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Abstract. In previous work [7], the authors constructed and studied a lift
of the Galois correspondence to stable homotopy categories. In particular,
if L/k is a finite Galois extension of fields with Galois group G, there is a

functor c∗
L/k

: SHG → SHk from the G-equivariant stable homotopy category

to the stable motivic homotopy category over k such that c∗
L/k

(G/H+) =

Spec(LH)+. The main theorem of [7] %citeHO:E2M says that when k is
a real closed field and L = k[i], the restriction of c∗

L/k
to the η-complete

subcategory is full and faithful. Here we “uncomplete” this theorem so that it

applies to c∗
L/k

itself. Our main tools are Bachmann’s theorem on the (2, η)-

periodic stable motivic homotopy category and an isomorphism range for the

map πR
�SR → πC2

� SC2
induced by C2-equivariant Betti realization.

1. Introduction

In [9], Levine showed that the “constant” functor c∗ : SH → SHk from the
classical stable homotopy category to the motivic stable homotopy category over
an algebraically closed field of characteristic zero is a full and faithful embedding.
Inspired by his result, in [7] we introduced and studied functors c∗L/k : SHG → SHk,

where L/k is a Galois extension with Galois group G. We showed that if k is real
closed and L = k[i], then after completing at a prime p and at η, if p �= 2, the
functor c∗L/k is full and faithful. The need for the completion arose from our lack

of knowledge about certain homotopy groups of the motivic sphere over R. In the
meantime advances have been made. Ananyevskiy-Levine-Panin [1] established a
motivic version of Serre’s finiteness theorem, which in particular implies that c∗L/k is

full and faithful after η-completion. The purpose of this paper is to use Bachmann’s
recent results [3], about a localization of πR

� (SR), to remove the η-completions in
the main theorem of [7].
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Theorem 1.1. Let k be a real closed field and L = k[i] be its algebraic closure.
Then the functor

c∗L/k : SHC2 → SHk

is a full and faithful embedding.

One of the primary tools in the proof of Theorem 1.1 is the C2-equivariant
Betti realization functor ReC2

B : SHR → SHC2 which extends the functor taking a
smooth R-scheme to its C-points with complex conjugation action. In [6], Dugger-
Isaksen study the effect of this functor on the bigraded homotopy groups of the real
motivic sphere spectrum, proving that ReC2

B : πR
m+nα(SR)

∧
2 → πC2

m+nσ(SC2
)∧2 is an

isomorphism when m ≥ 2n−5. We use odd-primary Adams spectral sequences and
Bachmann’s results to produce a range of bigradings in which the integral version
of this map is an isomorphism. In particular, we prove the following.

Theorem 1.2 (Theorem 3.12). The map πR
m+nα(SR) → πC2

m+nσ(SC2
) is

(i) an injection if m = 2n− 6 and n ≥ 0, and
(ii) an isomorphism if m ≥ 2n− 5 and n ≥ 0.

Outline. In Section 2 we recall Bachmann’s theorem and deduce some conse-
quences for the C2-equivariant Betti realization functor and Morel’s ±-splitting of
the 2-periodic stable motivic homotopy category. In Section 3 we adapt the meth-
ods of [6] to odd-primary Adams spectral sequences. Via an arithmetic fracture
square and the results of Section 2, we deduce Theorem 3.12. Finally, in Section 4
we recall how to bootstrap Theorem 3.12 into a proof of Theorem 1.1.

Notation. We use the following notation throughout the paper.

• k is a field and L/k is a finite Galois extension of fields with Galois group
G.

• SHk is Voevodsky’s stable motivic homotopy category [13]; hom sets in
SHk are denoted [ , ]k.

• SHG is the G-equivariant stable homotopy category in the sense of [10];

hom sets in SHG are denoted [ , ]G.

• c∗L/k : SHG → SHk is the functor induced by the classical Galois corre-

spondence G/H �→ Spec(LH), constructed in [7, Section 4.3].1

• Sk is the sphere spectrum in SHk and SG is the sphere spectrum in SHG.
• For integers m,n, Sm+nα = (S1)∧m ∧ (A1 � 0)∧n. If G = C2, S

m+nσ =
(S1)∧m ∧ (Sσ)∧n where Sσ is the one-point compactification of the real
sign representation.

• For X ∈ SHk, π
k
m+nαX := [Sm+nα, X]k is the (m + nα)-th homotopy

group of X.
• For X ∈ SHC2 , πC2

m+nσX := [Sm+nσ, X]C2
is the (m + nσ)-th homotopy

group of X.
• For X ∈ SHk, πk

∗X :=
⊕

m∈Z πm+0αX and similarly for πC2

∗ Y when

Y ∈ SHG.

