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Abstract. We introduce a new class of convex penalty functions, called variational Gram func-
tions (VGFs), that can promote pairwise relations, such as orthogonality, among a set of vectors in a
vector space. These functions can serve as regularizers in convex optimization problems arising from
hierarchical classification, multitask learning, and estimating vectors with disjoint supports, among
other applications. We study convexity of VGF's, and give characterizations for their convex conju-
gates, subdifferentials, proximal operators, and related quantities. We discuss efficient optimization
algorithms for regularized loss minimization problems where the loss admits a common, yet simple,
variational representation and the regularizer is a VGF. These algorithms enjoy a simple kernel trick,
an efficient line search, as well as computational advantages over first order methods based on the
subdifferential or proximal maps. We also establish a general representer theorem for such learn-
ing problems. Last, numerical experiments on a hierarchical classification problem are presented to
demonstrate the effectiveness of VGFs and the associated optimization algorithms.

Key words. convex optimization, regularization, inverse problems, matrix optimization, mini-
max problems

AMS subject classifications. 68Q32, 49K35, 68W40, 68U15, 90C25, 49N45, 90C46

DOI. 10.1137/16M1087424

1. Introduction. Let x1,...,X,, be vectors in R™. It is well known that their
pairwise inner products x?xj for i,7 = 1,...,m, reveal essential information about
their relative orientations, and can serve as a measure for various properties such as
orthogonality. In this paper, we consider a class of functions that selectively aggregate
the pairwise inner products in a variational form,

(1) Qe (X1, Xm) = max et M;;x!x;,

where M is a compact subset of the set of m by m symmetric matrices. Let X =
[x1 -+ X;,] be an n x m matrix. Then the pairwise inner products x; x; are the
entries of the Gram matrix X7 X and the function above can be written as

2 Qe (X) = X'X, M) = tr (XMXT
(2) n(X) = max (XTX, M) = max tr ( )
where (A, B) = tr(AT B) denotes the matrix inner product. We call Q¢ a variational

Gram function (VGF) of the vectors Xy, ...,X;, induced by the set M. If the set M
is clear from the context, we may write (X)) to simplify notation.
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As an example, consider the case where M is given by a box constraint,
(3) M:{M|M23|SMU7 Z,_jzl,,m},

where M is a symmetric nonnegative > matrix. In this case, the maximization in the
definition of Q¢ picks either M;; = M;; or M;; = —M;; depending on the sign of

x/x;j for alli,j =1,...,m (if x] x; = 0, the choice is arbitrary). Therefore,
(4) ne(X) = max 327 Migxix; = 327500 Miglxi ;]

Equivalently, Q¢(X) is the weighted sum of the absolute values of pairwise inner
products. This function was proposed in [47] as a regularization function to promote
orthogonality between selected pairs of linear classifiers in the context of hierarchical
classification.

Observe that the function tr(X M X7) is a convex quadratic function of X if M
is positive semidefinite. As a result, the variational form Qy¢(X) is convex if M is a
subset of the positive semidefinite cone S, because then it is the pointwise maximum
of a family of convex functions indexed by M € M (see, e.g., [38, Theorem 5.5]).
However, this is not a necessary condition. For example, the set M in (3) is not a
subset of S’ unless M = 0, but the VGF in (4) is convex provided that the comparison
matriz of M (derived by negating the off-diagonal entries) is positive semidefinite [47].
In this paper, we study conditions under which different classes of VGF's are convex
and provide unified characterizations for the subdifferential, convex conjugate, and
the associated proximal operator for any convex VGF'. Interestingly, a convex VGF

defines a seminorml as

1/2
®) Xl = V(X) = mae (S0, M)
If M C S, then || X[ is the pointwise maximum of the seminorms || X M/2||z over
all M € M.

VGFs and the associated norms can serve as penalties or regularization functions
in optimization problems to promote certain pairwise properties among a set of vector
variables (such as orthogonality in the above example). In this paper, we consider
optimization problems of the form

(6) minimize L£(X) + A Qn(X),
X eRnxm
where £(X) is a convex loss function of the variable X = [x; -+ X,,], Q(X) is a

convex VGF, and A > 0 is a parameter to trade off the relative importance of these
two functions. We will focus on problems where £(X) is smooth or has an explicit
variational structure, and show how to exploit the structures of £(X) and Q(X)
together to derive efficient optimization algorithms. More specifically, we employ a
unified variational representation for many common loss functions, as

(7) L(X) =max (X,D(g)) — L(g),

geg

where £ : R? — R is a convex function, G is a convex and compact subset of RP, and
D : RP — R™ ™ ig a linear operator. Exploiting the variational structure in both the
loss function and the regularizer allows us to employ a variety of efficient primal-dual
algorithms, such as mirror-prox [36], which now only require projections onto M and
g, instead of computing subgradients or proximal mappings for the loss function and

LA seminorm satisfies all the properties of a norm except that it can be zero for a nonzero input.
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the regularizer. Our approach is specially helpful for regularization functions with
proximal mappings that are expensive to compute [24].

Exploiting this structure for the loss function and the regularizer enables a simple
preprocessing step for dimensionality reduction, presented in section 5.2, which can
substantially reduce the per iteration cost of any optimization algorithm for (6). We
also present a general representer theorem for problems of the form (6) in section 5.3
where the optimal solution is characterized in terms of the input data in a simple and
interpretable way. This representer theorem can be seen as a generalization of the
well-known results for quadratic functions [41].

Organization. In section 2, we give more examples of VGFs and explain the con-
nections with functions of Euclidean distance matrices, diversification, and robust
optimization. Section 3 studies the convexity of VGFs, as well as their conjugates,
semidefinite representability, corresponding norms, and subdifferentials. Their proxi-
mal operators are derived in section 4. In section 5, we study a class of structured loss
minimization problems with VGF penalties, and show how to exploit their structure,
to get an efficient optimization algorithm using a variant of the mirror-prox algorithm
with adaptive line search, to use a simple preprocessing step to reduce the computa-
tions in each iteration, and to provide a characterization of the optimal solution as
a representer theorem. Finally, in section 6, we present a numerical experiment on
hierarchical classification to illustrate the application of VGF's.

Notation. In this paper, S™ denotes the set of symmetric matrices in R™*™,
and ST C S™ is the cone of positive semidefinite (PSD) matrices. We may omit
the superscript m when the dimension is clear from the context. The symbol <
represents the Loewner partial order and (-,-) denotes the inner product. We use
capital letters for matrices and bold lower case letters for vectors. We use X € R™"*™
and x = vec(X) € R"™ interchangeably with x; denoting the ith column of X;
ie, X =[x1 -+ Xy]. By 1 and 0 we denote matrices or vectors of all ones and
all zeros, respectively, whose sizes would be clear from the context. The entrywise
absolute value of X is denoted by |X|. The £, norm of the input vector or matrix is
denoted by || - ||, and || - ||z and || - ||op denote the Frobenius norm and the operator
norm, respectively. We overload the superscript * for three purposes. For a linear
mapping D, the adjoint operator is denoted by D*. For a norm denoted by || - ||,
with possible subscripts, the dual norm is defined as ||y||* = sup{(x,y) : [|x|| < 1}.
For other functions, denoted by a letter, namely, f, the convex conjugate is defined
as f*(y) = sup, (z,y) — f(x). By argmin (argmax), we denote an optimal point
to a minimization (maximization) program, while Arg min (or Argmax) is the set of
all optimal points. The operator diag(-) is used to put a vector on the diagonal of
a zero matrix of corresponding size, to extract the diagonal entries of a matrix as a
vector, or for zeroing out the off-diagonal entries of a matrix. We use f = g to denote
f(z) = g(z) for all z € dom(f) = dom(g).

2. Examples and connections. In this section, we present examples of VGF's
associated with different choices of the set M. The list includes some well-known
functions that can be expressed in the variational form of (1), as well as some new ones.

Vector norms. Any vector norm || - || on R™ is the square root of a VGF defined
by M = {uu? : |Ju* < 1}. For a column vector x € R™, the VGF is given by

Q¢ (x7) = max {tr (x"uu’x) : [ul|* <1} = max {(xTu)2 )t < 1} = |Ix||*.

As another example for when n = 1, consider the case where M is a compact
convex set of diagonal matrices with positive diagonal entries. The corresponding
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VGF (and norm) is defined as

8) o0 () = | max S B = ]

which is a squared norm and the dual norm can be expressed as

2 i L2
* 2 _ f 0.
(IIx[[c) gedligg(M) ; 0i "

This norm and its dual were first introduced in [34], in the context of regularization
for structured sparsity, and later discussed in detail in [3]. The k-support norm [2],
which is a norm used to encourage vectors to have k or fewer nonzero entries, is a
special case of the dual norm given above, corresponding to

M = {diag(d): 0<6; <1, 170 <k}.

Our optimization approach for VGF regularized problems (section 5) requires projec-
tion onto M. Projection onto the intersection of a box with a half-space is a special
case of the continuous quadratic knapsack problem and can be performed in linear
time; e.g., see [25].

