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Abstract We consider a new and general online resource allocation problem, where

the goal is to maximize a function of a positive semidefinite (PSD) matrix with a scalar

budget constraint. The problem data arrives online, and the algorithm needs to make an

irrevocable decision at each step. Of particular interest are classic experiment design

problems in the online setting, with the algorithm deciding whether to allocate budget

to each experiment as new experiments become available sequentially. We analyze two

greedy primal-dual algorithms and provide bounds on their competitive ratios. Our

analysis relies on a smooth surrogate of the objective function that needs to satisfy a

new diminishing returns (PSD-DR) property (that its gradient is order-reversing with

respect to the PSD cone). Using the representation for monotone maps on the PSD

cone given by Löwner’s theorem, we obtain a convex parametrization of the family

of functions satisfying PSD-DR. We then formulate a convex optimization problem

to directly optimize our competitive ratio bound over this set. This design problem

can be solved offline before the data start arriving. The online algorithm that uses the

designed smoothing is tailored to the given cost function, and enjoys a competitive

ratio at least as good as our optimized bound. We provide examples of computing the
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smooth surrogate for D-optimal and A-optimal experiment design, and demonstrate

the performance of the custom-designed algorithm.

Keywords Online algorithms · Competitive ratio · Positive semidefinite cone ·
Löwner’s theorem

Mathematics Subject Classification 68W27 Online Algorithms · 90C25 Convex

Programming · 62K05 Optimal Design

1 Introduction

Online resource allocation problems and algorithms have been traditionally studied

in operations research (e.g., revenue management [2] and references therein), online

network routing [6] and computer science (e.g., online packing and covering in linear

or convex case [3,8], online welfare maximization [19]). In recent years, applica-

tions in online advertising such as the Adwords problem [22] have garnered renewed

interest in this topic. In all these applications, the demands for resources arrive in an

online, sequential fashion, and resource allocation also happens online. For example,

in online revenue management, customers arrive sequentially, reveal their demand for

the resources and offer a bid price. The inventory owner then needs to make an irre-

vocable decision about the latest customer’s offer, without knowing future demands,

while aiming to maximize his or her revenue. A feature in these problems is that

the variables denoting allocation amounts, the bid prices, and the coefficients in the

resource constraints are all nonnegative, thus a resource can only be used up as time

goes on (resource usage is nondecreasing) while the total available resource is fixed. In

the context of linear programming (LP), these are sometimes called “packing” prob-

lems, e.g., [8,24]. For an overview of online linear programming and more generally

online convex problems with different models for online information arrival, we refer

the reader to [1,15,17,20].

In this paper, we consider a new and general online resource allocation problem,

where the objective is a function of a positive semidefinite (PSD) matrix (thus the

problem is defined on the PSD cone Sn
+), with a scalar budget constraint. The problem

can be described as follows: At round t , the algorithm receives a matrix At ∈ Sn
+ and

scalar ct > 0, and then chooses xt ∈ [0, 1]. The goal of the algorithm is to maximize

H
(
∑m

t=1 At xt

)

subject to the budget constraint
∑m

t=1 ct xt ≤ b. The offline problem

can be written as

maximize H

(

m
∑

t=1

At xt

)

subject to

{

∑m
t=1 ct xt ≤ b,

0 ≤ xt ≤ 1, t = 1, . . . , m.
(1)

We assume that H : Sn
+ → R is a monotone, concave trace function, i.e.,

H (X) =
n

∑

i=1

h (λi (X)) ,
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where h : R+ → R is a monotone concave function and λi (X) denotes the i th

eigenvalue of X . Note that analogous to packing LPs,
∑t

s=1 As xs is nondecreasing

with respect to the PSD cone. In other words,

t
∑

s=1

As xs �
t+1
∑

s=1

As xs for all t,

where X � Y means that Y − X is positive semidefinite.

In the online algorithms literature, various scenarios have been considered for the

information being revealed to the algorithm (the sequence of At and ct ): from the

worst-case adversarial model to various stochastic models. In this paper, since we are

interested in understanding the limits of performance and providing competitive ratio

bounds, we assume an adversarial model, where little is known about the arriving data.

One could use techniques similar to ours in other scenarios as well, which we leave

for future work.

Our setup covers online versions of problems such as sensor selection or experiment

design, and graph formation [23]. In these problems, At = at a
T
t for some at ∈ Rn . In

online experiment design, the vector at is an experiment or measurement vector that

provides linear noisy measurements of an unknown vector w, i.e., ξt = 〈at , w〉 + nt ,

where nt is Gaussian noise and ct xt is the experiment cost. In this paper, we consider

two algorithms: one that assigns fractional values to xt and one that assign integer

values to xt . The algorithm makes online decisions about the budget to allocate to an

experiment, aiming to minimize various functions of the error covariance matrix of

the maximum a priori estimate of w.

The online experiment design problem can be expressed as (1), with differ-

ent choices of H giving rise to different criteria for optimal experiment design.

Examples include H (X) = log det (ε I + X) for the D-optimal criterion, H (X) =
−tr(ε I + X)−1 for the A-optimal criterion, and H (X) = −tr(ε I + X)−p for the

pth mean criterion. (The prior distribution on w is assumed to be N
(

0, 1
ε

I
)

.)

We use the A-optimal and D-optimal criteria, as well as the problem where

H(X) = tr(X), as running examples throughout the paper. The latter simply recovers

a linear program with one packing constraint, and provides insight into the connec-

tions and differences with online Linear Programming results, e.g., [8] (discussed in

Sect. 3).

Our results exploit a crucial property of the objective function H or its surrogate HS

(discussed in Sect. 3.2) which we refer to as the PSD diminishing returns property. For

a function with a scalar variable, this property simply means the larger the variable,

the smaller the derivative. More generally, we define it as follows.

Definition 1 (PSD diminishing returns) A concave trace function F satisfies PSD

diminishing returns (PSD-DR) if ∇F is order-reversing with respect to Sn
+, i.e.,

∇F (U ) � ∇F
(

U ′) , whenever U 
 U ′.
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Our contributions. Our focus is on developing algorithms with (multiplicative)

competitive ratio guarantees for problems of the form (1). In other words, our algo-

rithms provide feasible solutions x1, x2, . . . , xm such that H
(
∑m

t=1 At xt

)

− H (0) ≥
cr (P� − H (0)), where cr bounds the competitive ratio and P� is the optimal value

of (1)1.

The algorithms we consider (Algorithms 1 and 2, in Sect. 2) are parameterized

by a smoothed surrogate, HS , of the objective function H , and a smoothed penalty

function GS in place of the budget constraint
∑m

t=1 xt ≤ b. Our main contribution

is a systematic method, based on solving an offline convex optimization problem, to

design HS and GS , and to compute a bound on the competitive ratio of the associated

algorithms.

