
A Visual Programming Environment for Introducing
Distributed Computing to Secondary Education

Brian Broll, Ákos Lédeczi∗, Hamid Zare, Dung Nguyen Do, János Sallai, Péter
Völgyesi, Miklós Maróti, Lesa Brown, Chris Vanags

Vanderbilt University, Nashville, TN, USA.

Abstract

The paper introduces a visual programming language and corresponding web

and cloud-based development environment called NetsBlox. NetsBlox is an

extension of Snap! and builds upon its visual formalism as well as its open source

code base. NetsBlox adds distributed programming capabilities by introducing

two well-known abstractions to block-based programming: message passing and

Remote Procedure Calls (RPC). Messages containing data can be exchanged

by two or more NetsBlox programs running on different computers connected

to the Internet. RPCs are called on a client program and are executed on the

NetsBlox server. These two abstractions make it possible to create distributed

programs such as multi-player games or client-server applications. We believe

that NetsBlox not only teaches basic distributed programming concepts but also

provides increased motivation for high-school students to become creators and

not just consumers of technology.

Keywords: visual programming, distributed programming, computer science

education

∗Corresponding author

Email address: akos.ledeczi@vanderbilt.edu (Ákos Lédeczi)

Preprint submitted to Journal of Parallel and Distributed Computing August 9, 2018



1. Introduction

Computational thinking (CT) has been described as a general analytic approach

to problem-solving, designing systems, and understanding human behaviors [1,

2]. The integration of CT within the K12 curriculum has also been argued for

by the ACM committee on K12 education [3] and has become a focus of several5

researchers on educational computing [4, 5].

There are many efforts around the world aimed at introducing children to

computer science and programming, such as code.org, Khan Academy, or the

Raspberry Pi Foundation. Visual programming languages have come to play a

prominent role in this movement and have been used to teach children program-10

ming [6, 7] as well as computational modeling [4, 8]. However, most of these

efforts focus exclusively on the computer and neglect an equally important con-

cept, the network . This is, of course, completely understandable: you need to

learn how to program a computer before you can create networked/distributed

applications. Nevertheless, the majority of computer applications we and our15

children interact with daily rely on the network to provide their functionality.

The world-wide web, messaging apps, online games, social networks (e.g., Twit-

ter and Facebook), streaming music and video services (e.g., Pandora, Netflix,

and YouTube), home assistants (e.g., Amazon Echo), and massive open online

courses are just a few of the most popular examples. Even embedded systems20

are becoming networked at a rapid pace, with cars and home automation be-

ing the prime examples. These advances have created a demonstrated need to

teach distributed computing as a part of basic computer literacy. Fortunately,

the ubiquity and utility of the applications will make the adoption by a novice

much more attractive.25

We believe that it is not enough to introduce computer programming into

the K12 curriculum — it is also necessary to teach distributed computing con-

cepts to young learners. At the college level, the ACM IEEE Computer Science

curriculum (2013) [9] advocates introducing the following topics to CS majors:

asynchronous and synchronous communication, reliable and unreliable proto-30

2



cols, and the need for concurrency in operating systems. We argue that with

the help of a carefully designed visual representation, an intuitive user inter-

face and a sophisticated cloud-based infrastructure, it will be possible to teach

some of the key underlying concepts of distributed computation to high school

students. To this end, we have developed a new learning environment called35

NetsBlox, an extension of the visual programming paradigm of Snap! [10, 11],

which, itself, is an extension of Scratch [6]. NetsBlox introduces a few care-

fully selected abstractions that enable novice programmers to create distributed

computing applications.

The literature on educational computing is rife with observations of the40

impediments that keep young students from learning the basic constructs of

programming. Programming languages tend to have only a few components

which are combined in many different ways, and students find it challenging to

understand the semantic results of different combinations, especially to achieve

particular goals [12, 13]. When students try to assemble language elements,45

they often get confused with syntax problems as they struggle to understand

semantic ones [13]. By alleviating syntax issues, students can focus on the

semantic problems [14]. In fact, research comparing learning in a more and

a less syntactically strict language, Java and Python, respectively, attributed

the greater success of students in Python to reduced syntactic complexity [15].50

Another documented programming challenge in the literature is students’ lack

of understanding of computational processes. Many students do not understand

how traditional programming languages are interpreted by the computer, e.g.,

how control flows and how variables get updated [16]. Some research claims

that visual programming languages can make these processes more accessible55

by making control flow constructs more natural.

Alleviating syntactic complexity is an important pedagogical affordance of

a visual programming paradigm. In such an environment, students construct

programs using graphical objects on a drag-and-drop interface [7]. This signif-

icantly reduces students’ challenges in learning the language syntax (compared60

to text-based programming), and thus makes programming more accessible to

3



novices. Examples of some visual programming environments are Scratch [6],

Snap! [10, 11], AgentSheets [17], StarLogo TNG [18], ViMAP [19] and Alice [20].

Figure 1: Scratch example

We start by introducing Scratch [6] because it is one of the most mature

and widely used approaches and Snap! is based on its visual formalism. Fig-65

ure 1 shows the Scratch web-based editor with a simple example Pong program

loaded. A Scratch program consists of one or more sprites that can have multi-

ple visual representations (“Costumes”) and one or more scripts. The example

Pong program has three sprites (a ball and two paddles shown in the bottom

left window). The currently selected paddle sprite has three scripts (shown in70

the rightmost window). As can be easily seen from the code, the top script

handles what happens at startup (when the green flag is clicked, the orientation

and position of the paddle is initialized), and the other two respond to the up

or down arrow keys, respectively (the paddle moves up or down, but it is never

allowed to reach the border). The program is executed on the “stage” in the75

top left window. The area in the middle shows the available computing blocks

(instructions, operators, etc.) grouped by various color coded tabs. The shape

4



of the block is based on the role. For example, one can only insert hexagons as a

condition into an ‘if’ block header; no other shapes are accepted. This prevents

syntax errors altogether.80

1.1. Understanding Concurrency

Although researchers have been investigating approaches for teaching and learn-

ing computer programming in K12 classrooms, very few studies have looked at

how K16 students can learn about concurrency. A few researchers have pointed

out that Scratch can be used productively to introduce basic ideas of concur-85

rency to novices [21, 22]. Meerbaum-Salant et al. [21] investigated and classified

two types of difficulties experienced by students in understanding concurrency

using Scratch. Type I concurrency occurred when several sprites were execut-

ing scripts simultaneously, such as sprites representing two dancers. Type II

concurrency occurred when a single sprite executed more than one script simul-90

taneously; for example, a Pac-Man sprite moving through a maze while opening

and closing its mouth. They found that Type I concurrency seemed to be much

more intuitive for students and easier to grasp.