Weighted norms of the Gram matriz. Given a symmetric nonnegative matrix M,

we can define a class of VGFs based on any norm | - || and its dual norm || - |*.
Consider
(9) M={KoM: |K|*"<1, KT =K},

where o denotes the matrix Hadamard product, (KoM);; = K;;M;j for all i, j. Then,

Qn(X)= max (KoM, X"X)= max (K,Mo(X"X))=|Mo(X"X)| .
W(X) = ) = s, (K. 3o (XTX)) = ¥ o (x7x)
The following are several concrete examples.

(i) If we let || - ||* in (9) be the £ norm, then

M:{M |M”/M”‘ Sl, 7,,]:1,,7’71}

which is the same as in (3). Here we use the convention 0/0 = 0, thus M;; = 0
whenever M;; = 0. In this case, we obtain the VGF in (4):
() = 3o (X7X) |, = 7, 3 T

(i) If we use the £y norm in (9), then M = {M : 7" _ (M;;/M;;)* <1} and

o 1/2
(10) Oe(X) = [M o (XTX) |, = (S0, (Moxd)*)

This function has been considered in experiment design [8, 12].

(iii) Using ¢; norm for || - ||* in (9) gives M = {M : E” LM, /M ;| <1} and

(11) Qn(X) = || Mo (XTX H =, max M,; ’xi Xj’ .
This case can also be traced back to [8] in the statistics literature, where the maximum
of [xTx;| for i # j is used as the measure to choose among supersaturated designs.
Many other interesting examples can be constructed this way. For example, one
can model sharing versus competition using the group-¢; norm of the Gram matrix
which was considered in vision tasks [22]. We will revisit the above examples to discuss
their convexity conditions in section 3.
Spectral functions. From the definition, the value of a VGF is invariant under left
multiplication of X by an orthogonal matrix, but this is not true for right multipli-
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cation. Hence, VGFs are not functions of singular values (e.g., see [29]) in general,
and are functions of the row space of X as well. This also implies that in general
Q(X) # Q(XT). However, if the set M is closed under left and right multiplication
by orthogonal matrices, then Qy¢(X) becomes a function of squared singular values
of X. For any matrix M € S™, denote the sorted vector of its singular values, in
descending order, by o(M) and let © = {o(M): M € M}. Then we have

(12) Oy (X) = max tr (XMXT) = max Zﬁr{("’m) 0;0:(X)?
as a result of von Neumann’s trace inequality [35]. Note the similarity of the above
to the VGF in (8). As an example, consider

(13) M={M: anl =M < awl, tr(M) <as},

where 0 < a1 < as and may < az < masg are given constants. Note that in this case
M C ST which readily establishes the convexity of {25. For

My, ={M: 0=M=<I, tr(M)<r},

the corresponding norm ||- ||, is known as the Ky-Fan (2, 7)-norm, and Q¢, has been
analyzed in the context of low-rank regression analysis [16]. For M in (13), the dual
norm || || is referred to as the spectral box norm in [33], and 3, has been considered
in [20] for clustered multitask learning where it is presented as a convex relaxation
for k-means. || - |3, is considered in [14] for finding large low-rank submatrices in a
given nonnegative matrix.

Finite set M. For a finite set M = {M;,..., M,} C ST', the VGF is given by

]
i P’

7

Qn(X) = max
“1,.p

i.e., the pointwise maximum of a finite number of squared weighted Frobenius norms.

In the following subsections, we consider classes of VGFs that can be used in
promoting diversity, have connections to Euclidean distance matrices, or can be in-
terpreted in a robust optimization framework.

2.1. Diversification. VGFs can be used for diversifying certain pairs of columns
of the input matrix, e.g., minimizing (4) pushes to zero the inner products xiij
corresponding to the nonzero entries in M as much as possible. As another example,
observe that two nonnegative vectors have disjoint supports if and only if they are
orthogonal to each other. Hence, using a VGF as (4), Qn(X) = 0" My;|x7x;],

ij=1
that promotes orthogonality, we can define
(14) U(X) = Qe (| X])

to promote disjoint supports among certain columns of X, hence, diversifying the
supports of columns of X. Convexity of (14) is discussed in section 3.6. Different
approaches has been used in machine learning applications for promoting diversity;
e.g., see 31, 27, 19] and references therein.

2.2. Functions of Euclidean distance matrix. Consider a set M C S™ with
the property that M1 = 0 for all M € M. For every M € M, let A = diag(M) — M
and observe that

tr (XMXT) =37 MixTx; = § 370 Aijllxi — x5

4,j=1
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This allows us to express the associated VGF as a function of the Fuclidean distance
matriz D, which is defined by D;; = %sz —x;l|3 for i,j = 1,...,m (see, e.g., [9,
section 8.3]). Let A = {diag(M) — M : M € M}. Then we have

Qv (X) = max tr (XMXT) = max (A, D).

A sufficient condition for the above function to be convex in X is that each A € A
is entrywise nonnegative, which implies that the corresponding M = diag(A1) — A is
diagonally dominant with nonnegative diagonal elements, hence, positive semidefinite.
However, this is not a necessary condition and 25 can be convex without all A’s being
entrywise nonnegative.

2.3. Connection with robust optimization. The VGF-regularized loss min-
imization problem has the following connection to robust optimization (see, e.g., [7]):
the optimization program

minimize max L£(X)+ tr (XMX")
X MeM

can be interpreted as seeking an X with minimal worst-case value over an uncertainty
set M. Alternatively, when M C S, this can be viewed as a problem with Tikhonov
regularization || X M1/2||2, where the weight matrix M'/? is subject to errors charac-
terized by the set M.

3. Convex analysis of VGF'. In this section, we study the convexity of VGFs,
their conjugate functions, and subdifferentials, as well as the related norms.

First, we review some basic properties. Notice that Q¢ is the support function
of the set M at the Gram matrix X7 X, i.e.,

(15) Qv(X) = max tr (XMXT) =Sy (XTX)

where the support function of a set M is defined as Sy (Y) = suprent (M, Y) (see,
e.g., [38, section 13]). By properties of the support function (see [38, section 15]),

QM = Qconv(?\/[) )

where conv(M) denotes the convex hull of M. It is clear that the representation of a
VGF (i.e., the associated set M) is not unique. Henceforth, without loss of generality,
we assume M is convex unless explicitly noted otherwise. Also, for simplicity we
assume M is a compact set, while all we need is that the maximum in (1) is attained.
For example, a noncompact M that is unbounded along any negative semidefinite
direction is allowed. Last, we assume 0 € M.

Moreover, VGF's are left unitarily invariant; for any Y € R™*™ and any orthog-
onal matrix U € R™ " where UUT = UTU = I, we have Q(Y) = QUY) and
Q(Y) = Q*(UY); use (2) and (19). We use this property in simplifying computa-
tions involving VGFs (such as proximal mapping calculations in section 4) as well as
in establishing a general kernel trick and representer theorem in section 5.2.

As we mentioned in the introduction, a sufficient condition for the convexity of
a VGF is that M C S7’. In section 3.1, we discuss more concrete conditions for
determining convexity when the set M is a polytope. In section 3.2, we describe a
more tangible sufficient condition for general sets.

3.1. Convexity with polytope M. Consider the case where M is a polytope
with p vertices, i.e., M = conv{Mj,...,Mp}. The support function of this set is
given as Sy (Y) = max;=1__, (Y, M;) and is piecewise linear [40, section 8.E]. For a
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polytope M, we define Meg as a subset of {My,..., M,} with the smallest possible
size satisfying Sy (X7 X) = Syt (XTX) for all X € R™*™,

As an example, for M = {M : |M;;| < M;;, i,j = 1,...,m} which gives the
function defined in (4), we have

(16) Meﬁ‘ Q {M Mii :Mii s Mij = :‘:M,’j for ¢ }é j} .
Whether the above inclusion holds with equality or not depends on n.

THEOREM 3.1. For a polytope M C S™, the associated VGF is convex if and only
if Megr C ST.

Proof. Obviously, Meg C ST ensures convexity of maxarent, tr(XMX7T) =
Qn(X). Next, we prove the necessity of this condition for any Meg. Take any
M; € Meg. If for every X € R™™ with Q(X) = tr(XM;X7T) there exists an-
other M; € Mg with Q(X) = tr(XM;XT), then Mcg\{M;} is an effective subset
of M which contradicts the minimality of Meg. Hence, there exists X; such that
QX;) = tr(X;M; X)) > tr(X;M; XT) for all j # i. Hence, Q is twice continuously
differentiable in a small neighborhood of X; with Hessian VZQ(vec(X;)) = M; ® I,,,
where ® denotes the matrix Kronecker product. Since () is assumed to be convex,
the Hessian has to be PSD which gives M; > 0. ]

Next we give a few examples to illustrate the use of Theorem 3.1.

Ezample 1. We begin with the example defined in (4). Authors in [47] provided
the necessary (when n > m — 1) and sufficient condition for convexity using results
from M-matrix theory: First, define the comparison matrix M [ associated with the
symmetric nonnegative matrix M as M;; = M;; and M;; = —M;; for ¢ # j. Then
Q¢ is convex if M is PSD, and this condition is also necessary when n > m — 1 [47].