Our approach builds on the results in [13], which considers a general online conic

optimization problem and shows that smoothing the objective function (to obtain a

surrogate) before applying a primal-dual greedy algorithm improves the competitive

ratio. However, prior work was not able to address the problem of finding the best

surrogate (or even representing the space of suitable surrogates)—except for the special

(and restrictive) case of separable objectives defined on the non-negative orthant, which

reduces to a search over concave scalar functions. There is no hope of employing a

similar strategy for functions defined on the PSD cone, unless one has access to

representations that lead to a convex parametrization for PSD-DR functions. The

present paper resolves this issue.

We require the smoothed objective HS to satisfy the PSD-DR property. Note that

this does not hold for all concave trace functions (indeed fails to hold for the objective

function in A-optimal experiment design). If the objective function in problem (1) does

not satisfy this property, our approach allows us to design an appropriate surrogate

HS that satisfies it, and use this HS to construct algorithms with competitive ratio

guarantees. And if the original H does satisfy the property, our approach still helps

improve the competitive ratio; see Sect. 3.2. A key observation in this paper is that we

can use Löwner’s theorem, characterizing operator monotone functions, to impose this

constraint in a computationally effective way by requiring it to have a certain integral

representation (see 17).

The rest of the paper is structured as follows. In Sect. 2, we describe the algorithms.

In Sects. 3 and 4, we provide the competitive ratio analysis for the online algorithms

described in Sect. 2 and determine how the competitive ratio depends on the smoothed

surrogate of the objective function. We set up optimization problems for finding surro-

gates that maximize the competitive ratio bound derived in these sections. Numerical

examples are presented in Sect. 5. Related works are discussed in Sect. 6.

2 Algorithms

In this section we describe the class of online algorithms we consider to solve (1),

and give bounds on the duality gap achieved by these algorithms. The algorithms we

consider (Algorithms 1 and 2, stated in Sect. 2.1) are (modified) greedy algorithms,

1 To simplify the notation in the rest of the paper, assume H(0) = 0 by replacing h(u) with h(u) − h(0).
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where a primal-dual greedy approach is applied to a smoothed surrogate for the objec-

tive. These algorithms are instances of the general algorithmic framework for conic

online optimization introduced in [13], which can recover state-of-the-art algorithms

developed for Adwords [9], Adwords with concave returns [10], and online LP [7].

Before describing the algorithms, it is helpful to slightly rewrite (1) and state its

dual. Throughout, let G : R+ → R be the indicator function of the interval [0, b], i.e.,

G(u) =
{

0 if u ∈ [0, b]
−∞ otherwise.

(2)

Then we can rewrite (1) as

maximize
x1,...,xm∈[0,1]

H

(

m
∑

t=1

At xt

)

+ G

(

m
∑

t=1

ct xt

)

. (3)

To derive a dual program, we rewrite the primal as:

maximize
x1,...,xm∈[0,1]

H (U ) + G (u) .

subject to U =
m

∑

t=1

At xt

u =
m

∑

t=1

ct xt

Introducing a dual matrix variable Y and dual scalar variable z corresponding to the

two equality constraints, we can write the Lagrangian as follows:

L(u, U, x1, . . . , xm, Y, z)= H(U ) − 〈Y, U 〉 + G(u) − 〈z, u〉 +
m

∑

t=1

(〈At , Y 〉 + ct z)xt

where dom(L) = Sn × R × [0, 1]m × Sn × R. Maximizing L over all the primal

variables, we can derive the dual of (1) in terms of conjugate functions as

minimize
z,Y

m
∑

t=1

(〈At , Y 〉 + ct z)+ − H∗ (Y ) − G∗ (z) , (4)

where, for a function ψ : Rn → R, ψ∗ denotes the concave conjugate of ψ , defined

as ψ∗(y) = infu〈y, u〉 − ψ(u). The concave conjugate of G is

G∗ (z) =
{

bz if z ≤ 0

0 otherwise.
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272 R. Eghbali et al.

For a trace function H(U ) =
∑n

i=1 h(λi (U )) we have that H∗(Y ) =
∑n

i=1 h∗(λi (Y )),

a result established in [21].

2.1 Statement of algorithms

Recall that our objective function H is a monotone, concave, trace function, and that G

is the concave indicator function of the set [0, b]. We consider two online algorithms

for (1). Algorithm 1 makes sequential updates to the primal and dual variables, whereas

Algorithm 2 makes these updates simultaneously. These algorithms require a choice

of functions HS and GS that are smooth surrogates for H and G. Throughout, we

assume these functions satisfy the following.

Assumption 1 (Assumptions on HS) We assume that hS : O → R is concave,

differentiable, and satisfies hS(0) = 0 and h′
S(0) = h′(0), where O is an open

interval that contains R+. We assume that HS : Sn
+ → R is the trace function

HS(U ) =
∑n

i=1 hS(λi (U )).

Assumption 2 (Assumptions on GS) We assume that GS : O → R is concave,

differentiable, and satisfies GS(0) = 0 and G ′
S(0) = 0, where O is an open interval

that contains R+.

The problem of designing HS and GS , given H and G, is the main focus of the

paper, and is the subject of Sect. 3. For now we merely point out that the results of this

section hold for any choice of HS and GS satisfying the basic assumptions above.

Initialize ẑ0 = G ′
S (0) , Ŷ0 = ∇HS (0);

for i ← 1 to m do

Receive At , ct ;

x̂t =
{

1, if ct ẑt−1 + 〈At , Ŷt−1〉 > 0

0, if ct ẑt−1 + 〈At , Ŷt−1〉 ≤ 0;

Ŷt = ∇HS

(
∑t

s=1 As x̂s

)

;

ẑt = G ′
S

(
∑t

s=1 cs x̂s

)

;

end

Algorithm 1: Sequential Update

for i ← 1 to m do

Receive At , ct ;

(z̃t , Ỹt , x̃t ) ∈ arg min
z,Y

max
x∈[0,1]

〈Y, At x +
∑t−1

s=1 As x̃s〉 + z
(

ct x +
∑t−1

s=1cs x̃s

)

− H∗
S (Y ) − G∗

S(z)

end

Algorithm 2: Simultaneous Update

In Algorithm 2, at each step the primal variable x̃t , and the dual variables Ỹt and

z̃t , are updated together, by finding the saddle point of the Lagrangian (solution to

the min-max problem). To argue for the existence of a saddle point, we use Corollary

11.41b in [27] which requires two conditions to be satisfied. The first condition is that

the following problem has a nonempty, bounded set of maximizers,
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x̃t ∈ arg max
x∈[0,1]

HS

(

At x +
t−1
∑

s=1

As x̃s

)

+ GS

(

x +
t−1
∑

s=1

x̃s

)

,

which holds because [0, 1] is a compact convex set. The second condition requires

t−1
∑

s=1

As x̃s ∈ int ({−At x | x ∈ [0, 1]} + domHS) ,

t−1
∑

s=1

cs x̃s ∈ int ({−ct x | x ∈ [0, 1]} + domGS) ,

where the sum is the Minkowski sum of two sets, and int denotes the interior of a set.

