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assignment

U ∈ Sm/Spec(F) 7−→ [Σm+nαU+, X ]
SHA1

(F)
.

Here [ , ]
SHA1

(F)
denotes the hom-set in SHA

1

(F) and Σm+nα denotes smashing

with (S1)∧m ∧ (A1 r 0)∧n . Since every motivic spectrum is a 1-module, the

bigraded sheaf

π ?1 =
⊕

m,n∈Z
πm+nα1

plays a fundamental role in stable motivic homotopy theory, analogous to the

stable homotopy groups of spheres in topology. We will refer to πm+nα1 as the

(m + nα)th motivic stable stem, and to the Z-graded sheaf πm+∗α1 as the mth
Milnor–Witt stem.

The motivic stable stems (and their global sections, πm+nα1 := πm+nα1(F))

have been objects of intense study since Morel’s analysis of the 0th motivic stable

stem in [17]. That paper launched his program [18] to identify the 0th Milnor–Witt

stem with K MW
−∗ , the Milnor–Witt K -theory sheaf, explaining the nomenclature. In

further work [19], Morel shows that 1 is connective, meaning that mth Milnor–

Witt stems are 0 for m < 0.

Beyond Morel’s theorems, little is known about Milnor–Witt stems over a

general field. Röndigs–Spitzweck–Østvær [26] determine the first Milnor–Witt

stem as an extension of K M
∗ /24 and a certain sheaf related to Hermitian K -

theory; this vastly generalizes the work of Ormsby–Østvær [23] for fields of

cohomological dimension less than three. All other computations are limited to

specific fields, and are generally only known on global sections (and frequently

after completion at 2). Indeed, Hu–Kriz–Ormsby [14] and Dugger–Isaksen

[4] make computations over C via the Adams–Novikov and Adams spectral

sequences, Ormsby [22] makes computations over p-adic fields, Heller–Ormsby

[9, 10] and Dugger–Isaksen [5, 6] make computations over R, and Wilson–Østvær

[37] over finite fields. All these computations hold only in specific (often finite)

ranges.

In this paper, we exploit the methods of [26] to find conditions under which the

mth Milnor–Witt stem is bounded above; see Theorems 1.4 and 1.6. Our methods

apply to a general field F of characteristic different from 2, and they result in

sheaf level theorems (after inverting char(F) if char(F) is odd).

Our vanishing theorems have important implications for the nonzero homotopy

sheaves of 1 via Morel’s contraction construction [20]. Given a Nisnevich sheaf

of abelian groups F on Sm/F , the contraction ωF of F takes U to the kernel

of F (U × (A1 r 0)) → F (U ). (Here the map is induced by the canonical
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section 1 : Spec F → A1 r0.) For any motivic spectrum E , we have ωπm+nα E ∼=
πm+(n+1)α E . In particular, if πm+nα E = 0, then, for k > 1, the k-fold contraction

of πm+(n−k)α E is 0. Future computations should be able to exploit vanishing of

πm+nα1 to constrain the structure of πm+`α1 for ` < n.

We now state our results precisely, giving some indication of our methods along

the way. Fix a field F and let q denote its exponential characteristic. We begin by

studying the η-complete sphere spectrum via Voevodsky’s slice spectral sequence

[33] using the results in [26], and then ‘uncomplete’ our results via a sequence of

fracture squares.

Let η ∈ πα1(Spec F) denote the motivic Hopf map induced by the projection

A2 r 0 → P1. The η-complete sphere is the motivic spectrum 1̂ = holimn 1/ηn .

Theorem 1.1 will be shown in Section 3.

THEOREM 1.1. Over a field F with exponential characteristic q 6= 2,

πm+nα1̂[1/q] = 0

whenever

» m < 0, or

» m > 0, m ≡ 1 or 2 (mod 4), and 2n > max{3m + 5, 4m}.

Using the same techniques that prove Theorem 1.1, we can prove a stronger

vanishing result for 1̂(p), the η-completion of the p-local sphere spectrum. (The

notation 1̂(p) might be more appropriate, but we find it unwieldy.) Theorem 1.2

will be shown in Section 3.

THEOREM 1.2. Let F be a field and let p be an odd prime different from the
characteristic of F. Then

πm+nα1̂(p) = 0

whenever

» m < 0, or

» m > 0 and (p − 2)n > (p − 1)m.

While the η-complete sphere is an interesting object in its own right, one

would like to know if there are vanishing regions in π ?1 as well. When the

cohomological dimension cd F < ∞, this is known by the following theorem,

essentially due to Levine [15].
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THEOREM 1.3. Suppose F is perfect and cd F < ∞. Then 1 ' 1̂.