Theorem 3.1 provides an alternative and more general proof. Denote the minimum
eigenvalue of a symmetric matrix M by Amin(M). From (16) we have

min  Apin(M) = min z' Mz > min M“zf—g M jlziz)]
M EMegs MeMegs llz]|2=1 p 2

llzll2=1

(17) = min |z|TM|z| > Amin(M).

llzll2=1

When n > m — 1, one can construct X € R"*™ such that all off-diagonal entries of
XTX are negative (see the example in [47, Appendix A.2]). On the other hand, [11,
Lemma 2.1(2)] states that the existence of such a matrix implies n > m — 1. Hence,
M € Mg if and only if n > m — 1. Therefore, both inequalities in (17) should hold

with equality, which means that Mcg C S if and only if M = 0. By Theorem 3.1,
this is equivalent to the VGF in (4) being convex. If n < m — 1, then Mg may not

contain M, thus M > 0 is only a “sufficient” condition for convexity for general n.
An illustration for this result is given in Figure 1.

Example 2. Similar to the set M above, consider a box that is not necessarily
symmetric around the origin. More specifically, let

M={MeS": Mj; =D, |M—-C| <D},

where C' (denoting the center) is a symmetric matrix with zero diagonal, and D is a
symmetric nonnegative matrix. In this case, we have

Megg{M: M”:D”, MZJ:CU:ED” fOI‘Z#]}
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My

Moo

FiG. 1. The PSD cone, and the set in (3) defined by M = [1, 0.8; 0.8, 1], where 2 x 2
symmetric matrices are embedded into R3. The thick edge of the cube is the set of all points with
the same diagonal elements as M (see (16)), and the two endpoints constitute Meg . Positive

semidefiniteness of M is a necessary and sufficient condition for the convexity of Q¢ : R"*2 - R
foralln>m—1=1.

When used as a penalty function in applications, this can capture the prior infor-
mation that when X;er is not zero, a particular range of acute or obtuse angles
(depending on the sign of C;;) between the vectors is preferred. Similarly to (17),

min  Apin(M) > min \Z|Tﬁ\z| +2z7Cz > /\min(ﬁ) + Amin(C),
M EMegs ||z]|2=1

where D is the comparison matrix associated with D . Note that C' has zero diagonals
and cannot be PSD. Hence, a sufficient condition for convexity of {2y defined by an
asymmetric box is that Apin(D) + Amin(C) > 0.

Ezample 3. Consider the VGF defined in (11), associated with
(18) M= {M cS™ . Z(i,j):ﬁ.;jséo |M”/HU| < 1, Mij =0 ’LfMU = O},

where M is a symmetric nonnegative matriz. Vertices of M are matrices with ei-
ther only one nonzero value My on the diagonal, or two nonzero off-diagonal en-
tries at (i,7) and (j,1) equal to 1M;; or —3M;;. The second type of matrices can-
not be PSD as their diagonal is zero, and according to Theorem 3.1, convexity of
Qe requires these vertices do not belong to Meg . Therefore, the matrices in Meg
should be diagonal. Hence, a convex VGF corresponding to the set (18) has the
form QUX) = max;—1,_m Mii||x;]|3. To ensure such a description for Mg we need
max{M;||x;||3, M;||Ix;13} > Mi;|xI'x;| for all i, j, and any X € R™™, which
is equivalent to M M;; > M?j for all i,j. This is satisfied if M = 0. However,
positive semidefiniteness is not necessary. For example, all of the three 2 by 2 prin-
cipal minors of the following matriz are nonnegative as desired, but it is not PSD:
M =[1,1,2;1,2,0;2,0,5] # 0.

3.2. A spectral sufficient condition. As mentioned before, when M is not a
polytope, it seems less clear how we can provide necessary and sufficient guarantees
for convexity that are easy to check. However, simple sufficient conditions can be
easily checked for certain sets M, for example, spectral sets (Lemma 3.2). We first
provide an example and consider a specialized approach to establish convexity, to
illustrate the advantage of a simple guarantee as the one we present in Lemma 3.2.
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(i) Consider the VGF defined in (10) and its associated set given in (9) when
we plug in the Frobenius norm, i.e.,

M={KoM: |K|p<1, KT =K}.

In this case, M is not a polytope, but we can proceed with a similar analysis as in
the previous subsection. In particular, given any X € R"*"™, the value of Qy (X) is
achieved by an optimal matrix Kx = (M o XTX)/||M o XTX||r. We observe that

M>=0 = MoM>0 < KxoM>=0 VX = Q is convex.

The first implication is by the Schur product theorem [18, Theorem 7.5.1] and does
not hold in reverse. For example, besides obvious cases such as M = —I, consider
MoM =[1,1,2;1,2,3;2,3,5.01] = 0, where M # 0. The second implication, from left
to right, is again by the Schur product theorem. The right to left part is by observing
that for any n > 1, X can always be chosen to select a principal minor of M oM. The
third implication is straightforward: the pointwise maximum of convex quadratics is
convex. All in all, a sufficient condition for Q25¢ being convex is that the Hadamard
square of M, namely, M o M, is PSD. It is worth mentioning that when M o M > 0,
hence, real, nonnegative, and PSD, it is referred to as a doubly nonnegative matriz.

Denote by M the orthogonal projection of a symmetric matrix M onto the PSD
cone, which is given by the matrix formed by only positive eigenvalues and their
associated eigenvectors of M.

LEMMA 3.2 (a sufficient condition). Qa is convex if for any M € M there exists
M' e M such that My < M'.

Proof. For any X, tr(XMXT) < tr(XM; XT) clearly holds. Therefore,
T T
O (X) = max tr (XMX") < max tr (XM X") .
On the other hand, the assumption of the lemma gives

XM XT) < XM'XT) = Qe (X
Rt COMT) < g tr (M) = ()
which implies that the inequalities have to hold with equality, which implies that
Qi (X) is convex. Note the assumption of the lemma can hold while M, Z M. a

On the other hand, it is easy to see that the condition in Lemma 3.2 is not
necessary. Consider M = {M € S : |M;;| < 1}. Although the associated VGF is
convex (because the comparison matrix is PSD), there is no matrix M’ € M satisfying
M’ = M., where M = [0,1;1,1] € M and M, ~ [0.44,0.72;0.72,1.17], as for any
M’ € M we have (M’ — My )a9 < 0.

As discussed before, when M is a polytope, convexity of Qyt = Q. is equivalent
to Mg C ST, For general sets M, we showed that M, C M is a sufficient condition
for convexity. Similarly to the proof of Lemma 3.2, we can provide another sufficient
condition for convexity of a VGF: that all of the maximal points of M with respect to
the partial order defined by S (the Loewner order) are PSD. These are the points
M € M for which (M — M) NS = {0,,}. In all of these pursuits, we are looking for
a subset M’ of the PSD cone such that Qy¢ = Q. When such a set exists, Q¢ is
convex and various optimization-related quantities can be computed for it. Hereafter,
we assume there exists a set M’ C MNS, for which Q¢ = Qo, which in turn implies
Qo = Qains, - For example, based on Theorem 3.1, this property holds for all convex
VGFs associated with a polytope M.
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3.3. Conjugate function. For any function €2, the conjugate function is defined
as Q*(Y) =supy (X,Y) — Q(X) and the transformation that maps Q to * is called
the Legendre—Fenchel transform (e.g., [38, section 12]). In this section, we derive
a representation for the conjugate function for a VGF. First, we state a result on
generalized Schur complements which will be used in the following sections.

LEMMA 3.3 (generalized Schur complement [1]). For symmetric matrices M, C,

{M YT

v 0]50 — M>0,C-YMYT>=0,YUI-MM)=0,

where the last condition is equivalent to range(Y?) C range(M).

PROPOSITION 3.4 (conjugate VGF). Consider a convex VGF associated with a
compact convex set M C S™ with Qy = QMQST. The conjugate function is given by

(19) Q3 (V) = %i]l\l/[f {tr (YMTYT) : range(Y”) C range(M), M € MNST},

where M1 is the Moore—Penrose pseudoinverse of M.

Note that Q*(Y) = 4oo if the optimization problem in (19) is infeasible, i.e.,
if range(Y”) ¢ range(M) for all M € M N S?. This condition is equivalent to
Y (I —MM?) #0forall M € MN ST, where MM is the orthogonal projection onto
the range of M. This can be seen using the generalized Schur complement.

Proof. From the assumption Qyt = Qnins, , we get Q) = Q;‘/WS{ Define

(20) fe¥) =4 inf {tr((]) : []‘}f YCT} =0, MEM}.