Maloney, et al. [22] reported on an experiment where Scratch was used by

students in an after-school club. These students were self-selected and self-95

paced, receiving no formal instruction. An analysis of the projects revealed that

the majority of the student who actually constructed executable scripts used

both sequential and concurrent execution. However, as the authors themselves

note: “ without realizing it, most Scratch users make use of multiple threads.”

The researchers did not investigate if the use of concurrency demonstrated an100

understanding of this concept. The internalization of concepts was measured

by counting the portion of projects using them. These measures were higher

(about 50%) for user interaction and loops, lower for conditional statements

and for communications and synchronization (about 25%), and much lower for

Boolean logic, variables and random numbers (about 10%).105

Visual programming environments have also been used to simplify paral-

5



lel programming as demonstrated by Feng et al.. Their research introduced

an extension of Snap! [11] with explicit parallel programming concepts [23].

The system also added the ability to generate textual parallel code from visual

blocks. Snap! blocks are translated to OpenMP [24] code, enabling execution110

on different HPC platforms. Developing parallel code in a popular visual pro-

gramming environment enabled parallel programming concepts to be accessible

to a wide range of audiences ranging from sixth graders to domain scientists.

In Snap! multiple scripts may appear to be running concurrently but are sim-

ply context switching rapidly. This extension added true parallelism by adding115

three native blocks: parallelMap, parallelForEach and MapReduce, which were

processed in parallel using HTML5 web workers and the Paralleljs [25] library.

This enabled the given concurrent scripts to run in parallel rather than simply

context switching. Where Feng et al.[23] targeted concurrent programming ed-

ucation on individual machines, the aim of NetsBlox is distributed computing120

and computer networking.

1.2. Paper Organization

The rest of the paper is organized as follows. The next section presents a

brief overview of NetsBlox followed by a detailed description of the distributed

programming primitives employed. Their utility is illustrated through a few125

example applications in the subsequent section. Section 5 describes how an ex-

ample high level distributed computing pattern can be implemented and taught

using NetsBlox. It is followed by an overview of the network model and soft-

ware architecture of the tool in Sections 6 and 7. The paper concludes with a

description of two classroom studies involving middle and high school students.130

2. NetsBlox

While Scratch is implemented in Flash, Snap! is an open source extension of

Scratch written in JavaScript. It is the tool of choice for the popular Beauty

6



and Joy of Computing high school course that originated at UC Berkeley [26],

which is why it was chosen to be the foundation for NetsBlox. Snap! constitutes135

an excellent starting point because (like Scratch) it also supports concurrency.

Sprites run in parallel, and each script runs in its own thread. The keyboard and

the mouse generate events that scripts can handle, and scripts can generate and

handle custom events. NetsBlox builds on these concepts to supply primitives

for synchronization and communication across computers , providing a gentle140

introduction to distributed computing. Introducing two powerful abstractions,

Messages and Remote Procedure Calls, NetsBlox makes distributed computing

accessible to novice programmers. The message abstraction is very similar to

the Event concept of Snap!, but it adds the capability to carry data and can be

sent to NetBlox programs running on different computers.145

We believe that the main appeal of NetsBlox is the accessibility and rele-

vance. It enables young learners to create new classes of programs which were

previously out of reach. For example, multi-player video games are very pop-

ular with children, and message passing supports the creation of non-trivial

distributed gaming programs. While real-time games with 3D scene render-150

ing are obviously beyond the realm of possibilities, strategy games, turn-based

board games and games that include slower paced animation are quite feasible.

In addition, NetsBlox applications can be hosted on phones and tablets. We

imagine a world where the average high school student can create a multi-player

game, run it on his/her phone and play against a friend over the Internet after155

just a few weeks of instruction. This vision is fully achievable with the current

capabilities of NetsBlox.

Furthermore, there are a large number of publicly available, interesting data

sets on the web. Examples include the weather [27], air pollution [28], seismic

data [29], real-time traffic information [30] and many others. Typically the data160

is visualized on a given website, but in many cases, a public API is available

to access the data programmatically. The NetsBlox server provides access to a

select set of interesting data sources. These are available for NetsBlox programs

via a simple abstraction called Remote Procedure Call (RPC). Essentially, an

7



Figure 2: Weather application in NetsBlox utilizing 1) the GoogleMaps service to get a map

image for the stage (not shown) and provide coordinate transformation from screen (stage)

coordinates to latitude and longitude, 2) the Weather service to get temperature data and

current conditions represented by an icon, and 3) the Geolocation service to get the city name.

RPC provides a mapping between the NetsBlox call block and the corresponding165

API of the public data service. A set of related RPCs are grouped together to

form a Service. For example, the NetsBlox Weather Service has an RPC called

“temp” that takes arguments for the location and returns the corresponding

temperature. A second RPC, “icon,” returns a weather icon representing the

current conditions at the given location. On the NetsBlox server, they silently170

invoke the proper calls on the OpenWeatherMap API to get the data and then

send it back in a format expected by the NetsBlox programming environment.

With NetsBlox, students are able to create imaginative applications that

utilize the wealth of information available on the web using a single, simple

abstraction. One potential difficulty is the use of geospatial data. To help175

students make use of it, NetsBlox integrates Google Maps as an interactive

background, again, using RPCs (see Figure 2). Displaying real-time data on an

interactive map using a Scratch-like easy-to-use visual programming language

is one of the most attractive features of NetsBlox.

8



3. Distributed Programming Primitives180

The key design decision for NetsBlox was the selection of distributed program-

ming primitives manifesting themselves as visual abstractions. In order for the

students to engage with the technology and be able to learn the basics of dis-

tributed computation, these needed to be intuitive, easy-to-grasp and show the

essence of important concepts while hiding unnecessary complexity. The two185

main distributed programming primitives NetsBlox supports are Messages and

Remote procedure Calls (RPC).

Peer to peer communication is supported by Messages . Messages are very

similar to Events already present in Snap!. Basically, a separate event handler

script can be defined in any sprite of the application that will be invoked when190

the event is generated (see Figure 3).