Proof. In [15], Levine proves that the slice spectral sequence for 1 converges to

π ?1 when cd F < ∞. Meanwhile, [26, Theorem 3.50] identifies the target with

π ?1̂, so the completion map 1 → 1̂ induces an isomorphism π ?1
∼= π ?1̂ and thus

1 ' 1̂.

From this, we deduce Theorem 1.4 in Section 4.1. By a ‘nonreal field’ we mean

a field that is not formally real.

THEOREM 1.4. Suppose F is nonreal with exponential characteristic q 6= 2. If
q > 2, further suppose that F is perfect and of finite cohomological dimension.
Then πm+nα1[1/q] vanishes in the range given in Theorem 1.1. If p 6= q is an odd
prime, then πm+nα1(p) vanishes in the range given in Theorem 1.2.

The positive characteristic statement is a direct consequence of Theorem 1.3,

but the characteristic 0 nonreal case does not exclude the possibility of infinite

cohomological dimension. We handle this via standard base change methods,

which we explain in Section 4.1.

REMARK 1.5. Note that Theorem 1.4 covers all nonreal fields of characteristic

0, and all odd characteristic (necessarily nonreal) fields that are perfect with

finite cohomological dimension. We cover the case of formally real (necessarily

characteristic 0) fields in Theorem 1.6.

When F is formally real, vanishing in π ?1 is more interesting. We first observe

that the η-primary fracture square

1 //

��

1̂

��

η−1
1 // η−1

1̂

reduces the problem to that of vanishing regions for π ?η
−1

1. We solve this

problem using Bachmann’s theorem on π ?1[1/2, 1/η] and the Hu–Kriz–Ormsby

comparison of the 2- and (2, η)-complete spheres when F has finite virtual 2-

cohomological dimension. (Recall that vcd2(F) := cd2(F(
√

−1)), where cd2

denotes 2-primary étale cohomological dimension.) In order to state our results,

let π top
m 1 denote the mth homotopy group of the topological sphere spectrum.

Theorem 1.6 is shown in Section 4.3.
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THEOREM 1.6. Suppose F is formally real. If m < 0, π ?1 = π ?1(p) = 0 by
Morel’s connectivity theorem. Suppose m > 0. Then πm+nα1 = 0 whenever

πm+nα1̂ = 0 (see Theorem 1.1) and π top
m 1[1/2] = 0. If p is an odd prime, then

πm+nα1(p) = 0 whenever πm+nα1̂(p) = 0 (see Theorem 1.2) and π top
m 1(p) = 0.

Of course, determining when π top
m 1[1/2] or π top

m 1(p) is 0 is no easy task.

Nonetheless, we view these conditions as ‘reductions to topology’, which

effectively transfers the problem from motivic to classical homotopy theory.

Given the intractability of these topological vanishing problems, this is the best

type of result we can hope for.

EXAMPLE 1.7. Suppose F is formally real. Toda’s calculations say that π
top
18 1 =

Z/8 ⊕ Z/2 [31, p. 188]. Since 18 ≡ 2 (mod 4) and 2 · 37 > 4 · 18, Theorem 1.6

implies that π 18+37α1 = 0. Ravenel’s calculations imply that π
top
61 1[1/2] = 0

[24, Theorem 1.1.13, A3.4, A3.5, Theorem 4.4.20]. Since 61 ≡ 1 (mod 4) and

2 · 123 > 4 · 61, one obtains π 61+123α1 = 0.

REMARK 1.8. It is also possible to produce a relative version of Theorem 1.6,

which specifies a range and the manner in which πm+nα1 is ‘topological’ in

the sense of being computed in the homotopy category of sheaves of spectra

on the Harrison space X F of orderings of F . See Remark 5.7 for a precise

statement.

CONVENTION 1.9. Henceforth, we always invert the exponential characteristic

q of the base field F , but we omit this from our notation. Note that when F
is formally real, q = 1, so our theorems for formally real fields are genuinely

integral.

REMARK 1.10. After completing the first draft of this paper, Bogdan Gheorghe

and Dan Isaksen pointed out that their paper [7] contains a precedent for this style

of vanishing theorem. They use the motivic Adams–Novikov spectral sequence

to deduce an ‘η-local’ region in the global sections of the bigraded motivic

homotopy sheaves of the 2-complete sphere spectrum over C. The computation

of π ?η
−1

1(SpecC) in [1] then implies that πm+nα1̂2(SpecC) = 0 for m ≡ 1 or 2

(mod 4) and 2n > 3m + 5.

Further note that since π ?η
−1

1(SpecC) ∼= Z/2 for m > 0, m ≡ 0 or 3

(mod 4), our conditions on the congruence class of m (mod 4) are in fact

necessary.
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Outline. In Section 2, we collect some necessary facts about the slice and

(Adams–)Novikov spectral sequences. In Section 3, we use the slice spectral

sequence to prove Theorems 1.1 and 1.2. Section 4 is split into three subsections.