The positive semidefiniteness constraint implies M = 0, therefore, far = famns,. Its
conjugate function is

" 1 M YT
Ja(X) = sup sup {(X,Y) — 7tr(C) : v C =0, MeM
Y M,C
M YT
21 = su su X, V) - ttr(0) - [ } EO}.
(21) MEMEWS+ Yg{< )~ 1t(0) y C

Consider the Lagrangian dual of the inner optimization problem over Y and C; e.g.,
see [43] for a review. Let W = 0 be the dual variable with corresponding blocks, and
write the Lagrangian as

L(Y’ C’ W) = <X7 Y> - %tr(C) + <W11,M> + 2<W217Y> + <W227C>a

whose maximum value is finite only if Wy, = —%X and Wy, = i] . Therefore, the
dual problem is

. Wi —iX7T .
mm{(Wth): [ L 2 } >0}zmm{<Wu,M}: W11>XTX},
Wi —§X ZI Wi
which is equal to (M, X7 X), and we used the generalized Schur complement in
Lemma 3.3. Notice that the above dual problem is bounded below (nonnegative
since M € MNS,) and strictly feasible; consider Wiy = 1 + 02, (X) which implies
[Wh1, —%XT; —%X, %I] > 0. Therefore, the dual is attained and strong duality holds;
e.g., see [46, Chapter 4]. By plugging the result into (21), we conclude fy; = Qnins, -
The domain of optimization in the definition of fj is a closed convex set, which we
denote by F. Then, 43 (Y) = infar,c tr(C)+1x(M, C) can be viewed as a parametric
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minimization. Denote this objective function by g(M,C), which is convex. For any
a € R, the level set {(M,C) : g(M,C) < a} is bounded because g(M, C') < « implies
M = 0 and C * 0, as well as tr(C) < a, and M is compact. Therefore, by [40,
Theorem 1.17 and Proposition 2.22], fas is a proper, lower semicontinuous, convex
function. This, by [40, Theorem 11.1}, implies f3f = fam. Therefore, fy is equal to
Q?vm&r which we showed to be equal to €23,. Using the generalized Schur complement,
in Lemma 3.3, for the semidefinite constraint in (20) gives the desired representation
in (19). O
While (19) can be cumbersome to implement, (20) is a convenient semidefinite
representation of the same function. A set such as (3) illustrates this difference.

3.4. Related norms. Given a convex VGF {2y with Q¢ = Qnins,, we have

On(X)= sup tr(XMXT)= sup

1/2]]?
’XM / H .
MeMnS4 MeMnS4 F

This representation shows that 1/{2 is a seminorm: absolute homogeneity holds, and
it is easy to prove the triangle inequality for the maximum of seminorms. The next
lemma, which can be seen from [38, Corollary 15.3.2], generalizes this assertion.

LEMMA 3.5. Suppose a function Q : R™*™ — R is homogeneous of order 2, i.e.,
QOX) = 62Q(X) for all 9 € R. Then its square root | X|| = /QUX) is a seminorm
if and only if Q is convex. If Q is strictly convex then v/ is a norm.

Proof. First, assume that 2 is convex. By plugging in X and —X in the definition
of convexity for 2 we get Q(X) > 0, so the square root is well-defined. We show the
triangle inequality \/Q(X +Y) < {/Q(X)+/Q(Y) holds for any X,Y. If Q(X +Y)
is zero, the inequality is trivial. Otherwise, for any 6 € (0,1) let A=} X, B = {1,V
and use the convexity and second-order homogeneity of €2 to get

(22) QX +Y) = QOA + (1 —0)B) < 09Q(A) + (1 — 0)Q(B) = Q(X) + L0(Y).

IFQX)>QY)=0,set 0 = (QX)+ QX +Y))/(2Q(X +Y)) > 0. Notice that
6 > 1 provides Q(X) > Q(X +Y) as desired. On the other hand, if § < 1, we can
use it in (22) to get the desired result as

20X +Y)Q(X)

A0 = Gx v oo = YK 20X +Y).

(
And if Q(X), QY) # 0, set § = /UX)/(VQUX) +/Q(Y)) € (0,1) to get

X +Y) < FAAX) + 45 () = (VaX) + s/Q(Y))Q .

Since v/Q satisfies the triangle inequality and absolute homogeneity, it is a seminorm.
Notice that Q(X) = 0 does not necessarily imply X = 0, unless Q is strictly convex.
Now, suppose that v/ is a seminorm, hence, convex. The function f defined by
f(x) = 2% for x > 0 and f(x) = 0 for x < 0 is nondecreasing, so the composition of
these two functions is convex and equal to . It is worth mentioning that one can
alternatively use [38, Corollary 15.3.2] to prove the first part of the lemma. ]

Considering || - [|at = v/Qac, we have 3|+ |3, = Q. Taking the conjugate func-
tion of both sides yields (| - [|3¢)* = 223 where we used the order-2 homogeneity of
Q¢ . Therefore, |- |3 = 24/, - Given the representation of {23, in Proposition 3.4,

one can derive a similar representation for /€23, as follows.
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PROPOSITION 3.6. For a convex VGF Q¢ associated with a nonempty compact
convex set M with v = Qs

@) Wl =228 = 3t {0 [ ] =0l

where vy (M) = inf{\ > 0: M € XM} is the gauge function associated with M .

Proof. The square root function, over positive numbers, can be represented in a
variational form as /y = inf {a + ;% : o > 0}. Without loss of generality, suppose
M is a compact convex set containing the origin. Provided that Q3(Y) > 0, from the
variational representation of a conjugate VGF function we have

05, (Y) =7 inf . {a+L1tr (YMTYT) : range (Y7) C range(M), M € MNS,}

M,a>

= iMigio {o+tr (YMTYT) : range (Y") C range(M), M € a(MNS,)}

1
4

where we observed MT/a = (aM)! and changed the variable aM to M, to get the
second representation. The last representation is the same as (23), as the constraint
restricts M to the PSD cone, for which vy (M) = yns, (M). On the other hand,
when Q3,(Y) = 0, the claimed representation returns 0 as well because 0 € M. |

For example, M = {M > 0 : tr(M) < 1} gives (M) = tr(M) which if plugged
into (23) yields the well-known semidefinite representation for the nuclear norm; [43,
section 3.1].

3.5. Subdifferentials. In this section, we characterize the subdifferential of
VGFs and their conjugate functions, as well as that of their corresponding norms.
Due to the variational definition of a VGF where the objective function is linear in
M, and the fact that M is assumed to be compact, it is straightforward to obtain the
subdifferential of {2y (e.g., see [28, Theorem 2]).

PROPOSITION 3.7. For a convex VGF with Qy = Qnins,, the subdifferential at
X is given by

O (X) = conv {2XM : tr (XMXT) =Q(X), MeMnS,;}.

When Qi (X) # 0, we have || X ||ae = m@ﬁM(X).

As an example, the subdifferential of Q(X) = 77" _, Mi;|x[x;|, from (4), is
given by

(24) OUX) = {2XM : M;; = M;sign (x]x;) if (xi,x;) #0,
M;; = M;;  |M;j| < M;; otherwise} .

PROPOSITION 3.8. For a convex VGF with Qy = Qnins,, the subdifferential of
its conjugate function is given by

oM (Y)={A(YMT+W): Q(YM + W) =4Q"(Y) = tr (YMTYT) ,

(25) range (WT) C ker(M) Cker(Y), M e MNS,}.

When 3,(Y') # 0, we have 0||Y |3 = ﬁ@ﬁ}‘w()ﬂ
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The proof of Proposition 3.8 is given in the appendix.

Since 9Q*(Y) is nonempty, for any choice of My, there exists a W such that
%(YMg + W) € 90*(Y). However, finding such a W is not trivial. The following
lemma characterizes the subdifferential as the solution set of a convex optimization
problem involving 2 and affine constraints.

LEMMA 3.9. GivenY and any choice of My € MNS,. satisfying Y(I—MOMOT) =0
and Q*(Y) = itr(YMgYT), we have

8Q*(Y) = Argmin,, {Q(Z) L Z=1 (YMg + W) , WM,y = 0}.

Assuming the optimality of M establishes the second equality and the second
inclusion in (25). Moreover, Q(Z) > tr(ZMyZT) = itr(YMJYT) = Q*(Y) for all
feasible Z in the above. Note that WMy = 0 is equivalent to range(W?) C ker(Mp).

The characterization of the whole subdifferential is helpful for understanding op-
timality conditions, but algorithms only need to compute a single subgradient, which
is easier than computing the whole subdifferential.

3.6. Composition of VGF and absolute values. The characterization of
the subdifferential allows us to establish conditions for convexity of ¥(X) = Q(|X]),
defined in (14) as a regularization function for diversity. Our result in Corollary 3.12
is based on the following lemma.

LEMMA 3.10. Given a continuous function f : R™ — R, consider h(x) == f(|x|)
and g(x) = miny> |« f(y), where the absolute values and inequalities are all entry-
wise. Then, the following hold.

(a) h* <g<h.
) If f is convex then g is convex and g = h**.
(¢c) If f is convex then h is convez if and only if g = h.
) If f is convex and [ has an entrywise nonnegative subgradient at any entrywise
nonnegative X, then h is convex and g = h.

Proof. (a) In h*(y) = sup, {(x,y)— f(|x])}, the optimal x should have the same
sign pattern as y; hence h*(y) = sup,q {(x, [y[) — f(x)}. Next, we have

W (a) = sup {(y,2) —sup {0y~ J}} = sup inf {{y.le) — (x.y) + /()

< ir;foigpo {(y,lz) = (x,y) + f(x)} = xig‘le f(x)=g(z),

where we invoke the minimax inequality; e.g., [38, Lemma 36.1]. This shows the first
inequality in (a). The second inequality follows directly from the definition of g and h.