This condition is also satisfied since 0 is in the interior of the domains of hS and GS

(from Assumptions 1 and 2).

Algorithm 1 can also be interpreted in similar terms, by observing that the primal

x̂t update can be written as

x̂t ∈ argmax
x∈[0,1]

x(ct ẑt−1 + 〈At , Ŷt−1〉),

and using the fact that for a differentiable concave function ψ , we have ∇ψ(u) =
arg miny〈y, u〉 − ψ∗(u), the dual updates can be written as

ẑt = argmin
z

z
(
∑t

s=1cs x̂s

)

− G∗
S (z) and

Ŷt = argmin
Y

〈Y,
∑t

s=1 As x̂s〉 − H∗
S (Y ) ,

As such, the sequential algorithm can be viewed as alternating over maximization and

minimization of the Lagrangian over primal and dual variables.

Algorithm 1, assigns integer values to x̂t and the dual variable ẑt acts as a decision

threshold in the assignment rule for x̂t . For the reader familiar with online learning,

we point out a connection with the typical online learning setup. The Ŷt update step is

the same as Follow-the-Regularized-Leader (FTRL) update with HS as the regularizer,

so this algorithm is running FTRL on the dual problem.

Algorithm 2 clearly requires more computation than the sequential algorithm, but it

is also easier to bound its competitive ratio. We do not focus on implementation details

of this algorithm in this paper, but we point out that one can decide how accurately

to solve the saddle-point subproblem at each iteration, trading off computation with

desired accuracy (for each subproblem). To analyze this more practical variation of

Algorithm 2, our analysis should take into account how solving each saddle-point

problem to ε accuracy affects the overall competitive ratio. We leave this additional

analysis to future work.
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2.2 Duality gap

The competitive analysis, and subsequent design of HS and GS (in Sect. 3), relies

on bounding the duality gap. Define the dual value achieved by the sequential and

simultaneous algorithms by

Dseq =
m

∑

t=1

(

〈At , Ŷt−1〉 + ct ẑt−1

)

+
− H∗(Ŷm) − G∗(ẑm)

Dsim =
m

∑

t=1

(

〈At , Ỹt 〉 + ct z̃t

)

+
− H∗(Ỹm) − G∗(z̃m).

The following two lemmas are essentially taken from [14]. We include proofs in

“Appendix A” to make the present paper self-contained. Lemma 1 bounds the duality

gap, and Lemma 2 relates Dseq and Dsim to the dual optimal value D�, given an

additional assumption on the gradient of HS .

Lemma 1 Let x̃t , Ỹt , and z̃t and x̂t , Ŷt , and ẑt denote the tth iterate of the simultaneous

and sequential algorithms, respectively. Then the duality gaps for the two algorithms

satisfy the lower bounds

HS

(

m
∑

t=1

At x̃t

)

+ GS

(

m
∑

t=1

ct x̃t

)

− Dsim ≥ H∗(Ỹm) + G∗ (z̃m) . (5)

HS

(

m
∑

t=1

At x̂t

)

+ GS

(

m
∑

t=1

ct x̂t

)

− Dseq ≥ H∗(Ŷm) + G∗ (

ẑm

)

+
m

∑

t=1

〈At x̂t , Ŷt − Ŷt−1〉 +
m

∑

t=1

〈ct x̂t , ẑt − ẑt−1〉. (6)

Proof See “Appendix A”. ��

This duality gap bound is reminiscent of regret bounds in online learning. In regret

analysis one directly bounds the right hand side of (6) in terms of the horizon and

problem parameters. However, bounding the competitive ratio requires more assump-

tions and further analysis. The PSD diminishing returns (PSD-DR) property is used

to relate Dseq and Dsim to the dual optimal value D�.

Lemma 2 If HS satisfies PSD-DR, then Dseq ≥ D� and Dsim ≥ D�.

For completeness the proof is given in “Appendix A”. We remark that the PSD-DR

property is a special case of the property used in the abstract framework of [13]

that was applied to general concave functions on proper cones. In order to develop

computational methods to design the function HS (in Sect. 3.2), we will need to impose

the PSD-DR property on HS in a computationally tractable way. A central observation

of this paper is that this is possible for the PSD-DR property by exploiting a celebrated

theorem of Löwner. We discuss this in detail in Sect. 3.2.
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3 Competitive ratio analysis

In this section we show how to design HS and GS in the sequential algorithm (Algo-

rithm 2) to maximize a lower bound on the competitive ratio achieved. We discuss

the appropriate modifications for the sequential algorithm in Sect. 4. In what follows,

e = 2.718 . . . is Euler’s number.

We first state a technical lemma (Lemma 3) that relates the budget consumed and

competitive ratio achieved by Algorithm 2 to the functions GS and HS . The only

dependence on the data (the values of At and ct ) is via two parameters, θ and Θ , which

are lower and upper bounds on c−1
t tr(At ) for all t . We use a parameter γ ≥ 1 as a

trade-off parameter between the budget consumption and competitive ratio. The result

says that if HS , GS satisfy certain inequalities that involve γ and β, then Algorithm 2

achieves a competitive ratio of at least 1
γ /(e−1)+β

using a budget of G ′−1
S (−h′(0)Θ)

(the inverse function of the derivative of GS evaluated at a point). Concrete values for

these bounds are worked out at the end of this section. This is a similar style of result

to [7], which applies to a special class of linear programs.

Lemma 3 Let G be as defined in (2), and let h be concave and monotonically

increasing, with corresponding trace function H. Let GS satisfy Assumption 2, hS

satisfy Assumption 1, and suppose that the corresponding trace function HS sat-

isfies the PSD-DR property. Suppose that θ ≤ c−1
t tr(At ) ≤ Θ for all t and

umax ≥ λmax

(
∑m

t=1 At x̃t

)

.2 Then

1. If for a given γ ≥ 1, GS satisfies

γ GS(u) ≤ G∗(G ′
S(u)) + γ

e − 1
h(θu) for all u ∈ [0,∞), (7)

and there exists β > 0 such that hS satisfies

γ hS(u) ≤ h∗(h′
S(u)) + βh(u) for all u ∈ [0, umax], (8)

then the iterates x̃1, . . . , x̃m of Algorithm 2 satisfy

H

(

m
∑

t=1

At x̃t

)

≥ 1

γ /(e − 1) + β
D�. (9)

2. The iterates x̃1, . . . , x̃m of Algorithm 2 also satisfy

m
∑

t=1

ct x̃t ≤ b′ := inf{u : G ′
S(u) ≤ −h′(0)Θ}. (10)

Before providing a proof of Lemma 3, we explain how we use it in what follows. As

mentioned before, we consider γ a design parameter that trades off between (possible)

2 Note that we could choose, for instance, umax = b′ maxt c−1
t λmax(At ), but for certain classes of problems

better bounds may be available.
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budget violation and competitive ratio achieved. The smaller the parameterγ , the larger

the competitive ratio (evident from 8 and 9) and the larger the budget violation. The

role of γ in the amount of budget consumed and the reason for requiring γ ≥ 1 is

discussed in Sect. 3.1. In Sect. 3.1 we use (7) and (10) in Lemma 3 to design GS to

minimize the budget b′ consumed for a given γ . This design problem requires the

parameter θ only. The parameter γ allows us to decouple the design of GS and hS .