In Section 4.1, we review some base change theorems and use them to prove

Theorem 1.4. In Section 4.2, we review Bachmann’s theorem on SHA
1

(F)[1/2,

1/η]. In Section 4.3, we use fracture square methods to prove Theorem 1.6.

Finally, in Section 5, we pose several open questions and prove Theorem 5.5,

which compares the motivic stable stems and η-inverted motivic stable stems in a

range.

2. Preliminaries

In this section, we gather known facts about the slice and Novikov spectral

sequences that we will need for our arguments.

We use the slice spectral sequence to prove Theorems 1.1 and 1.2. See [33]

for its construction and [26] for a contemporary take on its properties. The slice

spectral sequence for the sphere takes the form

Em,n,t
1 = πm+nαst1 H⇒ πm+nα1̂,

where st1 is the t th slice of the sphere spectrum [26, Theorem 3.50]. By

loc. cit. applied to the admissible pair (Spec F,Z(p)), its p-local analogue takes

the form

Em,n,t
1 (p) = πm+nαst1(p) H⇒ πm+nα1̂(p)

whenever p 6= char F . In the case of Theorem 1.2, we prove that Em,n,t
1 (p)

vanishes in the stated range, implying that π ?1̂(p) vanishes in the same range.

In the case of Theorem 1.1, we must work a little harder and show that Em,n,t
2

vanishes in appropriate regions.

Both proofs depend crucially on the form that the slices of 1 take. Surprisingly,

these slices are governed by the E2-page of the Novikov (that is, MU-Adams)

spectral sequence from classical stable homotopy theory. Let

E s,t
2 (MU) = Exts,t

MU∗MU(MU∗, MU∗)

denote the cohomology of the MU Hopf algebroid, where s denotes homological

degree and t the internal grading on MU∗. (Note that MU∗ is even-graded, so

this group vanishes whenever t is odd.) Furthermore, let M denote the motivic

Eilenberg–MacLane functor, which takes in an abelian group A and produces the

spectrum MA representing motivic cohomology with coefficients in A. Using this

notation, we get the following theorem due to Röndigs–Spitzweck–Østvær.
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THEOREM 2.1 [26, Theorem 2.12]. The tth slice of the motivic sphere spectrum
is

st1 =
∨

s>0

Σ t−s+tαME s,2t
2 (MU).

To further understand the E1-page of the slice spectral sequence, we will need

more information on two things: first, the homotopy sheaves of motivic Eilenberg–

MacLane spectra, and second, structural properties of E s,t
2 (MU).

LEMMA 2.2 [29, Corollary 3.2.1]. Suppose A is a finitely generated abelian
group. Then

πm+nαMA = 0

for m < 0, or m = 0 and n > 0, or m > 0 and n > −1.

Proof. We have

(πm+nαMA)(U ) = [Sm+nα ∧ U+, MA]
∼= [U+, S−m−nα ∧ MA]
∼= H−m−n(U ; A(−n)).

The stated vanishing range then follows from [29, Corollary 3.2.1].

While discussing motivic Eilenberg–MacLane spectra, we take a moment to

note the following lemma, which we will need later in our arguments. Recall that

τ ∈ π1−αMF2 is the element represented by −1 in the kernel of the squaring map

on the units of a field F of char F 6= 2.

LEMMA 2.3. Suppose char F 6= 2. Then multiplication by τ is injective on
π ?MF2.

Proof. It suffices to prove that multiplication by τ is injective on the stalks of

π ?MF2. These stalks are given by evaluating π ?MF2 at the henselization Oh
X,x

of the local ring at a point x on a smooth F-scheme X . By Suslin–Voevodsky

rigidity [30, Theorem 4.4] and [11], the map from Oh
X,x to its residue field induces

an isomorphism on motivic cohomology with F2-coefficients. Hence it suffices

to prove that multiplication by τ is injective on the motivic cohomology with

F2-coefficients of any field extension E of F . By the solution of the Milnor

conjecture, π ?MF2(Spec E) ∼= K M
∗ (E)/2[τ ], so injectivity of τ is obvious.

We now turn to the structure of E s,t
2 (MU). This has been an object of intense

study since the 1970s, and the results we need are easily culled from the literature.
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We first consider various finiteness properties, and how to build up E s,t
2 (MU) from

p-local information.

LEMMA 2.4.

(a) Unless (s, t) = (0, 0), the group E s,t
2 (MU) is finite; furthermore,

E0,0
2 (MU ) = Z.

(b) Let P denote the set of rational primes and for p ∈ P let BP(p) denote the
p-local Brown–Peterson spectrum. Let E∗,∗

2 (BP(p)) denote the cohomology
of the BP(p) Hopf algebroid. Then

E>0,∗
2 (MU) ∼=

⊕

p∈P

E>0,∗
2 (BP(p)).