(b) Consider x1,x2 € R™ and 0 € [0, 1]. For any & > 0, there exist some y; > |x;|
for i = 1,2, for which f(y;) < g(x;) + . Then,

Oy1+ (1 =0y > 0|x1]| + (1 — 0)|x2| > |0x1 + (1 — 0)x2].
Hence, by the definition of g and convexity of f,
g(0x1+(1-0)x2) < f(Oy1+(1-0)y2) < 0 (y1)+(1-0)f(y2) < Og(x1)+(1-0)g(x2)+e .
Therefore, g(6x1 + (1 —0)x2) < 0g(x1) + (1 —6)g(x2) + ¢ for any € > 0, which implies

that g is convex. It is a classical result that the epigraph of the biconjugate h** is
the closed convex hull of the epigraph of h; in other words, h** is the largest lower
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semicontinuous convex function that is no larger than h (e.g., [38, Theorem 12.2]).
Since g is convex and h** < g < h, we must have h** =g¢.

(c) Assuming h is a closed convex function, we have h = h** [38, Theorem 12.2],
thus part (a) implies h = g. On the other hand, given a convex function f, part (b)
states that g = h** is also convex. Hence, h = g implies convexity of h .

(d) For any x, any y > |x|, and an entrywise nonnegative subgradient of f at
|x| > 0, we have f(y) > f(|x|) + (y — |x],g) > f(|x]). Therefore, h(x) = f(|x|) =
miny> |« f(y) = g(x) holds. Part (c) establishes the convexity of h. |

We can provide a variation of Lemma 3.10(c) for norms.

LEMMA 3.11. Consider any norm || - ||. Then, ||| - ||| is a norm itself if and only
if we have |||x||| = ming > x| llyll -

Proof. First, suppose || - |lo := ||| - ||| is a norm, hence, it is an absolute and
monotonic norm; e.g., see [3, Proposition 1.7]. Therefore, for any y > |x| we have
lylla > [[xla which gives ming> |y [[¥|la > [|%[[o- Since |x] is feasible in this optimiza-

tion and ||[x[||a = [|x[|a, we get the desired result: [||x||| = [|x|ls = ming>x [|y|. On
the other hand, consider g(x) := miny> |4 [|y|. We show that it is a norm. Clearly,
g is nonnegative and homogenous, and g(x) = 0 implies that ||y|] = 0 for some

y > |x| > 0 which implies x = 0. The triangle inequality can be verified as

X+ 2z)= min < min = min +
sx+z)= min vl < min lyl= _min v+l
min ] ly1ll + lly2ll = 9(x) + g(=) . 0

T oyi2x|, y2 >z

COROLLARY 3.12. For a conver VGF Quy, consider U(X) == Qn(|X]). Then,

(a) ¥(X) is a convex function of X if and only if Qi (|X|) = miny > x| Qe (Y);

(b) provided that Qy has an entrywise nonnegative subgradient at any entrywise
nonnegative X, then ¥(X) = miny>|x| Qu(Y) and it is convex in X.

For example, consider the VGF defined in (4), and assume M > 0 is chosen in a
way that Q¢ is convex. The subdifferential 9 is given in (24). For any X > 0, the
inner product of any two columns of X is nonnegative which implies 2X M € 9 (X).
Since 2XM > 0, the condition of Lemma 3.10(d) is satisfied, and ¥(X) = Qu(|X]|)
is convex with an alternative representation W(X) = miny>|x| Q2 (Y). This specific
function ¥ has been used in [44] for learning matrices with disjoint supports.

4. Proximal operators. The proximal operator of a closed convex function
h(-) is defined as prox,(x) = argmin, {h(u) + 1|[u — x[|3}, which always exists and
is unique (e.g., [38, section 31]). Computing the proximal operator is the essential
step in the proximal point algorithm [32, 39] and the proximal gradient methods (e.g.,
[37]). In each iteration of such algorithms, we need to compute prox_;(-), where 7 > 0
is a step size parameter. To simplify the presentation, assume M C S and consider
the associated VGF. Then,

(26) prox ,o(X) = argmin max 1||Y — X||3 + rtr (YMYT).
Y MeM

Since M C S, is a compact convex set, and the objective is convex-concave, one
can change the order of min and max (e.g., [38, Corollary 37.3.2]) and first solve
for Y in terms of any given X and M, which gives Y = X (I + 27M)~!. Then, by
plugging this optimal Y in the above optimization program, and after some algebraic
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manipulations, the optimal value of (26) will be equal to the optimal value of

2 —1
max 4 X5 — o (X (I +2rM) XT)

for which we can find an optimal My € M via

My € Argmin tr (X (I + QTM)_lXT) .
MeM
Plugging M into the expression we derived before for the optimal Y establishes that
the pair (Yopt, Mopt) = (X (I+27Mg) ™1, Mp) is an optimal solution in (26). Therefore,
prox .(X) = Yoo = X(I + 27Mp)~!. To compute the proximal operator for the
conjugate function Q*, one can use Moreau’s formula (see, e.g., [38, Theorem 31.5]):

(27) prox ,o(X) + 7 prox, 1. (X) = X .

Next we discuss proximal operators of norms induced by VGF's (section 3.4). Since
computing the proximal operator of a norm is related to the orthogonal projection
onto the dual norm ball, i.e., prox ;. (X) = X — I -<-(X), we can express the

proximal operator of the norm || - || = /Qn(-) as

T
prox . (X) = X — argminmin{”Y—X”% ctr(C) <, M eM, [M Y } b 0},
Y  McC

Yy ¢

7|l

using (20) and (23). Moreover, plugging (23) into the definition of the proximal
operator gives

T
prox ..+ (X) = arg min Inin{”Y — X% 4+ 7(tr(C) + ym (M) : [A}{ YC } = 0} ,
Y Nej
where yp(M) = inf{\ > 0: M € AM} is the gauge function associated with the
nonempty convex set M. The computational cost for computing proximal operators
can be high in general (involving solving semidefinite programs); however, they may
be simplified for special cases of M. For example, a fast algorithm for computing the
proximal operator of the VGF associated with the set M defined in (13) is presented in
[33]. For general problems, due to the convex-concave saddle point structure in (26),
we may use the mirror-prox algorithm [36] to obtain an inexact solution.

Left unitary invariance and QR factorization. As mentioned before, VGFs and
their conjugates are left unitarily invariant. We can use this fact to simplify the
computation of corresponding proximal operators when n > m. Consider the QR
decomposition of a matrix Y = QR where @ is an orthogonal matrix, Q7 Q = QQT =
I, and R = [RL 0, (n—m)]” is an upper triangular matrix with Ry € R™*™. From
the definition, we have Q(Y) = Q(Ry) and Q*(Y) = Q*(Ry). For the proximal
operators, we can use the QR decomposition X = Q[R% 0]7 to get

T
prox o« (X) = argminmin < ||Y — X|3 + 17 tr(0) : MY 0, MeM
Y M.C 2 Y «C
o 2,1 M RT
= @ -argminmin {|[|R — Rx|5 + 57tr(C) : r C =0, MeMy;,
RER M.,C

where R is the set of upper triangular matrices and the new PSD matrix is of size
2m instead of n + m that we had before. The above equality uses two facts. First,

I, O0][M YT][I, 0 M RT
) ool [V el 8- ofed =0
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where the right and left matrices in the multiplication are positive definite. Second,
tr(C) = tr(C"), where ¢’ = QT CQ and assuming C’ to be zero outside the first m xm
block can only reduce the objective function. Therefore, we can ignore the last n —m
rows and columns of the above PSD matrix.

More generally, because of left unitary invariance, the optimal Y’s in all of the
optimization problems in this section have the same column space as the input matrix
X; otherwise, a rotation as in (28) produces a feasible Y with a smaller value for the
objective function.

5. Algorithms for optimization with VGF. In this section, we discuss op-
timization algorithms for solving convex minimization problems, in the form of (6),
with VGF penalties. The proximal operators of VGFs we studied in the previous
section are the key parts of proximal gradient methods (see, e.g., [5, 6, 37]). More
specifically, when the loss function £(X) is smooth, we can iteratively update the
variables X®) as follows:

X (t+1) prOX%Q(X(t) _ ’ytVL(X(t))) ; t=0,1,2,...,

where ; is a step size at iteration . When £(X) is not smooth, then we can use sub-
gradients of £(X (t)) in the above algorithm, or use the classical subgradient method
on the overall objective £(X) + AQ2(X). In either case, we need to use diminishing
step size and the convergence can be very slow. Even when the convergence is rela-
tively fast (in terms of number of iterations), the computational cost of the proximal
operator in each iteration can be very high.

In this section, we focus on loss functions that have a special form shown in (29).
This form comes up in many common loss functions, some of which are listed later
in this section, and allows for faster algorithms. We assume that the loss function £
in (6) has the following representation:

(29) L£(X) = max (X,D(g)) - L(g),
where £ : R? — R is a convex function, G is a convex and compact subset of R?,
and D : RP — R"™ ™ ig a linear operator. This is also known as a Fenchel-type

representation (see, e.g., [24]). Moreover, consider the infimal postcomposition [4,
Definition 12.33] of £ : G — R by D(+), defined as

(D>L)(Y)=inf {L(G): D(G)=Y, GeG}.