1In loc. cit. we state that the category GsSet of G-simplicial sets is equivalent to the category
sPre(OrG) of simplicial presheaves on the orbit category. This isn’t quite true: GsSet ⊆ sPre(OrG)
is only a full subcategory. (Thanks to Tom Bachmann for drawing our attention to this inaccuracy.)
This has no effect on any of the subsequent mathematics in loc. cit. because what is used is that
the associated homotopy categories are equivalent and this is true by Elmendorf’s Theorem.
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• Given an embedding φ : k ↪→ R, ReC2

B,φ = ReC2

B : SHk → SHC2 is the C2-
equivariant Betti realization which extends the functor taking a smooth
k-scheme X to X(C) with the conjugation action [7, §4.4].

• Depending on context, η is either the motivic Hopf map arising from
A2 � 0 → P1 or the C2-equivariant Hopf map.

• ( )∧2 is the 2-completion functor and ( )∧η is the η-completion functor. If
a = 2 or η we have X∧

a = holimX/an.

• We write X[a−1] or X[1/a] for the homotopy colimit of X
a
−→ X

a
−→ · · · .

If X � X[a−1] we say that X is a-periodic.

2. Preliminaries

The main new input we use in this paper is a recent theorem of Bachmann
[3, Theorem 31]. His theorem compares a localization of SHR with the classical
stable homotopy category. The most convenient form of his result for us is the
following recasting.

Theorem 2.1 (Bachmann). Betti realization induces an equivalence of trian-
gulated categories

ReC2

B : SHR[1/2, η
−1]

�
−→ SHC2 [1/2, η−1].

Proof. Consider the functor ReR : SHR → SH which extends the functor
SmR → Top, sending X to X(R). Consider as well the composite ΦC2 ◦ ReC2

B ,

where ΦC2 : SHC2 → SH is the geometric fixed points functor. Both ReR and
ΦC2 ◦ReC2

B preserve homotopy colimits and if X ∈ SmR and n ∈ Z, they both send

Σn
P1Σ∞

P1X+ to the spectrum ΣnΣ∞X(R)+. It follows that ReR = ΦC2 ◦ ReC2

B and
so we have the commutative triangle of functors

SHR[1/2, η
−1]

Re
C2

B
��

ReR
���

�

�

�

�

�

�

�

�

�

�

�

�

SHC2 [1/2, η−1]

ΦC2

��

SH[1/2].

Write ρ : S0 → Sσ for the standard inclusion. Since η2ρ = −2η, we have the
equivalence of categories SHC2 [1/2, η−1] � SHC2 [1/2, ρ−1]. Note that ΦC2 induces

an equivalence SHC2 [ρ−1] → SH by [10, Corollary 9.6] (for a modern proof see, e.g.,

[11, Theorem 6.11]), and thus it follows that ΦC2 is an equivalence SHC2 [1/2, η−1] �
SH[1/2]. A specialization of Bachmann’s theorem [3, Theorem 31] says that ReR
in the above diagram is an equivalence. We conclude that ReC2

B is an equivalence
as well.

�

Recall Morel’s ±-operations in motivic homotopy theory (see [4, Section 16.2]).
Let ε denote the stable map induced by the twist isomorphism Sα ∧Sα � Sα ∧Sα.
In the C2-equivariant setting, let ε denote the twist Sσ ∧ Sσ � Sσ ∧ Sσ, and note
that ReC2

B (ε) = ε. In either the motivic or equivariant setting, invert 2 and note
that e+ := (ε − 1)/2 and e− := (ε + 1)/2 are orthogonal idempotents. Let the
operation ( )+ denote inversion of e+ and let ( )− denote inversion of e−, i.e., ( )

±

is the cofiber of the operation e±. For any 2-periodic motivic or C2-equivariant
spectrum X there is a natural splitting X � X+ ∨X−.
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Lemma 2.2. If X is a 2-periodic motivic or C2-equivariant spectrum, then
X+ � X∧

η and X− � X[η−1].

Proof. We prove the motivic version of this statement, which easily adapts to
the C2-equivariant setting. Let X be a spectrum such that X � X[1/2]. We have
ε = −1 − ρη whence e− = −1

2 ρη. Thus inverting e− inverts both ρ and η. Since

(2 + ρη)η = 0, this is the same as inverting 2 and η, whence X− � X[η−1]. Now
apply η-completion to the splitting X � X+ ∨X− to get X∧

η � (X+)∧η ∨ (X−)∧η .