(c) There is a vanishing line so that E s,t
2 (BP(p)) = 0 when t < 2s(p − 1).

Proof. These are all standard results going back to Novikov and Zahler. For (a),

see [21, Proposition 2.1]. For (b), see [38, p. 482]. For (c), see [21, Corollary

3.1].

REMARK 2.5. Readers expert in the Adams–Novikov spectral sequence will

notice that we did not include the sparsity theorem E s,t
2 (BP(p)) = 0 whenever

2p − 2 - t . Combined with Theorem 2.1, sparsity certainly gives interesting

information about the suspension bigrading of p-local slice summands. But

because of the fourth quadrant cone worth of nonzero homotopy sheaves

associated with an Eilenberg–MacLane spectrum (Lemma 2.2), we do not get

analogous sparsity results on π ?1̂(p), at least when cd F = ∞. If cd F is finite

and sufficiently small relative to p, then one can deduce a sort of sparsity result

for π ?1, but we do not pursue the specifics here.

Finally, we will need to leverage the Andrews–Miller analysis of the α1-inverted

2-local Adams–Novikov spectral sequence [1]. Recall that α1 is the generator of

E1,2
2 (BP(2)) ∼= E1,2

2 (MU).

LEMMA 2.6. There is an isomorphism

α−1
1 E∗,∗

2 (MU) ∼= F2[α±1
1 , α3, α4]/(α2

4)

where |α3| = (1, 6) and |α4| = (1, 8). Moreover, the localization map

E s,t
2 (MU) → α−1

1 E s,t
2 (MU)

is an isomorphism whenever t < 6s − 10 and t < 4s.
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Proof. In [1, Corollary 6.2.3], Andrews and Miller prove that

α−1
1 E∗,∗

2 (BP(2)) ∼= F2[α±1
1 , α3, α4]/(α2

4).

Since 2α1 = 0, the E∗,∗
2 (MU) version of this isomorphism follows from

Lemma 2.4(b).

For the second part of the lemma, note that by [1, Proposition 5.1],

E s,t
2 (BP(2)) → α−1

1 E s,t
2 (BP(2))

is an isomorphism when t < 6s − 10. For p > 2, Lemma 2.4(c) implies that

E s,t
2 (BP(p)) = 0 for t < 2s(p−1) 6 4s. Hence when t < min{6s−10, 4s}, we are

guaranteed to only have 2-primary groups in the Andrews–Miller isomorphism

range.

3. Vanishing for the η-complete sphere

This section consists of the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Vanishing for m < 0 follows from the vanishing range

in the E1-page of the slice spectral sequence, which in turn relies on Morel’s

connectivity theorem [19]. We turn to the second condition, namely vanishing of

πm+nα1̂ when m > 0, m ≡ 1 or 2 (mod 4), and 2n > max{3m + 5, 4m}. Recall

that the slice spectral sequence

Em,n,t
1 = πm+nαst1 H⇒ πm+nα1̂

converges to the homotopy sheaves of 1̂. By Theorem 2.1, we may rewrite the

E1-page as

Em,n,t
1 =

⊕

s>0

πm+nαΣ
t−s+tαME s,2t

2 (MU).

Let T denote the linear transformation of the (s, t)-plane to the (m +nα)-plane

given by the matrix

(
−1 1/2

0 1/2

)
(where both planes are given their standard bases).

We call T the Novikov-to-slice grading shift since Novikov E2-terms in degree

(s, t) correspond to slice summands, which are Eilenberg–MacLane spectra

shifted by T (s, t). We say that a bigrading m + nα contains a slice summand
if there exist integers s, t such that t − s + tα = m + nα and E s,2t

2 (MU) 6= 0. By

Theorem 2.1, m + nα contains a slice summand if and only if En−m,2n
2 (MU) 6= 0.

We see then that under the Novikov-to-slice grading shift T , vanishing regions in

E s,t
2 (MU) are mapped to bigradings that do not contain a slice summand.
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Figure 1. This diagram represents structural features of E s,t
2 (MU) and

E s,t
2 (BP(p)) for various primes p. Note that we have drawn the E2-page in the

tradition Adams grading with t − s on the horizontal axis and s on the vertical

axis. The lines labeled by a prime p correspond to p-local vanishing lines, so that

E s,t
2 (BP(p)) = 0 above these lines. The piecewise linear curve corresponds to the

Andrews–Miller range of Lemma 2.6.

Similarly, other structural properties are preserved by T as long as statements

are translated into the language of slice summands (rather than groups or sheaves);

see Figures 1 and 2. For instance, let A denote the region in the (s, t)-plane

specified in Lemma 2.6 in which the map E s,t
2 (MU) → α−1

1 E s,t
2 (MU) is an

isomorphism; that is,

A = {(s, t) | t < min{6s − 10, 4s}}.