Then, the conjugate to this function is equal to £ . In other words, £(X) = L*(D*(X)),
where £* is the conjugate function and D* is the adjoint operator. The composition
of a nonlinear convex loss function and a linear operator is very common for optimiza-
tion of linear predictors in machine learning (e.g., [17]), which we will demonstrate
with several examples later in this section.

With the variational representation of £ in (29), and assuming Qx = Qunins,
we can write the VGF-penalized loss minimization problem (6) as a convex-concave
saddle point optimization problem:

— mi _r T
(30) Jopt = min MEMI%gf, veo (X,D(g)) — L(g) + Mr (XMXT") .

If £ is smooth (while £ may be nonsmooth) and the sets G and M are simple (e.g.,
admitting simple projections), we can solve problem (30) using a variety of primal-
dual optimization techniques such as the mirror-proz algorithm [36, 24]. In section
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5.1, we present a variant of the mirror-prox algorithm equipped with an adaptive line
search scheme. Then in section 5.2, we present a preprocessing technique to transform
problems of the form (30) into smaller dimensions, which can be solved more efficiently
under favorable conditions.

Before diving into the algorithmic details, we examine some common loss func-
tions and derive the corresponding representation (29) for them. This discussion will
provide intuition for the linear operator D and the set G in relation to data and
prediction.

Norm loss. Given a norm || - || and its dual || - ||*, consider the squared norm loss

L(x) = 5] Ax = b||* = max (g, Ax —b) — 5 ([lgl|")”
where A € RP*™. In terms of the representation in (29), here we have D(g) = ATlg,
L(g) = (/lgl*)* + bTg, and G = RP. Similarly, a norm loss can be represented as

£(x) = [|Ax — b]| = max {(x.ATg) -b'g: |lg|" <1},

where we have D(g) = A”g, L(g) = bTg, and G = {g : ||g||* < 1}.

e-insensitive (deadzone) loss. Another variant of the absolute loss function is
called the e-insensitive loss (e.g., see [42] for more details and applications) and can
be represented, similarly to (29), as

L.(z) = max(0, fa| ~ e} = max {ae — ) + B~z ~): @.f=0, a+F 1.

Hinge loss for binary classification. In binary classification problems, we are given
a set of training examples (aj, b1), ..., (an,by), where each a; € R™ is a feature vector
and by € {41, —1} is a binary label. We would like to find x € R™ such that the linear
function al'x can predict the sign of label b, for each s = 1,..., N. The hinge loss
max{0,1 — bs(alx)} returns 0 if bs(alx) > 1 and a positive loss growing with the
absolute value of by(alx) when it is negative. The average hinge loss over the whole
data set can be expressed as

N
L(x)= %Zmax {0,1—b, (al'x)} = max (g,1 — Dx),
s=1

where D = [bjay, ..., byay]?. Here, in terms of (29), we have D(g) = —D7Tg,
L(g)=-1Tg,and G={geRY: 0<g, <1/N}.
Multiclass hinge loss. For multiclass classification problems, each sample a, has

a label bs € {1,...,m} for s = 1,...,N. Our goal is to learn a set of classifiers
X1i,...,Xm, that can predict the labels bs correctly. For any given example as with
label b,, we say the prediction made by x1,...,X,, is correct if
(31) xTa, > x?as for all (¢,7) € Z(bs),
where Z(k), for k = 1,...,m, characterizes the required comparisons to be made for
any example with label k. Here are two examples.

1. Flat multiclass classification: Z(k) = {(k,j) : j # k}. In this case, the
constraints in (31) are equivalent to the label by = argmax;e ;1 X] as; see [45].

2. Hierarchical classification. In this case, the labels {1,...,m} are organized
in a tree structure, and each Z(k) is a special subset of the edges of the tree depending
on the class label k; see section 6 and [13, 47] for further details.
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Given the labeled data set (ay,b1),. .., (ay,bn), we can optimize X = [X1 -+ Xy,
to minimize the averaged multiclass hinge loss

N
1
32 L(X)=— E max{ 0,1 — max {x'a,—x’a, },
(32 (%) N ~ { (i,j>ez(bs>{ )

which penalizes the amount of violation for the inequality constraints in (31).

In order to represent the loss function in (32) in the form of (29), we need some
more notations. Let pi, = |Z(k)|, and define Ej, € R™*Pr as the incidence matrix for
the pairs in Z(k), i.e., each column of E}, corresponding to a pair (i,7) € Z(k), has
only two nonzero entries: —1 at the ith entry and +1 at the jth entry. Then the px
constraints in (31) can be summarized as Eff XTa; < 0. It can be shown that the
multiclass hinge loss £(X) in (32) can be represented in the form (29) via

D(g)=—-A&(g) and L(g)=-1"g,

where A = [a; --- ay] and E(g) = [Ep,g1 - Eoygn]?t € RYX™. Moreover, the
domain of maximization in (29) is defined as

(33) G=Gy X+ xGpy, where Gy={geR*: :g>0,1"g<1/N}.

Combining the above variational form for multiclass hinge loss and a VGF as a penalty
on X, we can reformulate the nonsmooth convex optimization problem
miny {£(X) + A2 (X)} as the convex-concave saddle point problem

(34) min

1Tg — (X, A Atr (XMXT).
in | max o 1'g (X,AE(g)) + At ( )

5.1. Mirror-prox algorithm with adaptive line search. The mirror-prox
(MP) algorithm was proposed by Nemirovski [36] for approximating the saddle points
of smooth convex-concave functions and solutions of variational inequalities with Lip-
schitz continuous monotone operators. It is an extension of the extragradient method
[26], and more variants are studied in [23]. In this section, we first present a variant of
the MP algorithm equipped with an adaptive line search scheme. Then explain how
to apply it to solve the VGF-penalized loss minimization problem (30).

We describe the MP algorithm in the more general setup of solving variational
inequality problems. Let Z be a convex compact set in Euclidean space € equipped
with inner product (-,-), and || - || and || - [|* be a pair of dual norms on &, i.e.,
l€1I* = max . <1(§, 2). Let F': Z — & be a Lipschitz continuous monotone mapping:

(35) Vz,2'eZ: |[F(z)—F()|" <L|z—7 and, (F(z)— F(z'),2—2') > 0.

The goal of the MP algorithm is to approximate a (strong) solution to the variational
inequality associated with (Z,F): (F(2*),z — 2*) > 0Vz € Z. Let ¢(x,y) be a
smooth function that is convex in & and concave in y, and X and ) be closed convex
sets. Then the convex-concave saddle point problem

min max o(z,y)

can be posed as a variational inequality problem with z = (x,9)%, Z = X x ), and

ror | St |
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Algorithm: Mirror-Prox(z1,71,¢)
repeat
t:=t+1
repeat
Ve 1= Yt/ Cdec
wy = P, (7F(z))
zey1 = Py (i F(wy))
until §; <0
Y41 = CincVe
until Vzt (Zt+1) <e
return z = (30 )7t Zizl Y Wr

Fic. 2. Mirror-prox algorithm with adaptive line search. Here cqec > 1 and cine > 1 are
parameters controlling the decrease and increase of the step size vt in the line search trials. The
stopping criterion for the line search is 6¢ < 0, where 6 = ¢ (F(w¢), ws — 2t41) — Vzy (2e41) . With
an abuse of notation, we refer to this algorithm as MP.

The setup of the MP algorithm requires a distance-generating function h(z) which
is compatible with the norm || - ||. In other words, h(z) is subdifferentiable on the
relative interior of Z, denoted Z°, and is strongly convex with modulus 1 with respect
to || - ||, i.e., for all z,2" € Z, we have (Vh(z) — Vh(z'),z — /) > ||z — 2'||?. For any
z € Z° and 2’ € Z, we can define the Bregman divergence at z as

Vo(2') = h(Z') = h(z) = (Vh(2), 2 = 2),
and the associated proximity mapping as

P.(§) = argmin {(¢, 2) + V. (2')} = argmin {(§ — VI(2),2') + h(z)} .
Z'eZ Z'eZ

With these definitions, we are now ready to present the MP algorithm in Figure 2.
Compared with the original MP algorithm [36, 23], our variant employs an adaptive
line search procedure to determine the step sizes v for t = 1,2,.... We can exit the
algorithm whenever V,,(z141) < € for some ¢ > 0. Under the assumptions in (35),
the MP algorithm in Figure 2 enjoys the same O(1/t) convergence rate as the one
proposed in [36], but performs much faster in practice. The proof requires only simple
modifications of the proof in [36, 23].

When £ is smooth and Qv = Qovins, , we can apply the MP algorithm to solve
the saddle point problem in (30). Then, the gradient mapping in (36) becomes

vec(2AX M + D(g))
(37) F(X,Mg)=| —vec(XTX) |,
vec(VL(g) — D*(X))

where D*(+) is the adjoint operator to D(-). Assuming g lives in RP, computing F
requires O(nm? + nmp) operations for matrix multiplications. In section 5.2, we
present a method that can potentially reduce the problem size by replacing n with
min{mp,n}. In the case of a support vector machine with the hinge loss as in our
real-data numerical example, one can replace n by min{N, mp,n}, where N is the
number of samples.

