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ABSTRACT. In previous work [7], the authors constructed and studied a lift
of the Galois correspondence to stable homotopy categories. In particular,
if L/k is a finite Galois extension of fields with Galois group G, there is a

functor ¢} /e’ SH® — SH}, from the G-equivariant stable homotopy category
to the stable motivic homotopy category over k such that Cz/k(G/HJr) =
Spec(LH)4. The main theorem of [7] %citeHO:E2M says that when k is

a real closed field and L = k[i], the restriction of C*L/Ic to the n-complete

subcategory is full and faithful. Here we “uncomplete” this theorem so that it
applies to CZ/k itself. Our main tools are Bachmann’s theorem on the (2,7)-
periodic stable motivic homotopy category and an isomorphism range for the
map TiSp — 77*02 S¢, induced by Ca-equivariant Betti realization.

1. Introduction

In [9], Levine showed that the “constant” functor ¢* : SH — SHj, from the
classical stable homotopy category to the motivic stable homotopy category over
an algebraically closed field of characteristic zero is a full and faithful embedding.
Inspired by his result, in [7] we introduced and studied functors ¢} Jk SHY — SH;,,
where L/k is a Galois extension with Galois group G. We showed that if & is real
closed and L = k[i], then after completing at a prime p and at 7, if p # 2, the
functor ¢}, Jk is full and faithful. The need for the completion arose from our lack
of knowledge about certain homotopy groups of the motivic sphere over R. In the
meantime advances have been made. Ananyevskiy-Levine-Panin [1] established a
motivic version of Serre’s finiteness theorem, which in particular implies that ¢} Jk is
full and faithful after n-completion. The purpose of this paper is to use Bachmann’s
recent results [3], about a localization of 7 (Sg), to remove the n-completions in
the main theorem of [7].
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2 J. HELLER AND K. ORMSBY

THEOREM 1.1. Let k be a real closed field and L = k[i] be its algebraic closure.
Then the functor
¢+ SH — SH
is a full and faithful embedding.

One of the primary tools in the proof of Theorem 1.1 is the Cs-equivariant
Betti realization functor Reg2 : SHr — SH®? which extends the functor taking a
smooth R-scheme to its C-points with complex conjugation action. In [6], Dugger-
Isaksen study the effect of this functor on the bigraded homotopy groups of the real
motivic sphere spectrum, proving that Re%? : 7, (Sg)s — 752, (Sc,)b is an
isomorphism when m > 2n—5. We use odd-primary Adams spectral sequences and
Bachmann’s results to produce a range of bigradings in which the integral version

of this map is an isomorphism. In particular, we prove the following.

THEOREM 1.2 (Theorem 3.12). The map m ;o (Sr) = 752 0 (Sc,) is

m4na
(i) an injection if m = 2n —6 and n > 0, and
(ii) an isomorphism if m > 2n —5 and n > 0.

Outline. In Section 2 we recall Bachmann’s theorem and deduce some conse-
quences for the Cs-equivariant Betti realization functor and Morel’s +-splitting of
the 2-periodic stable motivic homotopy category. In Section 3 we adapt the meth-
ods of [6] to odd-primary Adams spectral sequences. Via an arithmetic fracture
square and the results of Section 2, we deduce Theorem 3.12. Finally, in Section 4
we recall how to bootstrap Theorem 3.12 into a proof of Theorem 1.1.

Notation. We use the following notation throughout the paper.

e kis a field and L/k is a finite Galois extension of fields with Galois group
G.

e SHy, is Voevodsky’s stable motivic homotopy category [13]; hom sets in
SHy, are denoted [, J.

e SHY is the G-equivariant stable homotopy category in the sense of [10];
hom sets in SH® are denoted | , |-

o] k SHY — SH}, is the functor induced by the classical Galois corre-
spondence G/H ~ Spec(L*), constructed in [7, Section 4.3].1

e Sy, is the sphere spectrum in SHy, and S¢ is the sphere spectrum in SHY.

e For integers m,n, ST = (SN A (AL 0)M. If G = Oy, S™H7 =
(SHA™ A (S)A" where S9 is the one-point compactification of the real

sign representation.
e For X € SHy, ¥ X = [§mtne X, is the (m + na)-th homotopy

m+no
group of X.
e For X € SH?, 757 X := [S™+"% X]c, is the (m + no)-th homotopy
group of X.
e For X € SHy, nfX = @D,cz TmroaX and similarly for 7¢2Y when
Y € SHY.

n loc. cit. we state that the category GsSet of G-simplicial sets is equivalent to the category
sPre(Org) of simplicial presheaves on the orbit category. This isn’t quite true: GsSet C sPre(Org)
is only a full subcategory. (Thanks to Tom Bachmann for drawing our attention to this inaccuracy.)
This has no effect on any of the subsequent mathematics in loc. cit. because what is used is that
the associated homotopy categories are equivalent and this is true by Elmendorf’s Theorem.
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e Given an embedding ¢ : k — R, Re%’(ZS = Reg2 : SHj, — SH® is the Co-
equivariant Betti realization which extends the functor taking a smooth
k-scheme X to X (C) with the conjugation action [7, §4.4].

