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Abstract We consider a new and general online resource allocation problem, where
the goal is to maximize a function of a positive semidefinite (PSD) matrix with a scalar
budget constraint. The problem data arrives online, and the algorithm needs to make an
irrevocable decision at each step. Of particular interest are classic experiment design
problems in the online setting, with the algorithm deciding whether to allocate budget
to each experiment as new experiments become available sequentially. We analyze two
greedy primal-dual algorithms and provide bounds on their competitive ratios. Our
analysis relies on a smooth surrogate of the objective function that needs to satisfy a
new diminishing returns (PSD-DR) property (that its gradient is order-reversing with
respect to the PSD cone). Using the representation for monotone maps on the PSD
cone given by Lowner’s theorem, we obtain a convex parametrization of the family
of functions satisfying PSD-DR. We then formulate a convex optimization problem
to directly optimize our competitive ratio bound over this set. This design problem
can be solved offline before the data start arriving. The online algorithm that uses the
designed smoothing is tailored to the given cost function, and enjoys a competitive
ratio at least as good as our optimized bound. We provide examples of computing the
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smooth surrogate for D-optimal and A-optimal experiment design, and demonstrate
the performance of the custom-designed algorithm.

Keywords Online algorithms - Competitive ratio - Positive semidefinite cone -
Lowner’s theorem
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1 Introduction

Online resource allocation problems and algorithms have been traditionally studied
in operations research (e.g., revenue management [2] and references therein), online
network routing [6] and computer science (e.g., online packing and covering in linear
or convex case [3,8], online welfare maximization [19]). In recent years, applica-
tions in online advertising such as the Adwords problem [22] have garnered renewed
interest in this topic. In all these applications, the demands for resources arrive in an
online, sequential fashion, and resource allocation also happens online. For example,
in online revenue management, customers arrive sequentially, reveal their demand for
the resources and offer a bid price. The inventory owner then needs to make an irre-
vocable decision about the latest customer’s offer, without knowing future demands,
while aiming to maximize his or her revenue. A feature in these problems is that
the variables denoting allocation amounts, the bid prices, and the coefficients in the
resource constraints are all nonnegative, thus a resource can only be used up as time
goes on (resource usage is nondecreasing) while the total available resource is fixed. In
the context of linear programming (LP), these are sometimes called “packing” prob-
lems, e.g., [8,24]. For an overview of online linear programming and more generally
online convex problems with different models for online information arrival, we refer
the reader to [1,15,17,20].

In this paper, we consider a new and general online resource allocation problem,
where the objective is a function of a positive semidefinite (PSD) matrix (thus the
problem is defined on the PSD cone S'{ ), with a scalar budget constraint. The problem
can be described as follows: At round ¢, the algorithm receives a matrix A; € S/ and
scalar ¢; > 0, and then chooses x; € [0, 1]. The goal of the algorithm is to maximize
H (Z;"zl A,x,) subject to the budget constraint Z;"z 1 ¢tX; < b. The offline problem
can be written as

m m - b
maximize H <Z A,x,) subject to {Oz:t_l CrXy = 0, 0

pa <x <1, t=1,...,m.

We assume that H : Sj‘r — R is a monotone, concave trace function, i.e.,

H(X)=) h(i (X)),

i=1
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where 7 : Ry — R is a monotone concave function and A;(X) denotes the ith
eigenvalue of X. Note that analogous to packing LPs, Zi: | Asxg is nondecreasing
with respect to the PSD cone. In other words,

t+1

t
D Axy ) Agxg forall 1,
s=1

s=1

where X < Y means that Y — X is positive semidefinite.

In the online algorithms literature, various scenarios have been considered for the
information being revealed to the algorithm (the sequence of A; and ¢;): from the
worst-case adversarial model to various stochastic models. In this paper, since we are
interested in understanding the limits of performance and providing competitive ratio
bounds, we assume an adversarial model, where little is known about the arriving data.
One could use techniques similar to ours in other scenarios as well, which we leave
for future work.

Our setup covers online versions of problems such as sensor selection or experiment
design, and graph formation [23]. In these problems, A; = ata,T for some a; € R".In
online experiment design, the vector a; is an experiment or measurement vector that
provides linear noisy measurements of an unknown vector w, i.e., & = (a;, w) + ny,
where n; is Gaussian noise and c; x; is the experiment cost. In this paper, we consider
two algorithms: one that assigns fractional values to x; and one that assign integer
values to x;. The algorithm makes online decisions about the budget to allocate to an
experiment, aiming to minimize various functions of the error covariance matrix of
the maximum a priori estimate of w.

The online experiment design problem can be expressed as (1), with differ-
ent choices of H giving rise to different criteria for optimal experiment design.
Examples include H (X) = logdet (eI + X) for the D-optimal criterion, H (X) =
—tr(el + X)~! for the A-optimal criterion, and H (X) = —tr(el + X)™? for the
pth mean criterion. (The prior distribution on w is assumed to be N (O, él ).)

We use the A-optimal and D-optimal criteria, as well as the problem where
H(X) = tr(X), as running examples throughout the paper. The latter simply recovers
a linear program with one packing constraint, and provides insight into the connec-
tions and differences with online Linear Programming results, e.g., [8] (discussed in
Sect. 3).

Our results exploit a crucial property of the objective function H or its surrogate Hg
(discussed in Sect. 3.2) which we refer to as the PSD diminishing returns property. For
a function with a scalar variable, this property simply means the larger the variable,
the smaller the derivative. More generally, we define it as follows.

Definition 1 (PSD diminishing returns) A concave trace function F satisfies PSD
diminishing returns (PSD-DR) if VF is order-reversing with respect to S” , i.e.,

VF (U) < VF (U'), whenever U = U’
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Our contributions. Our focus is on developing algorithms with (multiplicative)
competitive ratio guarantees for problems of the form (1). In other words, our algo-
rithms provide feasible solutions xp, x2, .. ., x,, such that H (Z:": lAtxt) — H(0) >
cr (P* — H (0)), where cr bounds the competitive ratio and P* is the optimal value
of ().