The assumption Qyt = Quins, provides us with a convex-concave saddle point
optimization problem in (30). However, MP iterations for (30) require a projection
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onto M NS, (or, more generally, computation of the proximity mapping P, (&) cor-
responding to the mirror map we choose and a set Z defined via M N'S;), and such
projections might be much more complicated than projection onto M. In fact, while
Qe = Qains, implies that the achieving matrix in supy;en (M, X7 X) is always in
M NSy, we need a separate guarantee to be able to project onto M and M NS in-
terchangeably. We remark on a guarantee for this in the following, where Lemma 5.1
and Corollary 5.2 provide sufficient conditions for when projection of a PSD matrix
onto M is equivalent to projection onto M NSy .

LEMMA 5.1. For any G = 0, consider P = Il)(G) and its Moreau decomposition
with respect to the positive semidefinite cone as P = Py — P_, where P1, P_ = 0 and
(Py,P_)=0. Then, P € M implies P_ =0.

Proof. Apply the firm nonexpansive property of the projection operator onto a
convex set [40] to P = I (G) and Py = Il (Py) (implied by Py € M). We get
|P— Py||% < (P — Py,G — P.) which implies (P_,G) + ||P_||% < 0. Moreover, for
two PSD matrices G and P_ we have (G, P_) > 0. All in all, P_ = 0. d

COROLLARY 5.2. Provided that for any M € M we have My € M, then Qg is
convex. Moreover, Iy (G) = 0 for all G = 0.

Corollary 5.2 establishes an important property about the iterates of the MP
algorithm with A (-) = 1| - || as the mirror map, corresponding to P,(§) = IIz(z —&).
If in the MP Algorithm in Figure 2 we initialize the part of z; corresponding to
M’s to be a PSD matrix, all of such parts in the iterations z; and w; remain PSD
as (1) we add a PSD matrix (AX7 X from (37)) to the previous iteration, and (2) the
projection onto M (which is not necessarily a subset of the PSD cone) ends up being
a PSD matrix (by Corollary 5.2), hence it is equivalent to projection onto M N Sy.
Notice that such a condition is required for applying the MP algorithm: the objective
has to be convex-concave and the positive semidefiniteness of all iterations guarantees
this property.

The above provides a glimpse into a more general approach in optimization with
composite functions. While every proper closed convex function has a variational
representation in terms of its conjugate function, namely, Q¢ (X) = supy (X,Y) —
Q5 (Y), such expressions do not necessarily offer any computational advantage. With
a more clever exploitation of the structure, Qy¢(X) can be seen as a composition of
the support function Sy¢(+) with a structure mapping g(X) = X7 X, as in (15). Then,

rr}%n L(X)+ Qn(X)=minsup L(X)+ (9(X),Y) — S3(Y)
X v

=min sup LX)+ (XTX,Y),
X YeMm
where we use the fact that S3(Y") is the indicator function for the set M. This can be
seen as an interpretation of how our proposed algorithm replaces proximal mapping
computations for Q¢ with projections onto M (proximal mapping for the indicator
function for (). Of course, to be able to use convex optimization algorithms, we
will need to establish results similar to Lemma 5.1 and Corollary 5.2.

5.2. A kernel trick (reduced formulation). As we discussed earlier, when
the loss function has the structure (29), we can write the VGF-penalized minimization
problem as a convex-concave saddle point problem

(38) Jopt =  min max (X, D(g)) - L(g) + AQ(X).
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Since G is compact, §2 is convex in X , and L is convex in g, we can use a minimax
theorem (e.g., [38, Corollary 37.3.2]) to interchange the max and min. Then, for any
orthogonal matrix ) we have

Jopt = max min (X, D(g)) — L(g) + A Q(X)
geg X

= max min (Q"X,Q"D(g)) — L(g) + A2 (Q"X)

(39) =max min (X,Q"D(g)) — L(g) + AQX),
geg X

where the second equality is due to the left unitary invariance of €2, and we renamed

the variable X to get the third equality. Observe that @) is an arbitrary orthogonal

matrix in (39) and can be chosen in a clever way to simplify D as described in the

following. Since D(g) is linear in g, consider a representation as

(40) D(g) = [D1g -+ Dmg|=[D1 -+ Dpl(ln @ g) = D(Im ® g)

for some D; € R"P and D € R™"*™P_ Then, express D as the product of an or-
thogonal matrix and a residue matrix, such as in QR decomposition D = QR , where
provided that n > mp, only the first mp rows of R can be nonzero (which will be
denoted by Rj). Define D'(g) = Ri(I,, ® g) € R?*™ for ¢ = min{mp,n}. Plugging
the above choice of @ into (39) gives

o= g, (] [70%)) -2 ([2))

Observe that setting X5 to zero does not increase the value of €2 which allows for
restricting the above to the subspace X2 = 0 and getting

— : / _ P
(41) Jopt =  min  max (X, D'(g)) — L(g) + M2X)

whose X variable has ¢ = min{mp, n} rows compared to n rows in (38).
Notice that while the evaluation of J,p, via (41) can potentially be more efficient,

we are interested in recovering an optimal point X in (38) which is different from the
optimal points in (41). Tracing back the steps we took from (38) to (41), we get

(41)
x8V=qQ {XBW } .

The special case of regularization with squared Fuclidean norm has been under-
stood and used before; e.g., see [41]. However, the above derivations show that we
can get similar results when the regularization can be represented as a maximum of
squared weighted Euclidean norms.

It is worth mentioning that the reduced formulation in (41) can be similarly de-
rived via a dual approach; one has to take the dual of the loss-regularized optimization
problem (e.g., see [40, Example 11.41]), use the left unitary invariance of the conjugate
VGF to reduce D to D', and dualize the problem again, to get (41).

5.3. A representer theorem. A general loss-regularized optimization problem
as in (6) where the loss admits a Fenchel-type representation and the regularizer
is a strongly convex VGF (including all squared vector norms) enjoys a representer
theorem (see, e.g., [41]). More specifically, the optimal solution is linearly related
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to the linear operator D in the representation of the loss. As mentioned before, for
many common loss functions, D encodes the samples, which reduces the following
proposition to the usual representer theorem.

THEOREM 5.3. For a loss-reqularized minimization problem as in (6) where M C
S, and L admits a Fenchel-type representation as

E@JZ@@<XD@»—ﬁ@%=@%<XDUﬁ®g»—ﬁ@%

the optimal solution Xope admits a representation of the form
Xopt - DC
with a coefficient matriz C given by C = —iMo_pi ®8opt (0ptimal solutions of (30)).

Proof. Denote the optimal solution of (30) by (Xopt, 8opt, Mopt) , Which shares
(Xopt, Bopt) With (38). Consider the optimality condition as —%D(gopt) € 0N Xopt)
which implies Xopt € (’)Q*(—§D(g0pt)); e.g., see [40, Proposition 11.3]. Now, suppose
M C 87, which implies {23 is strongly convex. Considering the characterization of
a subdifferential for Q* from Proposition 3.8 as well as the representation of D(g)
in (40) we get

Xopt = _%D(gopt)Mcg)lt = _%D(Im & gopt)Moip% = _%D (Mc:plt & gopt) . D

This representer theorem allows us to apply our methods in more general repro-
ducing kernel Hilbert spaces by choosing a problem specific reproducing kernel; e.g.,
see [41, 47].

6. Numerical example. In this section, we discuss the application of VGF's in
hierarchical classification to demonstrate the effectiveness of the presented approach
in a real data experiment. More specifically, we compare the modified MP algorithm
with adaptive line search presented in section 5.1 with the variant of the regularized
dual averaging (RDA) method used in [47] in the text categorization application
discussed in [47].

Let (a1, b1),...,(an,by) be a set of labeled data, where each a; € R™ is a feature
vector and the associated b; € {1,...,m} is a class label. The goal of multiclass
classification is to learn a classification function f : R™ — {1,...,m} so that, given
any sample a € R™ (not necessarily in the training set), the prediction f(a) attains a
small classification error compared with the true label.

In hierarchical classification, the class labels {1, ..., m} are organized in a category
tree, where the root of the tree is given the fictitious label 0 (see Figure 3(a)). For
each node 7 € {0,1,...,m}, let C(i) be the set of children of 7, S(7) be the set of
siblings of i, and A(i) be the set of ancestors of ¢ excluding 0 but including itself. A
hierarchical linear classifier f(a) is defined in Figure 3(b), which is parameterized by
the vectors xy,...,X,, through a recursive procedure. In other words, an instance is
labeled sequentially by choosing the category for which the associated vector outputs
the largest score among its siblings, until a leaf node is reached. An example of this
recursive procedure is shown in Figure 3(a). For the hierarchical classifier defined
above, given an example a; with label by, a correct prediction made by f(a) implies
that (31) holds with

I(k)={(i,j) : j€S(), i Alk)} .