Figure 3: Snap! event example

In NetsBlox, a Message is an Event that contains data payload. Users are

able to type in values or drag and drop one or more variables on the “send

msg” block (called broadcast for events in Snap!). On the receiver side, when

they pick the given message from the list of available ones, these data items will195

appear in the “when I receive” block header as variables with the appropriate

names, as shown in Figure 4.

Figure 4: Sending and receiving messages with data in NetsBlox

In order to support complex data payloads, NetsBlox messages follow a

schema specified by their given message type. A message type is composed of

9



a name and a list of fields defined for the given messages. Message blocks, as200

shown in Figure 4, provide a dropdown of all the currently defined message

types; upon selecting a given message type, the block is updated to reflect the

name and the fields of the given type. The message type in Figure 4 has the

name “location” which contains two fields: “latitude” and “longitude.”

As the creation of different distributed applications will typically require205

unique messaging protocols, including unique message types, it is important

that users are able to define their own custom messages. NetsBlox supports the

creation and management of message types, similar to how variables and custom

blocks are defined in Snap!. The message type editor is shown in Figure 5.

Figure 5: Custom Message Creation

After a new message type has been created, the send and receive message210

blocks are dynamically reconfigured to reflect the structure of the message. An

example of this is shown in Figure 6; the receipt of the message type defined in

Figure 5 is handled by the given “when I receive” block.

Figure 6: Chat Message Handler Block

Another important distributed programming primitive is the concept of a

Room . A Room defines the virtual network for the project and consists of215

Roles which are named NetsBlox clients. That is, a Room defines the NetsBlox

clients which share a network and provides names for each client to facilitate

messaging between them. Each of these Roles have their own stage, sprites

and scripts. In essence, a NetsBlox project consists of one or more sub-projects

called Roles, each of which runs on a different computer (or browser tab). This220

facilitates the development of networked applications for novices and allows

10



them to avoid the challenge of node discovery over the network. Note, however,

that communication is not restricted only to the Room, and more dynamic net-

worked applications can be developed that leverage inter-room communication.

Examples of this can be found in Section 5.225

A NetsBlox project automatically has a single associated Room. The project

owner manages the Room and its Roles. This includes creating, removing, re-

naming and duplicating Roles. Along with building the structure of the project

and its Room, the owner also has the ability to invite other users to specific

Roles in the project to run a distributed application together, e.g., to play a230

multi-player game. An example of a NetsBlox Room can be seen in Figure 7.

Figure 7: NetsBlox Room

Figure 7 shows the Room for a project called MyRoom which contains 4

Roles: “alice,” “bob,” “eve,” and “steve.” The current user is occupying the

“alice” Role; the other three Roles currently are unoccupied. The + button in

the middle allows the owner to add new Roles to the Room; this will result in235

another client being added to the project. If the user clicks on any of the given

colored Roles he/she will be able to edit the given Role (i.e., rename, clone or

remove it) or invite a peer to the given Role to join the given project. Another

example for a Room could be that of a Tic-Tac-Toe game with exactly two

11



Roles: “X” and “O.”240

When sending NetsBlox messages, the “target” field of the message is popu-

lated with the other Roles present in the given Room as well as two broadcasting

options: “others in room” and “everyone in room.” Both broadcast options will

send the message to all other Roles in the Room, but “everyone in room” will

also trigger the given message handlers in the origin Role. Figure 8 shows one245

example for sending a simple message in the context of the Room in Figure 7.

The items in the addressee pull-down menu are dynamically populated given

the Roles currently defined in the Room. This simplifies the process of sending

messages and reduces the likelihood of simple routing errors.

Figure 8: Sending messages to other NetsBlox clients

The semantics of Messages in NetsBlox are based on the semantics of Events250

in Snap!. Multiple handlers can be defined for the same kind of message and all

of them will be invoked when a message of the given type arrives, each in its own

thread, but the order of execution is not specified. However, two messages sent

from the same script are guaranteed to be delivered in the same order as they

were sent. Furthermore, when two Roles send messages, the order of delivery is255

guaranteed to be consistent. That is, if Roles A and B send one message each

to every other Role at the same time, all Roles will get these in the same order.

The order is decided by the message arrival time on the server.

Message passing is asynchronous, hence, the sender is not blocked and no

acknowledgements are returned. Note that if a message handler is still executing260

when a new message of the same type arrives, the message handler will queue

the message to be executed once the current execution completes.

It is interesting to note that messages are addressed to one or more Roles

of the Room, that is, nodes participating in the virtual network defined by the

12



application. Within a Role, i.e., the NetsBlox program running on one host265

(computer or browser tab), messages are broadcast just like events. This means

that any sprite, and the stage as well, can receive and handle any and all message

types.

The Remote Procedure Call (RPC) is the highest level of distributed ab-

straction NetsBlox employs. As the name implies, RPC allows for invoking code270

that will be executed at a remote location, and then (optionally) receiving the

results of the computation. This includes both predefined functions provided by

NetsBlox as well as user defined blocks1. The semantics of RPC is as expected:

multiple input arguments, single output argument, pass-by-value and blocking

call. RPCs are very similar to the concept of Custom Blocks (functions) in275

Snap!, therefore, it should be familiar to students who are already acquainted

with Snap!. In fact, one of our major goals with supporting the RPC primitive

was to provide an easy transition for students from using local function exe-

cution to invoking remote functionality. This is necessary for getting access to

public online databases, and it is also very helpful in facilitating more complex280

multi-player games.

NetsBlox RPCs also have the ability to maintain state. This state can be

shared either globally or just among the users in the given NetsBlox Room.

Examples of RPCs using a global context can be found in the RPCs exposing

3rd party endpoints, such as Google Maps, as they often cache their results to285

minimize redundant requests to the given external API.

One specific example of a stateful RPC can be found in a Battleship game

application. The Battleship helper RPCs provide assistance for turn coordina-

tion and event detection in applications implementing the game. This includes

maintaining whether the players are still placing ships or have already pro-290

ceeded to shooting at one another as well as enforcing the turn-based nature of

the game. In order to provide this support, the Battleship helpers must save

state between procedure calls (e.g., placing a ship or shooting at the opponent’s

1Custom user defined RPC support is currently under development.

13



ships) and share this state only among the clients in the current virtual network,

that is, the Room. This means that multiple concurrent instances of the same295

game can be executed on the NetsBlox server.