Since X− � X[η−1], the second summand is trivial. Since e+η = 0, X+ is η-
complete, i.e., (X+)∧η � X+. We conclude that X∧

η � X+, as desired. �

As an interesting corollary (which we will not use in the remainder of this
paper) we note the following.

Proposition 2.3. The natural map ReC2

B ((SR)
∧
η ) → (SC2

)∧η is an equivalence.

Proof. Let S = SR and η-complete the 2-primary fracture square for S in
order to produce the bicartesian square

S∧η
��

��

S[1/2]∧η

��

S∧2,η
�� (S∧2 [1/2])

∧
η .

Applying ReC2

B results in a homotopy pullback square which maps to the corre-

sponding fracture square for (SC2
)∧η . First consider the map ReC2

B (S∧2,η) → (SC2
)∧2,η

between lower left corners. We may check that this is an equivalence by computing
its effect on Mackey functor homotopy groups, which in turn may be done by com-
paring the motivic and C2-equivariant Adams spectral sequences as in [7, Proposi-

tion 2.11]. Note that we also conclude that ReC2

B (S∧2 ) → (SC2
)∧2 is an equivalence by

[8, Theorem 1] and [7, Theorem 2.10]. The map between the upper right vertices
are equivalences by Lemma 2.2. The equivalence between bottom right corners fol-
lows from Lemma 2.2 and that ReC2

B (S∧2 ) � (SC2
)∧2 . Since the maps on these three

corners are equivalences, we conclude that the map between homotopy pullbacks
ReC2

B ((SR)
∧
η → (SC2

)∧η is an equivalence. �

3. Comparing stable stems

In this section we establish a range of bidegrees in which the map on stable
stems πR

m+nα(SR) → πC2

m+nσ(SC2
) induced by equivariant Betti realization is an

isomorphism.
Recall that Dugger-Isaksen establish a range in which 2-complete stems are

isomorphic.

Theorem 3.1 ([6, Theorem 4.1]). The map πR
m+nα((SR)

∧
2 ) → πC2

m+nα((SC2
)∧2 )

is an isomorphism if m ≥ 2n− 5 and an injection if m = 2n− 6.

Remark 3.2. There are isomorphisms πm+nα((SR)
∧
2 )

∼= πm+nα((SR)
∧
2,η) for

all m,n by [8, Theorem 1]. Similarly there are isomorphisms πC2

m+nσ((SC2
)∧2 )

∼=

πC2

m+nσ((SC2
)∧2,η) for all m,n by [7, Theorem 2.10]. Dugger-Isaksen’s result can

thus equivalently be stated as a comparison between (2, η)-complete stable stems.
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Recall the discussion of motivic and C2-equivariant cobar complexes from [6,
§3], noting that all of these constructions may be made with HFp, p odd, in place of
HF2. The significance of the p-primary cobar complex is that it forms the E1-page
of the p-primary Adams spectral sequence (in the motivic or equivariant context).
In order to concisely express the properties of these spectral sequences, let S be Sk
(k a field) or SC2

, let Mp denote the homology of a point with coefficients in Fp or
Fp, let Ap denote the p-primary motivic or C2-equivariant dual Steenrod algebra,
let C∗

p denote the p-primary motivic or C2-equivariant cobar complex, let γ be α

or σ, depending on context, and let Ext∗,∗+∗γ
Ap

(Mp,Mp) denote the homology of C∗
p

(which is also Ext in the category of Ap-comodules).

Theorem 3.3 ([8, Theorem 1] and [7, Theorem 2.10]). The (motivic or C2-
equivariant) p-primary Adams spectral sequence has E1-page C∗

p and E2-page

Ext∗,∗+∗γ
Ap

(Mp,Mp); it is strongly convergent with

Es,m+nγ
2 =⇒ πm−s+nγS

∧
p,η.

When p = 2, we have S∧2,η � S∧2 as long as cd2(k[i]) < ∞ (in the motivic case).