The algorithms we consider (Algorithms 1 and 2, in Sect. 2) are parameterized
by a smoothed surrogate, Hg, of the objective function H, and a smoothed penalty
function G in place of the budget constraint ) /-, x; < b. Our main contribution
is a systematic method, based on solving an offline convex optimization problem, to
design Hg and G g, and to compute a bound on the competitive ratio of the associated
algorithms.

Our approach builds on the results in [13], which considers a general online conic
optimization problem and shows that smoothing the objective function (to obtain a
surrogate) before applying a primal-dual greedy algorithm improves the competitive
ratio. However, prior work was not able to address the problem of finding the best
surrogate (or even representing the space of suitable surrogates)—except for the special
(and restrictive) case of separable objectives defined on the non-negative orthant, which
reduces to a search over concave scalar functions. There is no hope of employing a
similar strategy for functions defined on the PSD cone, unless one has access to
representations that lead to a convex parametrization for PSD-DR functions. The
present paper resolves this issue.

We require the smoothed objective Hg to satisfy the PSD-DR property. Note that
this does not hold for all concave trace functions (indeed fails to hold for the objective
function in A-optimal experiment design). If the objective function in problem (1) does
not satisfy this property, our approach allows us to design an appropriate surrogate
Hjy that satisfies it, and use this Hg to construct algorithms with competitive ratio
guarantees. And if the original H does satisfy the property, our approach still helps
improve the competitive ratio; see Sect. 3.2. A key observation in this paper is that we
can use Lowner’s theorem, characterizing operator monotone functions, to impose this
constraint in a computationally effective way by requiring it to have a certain integral
representation (see 17).

The rest of the paper is structured as follows. In Sect. 2, we describe the algorithms.
In Sects. 3 and 4, we provide the competitive ratio analysis for the online algorithms
described in Sect. 2 and determine how the competitive ratio depends on the smoothed
surrogate of the objective function. We set up optimization problems for finding surro-
gates that maximize the competitive ratio bound derived in these sections. Numerical
examples are presented in Sect. 5. Related works are discussed in Sect. 6.

2 Algorithms

In this section we describe the class of online algorithms we consider to solve (1),
and give bounds on the duality gap achieved by these algorithms. The algorithms we
consider (Algorithms 1 and 2, stated in Sect. 2.1) are (modified) greedy algorithms,

I'To simplify the notation in the rest of the paper, assume H (0) = 0 by replacing & (u) with h(u) — h(0).
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where a primal-dual greedy approach is applied to a smoothed surrogate for the objec-
tive. These algorithms are instances of the general algorithmic framework for conic
online optimization introduced in [13], which can recover state-of-the-art algorithms
developed for Adwords [9], Adwords with concave returns [10], and online LP [7].
Before describing the algorithms, it is helpful to slightly rewrite (1) and state its
dual. Throughout, let G : R4 — R be the indicator function of the interval [0, b], i.e.,

Gl — {0 if u € [0, ] )

—oo  otherwise.

Then we can rewrite (1) as

,,,,,

m m
maximize H A G . 3
X150 Xm €[0,1] (Z tx{) * (Z Ctxr) )
=1 =1
To derive a dual program, we rewrite the primal as:

maximizel] HU)+G (u).

X150 Xm €[0,

m
subjectto U = Z Axy

=1

m
u = E Ct Xt
t=1

Introducing a dual matrix variable Y and dual scalar variable z corresponding to the
two equality constraints, we can write the Lagrangian as follows:

L, U, x1,....%m, Y, 2)=HWU) — (Y, U)+ Gu) — (z,u) —i—Z((A[, Y)+c)x

t=1

where dom(£) = §" x R x [0, 1] x §" x R. Maximizing £ over all the primal
variables, we can derive the dual of (1) in terms of conjugate functions as
m
minimize ) | (A ¥) +¢2)y — H (V) = G* (2). @
z,Y

t=1

where, for a function ¢ : R” — R, ¥* denotes the concave conjugate of 1/, defined
as ¥*(y) = inf, (y, u) — ¥ (u). The concave conjugate of G is

b ifz<0
Gr={° "r="
0 otherwise.
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Foratrace function H(U) = Y 7, h(x;(U)) wehavethat H*(Y) = Y 7| h*(A;(Y)),
a result established in [21].

2.1 Statement of algorithms

Recall that our objective function H is a monotone, concave, trace function, and that G
is the concave indicator function of the set [0, b]. We consider two online algorithms
for (1). Algorithm 1 makes sequential updates to the primal and dual variables, whereas
Algorithm 2 makes these updates simultaneously. These algorithms require a choice
of functions Hg and Gy that are smooth surrogates for H and G. Throughout, we
assume these functions satisfy the following.

Assumption 1 (Assumptions on Hg) We assume that hg : O — R is concave,
differentiable, and satisfies 25(0) = 0 and h'i(0) = A’(0), where O is an open
interval that contains Ry. We assume that Hs : § — R is the trace function
Hs(U) = 3 [ hs(hi(U)).

Assumption 2 (Assumptions on Gg) We assume that Gg : O — R is concave,
differentiable, and satisfies G5(0) = 0 and G’S(O) = 0, where O is an open interval
that contains R .

The problem of designing Hs and Gg, given H and G, is the main focus of the
paper, and is the subject of Sect. 3. For now we merely point out that the results of this
section hold for any choice of Hg and G s satisfying the basic assumptions above.