Currently, NetsBlox supports a fixed set of RPCs that are implemented and

executed in the NetsBlox network infrastructure (on the NetsBlox server). From

the user’s perspective, RPCs are executing “in the cloud.” We are planning

support for exporting user-defined custom blocks as RPCs and hosting them on300

the server in an upcoming release.

In the future, we will also provide an additional facility: a script-local vari-

able called “error” represented by a red block. If the RPC was successful, the

value of error will be the string “OK.” Other values will indicate various prob-

lems with the call, such as “timeout” or “bad argument.” In a curriculum using305

NetsBlox, the recommended way of using RPCs needs to be explained: after a

call, an ‘if’ statement should check whether the value of the error variable is

OK or not. If not, the user program is expected to handle the error according

to the value of the error variable.

4. Illustrative Examples310

To illustrate some of the concepts introduced in the previous section, let us

consider a simple example that displays historical earthquake data where the

program applies a combination of RPCs and messages (see Figure 9).

The application utilizes the GoogleMaps service just like the weather exam-

ple in Figure 2. Once the user navigates to the desired region using the arrow315

keys and +/- for zooming (stage scripts implementing this map handling is not

shown) and clicks on the background, the stage broadcasts a MapClicked event.

The corresponding event handler in the sprite invokes the “byRegion” RPC of

the “Earthquake” service as shown in Figure 9. The coordinate mapping RPCs

of the GoogleMaps service are used to specify the desired region determined by320

the limits of the currently shown, i.e., last requested, map. The date arguments

specify ten years, and the magnitude parameters request the interval between 6

14



Figure 9: The Earthquake application

and 9 (only strong to catastrophic events are to be included). Instead of return-

ing the potentially large dataset as the output argument of the RPC, the server

collects the historical earthquake data from the web for the given geographic325

area and starts sending messages back to the client (one message sent per earth-

quake). The script that handles the Earthquake message simply displays the

location with a red dot (again using coordinate mapping), where the size of the

dot is proportional to the magnitude of the given earthquake.

As a second example, Figure 10 shows the scripts for a 2-person, simplistic330

dice game. In this scenario, two players both roll their dice, and whoever has a

higher number wins. In the case of a tie, they roll again.

The program is symmetrical in that both Roles use the exact same scripts.

The game is started by one player clicking the green flag. The script correspond-

ing to this event simply broadcasts a “start” message to everyone in the Room335

(including itself). Upon receiving a “start” event, each client rolls the dice by

picking a random number between one and six and sends a “roll” message to

the other player containing the generated number.

The script with the “when I receive roll” header runs when the “roll” message

arrives, and it supplies the data in the payload as the variable called “roll.” The340

code then simply compares the two values, “roll” and “my roll.” The interesting

case is when the two are equal. In this case, each player rolls again and sends

15



Figure 10: The scripts of the Dice game

the new dice value to the other side using another “roll” message. Otherwise,

the players are notified by a text displayed on the stage as shown in Figure 11.

Figure 11: Dice game running in two separate browser tabs

It is interesting to note the message addressing in this example. The roll345

send blocks use “others in room” as the addressee, meaning every other Role

(player) in the current Room (game). In a two-player game such as this, it

simply means the single other player. Alternatively, one could select the name

of the other Role, but that would require slightly different scripts for the two

16



players because of the different Role names they would need to use as addresses.350

For a more complicated example, consider the classic Pong game. This is

interesting as it involves animation and a need to keep the game shown on two

stages on different computers in sync. Keeping the distributed state consistent

across the two computers is not trivial for novices. Figure 12 shows the program

for the right-hand side player. The three main sprites are the ball and the left355

and right paddles. The other two sprites are for keeping and displaying the

score. The code for the ball is shown. It takes care of the motion of the ball

and sends update messages to the other player. The code for the other player’s

ball (not shown) does not do any of this; it simply receives the update messages

and moves to the received coordinates. So, the state of the ball is maintained360

by the right-hand side player only!

Figure 12: Pong game with the program for the ball shown

Figure 13 shows the code for the two paddles of the right-hand side player.

The right paddle handles the keyboard arrow keys and moves itself accordingly.

It sends an update to the other player after each such move. The left paddle

simply receives the messages from the other player and updates the position of365

the sprite. The code for the left-hand side player simply swaps the code of the

17



left- and right paddles of the right-hand side player. Essentially, each player

maintains the state of its own paddle and updates the other player with any

changes.

Figure 13: Pong paddle code of the right-hand side player

There are many other interesting applications of NetsBlox publicly available370

from the website. For brief video demonstrations of some of them, visit http:

//netsblox.org/tutorials.

5. Distributed Programming Patterns

The Room facilitates the development of distributed applications by simplify-

ing challenges such as node discovery over the network as well as detecting and375

handling disconnected nodes in the application. Although this can be very ben-

eficial for novice programmers, it can be somewhat restrictive as the number of

clients (Roles) is fixed at design time. More advanced applications may want

to manually handle connections in a more dynamic and flexible network. To

facilitate such scenarios, NetsBlox supports inter-room communication by pro-380

viding a simple node addressing scheme which consists of the node’s Role name,

18

http://netsblox.org/tutorials
http://netsblox.org/tutorials
http://netsblox.org/tutorials


project name, and the project owner name joined by the @ symbol2. Using

this address as the target of the “send message” block enables users to send

messages to other users outside of the given Room and facilitates the develop-

ment of more advanced networked applications. In this section, we present and385

discuss an example of a higher level distributed computing abstraction created

within NetsBlox: the Publish-Subscribe pattern.

5.1. Publish-Subscribe

Publish-Subscribe is a programming paradigm for distributed computing in

which nodes can subscribe to various types of messages and can publish mes-390

sages. When messages are published, they are forwarded to any nodes which

have subscribed to the given type of message. In practice, there typically is

a message broker that coordinates the sending of the published messages to

the relevant subscribers. An example of a Publish-Subscribe message broker

implemented in NetsBlox can be found in Figure 14.395

Figure 14: Publish-Subscribe Broker in NetsBlox

2NetsBlox provides a simple helper RPC for requesting the public address of a Role pro-

grammatically.

19



Figure 15: Subscribe Client in NetsBlox

The example NetsBlox Publish-Subscribe broker has defined 4 different mes-

sage types: publish, subscribe, unsubscribe and update. The broker then main-

tains a variable called “subscriptions” which contains a list of topics and the

associated subscribers. On subscribe and unsubscribe events, the broker will add

or remove the requester from its internal record of subscriptions. On a publish400

event, the broker will send an update message with the topic and the content to

all of the Roles subscribed to the given topic.