Then within the region

T (A) = {m + nα | 2n > max{3m + 5, 4m}},

we know that every nontrivial slice summand is a suspension of MF2 indexed

by a monomial of the form αi
1α

j
3α

ε
4 , where i and j are sufficiently large integers

and ε = 0 or 1. The suspension bigrading for an MF2 indexed by αi
1α

j
3α

ε
4 is

(2 j + 3ε) + (i + 3 j + 4ε)α.

We now show that in the slice spectral sequence we have

Em,n,t
2 = 0

when m + nα ∈ T (A) and m ≡ 1 or 2 (mod 4). By [26, Lemma 4.2], there are

d1 differentials in the slice spectral sequence, which restrict to

τpr : Σ4q+1+(4q+2)αMZ/a2qZ → Σ4q+(4q+3)αMF2
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Figure 2. This diagram represents structural features of the E1- and E2-pages

of the slice spectral sequence for the motivic sphere spectrum. The m- and nα-

axes are presented, with the slice grading t suppressed. After the Novikov-to-slice

grading shift, the p-local vanishing lines of Figure 1 become the vanishing lines of

Theorem 1.2, and the Andrews–Miller vanishing curve gives the vanishing curve

of Theorem 1.1 (for m ≡ 1 or 2 (mod 4)). Note that the vanishing range given

by Theorem 1.1 is much better than the naive range given by the p = 2 case of

Theorem 1.2.

on α4q+2,

τ : Σ4q+1+(4q+2+ j)αMF2 → Σ4q+(4q+3+ j)αMF2

on α
j
1α4q+2 for j > 1, and

τ : Σ4q−2+(4q−1+ j)αMF2 → Σ4q−3+(4q+ j)αMF2

on α
j
1α4q−1 for j > 0. Within T (A), these differentials are multiplication by

τ linking suspended MF2 summands indexed by αi
1α

2 j+1
3 αε

4 to suspended MF2

summands indexed by α4+i
1 α

2 j
3 αε

4 . By Lemma 2.3, multiplication by τ is injective

on π ?MF2. It follows that E T (A),∗
2 is concentrated in columns indexed by m ≡

0 or 3 (mod 4).

This gives our desired vanishing result on the slice E2-page, which in turn

implies that πm+nα1̂ = 0 when m + nα ∈ T (A) and m ≡ 1 or 2 (mod 4),

concluding our proof.
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Proof of Theorem 1.2. Consider the p-local slice spectral sequence

Em,n,t
1 (p) = πm+nαst1(p) H⇒ πm+nα1̂(p).

A p-local version of Theorem 2.1 implies that

st1(p) =
∨

s>0

Σ t−s+tαME s,2t
2 (BP(p)).

By Lemma 2.4(c), E s,t
2 (BP(p)) = 0 for t < 2s(p−1). Under the Novikov-to-slice

grading shift T (see the proof of Theorem 1.1), this region becomes

{m + nα | (p − 2)n > (p − 1)m}.

As such,

sn1(p) ' ∗
for (p − 2)n > (p − 1)m. By Lemma 2.2, a nontrivial slice summand

Σ t−s+tαME s,2t
2 (BP(p)) can only contribute to Em,n,t

1 (p) when m − t + s > 0 and

n − t 6 0. (Lemma 2.2 actually provides a more stringent vanishing condition,

but this ‘nonfourth quadrant’ vanishing is all we need here.) It follows that

Em,n,t
1 (p) = 0 for (p − 2)n > (p − 1)m. We conclude that πm+nα1̂(p) = 0 in this

range as well.

4. Vanishing for the integral and p-local spheres

In this section, we study the problem of lifting vanishing results about π ?1̂

to π ?1. We first recall some base change theorems and use them to prove

Theorem 1.4. We then recall Bachmann’s theorem on SHA
1

(F)[1/2, 1/η], and

finally prove Theorem 1.6.

4.1. Base change. Recall that for any map of schemes f : S → T one

has a pullback, that is, base change, functor f ∗ : SHA
1

(T ) → SHA
1

(S). In this

subsection, we use standard arguments with base change functors to expand the

class of fields for which various vanishing results will hold. We write 1F for the

sphere spectrum in SHA
1

(F) or SHA
1

(F)[1/q]. Note that if f : Spec E → Spec F
is an extension of fields, then f ∗

1F = 1E .

The functor f ∗ always admits a right adjoint f∗. If f is smooth, it also admits a

left adjoint f] (given by composition of the structure map to S with f ). (See [12,

Appendix A] for a brief review.)

