounting for queueing delays and identifying delay-
minimizing strategies is open even under fixed routing. Such
an analysis can also potentially be used to understand how
different caching and routing schemes affect both delay opti-
mality and throughput optimality. Finally, our adaptive algo-
rithms proceed in a different timescale than content requests.
Algorithms that mimic, e.g., path replication would adapt

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 17

faster and reduce traffic. Providing such algorithms with guar-
antees is an open problem.

[1]
[2]
[3]

[4]
[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

REFERENCES

S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” in ACM ICN, 2017.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.
E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP: A
framework for joint dynamic forwarding and caching in named data
networks,” in ICN, 2014.

W. Jiang, S. Ioannidis, L. Massoulié, and F. Picconi, “Orchestrating
massively distributed cdns,” in CoNEXT, 2012.

M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” in INFOCOM, 2014.
N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for
hierarchical web caches,” in ICPCC, 2004.

H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” Selected Areas in Commu-
nications, vol. 20, no. 7, pp. 1305-1314, 2002.

Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache management,”
Farallel and Distributed Systems, vol. 15, no. 6, pp. 505-519, 2004.
K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” Transactions on Information Theory, vol. 59, no. 12,
pp. 8402-8413, 2013.

K. Naveen, L. Massoulié, E. Baccelli, A. Carneiro Viana, and
D. Towsley, “On the interaction between content caching and request
assignment in cellular cache networks,” in ATC, 2015.

K. Poularakis, G. losifidis, and L. Tassiulas, “Approximation caching and
routing algorithms for massive mobile data delivery,” in GLOBECOM,
2013.

E. Cohen and S. Shenker, “Replication strategies in unstructured peer-
to-peer networks,” in SIGCOMM, 2002.

S. JToannidis and P. Marbach, “Absence of evidence as evidence of
absence: A simple mechanism for scalable p2p search,” in INFOCOM,
2009.

C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-
imation for LRU cache performance,” in ITC, 2012.

V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in INFOCOM, 2014.

D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” IFIP Performance, 2014.

N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of TTL-
based cache networks,” in VALUETOOLS, 2012.

E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in INFOCOM. 1EEE, 2010, pp. 1-9.

E. J. Rosensweig, D. S. Menasche, and J. Kurose, “On the steady-state
of cache networks,” in INFOCOM, 2013.

S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” in Transactions on Networking, 2018.

D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

J. E. Kurose and K. W. Ross, Computer Networking: a Top-Down
Approach. Addison Wesley, 2007.

L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in SODA, 2006.

S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in INFOCOM, 2010.

S. Podlipnig and L. Boszérmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374—
398, 2003.

B. Nitzberg and V. Lo, “Distributed shared memory: A survey of issues
and algorithms,” Computer, vol. 24, no. 8, pp. 52-60, 1991.

S. Albers, “Online algorithms: a survey,” Mathematical Programming,
vol. 97, no. 1-2, pp. 3-26, 2003.

M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. Tay, “A
utility optimization approach to network cache design,” in INFOCOM,
2015.

N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of
Iru caches and its analysis,” Performance Evaluation, vol. 63, no. 7, pp.
609-634, 2006.

[30]

[31]

[32]

(33]

[34]

(35]

(36]

[37]

[38]

(39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]
(51]
[52]

[53]

[54]

[55]

[56]

I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in ICN. ACM.

Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache allo-
cation for content-centric networking,” in 2013 21st IEEE International
Conference on Network Protocols (ICNP). 1EEE, 2013, pp. 1-10.

G. Rossini and D. Rossi, “Coupling caching and forwarding: Benefits,
analysis, and implementation,” in Proceedings of the Ist international
conference on Information-centric networking. ACM, 2014, pp. 127-
136.

I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for
data placement problems,” SIAM Journal on Computing, vol. 38, no. 4,
pp. 1411-1429, 2008.

Y. Bartal, A. Fiat, and Y. Rabani, “Competitive algorithms for distributed
data management,” Journal of Computer and System Sciences, vol. 51,
no. 3, pp. 341-358, 1995.

D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakr-
ishnan, “Optimal content placement for a large-scale VoD system,” in
CoNext, 2010.

A. A. Ageev and M. . Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” Journal of
Combinatorial Optimization, vol. 8, no. 3, pp. 307-328, 2004.

R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino,
“Exploit the known or explore the unknown?: Hamlet-like doubts in
ICN,” in ICN, 2012.

S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable icn,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 147-158.

G. Carofiglio, L. Mekinda, and L. Muscariello, “Joint forwarding and
caching with latency awareness in information-centric networking,”
Computer Networks, vol. 110, pp. 133-153, 2016.

N. Abedini and S. Shakkottai, “Content caching and scheduling in wire-
less networks with elastic and inelastic traffic,” IEEE/ACM Transactions
on Networking, vol. 22, no. 3, pp. 864-874, 2014.

H. Xie, G. Shi, and P. Wang, “TECC: Towards collaborative in-network
caching guided by traffic engineering,” in INFOCOM, 2012.