Depending on context, n is either the motivic Hopf map arising from
A%~ 0 — P! or the Cy-equivariant Hopf map.

()% is the 2-completion functor and ( ); is the n-completion functor. If
a =2 or n we have X/ = holim X/a".

We write X[a~!] or X[1/a] for the homotopy colimit of X % X & ...,
If X ~ X[a~!] we say that X is a-periodic.

2. Preliminaries

The main new input we use in this paper is a recent theorem of Bachmann
[3, Theorem 31]. His theorem compares a localization of SHr with the classical
stable homotopy category. The most convenient form of his result for us is the
following recasting.

THEOREM 2.1 (Bachmann). Betti realization induces an equivalence of trian-
gulated categories

Re$? : SHg([1/2,77Y] = SH2[1/2,77Y].

ProOF. Consider the functor Regr : SHr — SH which extends the functor
Smg — Top, sending X to X(R). Consider as well the composite ®¢2 o Re%,
where ®C2 : SH®2 — SH is the geometric fixed points functor. Both Rer and
PC2 0 Reg2 preserve homotopy colimits and if X € Smg and n € Z, they both send
Y ¥ X to the spectrum Y"E® X (R),. It follows that Reg = 2 o R and
so we have the commutative triangle of functors

C

Re},?
SHR[1/27 7771} - SHCZ [1/2a 7771]

Co
Rep l(b

SH([1/2)].

Write p : S° — S for the standard inclusion. Since n?p = —27, we have the
equivalence of categories SH2[1/2, '] ~ SH2[1/2, p~!]. Note that &> induces
an equivalence SH2[p~1] — SH by [10, Corollary 9.6] (for a modern proof see, e.g.,
[11, Theorem 6.11]), and thus it follows that 2 is an equivalence SH2[1/2, 7~ 1] ~
SH[1/2]. A specialization of Bachmann’s theorem [3, Theorem 31] says that Reg
in the above diagram is an equivalence. We conclude that Reg2 is an equivalence

as well.
O

Recall Morel’s +-operations in motivic homotopy theory (see [4, Section 16.2]).
Let € denote the stable map induced by the twist isomorphism S* A S% ~ S A S<.
In the Cs-equivariant setting, let ¢ denote the twist S7 A S7 ~ §7 A S?, and note
that Reg2 (e) = e. In either the motivic or equivariant setting, invert 2 and note
that e} := (¢ —1)/2 and e_ := (¢ + 1)/2 are orthogonal idempotents. Let the
operation ( ) denote inversion of e, and let ( )~ denote inversion of e_, i.e., ( )*
is the cofiber of the operation ey. For any 2-periodic motivic or Cy-equivariant
spectrum X there is a natural splitting X ~ X+ Vv X~
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LEMMA 2.2. If X is a 2-periodic motiwic or Cy-equivariant spectrum, then
Xt~ X and X~ ~ X[n~'].

PrOOF. We prove the motivic version of this statement, which easily adapts to
the Co-equivariant setting. Let X be a spectrum such that X ~ X[1/2]. We have
€ = —1 — pn whence e_ = %pn. Thus inverting e_ inverts both p and 7. Since
(2 + pn)n = 0, this is the same as inverting 2 and 7, whence X~ ~ X[n~!]. Now
apply 7-completion to the splitting X ~ XV X~ to get X =~ (X)) vV (X))
Since X~ ~ X|[n~!], the second summand is trivial. Since e;n = 0, XT is n-

complete, i.e., (X 1)) ~ X*. We conclude that X, ~ X, as desired. O

As an interesting corollary (which we will not use in the remainder of this
paper) we note the following.

PROPOSITION 2.3. The natural map Re%((SR)Q) — (Se,)y is an equivalence.

ProOOF. Let S = Sg and n-complete the 2-primary fracture square for S in
order to produce the bicartesian square

Sy ——S[1/2])

.

S5, — (S2[1/2])7.