Below we will use the fact that when F is perfect, πm+nα X is a strictly A1-

invariant sheaf in the sense of [20]. (See [12, Section 1.2] for a brief review.)
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Vanishing in stable motivic homotopy sheaves 13

We call an extension of fields E/F essentially smooth if Spec E is a cofiltered

limit of smooth F-schemes. Note that if the transcendence degree of E/F is finite,

then E/F is essentially smooth.

LEMMA 4.1. Let F be a perfect field and suppose E/F is an essentially smooth
field extension. Then there is an isomorphism π ?1F(Spec E) ∼= π ?1E(Spec E).

Proof. Write Spec E as a cofiltered limit limβ Xβ of smooth F-schemes Xβ . Fix

m, n ∈ Z. We have

πm+nα1F(Spec E) = colim
β

πm+nα1F(Xβ) (by definition)

= colim
β

[Σm+nα Xβ+,1F ]

= colim
β

[ fβ] f ∗
β Σm+nα

1F ,1F ]
∼= colim

β
[ f ∗

β Σm+nα
1F , f ∗

β 1F ]
∼= [Σm+nα

1E , f ∗
1F ] (by [12, Lemma A.7(1)])

= πm+nα1E(Spec E),

as desired.

In the following proposition, we write πm+nα X := πm+nα X (Spec F) for the

(m + nα)th homotopy group (as opposed to sheaf) of X ∈ SHA
1

(F).

PROPOSITION 4.2. Suppose F is a filtered colimit of fields F = colimβ Fβ such
that πm+nα1Fβ

= 0 for all β. Then πm+nα1F = 0.

Proof. This follows from [12, Lemma A.7(1)].

LEMMA 4.3. Fix m, n ∈ Z and suppose πm+nα1k = 0 for all nonreal
characteristic 0 fields k with cd k < ∞. Then πm+nα1F = 0 for any nonreal
characteristic 0 field F, regardless of cohomological dimension.

Proof. Since πm+nα1F is strictly A1-invariant [20, Remark 5.1.13], it suffices to

check that πm+nα1F(Spec L) = 0 for all finitely generated field extensions L/F .

By Lemma 4.1 and [12, Lemma A.2], this is the same as showing πm+nα1L = 0.

Thus, by Proposition 4.2 and our hypothesis, it suffices to show that L is a filtered

colimit of nonreal fields with finite cohomological dimension.

Since L is nonreal, there exist a1, . . . , an ∈ L such that −1 = a2
1 +· · ·+a2

n . Let

L0 = Q(a1, . . . , an). Then L0 is nonreal and cd L0 6 2 by [28, Section II.4.4,

Proposition 13]. Letting A range over finite subsets of L r L0 we see that
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L = colimA L0(A). By [28, Section II.4.1 Proposition 10′ & Section II.4.2

Proposition 11], we see that cd L0(A) < ∞, and it is clear that each L0(A) is

nonreal, completing our proof.

We can now use Theorem 1.3 to prove Theorem 1.4.
Proof of Theorem 1.4. The positive characteristic statement is a direct

consequence of Theorem 1.3. Suppose F is nonreal with characteristic 0. If

cd F < ∞, then Theorem 1.3 implies 1 ' 1̂, and Theorems 1.1 and 1.2 guarantee

that π ?1 has the stated vanishing range. By Lemma 4.3, this is enough to conclude

that the same vanishing range holds when cd F = ∞.

We conclude this section with a virtual cohomological dimension version of

Lemma 4.3. We will use it in Section 4.3 to prove Theorem 1.6.

LEMMA 4.4. Fix m, n ∈ Z and suppose πm+nα1k = 0 for all formally real fields
k with vcd2 k < ∞ and all nonreal characteristic 0 fields. Then πm+nα1F = 0 for
any formally real field F, regardless of virtual 2-cohomological dimension.

Proof. Suppose F is a formally real field and L is a finitely generated extension of

F . As in the proof of Lemma 4.3, it suffices to show πm+nα1L = 0. If L is nonreal,

we are done by hypothesis, so we may assume L is formally real. We aim to

express L as a filtered colimit of formally real fields with finite vcd2. Letting A
range over finite subsets of L r Q, we see that L = colimA Q(A). Each Q(A) is

formally real (since it is a subfield of L) and since vcd2 Q = 2 < ∞, the same two

propositions from [28] imply that vcd2 Q(A) < ∞ for each A. By Proposition 4.2,

we are done.

4.2. Bachmann’s theorem. Let ρ denote the map 1 → Σα
1 induced by

taking the nonbasepoint of S0 to −1 ∈ A1r0. In [3], Bachmann finds an alternate

presentation of the ρ-inverted stable motivic homotopy category SHA
1

(F)[1/ρ]
in terms of the real étale topology. We will not go into the details of the real

étale topology, instead sending the reader to [27], especially its first chapter.