J. Edmonds, “Submodular functions, matroids, and certain polyhedra,”
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen, vol. 11, 1970.
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical Programming, vol. 14, no. 1, pp. 265-294, Dec 1978.

J. Vondrék, “Optimal approximation for the submodular welfare problem
in the value oracle model,” in STOC, 2008.

G. Calinescu, C. Chekuri, M. Pdl, and J. Vondrdk, “Maximizing a
submodular set function subject to a matroid constraint,” in Integer
programming and combinatorial optimization. Springer, 2007, pp. 182—
196.
——, “Maximizing a monotone submodular function subject to a
matroid constraint,” SIAM Journal on Computing, vol. 40, no. 6, pp.
1740-1766, 2011.

A. Krause and D. Golovin, “Submodular function maximization,”
Tractability: Practical Approaches to Hard Problems, vol. 3, no. 19,
p- &, 2012.

G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Mathematics of operations
research, vol. 3, no. 3, pp. 177-188, 1978.

J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712-716, 1971.

D. Eppstein, “Finding the k shortest paths,” SIAM Journal on computing,
vol. 28, no. 2, pp. 652-673, 1998.

C. E. Hopps, “Analysis of an equal-cost multi-path algorithm,” 2000,
iETF RFC2992.

J. He and J. Rexford, “Toward internet-wide multipath routing,” /EEE
network, vol. 22, no. 2, 2008.

S. Vutukury and J. J. Garcia-Luna-Aceves, “Mdva: A distance-vector
multipath routing protocol,” in INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 1. 1EEE, 2001, pp. 557-564.

M. K. Marina and S. R. Das, “On-demand multipath distance vector
routing in ad hoc networks,” in Network Protocols, 2001. Ninth Inter-
national Conference on. 1EEE, 2001, pp. 14-23.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT Press, 2009.

B. Btaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in ICC, 2015.

IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS

[57] M. X. Goemans and D. P. Williamson, “New 3/4-approximation al-
gorithms for the maximum satisfiability problem,” SIAM Journal on
Discrete Mathematics, vol. 7, no. 4, pp. 656-666, 1994.

[58] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1982.

[59] H. J. Kushner and G. Yin, Stochastic approximation and recursive
algorithms and applications. ~ Springer Science & Business Media,
2003, vol. 35.

[60] C. Michelot, “A finite algorithm for finding the projection of a point
onto the canonical simplex of R’ Journal of Optimization Theory and
Applications, vol. 50, no. 1, pp. 195-200, 1986.

[61] A. Nemirovski, Efficient methods in convex programming, 2005.

Stratis Ioannidis is an Assistant Professor in the
Electrical and Computer Engineering department at
Northeastern University, in Boston, MA, where he
also holds a courtesy appointment with the College
of Computer & Information Sciences. He received
his B.Sc. (2002) in Electrical and Computer Engi-
neering from the National Technical University of
Athens, Greece, and his M.Sc. (2004) and Ph.D.
(2009) in Computer Science from the University of
Toronto, Canada. Prior to joining Northeastern, he
was a research scientist at the Technicolor research
centers in Paris, France, and Palo Alto, CA, as well as at Yahoo Labs
in Sunnyvale, CA. He is the recipient of an NSF CAREER award, a
Google Faculty Research Award, and a Best Paper Award at the 2017 ACM
Conference on Information-centric Networking (ICN).

Edmund Yeh is a Professor of Electrical and Com-
puter Engineering at Northeastern University, Boston,
USA. He received his B.S. in Electrical Engineering
with Distinction and Phi Beta Kappa from Stan-
ford University in 1994. He then studied at Cam-
bridge University on the Winston Churchill Schol-
arship, obtaining his M.Phil in Engineering in 1995.
He received his Ph.D. in Electrical Engineering and
Computer Science from MIT under Professor Robert
Gallager in 2001. He was previously Assistant and
Associate Professor of Electrical Engineering, Com-
puter Science, and Statistics at Yale University. He is the recipient of the
Alexander von Humboldt Research Fellowship, the Army Research Office
Young Investigator Award, and the Best Paper Award at the 2017 ACM
Conference on Information-centric Networking (ICN) and at the 2015 IEEE
International Conference on Communications (ICC) Communication Theory
Symposium.

	Introduction
	Related Work
	Model
	Network Model and Content Requests
	Caching Strategies
	Source Routing Strategies
	Hop-by-Hop Routing Strategies
	Offline vs. Online Setting
	Optimal Routing and Caching
	Fixed Routing
	Greedy Routing Strategies

	Routing to Nearest Server Is Suboptimal
	Offline Source Routing
	Offline Approximation Algorithm
	Implications: RNS and an Equivalence Theorem

	Online Source Routing
	Algorithm Overview
	Subgradient Estimation
	State Adaptation and Smoothening
	Randomized Caching and Routing.
	Proof of Lemma 5
	Proof of Theorem 4
	Reducing Control Traffic.

	Hop-by-Hop Routing
	Evaluation
	Conclusions
	References
	Biographies
	Stratis Ioannidis
	Edmund Yeh