The Dugger-Isaksen result is obtained by comparing cobar complexes. We first
extend this method to odd p to obtain an isomorphism range on (p, η)-complete
stems. We begin by recalling some facts about the motivic and equivariant Steenrod
algebras at odd primes. Write AFp

for the classical mod-p dual Steenrod algebra.
Recall that

AFp
= SymFp

(τ0, τ1, . . . , ξ1, ξ2, . . .)

is a free graded commutative algebra, where |τi| = pi and |ξi| = pi − 1.
Recall that MR

p :=
⊕

m,n∈Z π
R
m+nαHFp = Fp[θ] where θ has degree 2−2α. This

follows from the affirmative resolution of the Bloch-Kato conjecture [15, Theorem
6.1] together with [12, Theorem 7.4]. In the equivariant case we have MC2

p :=
⊕

m,n∈Z π
C2

m+nσHFp = Fp[θ, θ
−1], see e.g. [5, Theorem 2.8]. The dual motivic

Steenrod algebra over R is equal to

AR
∼= MR

p ⊗Fp
AFp

= MR
p [τ0, τ1, . . . , ξ1, ξ2, · · · ]/(τ

2
0 , τ

2
1 , . . .),

where the elements of AFp
are considered to be bigraded by assigning weights so

that |τi| = pi + (pi − 1)α and |ξi| = (pi − 1) + (pi − 1)α, see [14, Remark 12.12].
Similarly, the dual C2-equivariant Steenrod algebra is equal to

AC2

∼= MC2

p ⊗Fp
AFp

= MC2

p [τ0, τ1, . . . , ξ1, ξ2, · · · ]/(τ
2
0 , τ

2
1 , . . .),

where in this case elements of AFp
are considered to be bigraded by assigning

weights so that |τi| = pi + (pi − 1)σ and |ξi| = (pi − 1) + (pi − 1)σ.

Equivariant Betti realization ReC2

B induces maps MR
p → MC2

p and AR → AC2

which have the obvious effects on the above named elements, i.e., θ �→ θ, τi �→ τi
and ξi �→ ξi.

Write Mp for either MR
p or MC2

p . In both cases, the dual Steenrod algebra is free
over Mp, and a basis is given by monomials τ ε00 τ ε11 · · · ξn1

1 ξn2

2 · · · , where εi ∈ {0, 1}
and ni is a nonnegative integer. We write τ εξn for such a monomial.

Lemma 3.4. Suppose that |τ εξn| = k + �α. Then k ≤
p

p− 1
�+ 1.
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Proof. The bidegree of ξi satisfies k < p
p−1� and the bidegree of τi satisfies

k ≤ p
p−1 � provided i ≥ 1. It follows that if ε0 = 0 then the bidegree of τ εξn satisfies

k ≤ p
p−1�. If ε0 = 1 then write τ εξn = τ0τ

ε′ξn, where ε′0 = 0. This element thus

satisfies the inequality k ≤ p
p−1�+ 1. �

Lemma 3.5. The map Cf
R → Cf

C2
is

(i) an injection in all degrees, and

(ii) an isomorphism if k − f ≥
⌊

p
p−1�−

4p−2
p−1

⌋

+ 1.

Proof. We have that Cf
C2

∼= MC2

p ⊗MR
p
Cf

R, that C
f
R is free over MR

p , and that

the map M
p
R → M

p
C2

is injective. It follows that Cf
R → Cf

C2
is injective.

Let Z = [z1|z2| · · · |zf ] be a cobar element of Adams filtration f , where each zi
is of the form τ εξn, of bidegree ki+�iα. By Lemma 3.4 we have that ki ≤

p
p−1 �i+1.

Summing over i, we find that if |Z| = k + �α, then k ≤ p
p−1� + f . The cokernel

of Cf
R → Cf

C2
is generated by elements of the form θ−nZ for n ≥ 1. The elements

θ−n lie above the line of slope2 (p− 1)/p passing through θ−1 and so we find that
these satisfy the inequality k ≤ p

p−1�−
4p−2
p−1 . It follows that the bidegree of θ−nZ

satisfies the inequality k ≤ p
p−1 �+ f − 4p−2

p−1 . Thus the cokernel is zero in bidegrees

satisfying k > p
p−1�+ f − 4p−2

p−1 .

�

Recall the form of the motivic and C2-equivariant Adams spectral sequences
from Theorem 3.3. Equivariant Betti realization induces a map between these
spectral sequences which we can now analyze.

Proposition 3.6. The map Ext
(f,k+	α)
AR

(MR
p ,M

R
p ) → Ext

(f,k+	α)
AC2

(MC2

p ,MC2

p ) is

an injection if k−f =
⌊

p
p−1 �−

4p−2
p−1

⌋

and an isomorphism if k−f ≥
⌊

p
p−1�−

4p−2
p−1

⌋

+

1.