In Sect. 3.2, we use (8) and (9) in Lemma 3 to design HS via solving a convex

optimization problem that maximizes the bound on competitive ratio (by minimizing

β). This design problem requires the parameter umax only.

Proof (of Lemma 3) First we show that
∑m

t=1 ct x̃t ≤ b′. To do this we use the opti-

mality conditions of the saddle point problem in Algorithm 2. Indeed, for any t , we

have that

Ỹt = ∇HS

(

t
∑

s=1

As x̃s

)

and z̃t = G ′
S

(

t
∑

s=1

cs x̃s

)

,

and that 〈Ỹt , At 〉 + ct z̃t < 0 implies x̃t = 0.

Arguing by contradiction, let T be the smallest index such that
∑T

t=1 ct x̃t > b′.

Then, by the definition of b′ we have that z̃T = G ′
S

(

∑T
t=1 ct x̃t

)

< −h′(0)Θ . Observe

that
∑T

t=1 At x̃t 
 0, from which it follows, from the fact that HS is PSD-DR, that

∇HS

(

∑T
t=1 At x̃t

)

� ∇HS(0) = h′
S(0)I . Then

〈ỸT , AT 〉 + cT z̃T = 〈∇HS

(

∑T
t=1 At x̃t

)

, AT 〉 + cT z̃T ≤ h′
S(0)trAT + cT z̃T < 0

where, for the last inequality, we use the fact that h′
S(0) = h′(0) and that c−1

T trAT ≤
Θ . It follows from the optimality conditions that x̃T = 0. But then

∑T −1
t=1 ct x̃t > b′,

contradicting our choice of T . It follows that
∑m

t=1 ct x̃t ≤ b′.
We now turn our attention to the bound on the competitive ratio. Let U =

∑m
t=1 At x̃t

and u =
∑m

t=1 ct x̃t , so that Ỹm = ∇HS(U ), and z̃m = G ′
S(u). By the duality gap

bound (Lemma 1) we have

HS (U ) + GS (u) − Dsim ≥ H∗(Ỹm) + G∗ (z̃m) . (11)

By the primal allocation rule in Algorithm 2, we have x̃t

(

ct z̃t + 〈At , Ỹt 〉
)

≥ 0.

Combining this observation with the concavity of HS and GS , we get

HS

(

t
∑

s=1

As x̃s

)

+ GS

(

t
∑

s=1

cs x̃s

)

− HS

(

t−1
∑

s=1

As x̃s

)

− GS

(

t−1
∑

s=1

cs x̃s

)

≥ x̃t

(

ct z̃t + 〈At , Ỹt 〉
)

≥ 0.
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By taking the sum over t and telescoping the sum we get

HS

(

m
∑

s=1

As x̃s

)

+ GS

(

m
∑

s=1

cs x̃s

)

≥ 0. (12)

The last preparatory observation we need is the inequality H(U ) ≥ h(θu). To see

why this holds, note that because h is monotonically increasing, and θ ≤ c−1
t tr(At )

for all t ,

h(θu) = h

(

θ

m
∑

t=1

ct x̃t

)

≤ h

(

tr(

m
∑

t=1

At x̃t )

)

= h(tr(U )) ≤
n

∑

i=1

h(λi (U )) = H(U ) (13)

where the last inequality holds because h is concave and h(0) ≥ 0 so h is subadditive

on [0,∞). Now we can write

H (U ) − Dsim

≥ −HS (U ) − GS(u) + H∗ (Y ) + G∗ (z) + H (U ) By (11)

≥ −HS(U ) + (γ − 1) GS(u) +
(

1 − γ
e−1

)

H(U ) + H∗(Y ) By (7) and (13)

≥ −HS(U ) + (1 − γ ) HS(U ) +
(

1 − γ
e−1

)

H(U ) + H∗(Y ) By (12) and γ ≥ 1

= −γ HS(U ) +
(

1 − γ
e−1

)

H(U ) + H∗(Y )

≥
(

1 − γ
e−1

− β
)

H(U ) By (8).

Then the result follows from Lemma 2. ��

These results allow us to search for functions hS and GS that satisfy the assump-

tions of Lemma 3. We use γ as a design parameter, controlling the trade-off between

competitive ratio and the (possible) budget violation.

3.1 Smoothing the budget penalty function G, taking h into account.

For a fixed choice of γ , our aim is to design GS so as to minimize b′. We do so by

explicitly constructing G ′
S(u) such that (7) is satisfied with equality for all u ≥ 0,

and showing that such a G ′
S is optimal, in the sense that for a given γ ≥ 1, defining

GS via (14) minimizes the bound b′ on the budget consumed by the simultaneous

algorithm.
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Proposition 1 Let ḠS be any function that satisfies (7). Let 3

G ′
S(u) = − γ

b(e − 1)

∫ u

0

exp
(γ

b
(u − v)

)

θh′ (θv) dv for u ≥ 0 (14)

Then Ḡ ′
S(u) ≥ G ′

S(u) for all u ≥ 0 and so

inf{u : G ′
S(u) ≤ −h′(0)Θ} ≤ inf{u : Ḡ ′

S(u) ≤ −h′(0)Θ}.

Proof Clearly G ′
S(u) ≤ 0 for all u ≥ 0, and so for any u ≥ 0, we have that

G∗(G ′
S(u)) = bG ′

S(u). We now explain why G ′
S satisfies (7) with equality. (This

can also be verified by direct substitution.) Because GS(0) = 0 (by assumption), it is

enough to show that G ′
S satisfies the linear, constant coefficient differential equation

obtained by equating, and then differentiating, both sides of (7). After rearranging

terms, this differential equation is

G ′′
S(u) = γ

b
G ′

S(u) − γ

b(e − 1)
θh′(θu).

The function G ′
S(u) that satisfies this equation for u ∈ [0,∞) together with G ′(0) = 0,

is given by the convolution of − γ
b(e−1)

θh′(θu) with eγ u/b, as in (14).

Since G ′
S satisfies (7) with equality, it follows from Gronwall’s inequality (see [11]

Corollary 2) that for any other function ḠS that satisfies (7), we have Ḡ ′
S(u) ≥ G ′

S(u)

for all u ≥ 0. ��

Remark 1 Note that the function GS is a convolution of h′(θu) with an exponential

function. It can also be viewed as a function derived by applying Nesterov’s smoothing

technique to G. To show this, we have to argue that G∗
S − G∗ is a concave function.