Initialize 2o = G’ (0), Yo = V Hs (0);

fori < 1tom do

Receive Ay, ¢;;
s { L ifeizior+ (AL Yiog) > 0
Lo ifadr + (AL Tim) < 0;

Y; = VHg (va:l AS)?S);

&= G (Timi ofs);
end

Algorithm 1: Sequential Update

fori < 1tomdo
Receive Ay, ¢}

(. Yy, %) € arg miyn ren[gx]] (Y, Arx + Zé;llAsis) +z (c,x + Zg;llcsis)
7Y xel0,

— Hg(Y) — G(2)
end
Algorithm 2: Simultaneous Update

In Algorithm 2, at each step the primal variable %;, and the dual variables ¥; and
Zs, are updated together, by finding the saddle point of the Lagrangian (solution to
the min-max problem). To argue for the existence of a saddle point, we use Corollary
11.41b in [27] which requires two conditions to be satisfied. The first condition is that
the following problem has a nonempty, bounded set of maximizers,
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1—1 1—1
X € argxrer}%?il] Hg (A,x + Z]Asxs> +Gs|x+ les) ,
§= s=
which holds because [0, 1] is a compact convex set. The second condition requires

t—1
> A e int({—A;x | x € [0, 1]} + domH) ,
s=1

t—1
D ek eint({—¢,x | x € [0, 1]} + domGy) ,

s=1

where the sum is the Minkowski sum of two sets, and int denotes the interior of a set.
This condition is also satisfied since 0 is in the interior of the domains of 45 and G g
(from Assumptions 1 and 2).

Algorithm 1 can also be interpreted in similar terms, by observing that the primal
X; update can be written as

% € argmax x(ciZ—1 + (A, Y1),
x€[0,1]

and using the fact that for a differentiable concave function ¥, we have Vi (1) =
arg miny (y, u) — ¥*(u), the dual updates can be written as

2, = argmin z (}_§_ ¢s%) — G (z) and
z

Y; = argmin (Y, ZizlAS)Es) — HS (Y),
Y

As such, the sequential algorithm can be viewed as alternating over maximization and
minimization of the Lagrangian over primal and dual variables.

Algorithm 1, assigns integer values to X, and the dual variable Z, acts as a decision
threshold in the assignment rule for X;. For the reader familiar with online learning,
we point out a connection with the typical online learning setup. The Y, update step is
the same as Follow-the-Regularized-Leader (FTRL) update with Hy as the regularizer,
so this algorithm is running FTRL on the dual problem.

Algorithm 2 clearly requires more computation than the sequential algorithm, but it
is also easier to bound its competitive ratio. We do not focus on implementation details
of this algorithm in this paper, but we point out that one can decide how accurately
to solve the saddle-point subproblem at each iteration, trading off computation with
desired accuracy (for each subproblem). To analyze this more practical variation of
Algorithm 2, our analysis should take into account how solving each saddle-point
problem to € accuracy affects the overall competitive ratio. We leave this additional
analysis to future work.
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2.2 Duality gap

The competitive analysis, and subsequent design of Hg and G (in Sect. 3), relies
on bounding the duality gap. Define the dual value achieved by the sequential and
simultaneous algorithms by

m

Dueq =Y ((Ar Fim) +ciéimr) = H* () = G* )
t=1
m

Dim =Y ((Ar 7o) + i) | = H* (F) = G* G,

t=1

The following two lemmas are essentially taken from [14]. We include proofs in
“Appendix A” to make the present paper self-contained. Lemma 1 bounds the duality
gap, and Lemma 2 relates Dyeq and Dyjm to the dual optimal value D*, given an
additional assumption on the gradient of Hg.

Lemma 1 Let x;, f’[, and 7; and X;, Y 1, and Z; denote the tth iterate of the simultaneous
and sequential algorithms, respectively. Then the duality gaps for the two algorithms
satisfy the lower bounds

Hg (ZAtit) +Gs (thit) — Dgim > H*(?m) +G* @m) - (5)

t=1 =1

m m
H (ZA,)%,) +Gs <Zc,£t) — Dseq = H* (V1) + G* (2)
t=1 t=1
m m
+Z<At£ZsYt _Yt—1>+z<ct£t921 —Zi-1). (6)
t=1

=1
Proof See “Appendix A”. O

This duality gap bound is reminiscent of regret bounds in online learning. In regret
analysis one directly bounds the right hand side of (6) in terms of the horizon and
problem parameters. However, bounding the competitive ratio requires more assump-
tions and further analysis. The PSD diminishing returns (PSD-DR) property is used
to relate Dgeq and Dy, to the dual optimal value D*.

Lemma 2 If Hg satisfies PSD-DR, then Dgeq > D* and Dgjy > D*.

For completeness the proof is given in “Appendix A”. We remark that the PSD-DR
property is a special case of the property used in the abstract framework of [13]
that was applied to general concave functions on proper cones. In order to develop
computational methods to design the function Hg (in Sect. 3.2), we will need to impose
the PSD-DR property on Hg in a computationally tractable way. A central observation
of this paper is that this is possible for the PSD-DR property by exploiting a celebrated
theorem of Lowner. We discuss this in detail in Sect. 3.2.
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3 Competitive ratio analysis

In this section we show how to design Hg and G5 in the sequential algorithm (Algo-
rithm 2) to maximize a lower bound on the competitive ratio achieved. We discuss
the appropriate modifications for the sequential algorithm in Sect. 4. In what follows,
e =2.718 ... is Euler’s number.

We first state a technical lemma (Lemma 3) that relates the budget consumed and
competitive ratio achieved by Algorithm 2 to the functions Gg and Hg. The only
dependence on the data (the values of A; and ¢;) is via two parameters, 6 and &, which
are lower and upper bounds on c; tr(A,) for all . We use a parameter y > 1 as a
trade-off parameter between the budget consumption and competitive ratio. The result
says that if Hg, G g satisfy certain inequalities that involve y and §, then Algorithm 2
achieves a competitive ratio of at least m using a budget of G’S_1 (=h'(0)®)
(the inverse function of the derivative of G s evaluated at a point). Concrete values for
these bounds are worked out at the end of this section. This is a similar style of result
to [7], which applies to a special class of linear programs.