Let (Spec F)rét denote the site of étale schemes over Spec F with the real

étale topology, and let SH(Shv((Spec F)rét)) denote the local stable homotopy

category of sheaves of spectra on (Spec F)rét (see [3, Section 2]). Let X F denote

the Harrison space of orderings on F . By [27, Theorem 1.3], Shv(X F) '
Shv((Spec F)rét). Bachmann’s theorem (specialized to the case in which the base

scheme is Spec of a field) then tells us the following.

THEOREM 4.5 [3, Theorem 31]. There are triangulated equivalences of
categories

SHA
1

(F)[1/ρ] ' SH(Shv((Spec F)rét)) ' SH(Shv(X F)).
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Because of the relation (2 + ρη)η = 0, we see that ρ is invertible whenever 2

and η are invertible. From this, Bachmann derives the following corollary.

COROLLARY 4.6. There are triangulated equivalences of categories

SHA
1

(F)[1/2, 1/η] ' SH(Shv((Spec F)rét))[1/2] ' SH(Shv(X F))[1/2].

REMARK 4.7. Note that when X F = ∗, we have SH(Shv(X F)) = SH, the

classical Spanier–Whitehead category. When X F = ∗ and F admits a real

embedding, the equivalences in Theorem 4.5 and Corollary 4.6 come from the

real Betti realization functor [3, Corollary 38].

4.3. Uncompletion. We now use Bachmann’s theorem and several fracture

squares to prove Theorem 1.6.

Proof of Theorem 1.6. We prove the vanishing statement for π ?1; the reader may

check that an analogous argument easily covers the p-local version.

By Lemma 4.4, it suffices to show that π ?1k obtains the stated vanishing range

for all k formally real with vcd2 k < ∞ or nonreal of characteristic 0. The

vanishing range in Theorem 1.6 is a subset of the range from Theorem 1.4, so the

latter case is covered. Now suppose k is formally real with vcd2 k < ∞. We claim

that it suffices to check that the homotopy groups π?1k obtain the vanishing range.

Indeed, if E/k is a finitely generated field extension, Lemma 4.1 implies that

πm+nα1k(Spec E) = πm+nα1E . We either have that E is nonreal of characteristic

0 (and can invoke Theorem 1.4), or that E is formally real. In the latter case, the

results of [28, Section II.4.1 & II.4.2] imply that vcd2 E < ∞, and we are still

working with a homotopy group over a field satisfying our hypotheses. Thus we

have successfully reduced the problem to checking the vanishing range of π?1k

for k formally real with vcd2 k < ∞.

Fix F formally real with finite vcd2 and consider the following three homotopy

pullback squares:

1 //

��

1̂

��

η−1
1 // η−1

1̂,

η−1
1 //

��

η−1
1̂2

��

η−1
1[1/2] // η−1

1̂2[1/2],

1̂2
//

��

1̂2,η

��

η−1
1̂2

// η−1
1̂2,η.

The first is the η-primary fracture square for 1, the second is the η-periodization of

the 2-primary fracture square for 1, and the third is the η-primary fracture square
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for 1̂2. The vanishing ranges for π?1̂ and π?η
−1

1̂ follow from Theorem 1.1, so the

first square implies that it suffices to check the vanishing range for π?η
−1

1.

This brings us to the second square. We analyze the bottom row using

Corollary 4.6, which tells us that πm+nαη
−1

1[1/2] = 0 if and only if 1[1/2] ∈
SH(Shv(X F)) has 0 as its mth homotopy group. We claim that this latter condition

is obtained if and only if π top
m 1[1/2] = 0. By the argument of [3, Proposition 40],

it suffices to check this condition when F is real closed. But then X F = ∗ and

SH(Shv(X F)) = SH, which is precisely the category in which π top
m is computed.

By the same argument, πm+nαη
−1

1̂2[1/2] = 0 if and only if π top
m 1̂2[1/2] = 0.

(Note that by Serre finiteness, the set of such m is a subset of those for which

π top
m 1[1/2] = 0.)

It remains to check the vanishing range for π?η
−1

1̂2. Since vcd2(F) < ∞, [13,

Theorem 1] implies that the top row of the third square is a π?-isomorphism,

whence the bottom row is a π?-isomorphism as well. In particular, πm+nαη
−1

1̂2 =
0 if and only if πm+nαη

−1
1̂2,η = 0. By Theorem 1.1, this condition holds whenever

m < 0 or m > 0, m ≡ 1 or 2 (mod 4), and 2n > max{3m + 5, 4m}. It follows

that πm+nαη
−1

1 = 0 whenever m < 0 or m > 0, m ≡ 1 or 2 (mod 4), 2n >

max{3m + 5, 4m}, and π top
m 1[1/2] = 0. This concludes our proof.

5. Questions

Here we present several natural questions raised by our work, along with some

commentary.