Applying Reg2 results in a homotopy pullback square which maps to the corre-
sponding fracture square for (Sc, );. First consider the map Re$? (85,) = (Scu)5.,
between lower left corners. We may check that this is an equivalence by computing
its effect on Mackey functor homotopy groups, which in turn may be done by com-
paring the motivic and Cy-equivariant Adams spectral sequences as in [7, Proposi-
tion 2.11]. Note that we also conclude that Re$? (S5) — (S¢, )5 is an equivalence by
[8, Theorem 1] and [7, Theorem 2.10]. The map between the upper right vertices
are equivalences by Lemma 2.2. The equivalence between bottom right corners fol-
lows from Lemma 2.2 and that Re$?(S9) =~ (S¢,)5. Since the maps on these three
corners are equivalences, we conclude that the map between homotopy pullbacks
Reg2((SR)7A7 — (Se, )y is an equivalence. O

3. Comparing stable stems

In this section we establish a range of bidegrees in which the map on stable

stems 75 .0 (Sr) = 752, (Sc,) induced by equivariant Betti realization is an
isomorphism.

Recall that Dugger-Isaksen establish a range in which 2-complete stems are
isomorphic.

THEOREM 3.1 ([6, Theorem 4.1]). The map 75 10 (Sk)5) = 75200 ((Sc,)5)

m+no
is an isomorphism if m > 2n — 5 and an injection if m = 2n — 6.

REMARK 3.2. There are isomorphisms 7y 4na((Sr)2) = Tmina((Sr)s,) for
all m,n by [8, Theorem 1]. Similarly there are isomorphisms 752, ((Sc,)5) =
,C,L"’_MU((S@)QW) for all m,n by [7, Theorem 2.10]. Dugger-Isaksen’s result can
thus equivalently be stated as a comparison between (2,7)-complete stable stems.

7'('
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Recall the discussion of motivic and Cy-equivariant cobar complexes from [6,
§3], noting that all of these constructions may be made with HF),, p odd, in place of
HF5. The significance of the p-primary cobar complex is that it forms the F;-page
of the p-primary Adams spectral sequence (in the motivic or equivariant context).
In order to concisely express the properties of these spectral sequences, let S be S
(k; a field) or S¢,, let M, denote the homology of a point with coefficients in F,, or
F,, let A, denote the p-primary motivic or Ca-equivariant dual Steenrod algebra
let Cj denote the p-primary motivic or Cs-equivariant cobar complex, let v be «
or o, dependlng on context, and let Ext’; *H'Y(M M) denote the homology of C
(which is also Ext in the category of A, Comodules).

THEOREM 3.3 ([8, Theorem 1] and [7, Theorem 2.10]). The (motivic or Cs-
equivariant) p-primary Adams spectral sequence has Ei-page Cp and Es-page
* kY T .
ExtAP (M, M,,); it is strongly convergent with
E§7m+n’7 _— 7Tm—s+n'yS;\,n-

When p = 2, we have S, ~ S} as long as cda(kl[i]) < oo (in the motivic case).

The Dugger-Isaksen result is obtained by comparing cobar complexes. We first
extend this method to odd p to obtain an isomorphism range on (p,7n)-complete
stems. We begin by recalling some facts about the motivic and equivariant Steenrod
algebras at odd primes. Write A, for the classical mod-p dual Steenrod algebra.
Recall that

.A]Fp = Syme(TQ,Tl, cea ,51,62, .. )
is a free graded commutative algebra where |7;| = p® and [&;] = p' — 1.
Recall that M := Dnez T8 na HF, = F,[0] where 6 has degree 2—2av. This

follows from the affirmative resolution of the Bloch-Kato conjecture [15, Theorem
6.1] together with [12 Theorem 7.4]. In the equivariant case we have MS? :=

D.nnez m_HwHIF F,[0,071], see e.g. [5, Theorem 2.8]. The dual motivic
Steenrod algebra over R is equal to

AR = ME ®]Fp A]Fp - M5[7-077—17 cee 7§I7§2a o ']/(TO27T127 .- ')7
where the elements of Ap, are considered to be bigraded by assigning weights so

that |7;| = p* + (p* — 1) and || = (p* — 1) + (p* — 1), see [14, Remark 12.12].
Similarly, the dual Cs-equivariant Steenrod algebra is equal to

Ac, = Mgz QF, -A]Fp = Mgz[To,Tl, N SO ~]/(T§,T12, .. .),
where in this case elements of Ap, are considered to be bigraded by assigning
weights so that |7;| = p' + (p' — 1)o and || = (p° — 1) + (p* — 1)o.