Given a set of examples (aj,b;1),...,(ay,by), we can train a hierarchical classifier
parameterized by X = [x1 -+ X,,] by solving the problem minx {£(X)+AQ(X)} with
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initialize ¢ := 0
while C(7) is not empty
f(a) = i:=argmax X' a
jec(@)
return ¢

(b)

Fic. 3. (a) An example of hierarchical classification with four class labels {1,2,3,4}. The
instance a is classified recursively until it reaches the leaf node b = 3, which is its predicted label.
(b) Definition of the hierarchical classification function.

the loss function £(X) defined in (32) and an appropriate VGF penalty function Q(X).
As discussed in section 5, the training optimization problem can be reformulated as a
convex-concave saddle point problem of the form (34) and solved by the MP algorithm
described in section 5.1. In addition, we can use the reduction procedure discussed in
section 5.2 to reduce computational costs.

As discussed in [47], one can assume a model where classification at different
levels of the hierarchy rely on different features or different combinations of features.
Therefore, authors in [47] proposed regularization with [x!x;| whenever j € A(i). A
convex formulation of such a regularization function can be given in the form (4) with

M={M: My =M,;, |Mj|=|M;l|},

where the nonzero pattern of M corresponds to the pairs of ancestor-descendant nodes.
According to (17), we have M C S* provided that Ayin(M) > 0.

As a real-world example, we consider the classification dataset Reuters Corpus
Volume I, RCV1-v2 [30], which is an archive of over 800,000 manually categorized
newswire stories and is available in 1ibSVM. A subset of the hierarchy of labels in
RCV1-v2, with m = 23 labels (18 leaves), is called ECAT and is used in our experi-
ments. The samples and the classifiers are of dimension n = 47236. Last, there are
2196 training, and 69160 test samples available.

We solve the same loss-regularized problem as in [47], but using MP (discussed in
section 5.1) instead of RDA. The regularization function is a VGF and is given in (4).
A reformulation of the whole problem as a smooth convex-concave problem is given
in (34). To obtain comparable results, we use the same matrix M and regularization
parameter A = 1 as in [47]. Note that in this experiment, n = 47236 while m = 23
and p > 2196, so the kernel trick is not particularly useful since n is not larger than
mp.

Since we are solving the same problem as [47], the prediction error on test data
will be the same as the error reported in this reference, which is better than the
other methods. Moreover, one can look at the estimated classifiers and how well
they validate the orthogonality assumption. Figure 4 compares the pairwise inner
products of classifiers estimated by our approach for hierarchical classification and
those estimated by the “transfer” method (see [47] for details on this method).

In the setup of the MP algorithm, we use 3| -||3 as the mirror map which requires
the least knowledge about the optimization problem (see [23] for the requirements
when combining a number of mirror maps corresponding to different constraint sets
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Fia. 4. Pairwise angles (in degrees) between the estimated classifiers for dataset MCAT (part
of RCV1—v2 [30]) via (left) regularization by the VGF in (4) and (right) the “transfer” method (see
[47] and references therein). The circled entries in red correspond to ancestor-descendant relations
in the hierarchy of MCAT labels.

1.600 2.600 3,000 l,dUO 2.600 3,600 1,600 2.600 3,000
(a) (b) (c)

Fic. 5. Convergence behavior for mirror-prox and RDA in our numerical experiment. (a)
Awverage error over the m classifiers between each iteration and the final estimate, || Xt — XpnailllF -
(b) MP’s gap V., (z¢+1). (c) The value of loss function relative to the final value. For visualization
purposes, all of the plots show data points at every 10 iterations. All vertical axes have a logarithmic
scale.

in the saddle point optimization problem). With this mirror map, the steps of MP
only require orthogonal projection onto G and M. The projection onto G in (33)
boils down to separate projections onto N scaled simplexes (where the summation of
entries is bounded by 1 and not necessarily equal to 1). Each projection amounts to
zeroing out the negative entries followed by a projection onto the ¢; unit norm ball
(e.g., using the simple process described in [15]).

The variant of RDA proposed in [47] has a convergence rate of O(In(t)/ot) for
the objective value, where o is the strong convexity parameter of the objective. On
the other hand, MP enjoys a convergence rate of O(1/t) as given in [36]. Although
there is a clear advantage to the MP method compared to RDA in terms of the
theoretical guarantee, one should be aware of the difference between the notions of
gap for the two methods. Figure 5(a) compares || X — Xana1|| r for MP and RDA using
each one’s own final estimate Xg,,1 . In terms of the runtime, we empirically observe
that each iteration of MP takes about 3 times longer compared to RDA. However as
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is evident from Figure 5(a), MP is still much faster in generating a fixed-accuracy
solution. Figure 5(b) illustrates the decay in the value of the gap for the MP method,
V., (z14+1) , which confirms the theoretical convergence rate of O(1/t).

7. Discussion. In this paper, we introduce variational Gram functions, which
include many existing regularization functions as well as important new ones. Con-
vexity properties of this class, conjugate functions, subdifferentials, semidefinite rep-
resentability, proximal operators, and other convex analysis properties are studied.
By exploiting the structure in the loss function and the regularizer, namely, £(X) =
L*(D*(X)) and Qi (X) = Sp(XTX), we provide various tools and insight into such
regularized loss minimization problems: By adapting the MP method [36], we provide
a general and efficient optimization algorithm for VGF-regularized loss minimization
problems. We establish a general kernel trick and a representer theorem for such
problems. Finally, the effectiveness of VGF regularization as well as the efficiency
of our optimization approach is illustrated by a numerical example on hierarchical
classification for text categorization.

There are numerous directions for future research on this class of functions. One
issue to address is how to systematically pick an appropriate set M when defining a
new VGF for some new application. Statistical properties of VGFSs, for example, the
corresponding sample complexity, are of interest from a learning theory perspective.
The presented kernel trick (which uses the left unitary invariance property of VGF's)
can be potentially extended to other invariant regularizers. And last but not least, it
is interesting to see if there is a variational Gram representation for any squared left
unitarily invariant norm.

Appendix A. Proof of Proposition 3.8. First, let us simplify some notation.
Throughout the proof, we denote %Q by €2, and 29Q* by Q*. Denote by ty (M)
the indicator function of the set M which is 1 when M € M and +oo otherwise.
Since Qnt = Qins,, we assume M C S, with no loss of generality. Observe that
O(Y) =infp f(Y, M) + t(M), where

2tr(YMTYT) if range(Y'T) C range(M) , M =0,
+00 otherwise .

Y, M) = {
Function f(Y, M) coincides with op(a p), for A =0 and B =0 in [10, (2)]. Then, by
[10, Corollary 4 and (8)], we get
(42) of(Y,M)={(Z,H): }Z"Z+H=<0,Y =2ZM, (M,}Z"Z+H) =0} .

Since g(Y, M) := f(Y, M) + 1) (M) is convex, we can use results from parametric
minimization, [40, Theorem 10.13], to get, for Y with Q*(Y) # 4oc and for any
choice of My € M satisfying Q*(Y) = 3 tr(Y M{YT) and Y (I — MoM) =0,

(13) 09°(Y) = {Z: (Z,0) € dg(Y , Mo))

(44) ={Z: (Z,-H) € df(Y,My), H € duy(My), for some H}

(45) ={2: 3Z"Z<H,Y =ZM,,

supprene(M , H) = (Mo, H) = § tr (ZMoZ™) , for some H}
(46) ={Z:i2"Z<H,Y =ZM,,

supprenc(M , H) = (Mo, H) = 3 tr (ZMoZ") = Q(Z), for some H}
(47) ={Z: Y =2ZM,y, UZ)=Ltr(ZMZ")} .
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Let us elaborate on these derivations. For (45), we used (42) as well as Oy (Mp) ==
{G: (G,M —My) <0, VM eM}={G: suppen(M,G) = (Mo, G)}, as My € M.
For (46), consider any Z € 02*(Y') and any H corresponding to Z in (45), and observe
(48) QZ) < supprene(M, H) = (Mo, H) = 2 tr (ZMoZT) < Q(2),

where the first inequality is due to $Z7Z < H. Hence inequalities in (48) hold with
equality and (46) is established. Ignoring H in (46) establishes the forward inclusion
for (47). On the other hand, for any Z in the right-hand side of (47) and for any Y’

Q' (Y') > (Y, Z) - Q2) = (Y, Z) - Q' (Y) = (Y — Y, Z) + Q"(Y),

where we used Fenchel’s inequality, as well as the characterization of Z. Therefore,
Z € 0Q*(Y). This establishes (47). Last, recall that M, is an achieving matrix in
0*(Y"), which implies Y (I — MoMg) = 0. This in turn implies that (e.g., see [1])

(49) Y =ZMy < IW; Z=YMI+W , WMy =0.

Moreover, (48) (with equalities), property My = MOMJMO7 and Y = ZMj, imply
(50) QZ) =1t (ZMoZ") = Ltx (ZMOMJMOZT) =l (YMgYT) — QH(Y).
Combining (47), (49), and (50), yields

a0 (Y) = {Z —SYM{+W: Q2Z)=Ltr (ZMeZ7) = Q*(Y)
(51)
range (Y7') C range(Mo) C ker(W) , My € M}

which is the claimed characterization (after we adjust for the J-rescaling we did in

the beginning). Note that for an achieving My, range(YT) C range(Mp) has to hold
for the conjugate function to have a finite value.

It is worth mentioning that the introduction of H and then omitting it hints to
the possibility of simpler proofs. We postpone this to future examinations.

Acknowledgment. We are grateful to the reviewers as their comments led us
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