QUESTION 5.1. Given m ∈ Z such that the mth η-complete Milnor–Witt stem

πm+∗α1̂ is bounded above, what is the smallest n ∈ Z such that πm+nα1̂ = 0? If

the mth Milnor–Witt stem πm+∗α1 is bounded above, what is the smallest n such

that πm+nα1 = 0?

REMARK 5.2. The bounds presented here are not necessarily optimal. For

instance, by [26], π 1+3α1 = 0, but the vanishing region of Theorem 1.6 is only

obtained for π 1+nα1 when n > 4. From the perspective of the slice spectral

sequence, we lack both total information about the Novikov E2-page and all

the differentials in the spectral sequence. While improvements on the vanishing

range are no doubt possible via more nuanced slice arguments, it seems likely that

different arguments would have to be invoked in order to find optimal bounds.

Suppose that the mth Milnor–Witt sheaf is bounded above and take n to be the

maximal integer such that πm+nα1 6= 0. In this case, we will call πm+nα1 the top
sheaf in the mth Milnor–Witt stem.
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Recall that ωF denotes the contraction of a sheaf F [20]. Tom Bachmann

pointed out to the authors that ωF = 0 if and only if F is birational, that is, if and

only if every dense open embedding of smooth F-schemes U → X induces an

isomorphism F (X) ∼= F (U ). One implication is straightforward; the other can

be deduced from the Rost–Schmid complex. Together with the fact that ωπm+nα
∼=

πm+(n+1)α, this implies that every top Milnor–Witt sheaf is birational.

QUESTION 5.3. Are there examples of top Milnor–Witt sheaves that are

birational but not constant?

REMARK 5.4. Matthias Wendt informed the authors about [2, Lemma 3.7],

which implies that ωK ind
3 = 0, where K ind

3 is the third indecomposable K -sheaf.

Note that K ind
3 coincides with the sheaf of integral motivic cohomology groups

H 1,2, which is nonzero and nonconstant. For example, H 1,2(Q) ∼= Z/24 and

H 1,2(Q(
√

−1)) contains Z as a direct summand; see, for example, [16, pp. 542,

564].

There is no indication that K ind
3 appears as a top Milnor–Witt sheaf. All known

top Milnor–Witt sheaves are constant.

We conclude by noting that the methods of Section 3 imply another result,

whose proof we only sketch.

THEOREM 5.5. The natural map 1 → η−1
1 induces an isomorphism πm+nα1

∼=
πm+nαη

−1
1 whenever

» m < 0, or

» m > 0 and 2n > max{3m + 5, 4m}.

Proof Sketch. By the η-primary fracture square, it suffices to prove the analogous

result for 1̂ → η−1
1̂.

We compare the weight n slice spectral sequence for 1 to the weight n
η-inverted slice spectral sequence. We get an isomorphism on E1-pages above

the slice-to-Novikov shift of the Andrews–Miller region from Lemma 2.6. This is

precisely the region stated in the theorem.

REMARK 5.6. By Morel’s computation of π nα1, the isomorphism in fact holds

for n > 0 when m = 0.

REMARK 5.7. By Theorem 5.5 and the fracture squares from the proof of

Theorem 1.6, we can also deduce a relative version Theorem 1.6. Assume that m,
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n are in the range given in Theorem 5.5 so that πm+nα1
∼= πm+nαη

−1
1. Then the

η-periodization of the 2-primary fracture square produces a long exact sequence

· · · → πm+1+nαη
−1

1̂2[1/2] → πm+nαη
−1

1

→ πm+nαη
−1

1[1/2] ⊕ πm+nαη
−1

1̂2 → · · · .

The terms πm+1+nαη
−1

1 and πm+nαη
−1

1[1/2] are topological in the sense that

they can be computed in SH(Shv(X F)) using Corollary 4.6. Since we are in the

range of Theorem 5.5, the argument from the final paragraph of the proof of

Theorem 1.6 implies that πm+nαη
−1

1̂2 = 0. This finally gives us a range in which

πm+nα1 is ‘topological’, at least in the sense of coming from SH(Shv(X F)) via

the above long exact sequence.

QUESTION 5.8. For m > 0, 2n > max{3m + 5, 4m}, and n ≡ 0 or 3 (mod 4),

what is πm+nα1? What about πm+nα1̂?

REMARK 5.9. By Theorem 5.5, this is equivalent to computing the homotopy

sheaves of the η-inverted sphere spectrum. The global sections of these sheaves

are computed for F = C in [1], and, for F = R, the 2-complete global section

computation appears in [8]. Calculations for p-adic fields Qp and the rational

numbers Q will appear in [36]. Any sheaf computations and computations over

a general field are completely open, except for π 1+mαη
−1

1 = π 2+mαη
−1

1 = 0

by [25, Theorem 8.3], which predates the vanishing known to occur under the

conditions of Theorem 1.6.
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