Note that G∗ is linear over R−; therefore, G∗
S − G∗ is concave on the positive reals

with G∗
S(0) − G∗(0) = 0, and for y > 0, G∗

S(y) − G∗(y) = 0. This establishes the

concavity of G∗
S −G∗. As we discuss in Example 1 below, G∗

S −G∗ has a closed form

when h is a linear function. However, for more general examples of h we do not have

a closed form for G∗
S − G∗.

Now, to justify the fact that we require γ ≥ 1, we find a lower bound G ′
S given in (14)

in terms of γ :

G ′
S(u) = − γ

b(e − 1)
exp

(γ

b
u
)

∫ u

0

exp
(

−γ

b
v
)

θh′ (θv) dv

≥ −γ θh′ (0)

b(e − 1)
exp

(γ

b
u
)

∫ u

0

exp
(

−γ

b
v
)

dv = −
θh′ (0) (exp(

γ
b

u) − 1)

e − 1

3 We can extend the domain of GS to negative reals by letting GS = 0 on R− to satisfy the technical

assumption on the domain of GS in Assumption (2).
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The inequality above is exact if h is linear, e.g., H(U ) = tr(U ). Now we can bound

b′ as:

b′ = inf{u : G ′
S(u) ≤ −h′(0)Θ} ≥ b

γ
log

(

Θ

θ
(e − 1) + 1

)

This shows that if γ < 1, then even in the trivial case where θ = Θ and h is linear the

algorithm can go over budget.

We now compute G ′
S , and bound the budget b′ consumed by the simultaneous

algorithm using G ′
S , for three examples.

Example 1 (Linear objective function) Consider the linear function h(u) = u which

translates to H(U ) = tr(U ). This case allows us to show that our approach specializes

to recover known results. In this case, the problem reduces to a linear program with

one budget constraint,

maximize

m
∑

t=1

tr(At )xt subject to

{

∑m
t=1 ct xt ≤ b

0 ≤ xt ≤ 1 for t = 1, 2, . . . , m.

Computing the integral (14) gives G ′
S(u) = θ

(

1 − exp
( γ

b
u
))

/(e − 1). This choice

of G ′
S corresponds to the exponential update algorithm for online LP [7], and, in this

particular case, GS can also be derived as a smooth surrogate for G using Nesterov

smoothing with a shifted entropy as the proximity function [13]. In this case the bound

b′ on the budget consumed is given by

b′ = inf
{

u | G ′
S(u) < −h′(0)Θ

}

= b

γ
log

(

(e − 1)
Θ

θ
+ 1

)

.

Choosing γ ≥ log
(

(e − 1)Θ
θ

+ 1
)

ensures that the budget is not violated.

Example 2 (D-optimal experiment design) Suppose that h(u) = log(u+1), the objec-

tive function of interest in D-optimal experiment design. In this case h′(u) = (1+u)−1,

and we note that it is possible to express the optimal G ′
S from (14) in terms of special

functions called exponential integrals. To obtain an upper bound on b′, and hence

on the budget consumed, we use the fact that h′(θv) = (1 + θv)−1 ≥ e−θv when-

ever θv ≥ 0. Using this inequality in (14), and computing the resulting (elementary)

integral, we obtain the bound

G ′
S(u) ≤ 1

(e − 1)

e−θu − e
γ
b

u

θ−1 + (b/γ )
≤ 1

(e − 1)

1 − e
γ
b

u

θ−1 + (b/γ )
.

Rearranging and using the definition of b′ we see that

b′ ≤ b

γ
log

[

(e − 1)Θ
(

θ−1 + b/γ
)

+ 1
]

. (15)
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(b)(a)

Fig. 1 Examples of GS given in (14) for different values of γ and θ . a Examples of GS when h(u) =
log(u + 1). b Example of GS when h(u) = 1 − 1

u+1

Since γ ≥ 1, we can ensure that there is no budget violation, i.e., b′ ≤ b, by choosing

γ ≥ log
[

(e − 1)Θ
(

θ−1 + b
)

+ 1
]

. Figure 1a shows examples of GS for two values

of γ when h(u) = log(1 + u).

Example 3 (A-optimal experiment design) When h(u) = 1− 1
1+u

, and so h′(u) = (1+
u)−2, it is again possible to express the optimal G ′

S in terms of exponential integrals.

Using the same strategy as example 2, but with the bound h′(θv) = (1+θv)−2 ≥ e−2θv

(for v ≥ 0), gives

G ′
S(u) ≤ 1

(e − 1)

1 − e
γ
b

u

θ−1 + (2b/γ )
and b′ ≤ b

γ
log

[

(e − 1)Θ(θ−1 + 2b/γ ) + 1
]

.

Figure 1b shows examples of GS for two values of γ when h(u) = 1 − 1
1+u

.

3.2 Smoothing h

We are now in a position to design hS , a smoothed surrogate for h. Recall that, for a

fixed choice of γ ≥ 1, we can use (14) to design an optimal G ′
S . This gives a bound

b′ on the budget consumed by Algorithm 2. We design hS by solving the following

optimization problem over β and the function hS :

minimize β subject to

{

γ hS(u) ≤ h∗(h′
S(u)) + βh(u) ∀u ∈ [0, umax]

hS satisfies PSD-DR.
(16)

Note that this problem comes directly from Lemma 3 and the fact that for fixed γ , we

can maximize the bound on the competitive ratio, (γ /(e − 1) + β)−1, by minimizing

β.

The key challenge in solving this optimization problem is imposing the PSD-DR

property. A crucial observation in this paper is that, for a differentiable trace function,
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satisfying PSD-DR can be expressed in an equivalent, more explicit form. This is

an easy consequence of Löwner’s theorem for matrix monotone functions [18], an

important result in matrix analysis.

Proposition 2 Suppose HS(U ) =
∑n

i=1 hS(λi (U )) where hS is a monotone increas-

ing, concave function, and hS(0) = 0. Then HS is PSD-DR for all n, if and only if

there exists a positive measure μ supported on [0, 1] such that

hS(u) =
∫ u

0

y(u′) du′ where y(u) =
∫ 1

0

1

uλ + (1 − λ)
dμ(λ). (17)

Proof This follows from [18, Theorem 4.9]. ��
This alternative description allows us to impose the constraint that hS satisfies

PSD-DR in the optimization problem for designing hS . We now rewrite this optimiza-

tion problem in a more computationally useful form. We use the change of variable

hS (u) =
∫ u

0 y (s) ds, introduce μ from (17) as a decision variable, and express y in

terms of μ. Doing so we obtain the following optimization problem.

minimizeβ,y,μ β

subject to γ

∫ u

0

y (s) ds − h∗ (y (u)) ≤ βh (u) ∀u ∈ [0, umax]

y (t) =
∫ 1

0

1

tλ + (1 − λ)
dμ (λ)

μ a positive measure supported on [0, 1]. (18)

We denote by β(γ ), the optimal value of (18) for a given γ . We extend hS linearly on

R− to satisfy the technical assumption on the domain of hS in Assumption (1).