A simple example of a subscriber is shown in Figure 15. The user is first

prompted about which Publish-Subscribe broker to connect to, and a public role

id is requested. On pressing the “s” key, the user is prompted about which topic405

he/she would like to subscribe to, and the broker is sent a subscribe message with

the topic and the client’s public role id. When data for this topic is published

to the broker, the client will receive the update message (as shown in Figure 14)

which will simply display the message to the user.

6. Network Model410

NetsBlox requires a powerful yet easy-to-understand network model. It is im-

portant to note that the technical details described here are completely hidden

from users. The core design principles of the network model are: (1) a reduction

20



of accidental complexities of distributed programming to shield the program-

mers from distracting technical details and common pitfalls such as firewalls,415

routing, address resolution, and automatic reconnection, (2) a uniform address-

ing and discovery scheme for distributed artifacts, and (3) support for both

synchronous and asynchronous communication.

We opted for a virtual overlay network abstraction to achieve these

goals. This facilitates direct, bidirectional, peer-to-peer communication between420

NetsBlox software artifacts, as if they were part of a local area network, with-

out the need for explicit message routing. This overlay network is built on

top of existing network technologies, but without one-to-one mapping between

virtualized primitives and actual network packets and connections. For exam-

ple, the NetsBlox server infrastructure emulates peer-to-peer message exchange425

between two remote scripts using reliable connections between several nodes

(i.e., two clients and the server) to provide robust communication and enable

instrumentation and centralized management capabilities.

NetsBlox provides two primary concepts to the programmer to manage the

network: Rooms and Roles that were introduced in Section 3. The Room430

defines the virtual network for the associated client. Each NetsBlox project

consists of a single Room which, in turn, consists of a number of uniquely

named clients (Roles). These Roles are automatically discovered by the Nets-

Blox environment, and the names are provided automatically when performing

operations such as direct messaging within the network.435

Containers: To extend the platforms supported beyond just web browsers,

NetsBlox introduces the concept of a container. A container is a hosting envi-

ronment for applications that provide a well-defined set of services, including

network connectivity. Currently, NetsBlox only provides containers for web-

browsers. In the future, the container concept will be extended to support440

Android, iOS and networked embedded devices (e.g., Raspberry Pi), as well

as server containers running in the cloud. In contrast to web-based or mobile

clients that may come and go, cloud containers could be always on, making

them an ideal choice to implement user-defined RPCs in the future.

21



Coordination: While it is fairly straightforward to write a simple two-445

player game such as Dice using only the Message primitive (see Section 4),

games with more complicated rules, such as chess, or with more than two players,

such as bridge, can quickly become too complicated for the budding NetsBlox

programmer to design and implement without help or structure. In addition,

some applications may require a flexible network which accepts a variety of450

clients which may not all be defined in the Room. An example of this is creating

a chat application where the number of users (consequently, the number of Roles

in the Room) is unknown during development. In applications such as these,

coordination becomes more challenging as the interacting clients should not be

restricted solely to the Roles defined in the Room; students should be able to455

create their own chat client and join the chat freely.

NetsBlox addresses these challenges by providing a public addressing scheme

and powerful RPCs. Public addresses enable inter-room communication with

NetsBlox clients. This enables users to implement their own coordination pro-

tocol, as demonstrated by the Publish-Subscribe broker shown in Section 5.460

This also enables users to build applications with a dynamic number of clients,

including chat applications and mesh networks.

NetsBlox RPCs can also provide scaffolding for coordinating a complex dis-

tributed application. As discussed in Section 3, NetsBlox RPCs can maintain

the state for each connected Room, allowing them to manage more complex465

parts of applications (such as managing board state in the games mentioned in

the previous sections). RPCs can also send messages to the NetsBlox clients.

This ability to both maintain a context for the associated Room and send mes-

sages to these connected clients makes them ideal options for simplifying co-

ordination for more complex games. For example, using the Battleship game470

service, one Role calls an RPC to make a move and in turn, the other Role will

receive a “your turn” message from the server following the successful execution

of the opponent’s turn.

22



7. NetsBlox Infrastructure

To support the network abstractions described above, as well as the distributed475

programming primitives and the overall application life-cycle, we have developed

and deployed a cloud-based infrastructure and an easy-to-use web application.

The web application runs in the client browsers and communicates with the

NetsBlox server via HTTP and WebSocket interfaces.

The core server-side services include (1) hosting and serving the web ap-480

plication artifacts, (2) project and user information persistence, (3) RPC and

message delivery services, and (4) authentication and run-time user association

(tables). We host the server-side infrastructure on the Amazon Web Services

cloud computing platform and provide all software components and deployment

know-how on GitHub with MIT open source licensing. Note that access to our485

server is free, so students, teachers and schools only need web browsers to use

NetsBlox. Nevertheless, the server-side program is also open source for people

who want to run their own server or wish to extend NetsBlox.

NetsBlox RPCs are implemented as REST endpoints hosted on the origi-

nating server. REST provides a simple endpoint that naturally supports syn-490

chronous requests from the client, enabling the creation of simpler RPCs that

provide additional functionality (such as Google Maps integration) seamlessly.

Project management tasks such as authentication, project access, and table

membership management are also implemented by REST primitives.

Bi-directional NetsBlox communication services such as message delivery495

and asynchronous project notifications are implemented with WebSocket con-

nections between the clients and the servers. For supporting message passing

among clients within the same Room, we have implemented a virtual network

abstraction (introduced in Section 6). In this model, each node initiates a Web-

Socket connection to the server and registers itself with one of the active Rooms.500

Messages from the client are sent through this connection to the server, which

takes care of the routing and fan-out based on the current registrations. Note

that no direct communication channels are created between browser clients,

23



which would be extremely problematic through discrete and OS-level firewalls.

Also, the server-based message delivery mechanism makes it possible to record505

accurate and ordered message traces and to emulate arbitrary network effects

(packet loss, latency, integrity) for educational purposes.