Proof. This follows from [6, Lemma 3.4] and Lemma 3.5. �

Lemma 3.7. Ext
(f,k+	α)
AR

(MR
p ,M

R
p ) is a finite-dimensional Fp-vector space for

all f, k, �.

Proof. Writing CFp
for the classical cobar complex, we have CR

∼= MR
p⊗Fp

CFp
.

This makes it clear that C
(f,k+	α)
R is finite dimensional, and thus Ext

(f,k+	α)
AR

∼=

H(f,k+	α)(CR) is finite dimensional as well. �

Remark 3.8. The universal coefficient theorem further implies that

Ext∗,∗+∗α
AR

(MR
p ,M

R
p )

∼= Ext∗,∗
AFp

(Fp,Fp)⊗Fp
MR

p

up to a grading shift.

Theorem 3.9. The map πR
m+nα((SR)

∧
(p,η)) → πC2

m+nσ((SC2
)∧(p,η)) is

(i) an injection if m =
⌊

p
p−1n− 4p−2

p−1

⌋

, and

(ii) an isomorphism if m ≥
⌊

p
p−1n− 4p−2

p−1

⌋

+ 1.

2We use the standard convention in which the k-axis is horizontal and the �α-axis is vertical.
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Proof. This follows from Proposition 3.6 using the same argument as in [6,
Theorem 4.1]. �

Remark 3.10. In [6], Dugger-Isaksen establish a second isomorphism range
on 2-complete stems. Namely, πm+nα(SR)

∧
2 → πm+nσ(SC2

)∧2 is an isomorphism if
m+n ≤ −1. A version of this range appears to hold on (p, η)-complete stems, with
the difference that the map might be only surjective when m+ n = −1. However,
this second isomorphism range doesn’t extend to integral stems and we do not
pursue it further here.

We now turn our attention to p-complete spheres.

Proposition 3.11. The map πR
m+nα((SR)

∧
p ) → πC2

m+nσ((SC2
)∧p ) is

(1) an injection if m =
⌊

p
p−1n− 4p−2

p−1

⌋

, and

(2) an isomorphism if m ≥
⌊

p
p−1n− 4p−2

p−1

⌋

+ 1.

Proof. Write S for either of SR or SC2
. If p = 2, the statement of the propo-

sition is Dugger-Isaksen’s Theorem 3.1, so we can assume p is odd. In this case 2
is invertible in S/pr and in S∧p . By Lemma 2.2 we have that (S∧p )

+ � S∧(p,η) and

(S∧p )
− � S∧p [η

−1] and so we have that

S∧p � S∧(p,η) ∨ S∧p [η
−1].

Note that we have an isomorphism (S∧p )
− ∼= limr((S/p

r)−). It follows from Theorem

2.1 that the map πR
∗+∗α((SR)

∧
p [η

−1]) → πC2

∗+∗σ((SC2
)∧p [η

−1]) is an isomorphism. The
result thus follows from Theorem 3.9 and the direct sum decomposition of S∧p above.

�

Theorem 3.12. The map πR
m+nα(SR) → πC2

m+nσ(SC2
) is

(i) an injection if m = 2n− 6 and n ≥ 0, and
(ii) an isomorphism if m ≥ 2n− 5 and n ≥ 0.

Proof. Consider the comparison of long exact sequences of homotopy groups
induced by cofiber sequences

S →
(

∏

p

S∧p

)

∨ SQ →
(

∏

p

S∧p

)

Q

obtained from the arithmetic fracture squares for SR and SC2
. It suffices to show

that the comparison map πR
m+nα(−) → πC2

m+nσ(−) at the middle and the righthand
terms are injections if m = 2n − 6 and n ≥ 0 and an isomorphism if m ≥ 2n − 5
and n ≥ 0.

The reader may check that when n > 0 the inequalities for the injectivity and
isomorphism ranges of p-complete stable stems from Proposition 3.11 for odd p
are dominated by Dugger-Isaksen’s inequalities in Theorem 3.1, for the 2-complete
stable stems. It follows that πR

m+nα(
∏

p(SR)
∧
p ) → πC2

m+nα(
∏

p(SC2
)∧p ) is an injection

if m = 2n−6, n > 0, and an isomorphism if m ≥ 2n−5, n > 0. In fact, these ranges
extend to n = 0 as well. Indeed, injectivity on πR

−6(
∏

p(SR)
∧
p ) is trivial since the

group in question is 0 by connectivity of the motivic sphere spectrum. Similarly,
πR
−5(

∏

p(SR)
∧
p ) = 0, and πC2

−5(
∏

p(SC2
)∧p ) = 0 as well by [2, Proposition 7.0]. This

is the only value of m, n for which the 2-complete isomorphism range does not
dominate, so the isomorphism range extends.
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Since we have that the map πR
m+nα(

∏

p(SR)
∧
p )Q → πC2

m+nα(
∏

p(SC2
)∧p )Q is a

filtered colimit of these maps, it too is an injection if m = 2n − 6, n ≥ 0 and an
isomorphism if m ≥ 2n− 5, n ≥ 0.