Theorem 1 Suppose that GS is defined as in (14), and HS is the trace function cor-

responding to
∫ u

0 y(s) ds, where y is optimal for (18). Then the iterates x̃1, . . . , x̃m

of Algorithm 2 satisfy

H
(
∑m

t=1 At x̃t

)

≥ 1
γ /(e−1)+β(γ )

D� and
∑m

t=1 ct x̃t ≤ G ′−1
S (−h′(0)Θ)

where Θ ≥ c−1
t tr(At ) for all t and β(γ ) is the optimal value of β in (18). Moreover,

if H satisfies the PSD-DR property, then β(γ ) ≤ γ + 1.

Proof The proofs of the first two inequalities follow directly from Lemma 3. To see that

β(γ ) ≤ γ +1 when H satisfies the PSD-DR property, one can note that y(u) = h′(u)

and β = γ + 1 is a feasible solution for (18) in that case. ��
Note that if HS satisfies PSD-DR, then H is a feasible solution to problem (18);

however, it is not necessarily the optimal solution. As we will see in the next section, the

objective function in D-optimal experiment design, H(U ) = log det(I +U ), provides

such and example, where the competitive ratio improves as the result of smoothing even

though H is PSD-DR. In the next section, we also consider the A-optimal experiment

design where the objective function does not satisfy PSD-DR.
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(a)

(b)

(c)

Fig. 2 The smoothed function hS and the corresponding measure μ, when h(u) = log(u +1). The smooth

hS is found by solving the convex problem (18) via discretization of measure μ. In a, γ = 1 and umax = 1.

In b, γ = 4 and umax = 1. In c, γ = 4 and umax = 10

123



Competitive online algorithms for resource allocation over... 283

3.2.1 Examples

Example 4 (Linear objective) When h(u) = u then

h∗(y) =
{

0 if y = 1

−∞ otherwise.

Therefore, the only feasible solution to (16) is hS(u) = u. This is a PSD-DR function.

The corresponding value of β is β = γ . As such, the competitive ratio achieved by

Algorithm 2 is at least 1
γ

(

1 − 1
e

)

.

Example 5 (D-optimal experiment design) In this case h (u) = log (u + 1), i.e.,

H(U ) = log det(I + U ). Note that H satisfies the PSD-DR property, because we

can write h′(u) = 1/(1+u) in the form of (17) by choosing the measure μ(λ) to have

mass 1/2 at λ = 1/2. By putting hS(u) = h(u), we can conclude that β(γ ) ≤ 1 + γ .

This means that the competitive ratio achieved by Algorithm 2 is at least 1
γ (1−1/e)−1+1

.

By solving (18) computationally, we can design an hS that achieves a better com-

petitive ratio. Figure 2a shows the solution of (18) for γ = 1 over the finite horizon

[0, umax] = [0, 1]. Figure 2b, c show the solution of (18) for γ = 4 and umax = 1 and

umax = 10 respectively. We note that the optimal measures are quite complicated—in

the case γ = 1 the optimal measure seems to be atomic, whereas in the case γ = 4, it

has a qualitatively different structure. In Fig. 3a, we plot the competitive ratio bound

of Theorem 1 versus γ , and compare it with the bound obtained without smoothing h.

We can see that γ captures the trade off between the budget violation and compet-

itive ratio. A smaller γ gives a better competitive ratio at the expense of larger budget

violation, quantified by the bound given in Example 2.

Example 6 (A-optimal experiment design) In this case H is not a PSD-DR function,

so to obtain competitive ratio bounds by our method we must construct a PSD-DR

surrogate HS numerically. Figure 3b, shows the competitive ratio bound given by

solving (18) for h(u) = 1 − 1/(u + 1) for different values of the parameter γ . In

Fig. 4, we have provided examples of hS for different values of γ and umax.

4 Analysis of the sequential algorithm

To design the functions HS and GS for the sequential algorithm (Algorithm 1), we

need additional information about the problem data. Since Algorithm 1 uses the dual

variable from the previous time step to assign the primal variable, the maximum length

of each primal step, which is captured by the following two parameters, plays a role

in the competitive ratio. Let

ρ1 ≥ max
t

ct , and ρ2 ≥ max
t

λmax (At ) . (19)

The next lemma is an analogue of Lemma 3 but for the sequential algorithm.
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(a) (b)

Fig. 3 a Two competitive ratio bounds vs γ for h(u) = log(u + 1). The first bound is achieved by

numerically finding the optimum β(λ) in (16), while the second bound uses the fact that β(λ) ≤ λ + 1

when h(u) = log(u + 1). b Competitive ratio bound achieved by numerically finding the optimum β(λ)

for h(u) = 1 − 1/(u + 1)

Lemma 4 Let GS satisfy Assumption 2, hS satisfy Assumption 1, and suppose that

the corresponding trace function HS satisfies the PSD-DR assumption. Suppose that

θ ≤ c−1
t tr(At ) ≤ Θ for all t , that ρ1 and ρ2 are defined as in (19), and umax ≥

λmax

(
∑m

t=1 At x̂t

)

.4 Then

1. If for a given γ ≥ 1, GS satisfies:

γ
[

GS (u) − ρ1G ′
S (u)

]

≤ G∗(G ′
S(u)) + γ

e − 1
h(θu) ∀u ∈ [0,∞) (20)

and there exists β > 0 such that hS satisfy the following inequlity:

γ
[

hS (u) + ρ2

(

h′
S (0) − h′

S (u)
)]

≤ h∗(h′
S(u)) + βh(u) ∀u ∈ [0, umax] (21)

then the iterates x̂1, . . . , x̂m of Algorithm 1 satisfy

H

(

m
∑

t=1

At x̂t

)

≥ 1

γ /(e − 1) + β
D�. (22)

2. The iterates x̂1, . . . , x̂m of Algorithm 1 satisfy

m
∑

t=1

ct x̂t ≤ b′ where b′ := ρ1 + inf{u : G ′
S(u) ≤ −h′(0)Θ}. (23)

4 Note that we could choose, for instance, umax = b′ maxt c−1
t λmax(At ), but for certain classes of problems

better bounds may be available.
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(a)

(b)

(c)

Fig. 4 The smoothed function hS and the corresponding measure μ, when h(u) = 1 − 1
u+1 . The smooth

hS is found by solving the convex problem (18) via discretization of measure μ. In a, γ = 1 and umax = 1.