NETSBLOX 
SERVER Node.js

WEB SERVER

PROJECT 
MANAGEMENT

ROOM

RPC

ROOM

RPC
RPC

static
content

MongoDBprojects & users

USER
Web Browser

WebSocket

HTTP (REST)
USER

Web Browser USER
Web Browser

USER
Web Browser

WebSocket

messa
ges

HTTP (REST)

Figure 16: Network Architecture

The high-level architecture of NetsBlox is shown in Figure 16. The server

(implemented with server-side JavaScript technologies) provides web services

and hosts the web application (e.g., the NetsBlox development environment),510

which can be accessed by browser-based clients. Projects and user information

are stored in a MongoDB database. As the first step, a new client uses HTTP

requests for downloading the static artifacts of the web application. Once ini-

tialized, this client application creates a permanent WebSocket link towards

the server for asynchronous two-way communication. Finally, HTTP/REST515

connections are created on-demand for accessing projects, joining Rooms and

invoking RPC services from the users’ applications.

24



8. Classroom Studies

We conducted two small, week-long studies where we taught students computer

programming using NetsBlox. In both studies, we could not assume prior pro-520

gramming experience and thus started with two days of basic programming

curriculum. We then introduced the concept of networking by spending one

day teaching remote procedure calls and another day teaching messaging. Fi-

nally, the last day was a work day where students worked on a project of their

choosing.525

For each of these studies, students were given both a survey and a pre-

and post-test. The survey collected demographic information as well as gen-

eral questions about disposition towards computer programming and network-

ing; the pre- and post-tests measured computational thinking, networking and

concurrency competency. These tests included questions about the Two Gen-530

erals’ Problem, messaging in a mesh network, performance improvements of

parallelization and potential outcomes in the presence of a race condition in

concurrent programming.

The first study was conducted with 24 high school students who attend

the School for Science and Math at Vanderbilt (SSMV) [31]. The program535

teaches research skills to high school students and is a partnership between

Vanderbilt University and Metro Nashville Public Schools. The second study

was conducted with 16 students ranging from 6th to 11th grade attending a

summer camp in Budapest, Hungary. These students were self-selected by their

interest in computer science and not necessarily representative of general high540

school populations. A week-long Computer Science curriculum was developed

which focused on concepts from basic programming constructs, such as control

flow, events, and lists, to networking concepts including RPCs and coordination

over the network.

Both studies showed a significant enhancement in students’ computational545

thinking and networking understanding with p-values at or below 1%. The

SSMV students showed an average overall improvement of about 21 percentage

25



Pre-Test Post-Test

CT Networking Concurrency n CT Networking Concurrency n

SSMV 78 59 12 50 93 78 42 71

Budapest 67 52 11 43 88 71 25 62

Table 1: Comparison of pre- and post-test scores (0 to 100-point scale).

points (pp) on the post-test with about 19 pp improvement on the networking

section and a 15 pp improvement on the computational thinking section (see

Table I). The second study showed similar results with an 19 pp overall, and550

19 pp and 21 pp improvement in networking and computational thinking, re-

spectively. Student scores in concurrency also showed progress. However, they

struggled more with these questions on both the pre- and post-tests in both

studies. The average scores in concurrency on the post-test were 41% and 25%

with an average score of about 12% and 11% on the pre-test for the first and555

second studies, respectively. The low scores on the concurrency portion of the

post-test suggest that the questions may not have been aligned well with the

curriculum; as time was a limiting factor in the studies, some of the topics of

concurrency were not explicitly discussed. For example, theoretical performance

improvements due to task parallelization was not discussed during the course,560

yet one out of the two concurrency questions focused on this concept.

For their final projects, students developed a number of interesting projects

which leveraged distributed computing. These diverse projects ranged from

an interactive map interface for learning about country demographics around

the world to a multi-player “Tron” clone. One particularly motivated pair of565

students decided to create their own encrypted chat client (inspired from a

mesh networking exercise from class) in which they developed their own simple

encryption and decryption techniques within NetsBlox.

Overall, these studies showed promising results with using NetsBlox to intro-

duce distributed computing to high school students. Despite the short duration570

of the studies, students showed significant improvement in both computational

thinking and networking assessments. The creative uses of networking in the

26



students’ final projects also support the idea that networking can make pro-

gramming more collaborative and engaging. The assumption that opening the

Internet to students’ programs will prove to be motivating was validated infor-575

mally based on the anonymous feedback we received at the end of each day. A

few quotes are included below.

• “I liked this because it was cool to see how you can communicate with

people across the globe using a few lines of code.”

• “As we continue to learn more about the program, the easier and more580

natural the coding seems. This has been true throughout our learning

with NetsBlox.”

• “I really enjoyed getting into multi-computer messages and games because

it is my first experience making anything close to an online program.”

• “We learned how to do this in chat rooms, as well as across servers. I585

thought this function was really neat, and was the most interesting part

about coding to learn. I really enjoyed being able to expand beyond just

one computer and be able to work through multiple places.”

• “Even though this week is over, I’m still going to continue working on

coding to improve my skills.”590

A minority of the students, however, did struggle: “Today, we started off

yet again with three consecutive hours of programming that, for me, went just

as bad as the first time we programmed. When they explain it up on the board

I understand completely, but when I must replicate it on my own I do not even

know where to start.”595

These studies introduced a number of open questions. How well could these

concepts be taught in a more traditional setting such as a high school classroom?

How could we further improve the students’ learning given more time for a less

condensed course on computer programming and networking? We are planning

our next study to answer these questions.600

27



9. Conclusions

The paper presented NetsBlox, a web- and cloud-based visual programming

environment that enables users to create distributed applications. NetsBlox

extends the well-known and widely used Snap! environment, and hence, it

provides a natural progression to students who take the Beauty and Joy of605

Computing (BJC) class. Consequently, novel curricular units can be easily

incorporated into BJC, one of the new AP CS Principles courses [32]. NetsBlox

is an ideal vehicle to support some of the big ideas and computational thinking

practices that are emphasized in the AP CS Principles curriculum, including

the Internet, communication, collaboration, cybersecurity and global impact.610

NetsBlox also supports collaborative editing from multiple computers, allowing

students to work together on shared projects from their own computers.

Furthermore, providing access to vast arrays of data on the Internet directly

in the visual programming environment will empower the students to create

innovative science projects and simultaneously bring STEM concepts into CS615

education. The ability to create multi-player games will provide increased mo-

tivation for a large number of students and encourage them to be creators and

not just consumers of digital entertainment.