By Theorem 2.1 and Lemma 2.2, πR
∗+∗α(SR)

−

Q → πC2

∗+∗α(SC2
)−Q is an isomor-

phism. By [4, Theorems 11 and 16.2.13], (SR)
+
Q � HQ, where HQ is the rational-

ized motivic cohomology spectrum. Thus, we have that πR
i+jα(SR)

+
Q = 0 whenever

j > 0. When j = 0, we have that πR
i (SR)

+
Q = 0 if i �= 0 and πR

0 (SR)
+
Q = Q. We have

πC2

i+jα(SC2
)+Q =

{

Q j is even and i+ j = 0

0 else.

The region j ≥ 0, i ≥ 2j − 5 is entirely contained in this vanishing region. The
map πR

0 (SR)
+
Q → πC2

0 (SC2
)+Q is an ismorphism. We conclude that πR

m+nα(SR)
+
Q →

πC2

m+nσ(SC2
)+Q is an injection if m = 2n − 6 and n ≥ 0, and an isomorphism if

m ≥ 2n− 5 and n ≥ 0. �

4. Proof of Theorem 1.1

We finish by explaining how the comparison of stable stems in the previous
section implies the embedding theorem.

Proposition 4.1. If

(i) ReC2

B : [Sn, SR]R
∼=
−→ [Sn, SC2

]C2
, and

(ii) ReC2

B : [Spec(C)+ ∧ Sn, SR]R
∼=
−→ [C2+ ∧ Sn, SC2

]C2

are isomorphisms for all n ∈ Z, then Theorem 1.1 is true for any real closed field
k.

Proof. Let k be a real closed field and L = k[i]. To prove Theorem 1.1, it
suffices to prove that

(a) c∗L/k : [Sn, SC2
]C2

∼=
−→ [Sn, Sk]k, and

(b) c∗L/k : [C2+ ∧ Sn, SC2
]C2

∼=
−→ [Spec(L)+ ∧ Sn, Sk]k

are isomorphisms for all n ∈ Z, by the same argument as in the beginning of the
proof of [7, Theorem 2.21].

To prove that the maps in (a), (b) are isomorphisms, we can assume that
k = R and L = C, by the same argument as in [7, Proposition 2.20]. We now

consider the C2-equivariant Betti realization functor ReC2

B : SHR → SHC2 . Since

ReC2

B ◦ c∗
C/R = id, it follows that (a) and (b) are isomorphisms. �

Corollary 4.2 (Theorem 1.1). Let k be a real closed field and L = k[i] be its
algebraic closure. Then the functor

c∗L/k : SHC2 → SHk

is a full and faithful embedding.

Proof. If i < 0 then πR
i (SR) = πC2

i (SC2
) = 0 and so the map in 4.1(i) is an

isomorphism for i < 0. It is an isomorphism for i ≥ 0 by setting n = 0 in Theorem
3.12. The map in 4.1(ii) is identical to the map [Sn, SC]C → [Sn, S] induced by
complex Betti realization. This is an isomorphism by Levine’s theorem [9]. �



Prepublication copy provided to Jeremiah Ben Heller. Please give confirmation to AMS by March 5, 2018.

Not for print or electronic distribution. This file may not be posted electronically.

THE STABLE GALOIS CORRESPONDENCE FOR REAL CLOSED FIELDS 9

Acknowledgments. The authors thank the anonymous referee for a careful
reading and several improvements to the exposition.

References

[1] A. Ananyevskiy, M. Levine, and I. Panin, Witt sheaves and the η-inverted sphere spectrum,
J. Topol. 10 (2017), no. 2, 370–385, DOI 10.1112/topo.12015. MR3653315

[2] S. Araki and K. Iriye, Equivariant stable homotopy groups of spheres with involutions. I,
Osaka J. Math. 19 (1982), no. 1, 1–55. MR656233

[3] T. Bachmann. Motivic and real étale stable homotopy theory. ArXiv e-prints, 1608.08855.
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