Equivariant Betti realization Reg2 induces maps Mﬂ}f — MgQ and Agp — Ag,
which have the obvious effects on the above named elements, i.e., 8 — 0, 7, — 7

and 51 — é.z
Write M, for either M;lf or Mgz. In both cases, the dual Steenrod algebra is free
over M, and a basis is given by monomials 7'507'161 < 1R -+ where €; € {0,1}

and n; is a nonnegative integer. We write 7¢€™ for such a monomial.

LEMMA 3.4. Suppose that |7¢€"| = k + bo. Then k < —E + 1.
p—
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PROOF The bidegree of &; satisfies k <3 ~L=¢ and the bidegree of 7; satisfies
k <3 —£20 provided i > 1. It follows that if ¢g = O then the bidegree of 7¢¢™ satisfies

k < L0, If ¢g = 1 then Wr1te TE™ = 197€ §" where e, = 0. This element thus
satlsﬁes the inequality & <3 L0 4 1. O

LEMMA 3.5. The map Cﬂg — C£2 18
(i) an injection in all degrees, and
(ii) an isomorphism if k — f > L 7l — 4p 2J + 1.

ProOOF. We have that Céz &~ Mgz Oz CH{, that C]fé is free over ME, and that

the map My — M., is injective. It follows that CH{ — Céz is injective.

Let Z = [#1]22| - - - |25] be a cobar element of Adams filtration f, where each z;
is of the form 7¢€™, of bidegree k; 4+ ¢;a. By Lemma 3.4 we have that k; < Lé +1.
Summing over 4, we find that if |Z| = k + fa, then k <3 Lol f The cokernel
of Cﬂi — Céz is generated by elements of the form "2 for n > 1. The elements
6~" lie above the line of slope? (p — 1)/p passing through #~! and so we find that
these satisfy the mequahty k< p 70— 4p 2 . It follows that the bidegree of 7" Z
satisfies the 1nequahty A . Thus the cokernel is zero in bidegrees

satisfying k > 5 Ll 4 f —

4p2
([

Recall the form of the motivic and Cs-equivariant Adams spectral sequences
from Theorem 3.3. Equivariant Betti realization induces a map between these
spectral sequences which we can now analyze.

PROPOSITION 3.6. The map Exct ") (M5, ME) — Ext'{" ") (MS2, MS2) is

an injection if k— f = L 70— ‘20 12J and an isomorphism if k—f > ng _ 4;712J_’_
1.

PRrROOF. This follows from [6, Lemma 3.4] and Lemma 3.5. O

LEMMA 3.7. Ext%ﬂfﬁa) (M, M) is a finite-dimensional Fy-vector space for
all f kL.

PrOOF. Writing Cf, for the classical cobar complex, we have Cr = MR®F Cr,-
This makes it clear that C(f k) is finite dimensional, and thus Ext(f kHa) =~
H( k) (CR) is finite dimensional as well. |

REMARK 3.8. The universal coefficient theorem further implies that
Ext " (M, My) = Ext’(; (Fp, Fy) ®F, My
up to a grading shift.

THEOREM 3.9. The map merna((SR) o) = 752 00 ((Scy) M)) is

(i) an injection if m = L%n _ 4;;_—12J’ and
(ii) an isomorphism if m > Lﬁn _ dp- 2J ey

2We use the standard convention in which the k-axis is horizontal and the fa-axis is vertical.
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PRrROOF. This follows from Proposition 3.6 using the same argument as in [6,
Theorem 4.1]. O

REMARK 3.10. In [6], Dugger-Isaksen establish a second isomorphism range
on 2-complete stems. Namely, 116 (SrR)S — Tmane(Sc, )5 is an isomorphism if
m+n < —1. A version of this range appears to hold on (p, n)-complete stems, with
the difference that the map might be only surjective when m +n = —1. However,
this second isomorphism range doesn’t extend to integral stems and we do not
pursue it further here.

We now turn our attention to p-complete spheres.
PROPOSITION 3.11. The map my, o ((Sr)j)) = 7rm+no’((SC2);{)\) is

(1) an injection if m = {p in — 4; 12J7 and

(2) an isomorphism if m > L) TN — 4}? 12J + 1.

ProOOF. Write S for either of Sg or S¢,. If p = 2, the statement of the propo-
sition is Dugger-Isaksen’s Theorem 3.1, so we can assume p is odd. In this case 2
is invertible in S/p” and in §)). By Lemma 2.2 we have that (S))* ~ S, and

(p,m)
(Sp)~ ~Sp[n~'] and so we have that
1
S/\ ~ S(pn \/Sz/)\[n ].
Note that we have an isomorphism (S/\)_ > lim,((S/p")~). It follows from Theorem

2.1 that the map 7, ., ((Sr)p[n~']) — W*Jr*g((SCz) [n71]) is an isomorphism. The
result thus follows from Theorem 3.9 and the direct sum decomposition of SQ above.
O

THEOREM 3.12. The map 7%, (Sr) — 7rm+m(802) is
(i) an ingection if m = 2n — 6 and n > 0, and
(ii) an isomorphism if m > 2n —5 and n > 0.