10. Acknowledgements

We thank Pratim Sengupta for his contributions during the initial discussions620

about NetsBlox. We are also grateful to Györgyi Dallos, Hassan Charaf, Gábor

Recski and the Budapest University of Technology and Economics for organiz-

ing the NetsBlox coding camp. The development of the tool was made possible

through Vanderbilt University’s Trans-institutional Programs (TIPs). This ma-

terial is also based in part upon work supported by the National Science Foun-625

dation under grants CNS-1644848 and DRL-1640199. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the NSF.

28



[1] J. M. Wing, Computational thinking, Communications of the ACM, View-

point 49 (3) (2006) 33–35.630

[2] Committee for the Workshops on Computational Thinking; National Re-

search Council, Report of a Workshop on The Scope and Nature of Com-

putational Thinking, The National Academies Press, 2010.

[3] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan, A. L. Hosking, A

multidisciplinary approach towards computational thinking for science ma-635

jors, in: Proceedings of the 40th ACM technical symposium on Computer

science education, SIGCSE ’09, ACM, New York, NY, USA, 2009, pp.

183–187. doi:10.1145/1508865.1508931.

[4] P. Sengupta, J. Kinnebrew, S. Basu, G. Biswas, D. Clark, Integrating com-

putational thinking with k-12 science education using agent-based compu-640

tation: A theoretical framework, Education and Information Technologies

18 (2) (2013) 351–380. doi:10.1007/s10639-012-9240-x.

[5] M. Guzdial, Software-realized scaffolding to facilitate programming for sci-

ence learning, Interactive Learning Environments 4 (1) (1994) 001–044.

doi:10.1080/1049482940040101.645

[6] J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The Scratch

programming language and environment, ACM Transactions on Computing

Education (TOCE) 10 (4) (2010) 16.

[7] C. Kelleher, R. Pausch, Lowering the barriers to programming: A tax-

onomy of programming environments and languages for novice program-650

mers, ACM Comput. Surv. 37 (2) (2005) 83–137. doi:10.1145/1089733.

1089734.

[8] P. Blikstein, U. Wilensky, An atom is known by the company it keeps:

A constructionist learning environment for materials science using agent-

based modeling, International Journal of Computers for Mathematical655

Learning 14 (2) (2009) 81–119. doi:10.1007/s10758-009-9148-8.

29

http://dx.doi.org/10.1145/1508865.1508931
http://dx.doi.org/10.1007/s10639-012-9240-x
http://dx.doi.org/10.1080/1049482940040101
http://dx.doi.org/10.1145/1089733.1089734
http://dx.doi.org/10.1145/1089733.1089734
http://dx.doi.org/10.1145/1089733.1089734
http://dx.doi.org/10.1007/s10758-009-9148-8


[9] I. C. S. The Joint Task Force on Computing Curricula, Association

for Computing Machinery (ACM), Computer science curricula 2013:

Curriculum guidelines for undergraduate degree programs in computer

science, https://www.acm.org/binaries/content/assets/education/660

cs2013_web_final.pdf (2013).

[10] B. Harvey, J. Mönig, Bringing no ceiling to Scratch: can one language serve

kids and computer scientists, in Proc. of Constructionism (2010) 1–10.

[11] Snap!: a visual, drag-and-drop programming language, http://snap.

berkeley.edu/snapsource/snap.html, cited 2018 February 2.665

[12] J. C. Spohrer, E. Soloway, Novice mistakes: are the folk wisdoms correct?,

Commun. ACM 29 (7) (1986) 624–632. doi:10.1145/6138.6145.

[13] D. N. Perkins, R. Simmons, Patterns of misunderstanding: An integra-

tive model for science, math, and programming, Review of Educational

Research 58 (3) (1988) pp. 303–326.670

[14] L. Hohmann, M. Guzdial, E. Soloway, Soda: A computer-aided design

environment for the doing and learning of software design, in: I. Tomek

(Ed.), Computer Assisted Learning, Vol. 602 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 1992, pp. 307–319. doi:10.1007/

3-540-55578-1_78.675

[15] L. Grandell, M. Peltomäki, R.-J. Back, T. Salakoski, Why complicate

things?: introducing programming in high school using python, in: Pro-

ceedings of the 8th Australasian Conference on Computing Education -

Volume 52, ACE ’06, Australian Computer Society, Inc., Darlinghurst,

Australia, Australia, 2006, pp. 71–80.680

[16] B. D. Boulay, T. O’Shea, J. Monk, The black box inside the glass box: pre-

senting computing concepts to novices, Int. J. Hum.-Comput. Stud. 51 (2)

(1999) 265–277. doi:10.1006/ijhc.1981.0309.

30

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
http://snap.berkeley.edu/snapsource/snap.html
http://snap.berkeley.edu/snapsource/snap.html
http://snap.berkeley.edu/snapsource/snap.html
http://dx.doi.org/10.1145/6138.6145
http://dx.doi.org/10.1007/3-540-55578-1_78
http://dx.doi.org/10.1007/3-540-55578-1_78
http://dx.doi.org/10.1007/3-540-55578-1_78
http://dx.doi.org/10.1006/ijhc.1981.0309


[17] A. Repenning, Agentsheets: a tool for building domain-oriented visual pro-

gramming environments., in: S. Ashlund, K. Mullet, A. Henderson, E. Holl-685

nagel, T. N. White (Eds.), INTERCHI, ACM, 1993, pp. 142–143.

[18] E. Klopfer, S. Yoon, T. Um, Teaching complex dynamic systems to young

students with starlogo, Journal of Computers in Mathematics and Science

Teaching 24 (2) (2005) 157–178.

[19] P. Sengupta, A. V. Farris, M. Wright, From agents to continuous change690

via aesthetics: Learning mechanics with visual agent-based computational

modeling, Technology, Knowledge and Learning 17 (1-2) (2012) 23–42.

[20] M. J. Conway, Alice: Easy–to–Learn 3D Scripting for Novices, Master’s

thesis, University of Virginia, Faculty of the School of Engineering and

Applied Science (December 1997).695

[21] O. Meerbaum-Salant, M. Armoni, M. Ben-Ari, Learning computer science

concepts with Scratch, Computer Science Education 23 (3) (2013) 239–264.

[22] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, N. Rusk, Programming by

choice: urban youth learning programming with Scratch, in: ACM SIGCSE

Bulletin, Vol. 40, ACM, 2008, pp. 367–371.700

[23] A. Feng, M. Gardner, W. Feng, Parallel programming with pictures is a

Snap!, Journal of Parallel and Distributed Computing 105 (2017) 150 –

162.