In b, γ = 4 and umax = 1. In c, γ = 4 and umax = 10
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Proof First we show that
∑m

t=1 ct x̂t ≤ b′. Arguing by contradiction, let T be the small-

est index such that
∑T +1

t=1 ct x̂t > b′. Then,
∑T

t=1 ct x̂t > b′ − ρ1 (since cT +1 x̂T +1 ≤
ρ1). We have that ẑT = G ′

S

(

∑T
t=1 ct x̂t

)

< −h′(0)Θ , where the inequality holds by

the definition of b′. By the PSD-DR assumption, ∇HS

(

∑T
t=1 At x̂t

)

� ∇HS(0) =
h′

S(0)I . Then

〈ŶT , AT +1〉 + cT +1 ẑT ≤ cT +1

(

h′
S(0)c−1

T +1tr(AT +1) + ẑT

)

< 0.

It follows that x̂T +1 = 0, contradicting our choice of T . Hence
∑m

t=1 ct x̂t ≤ b′.
We now bound on the competitive ratio. Let U =

∑m
t=1 At x̂t , u =

∑m
t=1 ct x̂t ,

Ŷm = ∇HS(U ), and ẑm = G ′
S(u). First we note that

m
∑

t=1

[

〈At x̂t , Ŷt−1 − Ŷt 〉 + ct x̂t (ẑt−1 − ẑt )
]

≤
m

∑

t=1

[

ρ2tr(Ŷt−1 − Ŷt ) + ρ1(ẑt−1 − ẑt )
]

= ρ2(tr(Ŷ0 − Ŷm)) − ρ1(ẑm) (24)

where the inequality holds because Ŷt � Ŷt−1 (by the PSD-DR assumption), and,

similarly, ẑm ≤ · · · ≤ ẑ0 = 0 (since G ′
S(0) = 0). By the primal allocation rule

in Algorithm 1, we have x̂t

(

ct ẑt−1 + 〈At , Ŷt−1〉
)

≥ 0. Combining this with the

concavity of HS and GS , we get

HS

(
∑t

s=1 As x̂s

)

+ GS

(
∑t

s=1cs x̂s

)

− HS

(

∑t−1
s=1 As x̂s

)

− GS

(

∑t−1
s=1cs x̂s

)

+ x̂t

(

ct (ẑt−1 − ẑt ) + 〈At , Ŷt−1 − Ŷt 〉
)

≥ 0.

Taking the sum over t , telescoping, and using hS(0) = GS(0) = 0, gives

HS (U ) + GS (u) +
m

∑

t=1

[

〈At x̂t , Ŷt−1 − Ŷt 〉 + ct x̂t (ẑt−1 − ẑt )
]

≥ 0. (25)

Now, the proof follows the same step as the proof of Lemma 3 and uses (6) and the

above inequalities.

H (U ) − Dseq

≥ H (U ) + H∗(Ŷm) − HS (U ) − GS (u) + G∗ (

ẑm

)

+
m

∑

t=1

x̂t

[

〈At , Ŷt − Ŷt−1〉 + ct

(

ẑt − ẑt−1

)

]

By (6)

≥
[

1 − γ
e−1

]

H(U ) + H∗(Ŷm) − HS (U ) − (1 − γ ) GS (u) − γρ1G ′
S (u)
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+ (γ + (1 − γ ))

m
∑

t=1

x̂t

[

〈At , Ŷt − Ŷt−1〉 + ct

(

ẑt − ẑt−1

)

]

By (20) and (13)

≥
[

1 − γ
e−1

]

H (U ) + H∗(Ŷm) − HS (U ) + (1 − γ ) HS (U ) − γρ1 ẑm

+ γ

m
∑

t=1

x̂t

[

〈At , Ŷt − Ŷt−1〉 + ct

(

ẑt − ẑt−1

)

]

By (25)

≥
[

1 − γ
e−1

]

H(U ) + H∗(Ŷm) − γ
[

HS(U ) + ρ2tr
(

Ŷ0 − Ŷm

)]

By (24)

≥
[

1 − γ
e−1

− β
]

H (U ) By (21).

Applying Lemma 2 completes the proof. ��

For the sequential algorithm to minimize the bound b′ on the budget consumption

we choose GS such that

G ′
S (u) = − θγ

(b + ρ1γ )(e − 1)

∫ u

0

exp

(

γ

b + ρ1γ
(u − v)

)

h′ (θv) dv. (26)

To find hS for the sequential algorithm, the problem (18) is modified to:

minimizeβ,y,μ β

subject to γ

∫ u

0

y(s)ds + γρ2(y(0) − y(u)) − h∗(y(u)) ≤ βh (u) ∀u ∈ [0, umax]

y(t) =
∫ 1

0

1

tλ + (1 − λ)
dμ(λ)

μ a positive measure supported on [0, 1]. (27)

Let β(γ ) be the optimal value of β in (27). Combining our arguments gives the fol-

lowing analogue of Theorem 1 for the sequential algorithm. It describes the tradeoff

between budget consumption and competitive ratio achieved for the sequential algo-

rithm when GS and HS are designed optimally.

Theorem 2 If GS is defined by (26), and HS is the trace function corresponding to
∫ u

0 y(s) ds, where y is optimal for (27), then the iterates, x̂1, . . . , x̂m of Algorithm 1

satisfy

m
∑

t=1

ct x̂t ≤ G ′−1
S (−h′(0)Θ) + ρ1 and H

(

m
∑

t=1

At x̂t

)

≥ 1
γ /(e−1)+β(γ )

D�

where c−1
t tr(At ) ≤ Θ for all t .

Proof The proof is the natural analogue of Theorem 1. ��
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Fig. 5 Performance of Algorithm 2 (sequential updates) for online D-optimal and A-optimal experiment

design with two choices of HS . (Left) D-optimal experiment design. (Right) A-optimal experiment design

5 Numerical experiments

In this section, we provide the results of our numerical experiments and discuss the

numerical implementation of smoothing design.

In our numerical simulations, we consider the D-optimal (H(U ) = log det(I +U ))

and the A-optimal (H(U ) = n − tr((I +U )−1)) experiment design problems. The t th

matrix At = at a
T
t is generated as follows: we sample a vector η uniformly at random

from {−1, 1}n and then set at =
√

m−t+1√
n

η. This is an adversarial weighting, inspired

by worst-case examples for online LP, e.g., [8].

We compare the performance of Algorithm 2 (sequential updates) with two choices

of HS . In one case, we use the smoothed HS given by solving (18). In the second

case, we use H without smoothing (HS = H ). For both cases, we use the smooth GS

given in (14). (Note that a pure greedy algorithm without smoothing G simply picks

the first b experiments and is a trivial algorithm, which we did not try.) We varied the

parameter γ and plotted the competitive ratio versus the budget used by the algorithm

in Fig. 5. For each value of γ , we have 10 random repeats.