Lemma 3 Let G be as defined in (2), and let h be concave and monotonically
increasing, with corresponding trace function H. Let Gg satisfy Assumption 2, hg
satisfy Assumption 1, and suppose that the corresponding trace function Hgs sat-
isfies the PSD-DR property. Suppose that 6 < c¢; tr(4) < © for all t and
Umax > Mmax (Z:nzl Atxt)-2 Then

1. Iffora given y > 1, Gg satisfies

yGs(u) < G*(Gly(u)) + e%lh(eu) forall u € [0, 50), %)

and there exists B > 0 such that hg satisfies

yhs(u) < h*(Wsw)) + ph(u) forall u € [0, umax], (®)
then the iterates X1, . . . , X of Algorithm 2 satisfy
L 1 .
H (; Atx,> > mD : )
2. The iterates X1, . . ., Xy of Algorithm 2 also satisfy
m
thi, <b :=inf{u: G5u) < —h'(0)O}. (10)
t=1

Before providing a proof of Lemma 3, we explain how we use it in what follows. As
mentioned before, we consider y a design parameter that trades off between (possible)

2 Note that we could choose, forinstance, umax = b’ max; ¢ 1 Amax (A ), but for certain classes of problems
better bounds may be available.
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budget violation and competitive ratio achieved. The smaller the parameter y, the larger
the competitive ratio (evident from 8 and 9) and the larger the budget violation. The
role of y in the amount of budget consumed and the reason for requiring y > 1 is
discussed in Sect. 3.1. In Sect. 3.1 we use (7) and (10) in Lemma 3 to design G5 to
minimize the budget b’ consumed for a given y. This design problem requires the
parameter 6 only. The parameter y allows us to decouple the design of G g and hg.

In Sect. 3.2, we use (8) and (9) in Lemma 3 to design Hg via solving a convex
optimization problem that maximizes the bound on competitive ratio (by minimizing
B). This design problem requires the parameter i,y only.

Proof (of Lemma 3) First we show that ) ;" | ¢,%; < b'. To do this we use the opti-
mality conditions of the saddle point problem in Algorithm 2. Indeed, for any 7, we
have that

t t
Y, = VHs (ZAS)ZS) and Z = G (Z cx) :

s=1 s=1

and that (Y;, A;) + ¢;Z; < 0 implies %; = 0.
Arguing by contradiction, let 7 be the smallest index such that ZIT: (cxe > b

Then, by the definition of b’ we have that 37 = G (ZL] c,)?t> < —1'(0)®. Observe
that Zthl A;x; > 0, from which it follows, from the fact that Hg is PSD-DR, that
V H (ZL A,it> < VHg(0) = hs(0)1. Then

(Yr, Ar) + crir = (VHg (ZthlAt)?z), Ar) +crZr < hsO)trAr +crZr <0

where, for the last inequality, we use the fact that h/S(O) = h’(0) and that cr 1trAT <

®. It follows from the optimality conditions that X7 = 0. But then Zf;ll cixp > b,
contradicting our choice of 7. It follows that Y /L | ¢, < b'.
We now turn our attention to the bound on the competitive ratio. Let U = Z’tn:l A X,

and u = Y /L ¢ Xy, so that Y = VHg(U), and Z,, = G's(u). By the duality gap
bound (Lemma 1) we have

Hs (U) + Gs (u) — Dgim = H* (V) + G* (Z) . (11)

By the primal allocation rule in Algorithm 2, we have X, (tht + (Ay, f,)) > 0.
Combining this observation with the concavity of Hg and G5, we get

t t t—1 t—1
Hg (ZAS£S> + Gs <chis) — Hg <2As£s> — Gy (chis)
s=1 s=1 s=1 s=1
> X (Ctzt + (As, Yt)) > 0.
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By taking the sum over ¢ and telescoping the sum we get

Hs (iAx) +Gs <§:cx) > 0. (12)

s=1 s=1

The last preparatory observation we need is the inequality H(U) > h(fu). To see
why this holds, note that because / is monotonically increasing, and 8 < ¢, 1tr(A,)
for all ¢,

h(Ou) = h <ezc,it) <h (tr(ZA,it))
=1 =1

=h(tr(U)) < Zh(ki(U)) =HU) 13)

i=1

where the last inequality holds because 4 is concave and /(0) > 0 so 4 is subadditive
on [0, 00). Now we can write

H (U) = Dsim
> —Hg(U)—Gsu)+ H*(Y)+ G*(z) + H (U) By (11)
>—Hs(U)+(y —1)Gs(u) + (1 — ez—l)H(U) + H*(Y) By (7)and (13)
> —-Hs(U)+ (1 —y)Hs(U) + (1 — ez—l)H(U) + H*(Y) By(2)andy >1
— —yHs(U) + (1 - EZ—I)H(U) +H*(Y)
> (1- 25 - B)HW) By (8).

Then the result follows from Lemma 2. O

These results allow us to search for functions .5 and G s that satisfy the assump-
tions of Lemma 3. We use y as a design parameter, controlling the trade-off between
competitive ratio and the (possible) budget violation.

3.1 Smoothing the budget penalty function G, taking s into account.

For a fixed choice of y, our aim is to design G so as to minimize »’. We do so by
explicitly constructing G'(u) such that (7) is satisfied with equality for all u > 0,
and showing that such a G is optimal, in the sense that for a given y > 1, defining
Gy via (14) minimizes the bound »" on the budget consumed by the simultaneous
algorithm.
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278 R. Eghbali et al.

Proposition 1 Let G s be any function that satisfies (7). Let 3
) = ——2 /u exp (Z(u - v)) On' (Bv) dv foru=0  (14)
be—1) Jo b -

Then G/S(u) > G(u) for allu > 0 and so
inf{u : G’ s(u) < —h'(0)®)} < inf{u : G’ s(u) < —h'(0)®).