PRrROOF. Consider the comparison of long exact sequences of homotopy groups
induced by cofiber sequences

S — (];[SQ) VSq - (IZISQ)Q

obtained from the arithmetic fracture squares for Sg and S¢,. It suffices to show
that the comparison map 7% _ ., (=) — ﬂﬁim(—) at the middle and the righthand
terms are injections if m = 2n — 6 and n > 0 and an isomorphism if m > 2n — 5
and n > 0.

The reader may check that when n > 0 the inequalities for the injectivity and
isomorphism ranges of p-complete stable stems from Proposition 3.11 for odd p
are dominated by Dugger-Isaksen’s inequalities in Theorem 3.1, for the 2-complete
stable stems. It follows that 7rm+na(Hp (Sr)p) — 7rm+na(H (SCZ) ) is an injection
if m = 2n—6, n > 0, and an isomorphism if m > 2n—5,n > () In fact, these ranges
extend to n = 0 as well. Indeed, injectivity on = G(H (Sr)j) is trivial since the
group in question is 0 by connectivity of the motivic sphere spectrum. Similarly,
™ 5(1_[ (Sr);) = 0, and ng(np(SCQ)g) = 0 as well by [2, Proposition 7.0]. This
is the only value of m, n for which the 2-complete isomorphism range does not
dominate, so the isomorphism range extends.
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Since we have that the map 7y, . ([T,(Sr)p)o — w%m(np(S@)Q)Q is a
filtered colimit of these maps, it too is an injection if m = 2n — 6, n > 0 and an
isomorphism if m > 2n — 5, n > 0.

By Theorem 2.1 and Lemma 2.2, w§+*a(SR)@ — ijm(S@)@ is an isomor-
phism. By [4, Theorems 11 and 16.2.13], (SR)Z)S ~ HQ, where HQ is the rational-
ized motivic cohomology spectrum. Thus, we have that 7}, ja(SR)6 = 0 whenever

j > 0. When j = 0, we have that WF(SR)E =01if 7 # 0 and WHOQ(SR)a = Q. We have

c Q jisevenandi+j=0
Triﬁja(SCz)(—[g = {

0 else.

The region j > 0, ¢« > 2j — 5 is entirely contained in this vanishing region. The
map w§(SR)6 i (SC2)6 is an ismorphism. We conclude that 7k (S]R)(g —

m+na

WﬁinU(Scz)a is an injection if m = 2n — 6 and n > 0, and an isomorphism if
m > 2n—5and n > 0. O

4. Proof of Theorem 1.1

We finish by explaining how the comparison of stable stems in the previous
section implies the embedding theorem.

ProrosiTION 4.1. If
(i) Re%? : [S™, Skl — [S™,Sc,)cn, and
(i) Re%? : [Spec(C)+ A S™, Sklr — [C2+ A S™, Sc,)c,
are isomorphisms for all n € Z, then Theorem 1.1 is true for any real closed field

k.

PROOF. Let k be a real closed field and L = k[i]. To prove Theorem 1.1, it
suffices to prove that
(a) ¢f .+ [S™ Seyle, — [S™, Sklk, and
(b) CZ/IC : [C2+ A Sn78C2]CQ — [Spec(L)Jr A Snvgk]k
are isomorphisms for all n € Z, by the same argument as in the beginning of the
proof of [7, Theorem 2.21].
To prove that the maps in (a), (b) are isomorphisms, we can assume that
k = R and L = C, by the same argument as in [7, Proposition 2.20]. We now
consider the Cs-equivariant Betti realization functor Re(E’;2 : SHg — SH2. Since
Re%? o ¢k, /r = id, it follows that (a) and (b) are isomorphisms. O

COROLLARY 4.2 (Theorem 1.1). Let k be a real closed field and L = k[i] be its
algebraic closure. Then the functor
Lt SH® — SHy
s a full and faithful embedding.

PROOF. If i < 0 then 7¥(Sp) = 7¥2(S¢,) = 0 and so the map in 4.1(i) is an
isomorphism for ¢ < 0. It is an isomorphism for ¢ > 0 by setting n = 0 in Theorem
3.12. The map in 4.1(ii) is identical to the map [S™,Sclc — [S™,S] induced by
complex Betti realization. This is an isomorphism by Levine’s theorem [9]. g
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