Next, we briefly discuss the numerical implementation of the smoothing design

problems for the simultaneous algorithm, introduced in Sect. 3. Similar ideas apply

for the smoothing design problems for the sequential algorithm. We note that the

algorithm does not require GS itself, but only G ′
S(u). The formula for G ′

S can be

computed up to desired accuracy using Gauss-Leguerre quadrature [26].

To solve problem (18), we restrict μ to be an atomic measure supported on the

q + 1 points λ j = j/q ∈ [0, 1] for j = 0, 1, . . . , q. The decision variables are then

β and μ j := μ(λ j ) for j = 0, 1, . . . , q. Rather than imposing the constraint for

all u ∈ [0, umax] we impose it on a non-uniformly sampled subset. In particular, we

sample u more densely where h has a larger local Lipschitz constant by choosing

the discretization points to be ui = h−1 (i umax/d) for i = 0, 1, . . . , d. The optimal

y = h′
S , which is all that is needed for the algorithm, is y(u) =

∑q
j=0

μ j

uλ j +(1−λ j)
.

Note that since the integral of every individual function in the summand representation

of h′
S satisfies PSD-DR, hS satisfies PSD-DR.
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6 Related work and discussion

6.1 Submodularity and experiment design

Algorithms for the offline optimal experiment design (both with and without integer

constraints) have been extensively studied [25]. Let X S denote a principal submatrix

of X , then it is well known that the set function S �→ log det(X S) is submodular.

Based on this, greedy subset selection is shown to have a 1 − 1/e approximation ratio

[5,28,30] for the (integer) experiment selection problem. The paper [4] also gives an

approximation ratio for the weakly submodular A-optimal design problem; also see

[31] and references therein for statistical bounds for solving the convex relaxation

followed by a greedy post-processing. In the existing literature, however, algorithms

are assumed to have access to all possible experiments at the start, and therefore

the result do not apply to the worst-case online setting that we consider. There is

a connection between analysis of online algorithm under stochastic i.i.d setting and

greedy algorithm for submodular maximization. We refer the reader to [12] for the

details of this connection.

6.2 Online SDP problem of [16]

To the best of our knowledge, [16] is the only existing work that studies an online

semidefinite program. While the problem considered is different from ours and its

results do not apply to our setup, we briefly discuss the idea. [16] considers a gener-

alization of the online covering linear program to the semidefinite cone as follows,

minimize bT y subject to

{

A(y) 
 C

y ≥ 0,

where A denotes a linear map from vectors to matrices. The algorithm receives a

sequence of PSD matrices C (0) � C (1) � . . . � C (m) = C over time, and needs to

increase the variable y so as to satisfy the new matrix covering constraint. The dual

of this problem is a packing problem, however the model for the online information

the algorithm receives is still the sequence of matrices C (i) which is different from

receiving a new experiment and bid price to decide on, as in our model. Indeed,

extending the packing linear program to the PSD cone yields a different problem, i.e.,

maximize cT x subject to

{

A(x) � B

x ≥ 0,

which is in line with the setting we consider in this paper, after a reformulation to bring

the matrix constraint to the objective in a penalized form (which corresponds to H ).

The possibility of using Löwner’s representation to design a matrix penalty function

for this matrix-valued budget is an interesting direction for future work.
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6.3 Online learning, regret, and FTRL

As mentioned earlier, the dual update in Algorithm 1 is the same as in Follow-the-

Regularized-Leader (FTRL) algorithm with −HS
∗ as the regularizer. This primal-dual

perspective has been used in [29] for design and analysis of online learning algorithms.

In the online learning literature, the goal is to derive a bound on the regret that optimally

depends on the horizon, m; whereas in this work we study the competitive ratio for the

algorithm that depends on the functions H and G. In order to optimize the competitive

ratio, the regularization functions should be crafted based on H , and a general choice

of regularization which yields an optimal regret bound in terms of m is not enough

for a competitive ratio argument, so existing results in online learning do not address

our aim. There are however some shared proof steps in the analysis that are worth

exploring further.
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A Additional proofs

Here, we provide additional proofs not given in detail in the body of the paper.

Proof (of Lemma 1) By the definition of Dsim, the definition of x̃t , and the concavity

of HS and GS , we have that

Dsim =
m

∑

t=1

[

〈At x̃t , Ỹt 〉 + ct x̃t z̃t

]

− H∗(Ỹm) − G∗(z̃m)

≤
m

∑

t=1

[

HS

(

t
∑

s=1

As x̃s

)

− HS

(

t−1
∑

s=1

As x̃s

)

+ GS

(

t
∑

s=1

cs x̃s

)

− GS

(

t−1
∑

s=1

cs x̃s

)]

− H∗(Ỹm) − G∗(z̃m)

= HS

(

m
∑

s=1

As x̃s

)

+ GS

(

m
∑

s=1

cs x̃s

)

− H∗(Ỹm) − G∗(z̃m).

The inequality follows from concavity of GS and HS . The final equality holds by

telescoping the sum and using the fact that HS(0) = 0 = GS(0). For the sequential

algorithm we can write:

Dseq =
m

∑

t=1

[

〈At x̂t , Ŷt−1〉 + ct x̂t ẑt−1

]

− H∗(Ŷm) − G∗(ẑm)
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=
m

∑

t=1

[

〈At x̂t , Ŷt 〉 + ct x̂t ẑt

]

− H∗(Ŷm) − G∗(ẑm)

+
m

∑

t=1

[

〈At x̂t , Ŷt−1 − Ŷt 〉 + ct x̂t

(

ẑt−1 − ẑt

)

]

Now, the rest follows similar to steps as the simultaneous case. ��

Proof (of Lemma 2) We write out the argument for the inequality Dsim ≥ D�. The

argument showing that Dseq ≥ D� is identical. We first show that the PSD-DR assump-

tion on HS implies

m
∑

t=1

(

〈At , Ỹt 〉 + ct z̃t

)

+
≥

m
∑

s=1

(

〈As, Ỹm〉 + cs z̃m

)

+
. (28)

Since As ∈ Sn
+ and x̃s ≥ 0 for all s ∈ [m], it follows that

∑t
s=1 As x̃s �

∑m
s=1 As x̃s

for all t ∈ [m]. Since Ỹt = ∇HS

(
∑t

s=1 As x̃s

)

, if HS satisfies the PSD-DR assumption

then Ỹt 
 Ỹm for all t ∈ [m]. By a similar argument, since GS is concave, z̃t ≥ z̃m for

all t ∈ [m]. Since At ∈ Sn
+ and ct ≥ 0 for all t ∈ [m],

〈At , Ỹt 〉 + ct z̃t ≥ 〈At , Ỹm〉 + ct z̃t ≥ 〈At , Ỹm〉 + ct z̃m

for all t ∈ [m]. Taking the positive part and then summing establishes (28). To conclude

that Dsim ≥ D�, we need only observe that D� is a lower bound on the dual objective (4)

evaluated at (Ỹm, z̃m). ��
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