Proof Clearly G'y(u) < 0 for all u > 0, and so for any u > 0, we have that
G*(Gs(uw) = bG’ (u). We now explain why G5 satisfies (7) with equality. (This
can also be ver1ﬁed by direct substitution.) Because G s(0) = O (by assumption), it is
enough to show that G’ satisfies the linear, constant coefficient differential equation
obtained by equating, and then differentiating, both sides of (7). After rearranging
terms, this differential equation is

1 . 1 Y ’
s) = -Ggu) — be—1) 1)9h (Ou).

The function G’S (u) that satisfies this equation foru € [0, 0o) together with G'(0) = 0,
is given by the convolution of — = ])Qh (Bu) with e”*/? as in (14).
Since G satisfies (7) with equality, it follows from Gronwall’s inequality (see [11]

Corollary 2) that for any other function G s that satisfies (7), we have G/S(u) > Gg(u)
forall u > 0. O

Remark 1 Note that the function G is a convolution of 4’ (6u) with an exponential
function. It can also be viewed as a function derived by applying Nesterov’s smoothing
technique to G. To show this, we have to argue that G*g — G™ is a concave function.
Note that G* is linear over R_; therefore, G>§ — G* is concave on the positive reals
with G5(0) — G*(0) = 0, and for y > 0, G§(y) — G*(y) = 0. This establishes the
concavity of G — G*. As we discuss in Example 1 below, G — G* has a closed form
when £ is a linear function. However, for more general examples of # we do not have
a closed form for G — G*.

Now, to justify the fact that we require y > 1, we find a lower bound G's given in (14)
in terms of y:

Gu) = —ﬁ exp (%u)fo exp( % )Gh Ov) dv
_y0h (0) 4 ! Y _ OR(0) (exp(zu) — 1)
" b(e —1)eXp(Z”)/O eXp( Z”) dv=-— e—1

3 We can extend the domain of G to negative reals by letting Gg = 0 on R_ to satisfy the technical
assumption on the domain of G g in Assumption (2).
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The inequality above is exact if 4 is linear, e.g., H(U) = tr(U). Now we can bound
b as:

b’ =inf{u: Gsu) < —h'(0)O} > glog <%(€ -1+ l)

This shows that if ¥ < 1, then even in the trivial case where & = @ and £ is linear the
algorithm can go over budget.

We now compute G's, and bound the budget b’ consumed by the simultaneous
algorithm using G’ for three examples.

Example 1 (Linear objective function) Consider the linear function 4 (#) = u which
translates to H(U) = tr(U). This case allows us to show that our approach specializes
to recover known results. In this case, the problem reduces to a linear program with
one budget constraint,

m
maximize Ztr(A,)x, subject to
=1

{Z:nzl cxp <b

<x <1 fort =1,2,...,m.

Computing the integral (14) gives Gs(u) = 6 (1 —exp (¥u)) /(e — 1). This choice
of G’s corresponds to the exponential update algorithm for online LP [7], and, in this
particular case, G g can also be derived as a smooth surrogate for G using Nesterov
smoothing with a shifted entropy as the proximity function [13]. In this case the bound
b’ on the budget consumed is given by

b= inf {u] G) < < 0)0] =~ log <(e 2y 1).

Choosing y > log ((e — 1)%) + 1) ensures that the budget is not violated.

Example 2 (D-optimal experiment design) Suppose that 1 (u) = log(u+1), the objec-
tive function of interest in D-optimal experiment design. In this case ' (u) = (1+u)~ L
and we note that it is possible to express the optimal G from (14) in terms of special
functions called exponential integrals. To obtain an upper bound on &', and hence
on the budget consumed, we use the fact that 2’ (Ov) = (1 + Ov)~! > = when-
ever fv > 0. Using this inequality in (14), and computing the resulting (elementary)
integral, we obtain the bound

1 e—@u _ e%u 1 1— e%u
Gi(u) < < )
ST e+ (b/y) T (e— DO+ (B/y)

Rearranging and using the definition of b’ we see that
y_ b O
by < Zlog [(e — e (9 + b/y) + 1] . (15)
14
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Fig. 1 Examples of Gg given in (14) for different values of y and 6. a Examples of Gg when h(u) =
log(u + 1). b Example of G when h(u) = 1 — .4;

Since y > 1, we can ensure that there is no budget violation, i.e., b’ < b, by choosing
y > log[(e — 1)© (6! + b) + 1]. Figure 1a shows examples of G for two values
of y when h(u) = log(1 + u).

Example 3 (A-optimal experiment design) Whenh(u) = 1— 1_+u ,andsoh'(u) = (1+
u)~2, it is again possible to express the optimal G's in terms of exponential integrals.
Using the same strategy as example 2, but with the bound &’ (Ov) = (14+60v)~2 > e=20?

(for v > 0), gives

) 1 1 —eh®
Gs(u) < (
e

/ b —1
Sy M S e [(e— DO +2b/)/)+1].

Figure 1b shows examples of G ¢ for two values of y when A(u) =1 — ﬁ

3.2 Smoothing &

We are now in a position to design &g, a smoothed surrogate for /. Recall that, for a
fixed choice of y > 1, we can use (14) to design an optimal G’. This gives a bound
b’ on the budget consumed by Algorithm 2. We design kg by solving the following
optimization problem over 8 and the function Ag:

yhs(u) < h*(h's(u)) + Bh(u) Yu € [0, umax]

. (16)
hg satisfies PSD-DR.

minimize B8 subject to :

Note that this problem comes directly from Lemma 3 and the fact that for fixed y, we
can maximize the bound on the competitive ratio, (y /(e — 1) + 8)~!, by minimizing
B.

The key challenge in solving this optimization problem is imposing the PSD-DR
property. A crucial observation in this paper is that, for a differentiable trace function,
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satisfying PSD-DR can be expressed in an equivalent, more explicit form. This is
an easy consequence of Lowner’s theorem for matrix monotone functions [18], an
important result in matrix analysis.