[24] G. G. Abraham Silberschatz, Peter B. Galvin, Operating System Concepts,

9th Edition, Wiley, 2012.705

[25] S. M. A. Savitzky, Parallel.js - easy multi-core processing with javascript,

cited 2018 February 2.

URL https://parallel.js.org/

[26] The Beauty and Joy of Computing, http://bjc.berkeley.edu/, cited

2018 February 2.710

31

https://parallel.js.org/
https://parallel.js.org/
http://bjc.berkeley.edu/


[27] Weather Underground: meteorological datasource, http://www.

wunderground.com/weather/api/, cited 2018 February 2.

[28] AIRNow: National air quality information website, http://airnow.gov/,

cited 2018 February 2.

[29] EarthScope: Complementary seismic data sets, http://www.earthscope.715

org/research/data, cited 2018 February 2.

[30] MapQuest Traffic API, http://developer.mapquest.com/web/

products/dev-services/traffic-ws, cited 2018 February 2.

[31] School for Science and Math at Vanderbilt, http://theschool.

vanderbilt.edu/, cited 2018 February 2.720

[32] O. Astrachan, A. Briggs, The CS principles project, ACM Inroads 3 (2)

(2012) 38–42.

[33] Interdisciplinary Science and Research Program, http://www.

vanderbilt.edu/cso/isr/, cited 2018 February 2.

32

http://www.wunderground.com/weather/api/
http://www.wunderground.com/weather/api/
http://www.wunderground.com/weather/api/
http://airnow.gov/
http://www.earthscope.org/research/data
http://www.earthscope.org/research/data
http://www.earthscope.org/research/data
http://developer.mapquest.com/web/products/dev-services/traffic-ws
http://developer.mapquest.com/web/products/dev-services/traffic-ws
http://developer.mapquest.com/web/products/dev-services/traffic-ws
http://theschool.vanderbilt.edu/
http://theschool.vanderbilt.edu/
http://theschool.vanderbilt.edu/
http://www.vanderbilt.edu/cso/isr/
http://www.vanderbilt.edu/cso/isr/
http://www.vanderbilt.edu/cso/isr/


11. Authors725

Brian Broll is a Ph.D student at the Department of

Electrical Engineering and Computer Science at Vander-

bilt University, and a Research Assistant with the Institute

for Software Integrated Systems at Vanderbilt. He holds

a B.Sc. from Buena Vista University, majoring in math-730

ematics education. His research interests include model

integrated computing and computer science education.

Ákos Lédeczi is a Professor of Computer Engineering

and a Senior Research Scientist at the Institute for Soft-

ware Integrated Systems at Vanderbilt University. He has735

an M.Sc. from the Technical University of Budapest and

a Ph.D. from Vanderbilt, both in electrical engineering.

His research interests include model integrated computing,

wireless sensor networks and computer science education.

Hamid Zare is a Ph.D student majoring in Computer740

Science at Vanderbilt University, and a Graduate Research

Assistant with the Institute for Software Integrated Sys-

tems. He holds a B.Sc. from Tehran Azad University in

Information Technology Engineering. His research interests

include computer science education and web technologies.745

Dung Nguyen Do T. is a sophomore studying Com-

puter Science and Math at Vanderbilt. She is an intern at

the Institute of Software Integrated Systems and contribu-

tor to NetsBlox. In her free time, she works as a member of

the development team for VietAbroader Organization and750

a photographer for Vanderbilt Programming Board.

33



János Sallai is a research scientist with the Institute

for Software Integrated Systems and holds an appointment

of Adjunct Assistant Professor with the Department of

Electrical Engineering and Computer Science in the School755

of Engineering at Vanderbilt University. He has 10 years

of research experience in scientific computing, low-power

wireless networks, networked sensing, localization, time synchronization and

software development technologies for low-power platforms. Dr. Sallai holds a

Ph.D. in Computer Science from Vanderbilt University (2008), and an M.Sc.760

from the Technical University of Budapest, Hungary (2001).

Péter Völgyesi is a Research Scientist at the Institute

for Software Integrated Systems at Vanderbilt University.

He is one of the architects of the Generic Modeling Envi-

ronment, a widely used metaprogrammable visual modeling765

tool, and WebGME - its modern web-based variant. As PI

on two NSF funded projects Mr. Volgyesi and his team re-

cently developed a low-power software-defined radio platform (MarmotE) and a

component-based development toolchain targeting multicore SoC architectures

for wireless cyber-physical systems. His research interests include wireless sensor770

networks, model-based engineering and signal processing.

Miklós Maróti is an Associate Professor of Mathe-

matics at the Bolyai Institute of the University of Szeged,

Hungary, and a Visiting Professor at the Institute for Soft-

ware Integrated Systems at Vanderbilt University. His re-775

search interests include universal algebra, logic, compu-

tational complexity, distributed algorithms, programming

languages, wireless communication and signal processing.

34



Lesa Brown is a postdoctoral fellow with an instructor

position at the School for Science and Math at Vanderbilt,780

a partnership between Metro Nashville Public Schools and

Vanderbilt University. She holds a Ph.D. and M.S. in Civil

Engineering from Vanderbilt University and a B.S. in Civil

Engineering from Oklahoma State University. Her research

interests include the multi-scale characterization and mod-785

eling of cementitious materials, the chemo-mechanical behavior of fiber rein-

forced composites, and the integration of hands-on engineering curriculum into

K12 classrooms to better communicate STEM career pathways to high school

students.

Chris Vanags is the Director of Research Initiatives in790

the Peabody College of Education and a Research Assistant

Professor in the Department of Earth and Environmental

Sciences. Dr. Vanags is one of the founding faculty of the

School for Science and Math at Vanderbilt (SSMV), which

was later adapted to become the Interdisciplinary Science795

and Research Program (ISR) [33], a partnership between

Vanderbilt University and Metro Nashville Public Schools

(MNPS). Dr. Vanags is the co-founder and Associate Editor of the journal

Young Scientist. Dr. Vanags received his Ph.D. in Hydrology and Catchment

Management from the University of Sydney.800

35


	Introduction
	Understanding Concurrency
	Paper Organization

	NetsBlox
	Distributed Programming Primitives
	Illustrative Examples
	Distributed Programming Patterns
	Publish-Subscribe

	Network Model
	NetsBlox Infrastructure
	Classroom Studies
	Conclusions
	Acknowledgements
	Authors