Proposition 2 Suppose Hg(U) = Y i, hs(x;(U)) where hs is a monotone increas-
ing, concave function, and hs(0) = 0. Then Hg is PSD-DR for all n, if and only if
there exists a positive measure u supported on [0, 1] such that

1

" ’ / _ 1
hs(u) 2/(; y(') du’ where y(u) —/0 —uk+ T di(r). (17)

Proof This follows from [18, Theorem 4.9]. O

This alternative description allows us to impose the constraint that sg satisfies
PSD-DR in the optimization problem for designing /5. We now rewrite this optimiza-
tion problem in a more computationally useful form. We use the change of variable
hs (u) = fou vy (s) ds, introduce p from (17) as a decision variable, and express y in
terms of . Doing so we obtain the following optimization problem.

minimizeg y ;B

subjectto y /‘u y(s)ds —h* (y (u)) < Bh (u) Yu € [0, umax]
0

! 1
Y(f)Z/O mdﬂ(k)

W a positive measure supported on [0, 1]. (18)

We denote by B(y), the optimal value of (18) for a given y. We extend & linearly on
R_ to satisfy the technical assumption on the domain of &g in Assumption (1).

Theorem 1 Suppose that G is defined as in (14), and Hg is the trace function cor-
responding to fou v(s) ds, where y is optimal for (18). Then the iterates X1, ..., Xp
of Algorithm 2 satisfy

~ 1 * ~ —1
H (Z;n:l Atx,) > mD and thﬂ:l Xy < Gfg (—h/(O)@)

where & > ct_ltr(At)for all t and B(y) is the optimal value of B in (18). Moreover,
if H satisfies the PSD-DR property, then B(y) <y + 1.

Proof The proofs of the first two inequalities follow directly from Lemma 3. To see that
B(y) < y + 1 when H satisfies the PSD-DR property, one can note that y(u) = h'(u)
and B = y + 1 is a feasible solution for (18) in that case. O

Note that if Hg satisfies PSD-DR, then H is a feasible solution to problem (18);
however, itis not necessarily the optimal solution. As we will see in the next section, the
objective function in D-optimal experiment design, H (U) = logdet(I 4+ U), provides
such and example, where the competitive ratio improves as the result of smoothing even
though H is PSD-DR. In the next section, we also consider the A-optimal experiment
design where the objective function does not satisfy PSD-DR.
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Fig.2 The smoothed function /g and the corresponding measure 1, when /2 (u) = log(u + 1). The smooth
hg is found by solving the convex problem (18) via discretization of measure . Ina, y = 1 and umax = 1.
Inb,y =4andumax = 1. Inc, y =4 and upmax = 10
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3.2.1 Examples

Example 4 (Linear objective) When h(u) = u then

0 ify=1
h*(y) = { )

—oo  otherwise.
Therefore, the only feasible solution to (16) is 2g(x) = u. This is a PSD-DR function.
The corresponding value of B is § = y. As such, the competitive ratio achieved by
Algorithm 2 is at least % (1-1).

Example 5 (D-optimal experiment design) In this case h (u) = log(u + 1), i.e.,
H(U) = logdet(I + U). Note that H satisfies the PSD-DR property, because we
can write 4’ (u) = 1/(1 +u) in the form of (17) by choosing the measure (1) to have
mass 1/2 at A = 1/2. By putting hs(u) = h(u), we can conclude that B(y) < 1+ y.
This means that the competitive ratio achieved by Algorithm 2 is at least SO Te T

By solving (18) computationally, we can design an g that achieves a better com-
petitive ratio. Figure 2a shows the solution of (18) for ¥ = 1 over the finite horizon
[0, umax] = [0, 1]. Figure 2b, c show the solution of (18) for y = 4 and umax = 1 and
umax = 10 respectively. We note that the optimal measures are quite complicated—in
the case y = 1 the optimal measure seems to be atomic, whereas in the case y = 4, it
has a qualitatively different structure. In Fig. 3a, we plot the competitive ratio bound
of Theorem 1 versus y, and compare it with the bound obtained without smoothing /.

We can see that y captures the trade off between the budget violation and compet-
itive ratio. A smaller y gives a better competitive ratio at the expense of larger budget
violation, quantified by the bound given in Example 2.

Example 6 (A-optimal experiment design) In this case H is not a PSD-DR function,
S0 to obtain competitive ratio bounds by our method we must construct a PSD-DR
surrogate Hg numerically. Figure 3b, shows the competitive ratio bound given by
solving (18) for h(u) = 1 — 1/(u + 1) for different values of the parameter y. In
Fig. 4, we have provided examples of /g for different values of y and upay.

4 Analysis of the sequential algorithm

To design the functions Hg and G for the sequential algorithm (Algorithm 1), we
need additional information about the problem data. Since Algorithm 1 uses the dual
variable from the previous time step to assign the primal variable, the maximum length
of each primal step, which is captured by the following two parameters, plays a role
in the competitive ratio. Let

p1 = maxcr, and pp > max Amax (Ar) . (19)
The next lemma is an analogue of Lemma 3 but for the sequential algorithm.
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Fig. 3 a Two competitive ratio bounds vs y for h(u) = log(u + 1). The first bound is achieved by
numerically finding the optimum (1) in (16), while the second bound uses the fact that B(X) < 1 + 1
when (1) = log(u + 1). b Competitive ratio bound achieved by numerically finding the optimum (1)
forh(u) =1—1/(u+1)

Lemma 4 Let Gg satisfy Assumption 2, hg satisfy Assumption 1, and suppose that
the corresponding trace function Hg satisfies the PSD-DR assumption. Suppose that
0 < ct_ltr(A,) < O for all t, that p1 and py are defined as in (19), and umax >
Amax (Z;"zl At)?,).4 Then

1. Iffora given y > 1, Gg satisfies:
vy [Gs ) — ;G )] < G*(Gsw)) + eyTlh(Gu) Yu € [0, 00) (20)
and there exists B > 0 such that hg satisfy the following inequlity:

y [hs @) + p2 (B (0) = i )] < A*(hs(u)) + Bh(u) Yu € [0, tmax]  (21)

then the iterates X1, . .., Xy of Algorithm 1 satisfy
L | )
H ;Atx, > y/(e——1)+ﬂD . (22)
2. The iterates X1, . . ., X, of Algorithm 1 satisfy
m
S ek < b where b= py +influ: Gsu) < —H'(0)6).  (23)
t=1

4 Note that we could choose, forinstance, umax = b’ max; ¢ 1 Amax (A ), but for certain classes of problems
better bounds may be available.
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Fig. 4 The smoothed function &g and the corresponding measure @, when h(u) = 1 — —L_ The smooth

u+1

hg is found by solving the convex problem (18) via discretization of measure . Ina, y = 1 and umax = 1.
Inb,y =4and umax = 1. Inc¢, y =4 and umax = 10
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Proof Firstwe show that ) )" | ¢;%; < b’. Arguing by contradiction, let T be the small-
est index such that Ztlel c;x; > b'. Then, Zszl Xy > b — py (since cry1X74) <
p1). We have that 7 = G’ (Zthl c,£t> < —Hh'(0)®, where the inequality holds by

the definition of 4'. By the PSD-DR assumption, V H (ZL A,)z,) < VHs(0) =
h'4(0)I. Then

(Y7, Ar41) + cr127 < eT41 (h/s(O)C}J]rltl‘(ATﬂ) + 2T> < 0.

It follows that X741 = 0, contradicting our choice of 7. Hence ) ;- | ¢;%; < b'.
We now bound on the competitive ratio. Let U = Y /L A%, u = Y ., ciky,
Yy = VHg(U), and Z,, = G'g(u). First we note that

m m

Z [(Aﬂ?,, ?tfl — ?t) + X (Zr—1 — 21)] =< Z [/02t1'(?t71 — ?t) + 1oy — ft)]

t=1 t=1
= po(tr(Yo — Yn)) — p1Gm) (24)

where the inequality holds because Y, < Y (by the PSD-DR assumption), and,
similarly, Z,, < .-+ < Zop = 0 (since G4(0) = 0). By the primal allocation rule

in Algorithm 1, we have % (ctzt,l T (A, ?H>) > 0. Combining this with the
concavity of Hg and G g, we get

Hg (Z;ZlAs)Es) + GS(Zgzlcsfs) — Hg (Zi;ll As£s) - GS(ZI;;Il Csfs)

+ % (Cz(ztfl — ) + (A, Vi1 — f’t)) > 0.

Taking the sum over ¢, telescoping, and using h5(0) = Gs(0) = 0, gives
m
Hs (U)+Gs )+ Y [(Ad, Yy = V) +etiGir —20] 2 0. @29)
=1

Now, the proof follows the same step as the proof of Lemma 3 and uses (6) and the
above inequalities.

H (U) - Dseq
> H (U) + H*(Y,y) — Hs (U) — Gs (u) + G* (2)

+ th [(At,i}t Yo +o (2t —21—1)] By (6)
t=1

= [1= 4 | HO) + B (G = Hs (U) = (1= ) Gs () = yp1 Gl ()
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m

+ A=Y &[4 fi =P +e (G —2)] By @0)and (13)

t=1

> [1 = 25| H W) + B Fa) = Hs (U) + (1 = y) Hs (U) = ypiZn

+ 7 D& (A0 B = T e (B = ) By (25)
=1
= [1= 4 | HO + B G =y [ Hs ) + patr (To — P | By (24)
> [1 — - ﬂ] H (U) By (21).
Applying Lemma 2 completes the proof. O

For the sequential algorithm to minimize the bound 4’ on the budget consumption
we choose G g such that

,(u)__O—y uex<
SO =T ome—1n Sy P

y ,
b+p1y(” - v)>h Ov) dv.  (26)

To find &g for the sequential algorithm, the problem (18) is modified to:

minimizeg y,,, B

subject to V/O y(8)ds +ypa(y(0) — y()) — h*(y(@)) < Bh (u) Vu € [0, Umax]

! 1
)’(f)=/0 mdﬂ(m

W a positive measure supported on [0, 1]. 27

Let B(y) be the optimal value of 8 in (27). Combining our arguments gives the fol-
lowing analogue of Theorem 1 for the sequential algorithm. It describes the tradeoff
between budget consumption and competitive ratio achieved for the sequential algo-
rithm when G s and Hg are designed optimally.

Theorem 2 If G is defined by (26), and Hy is the trace function corresponding to

fO” v(s) ds, where y is optimal for (27), then the iterates, X1, . . ., X of Algorithm 1
satisfy

m m
S ek < G5 =K (0)6) + o1 and H (Z Ap?,) 2 st 2
t=1

=1
where c,_ltr(A,) < O forallt.

Proof The proof is the natural analogue of Theorem 1. O
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Fig. 5 Performance of Algorithm 2 (sequential updates) for online D-optimal and A-optimal experiment
design with two choices of Hg. (Left) D-optimal experiment design. (Right) A-optimal experiment design

5 Numerical experiments

In this section, we provide the results of our numerical experiments and discuss the
numerical implementation of smoothing design.

In our numerical simulations, we consider the D-optimal (H (U) = logdet(I +U))
and the A-optimal (H(U) = n—tr((I +U ) experiment design problems. The tth
matrix A; = a,alT is generated as follows: we sample a vector n uniformly at random

Vm—t+1

-—1. This is an adversarial weighting, inspired
by worst-case examples for online LP, e.g., [8].

We compare the performance of Algorithm 2 (sequential updates) with two choices
of Hg. In one case, we use the smoothed Hg given by solving (18). In the second
case, we use H without smoothing (Hg = H). For both cases, we use the smooth G g
given in (14). (Note that a pure greedy algorithm without smoothing G simply picks
the first b experiments and is a trivial algorithm, which we did not try.) We varied the
parameter y and plotted the competitive ratio versus the budget used by the algorithm
in Fig. 5. For each value of y, we have 10 random repeats.

Next, we briefly discuss the numerical implementation of the smoothing design
problems for the simultaneous algorithm, introduced in Sect. 3. Similar ideas apply
for the smoothing design problems for the sequential algorithm. We note that the
algorithm does not require Gy itself, but only G’s(u). The formula for G5 can be
computed up to desired accuracy using Gauss-Leguerre quadrature [26].

To solve problem (18), we restrict i to be an atomic measure supported on the
g+ 1points A; = j/q € [0,1] for j = 0,1, ..., g. The decision variables are then
Band w; = u(r;) for j = 0,1,...,q. Rather than imposing the constraint for
all u € [0, umax] we impose it on a non-uniformly sampled subset. In particular, we
sample # more densely where % has a larger local Lipschitz constant by choosing
the discretization points to be u; = hl (i umax/d) fori =0,1,...,d. The optimal
y = h', which is all that is needed for the algorithm, is y(u) = Z(]I-:o Mﬁ
Note that since the integral of every individual function in the summand repré/sentatijon
of ks satisfies PSD-DR, h satisfies PSD-DR.

from {—1, 1} and then set a; =
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6 Related work and discussion
6.1 Submodularity and experiment design

Algorithms for the offline optimal experiment design (both with and without integer
constraints) have been extensively studied [25]. Let X g denote a principal submatrix
of X, then it is well known that the set function S — logdet(Xy) is submodular.
Based on this, greedy subset selection is shown to have a 1 — 1/e approximation ratio
[5,28,30] for the (integer) experiment selection problem. The paper [4] also gives an
approximation ratio for the weakly submodular A-optimal design problem; also see
[31] and references therein for statistical bounds for solving the convex relaxation
followed by a greedy post-processing. In the existing literature, however, algorithms
are assumed to have access to all possible experiments at the start, and therefore
the result do not apply to the worst-case online setting that we consider. There is
a connection between analysis of online algorithm under stochastic i.i.d setting and
greedy algorithm for submodular maximization. We refer the reader to [12] for the
details of this connection.

6.2 Online SDP problem of [16]

To the best of our knowledge, [16] is the only existing work that studies an online
semidefinite program. While the problem considered is different from ours and its
results do not apply to our setup, we briefly discuss the idea. [16] considers a gener-
alization of the online covering linear program to the semidefinite cone as follows,

A(y)=C

minimize b7 y subject to
y >0,

where A denotes a linear map from vectors to matrices. The algorithm receives a
sequence of PSD matrices C © <CcD < .. <™ = C over time, and needs to
increase the variable y so as to satisfy the new matrix covering constraint. The dual
of this problem is a packing problem, however the model for the online information
the algorithm receives is still the sequence of matrices C¥) which is different from
receiving a new experiment and bid price to decide on, as in our model. Indeed,
extending the packing linear program to the PSD cone yields a different problem, i.e.,

maximize ¢/ x subject to Al) = B
x >0,
which is in line with the setting we consider in this paper, after a reformulation to bring
the matrix constraint to the objective in a penalized form (which corresponds to H).
The possibility of using Lowner’s representation to design a matrix penalty function
for this matrix-valued budget is an interesting direction for future work.
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6.3 Online learning, regret, and FTRL

As mentioned earlier, the dual update in Algorithm 1 is the same as in Follow-the-
Regularized-Leader (FTRL) algorithm with — Hs* as the regularizer. This primal-dual
perspective has been used in [29] for design and analysis of online learning algorithms.
In the online learning literature, the goal is to derive a bound on the regret that optimally
depends on the horizon, m; whereas in this work we study the competitive ratio for the
algorithm that depends on the functions H and G. In order to optimize the competitive
ratio, the regularization functions should be crafted based on H, and a general choice
of regularization which yields an optimal regret bound in terms of m is not enough
for a competitive ratio argument, so existing results in online learning do not address
our aim. There are however some shared proof steps in the analysis that are worth
exploring further.
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A Additional proofs
Here, we provide additional proofs not given in detail in the body of the paper.

Proof (of Lemma 1) By the definition of Dg;jy, the definition of X;, and the concavity
of Hg and G g, we have that

m
D = Y [(Acke, T0) + i | = H*(F) = G*G)
=1

m t ~ t—1 ~
< |:HS (Z Asxs) — Hg (Z Asxs)
—1 s=1 s=1

13
t t—1
+Gs | Y ek | =G| Doesk | | — H (Vo) — G*(GE)
s=1 s=1
m

m
= Hs (Y A | +Gs | Y ek | = H* (V) — G* ).

s=1 s=1

The inequality follows from concavity of Gg and Hg. The final equality holds by
telescoping the sum and using the fact that Hg(0) = 0 = G(0). For the sequential
algorithm we can write:

m
Dg = Y [(Arke, Fima) + euizint | = H* () = G* Gn)
=1
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m
= Z [(Atft, 1?t) + thtét] - H*(?m) - G*(Zm)
t=1
m
D [LER AT AR ACRER)

t=1

Now, the rest follows similar to steps as the simultaneous case. O

Proof (of Lemma 2) We write out the argument for the inequality Dgy > D*. The
argument showing that Dgeq > D™ is identical. We first show that the PSD-DR assump-
tion on Hg implies

m m

Yo ((An T +ez) = 3 (A T + e (28)

=1 s=1

Since Ay € 8% and X, > 0 for all s € [m], it follows that } L _| A%, < >0 | A&,

forall? € [m]. Since ¥, = VHs (35 _| AX,), if Hy satisfies the PSD-DR assumption
then Yt > I?m forall t € [m]. By a similar argument, since G g is concave, Z; > Z,, for
allt € [m]. Since A; € S} and ¢, > O for all t € [m],

(A, 1?t) + iz = (A, I?m> + iz = (A, 1?m) +CtZm

forallt € [m]. Taking the positive part and then summing establishes (28). To conclude
that Dgj, > D*, we need only observe that D* is alower bound on the dual objective (4)

evaluated at (Yy,, Zp). O
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