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Abstract—Random graphs (or networks) have gained a signif- 
icant increase of interest due to its popularity in modeling and 
simulating many complex real-world systems. Degree sequence   
is one of the most important aspects of these systems. Random 
graphs with a given degree sequence can capture many character- 
istics like dependent edges and non-binomial degree distribution 
that are absent in many classical random graph models such as 
the Erdős-Rényi graph model. In addition, they have important 
applications in uniform sampling of random graphs, counting the 
number of graphs having the same degree sequence, as well as   
in string theory, random matrix theory, and matching theory. In 
this paper, we present an OpenMP-based shared-memory parallel 
algorithm for generating a random graph with a prescribed 
degree sequence, which achieves a speedup of 20.4  with  32  
cores. We also present a comparative study of several structural 
properties of the random graphs generated by our algorithm with 
that of the real-world graphs and random graphs generated by 
other popular methods. One of the steps in our parallel algorithm 
requires checking the Erdős-Gallai characterization, i.e., whether 
there exists a graph obeying the given degree sequence, in 
parallel. This paper presents a non-trivial parallel algorithm for  
checking  the  Erdős-Gallai  characterization,  which  achieves a 
speedup of 23 with 32   cores. 
Index	 Terms—graph theory, random graph generation, 

degree sequence, Erdős-Gallai characterization, parallel 
algorithms 

 
I. INTRODUCTION 

Random graphs are widely used for modeling many com- 
plex real-world systems such as the Internet [1], biological [2], 
social [3], and infrastructure [4] networks to understand how 
the systems work through obtaining rigorous mathematical and 
simulation results. Many random graph models such as the 
Erdős-Rényi  [5],  the  Preferential  Attachment  [6],  the  small- 
world [7], and the Chung-Lu [8] models have been proposed to 
capture various characteristics of real-world systems. Degree 
sequence is one of the most important aspects of these systems 
and has been extensively studied in graph theory [9–11]. It  
has significant applications in a wide range of areas including 
structural reliability and communication  networks  because  
of the strong ties between the degrees of vertices and the 
structural properties of and dynamics over a network   [12]. 

∗The author is now with Microsoft   Inc. 

Random graphs with given degree sequences are widely 
used  in  uniform  sampling  of  random  graphs  as  well  as   
in counting the number of graphs having the same degree 
sequence [13–16]. For example, in an epidemiology study of 
sexually transmitted diseases [17], anonymous surveys collect 
data about the number of sexual partners of an individual 
within a given period of time, and then the problem reduces to 
generating a network obeying the degree sequence collected 
from the survey, and studying the disease dynamics over the 
network. Other examples include determining the total number 
of structural isomers of chemical compounds such as alkanes, 
where the valence of an atom is the degree. Moreover, the 
random graphs with given degree sequences can capture many 
characteristics such as dependent edges and non-binomial 
degree distribution that are absent in many classical models 
such  as  the  Erdős-Rényi  [5]  graph  model.  They  also  have 
important applications in string theory, random matrix theory, 
and matching theory [10]. 

The problem of generating a random graph with a given 
degree sequence becomes considerably easier if self-loops 
and parallel edges are allowed.  Throughout  this  paper,  
we consider simple graphs with no self-loops or parallel 
edges. Most prior work on generating random graphs in- 
volves sequential algorithms, and they can be broadly cat- 
egorized in two classes: (i) edge swapping and (ii) stub- 
matching. Edge swapping [18–21] uses the Markov chain 
Monte Carlo (MCMC) scheme on a given graph having the 
degree sequence. An edge swap operation replaces two edges 
e1 = (a, b) and e2 = (c, d), selected uniformly at random 
from the graph, by new edges e3 = (a, d) and e4 = (c, b), 
i.e., the end vertices of the selected edges are swapped with 
each other. This operation is repeated either a given number 
of times or until a specified criterion is satisfied. It is easy to 
see that the degree of each vertex remains invariant under an 
edge swap process. Unfortunately, very little theoretical results 
have been rigorously shown about the mixing time [18, 22] of 
the edge swap process and they are ill-controlled. Moreover, 
most of the results are heuristic-based. 

On the other hand, among the swap-free stub-matching 
methods,  the  configuration  or  pairing  method  [23]  is very 
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popular and uses a direct graph construction method. For each 
vertex, it creates as many stubs or “dangling half-edges” as   
of its degree. Then edges are created by choosing pairs of 
vertices randomly and connecting them. This approach creates 
parallel edges, which are dealt with by restarting the process. 
Unfortunately, the probability of restarting the process ap- 
proaches 1 for larger degree sequences. Many variants [24–26] 
of the configuration models have been studied to avoid parallel 
edges for the regular graphs. By using the Havel-Hakimi 
method [27], a deterministic graph can be generated following 
a given degree sequence. Bayati et al. [15] presented an 
algorithm for counting and generating random simple graphs 
with given degree sequences. However, this algorithm does 
not guarantee to always generate a graph, and it is shown    
that the probability of not generating a graph is small for a 
certain bound on the maximum degree, which restricts many 
degree sequences. Genio et al. [16] presented an algorithm to 
generate a random graph from a given degree sequence, which 
can be used in sampling graphs from the graphical realizations 
of a  degree  sequence.  Blitzstein  et  al.  [14]  also  proposed  
a sequential importance sampling [28] algorithm to generate 
random graphs with an exact given degree sequence, which can 
generate every possible graph with the given degree sequence 
with a non-zero probability. Moreover, the distribution of the 
generated graphs can be estimated, which is a much-desired 
result used in sampling random  graphs. 

 
A deterministic parallel algorithm for generating a simple 

graph with a given degree sequence has been presented     
by Arikati  et  al.  [29],  which  runs  in  (log n) time  us- 
ing (n + m) CRCW PRAM [30] processors, where n and  
m denote the number of vertices and edges in the graph, 
respectively. From a given degree sequence, the algorithm 
first computes an appropriate bipartite sequence (degree se- 
quence of a bipartite graph), generates a deterministic bipartite 
graph obeying the bipartite sequence, applies some edge swap 
techniques to generate a symmetric bipartite graph, and then 
reduces the symmetric bipartite graph to a simple graph 
having the given degree sequence. Another parallel algorithm, 
with a time complexity of  log4 n  using  n10   EREW  
PRAM processors, has been presented in [31], where the 
maximum degree is bounded by the square-root of the sum 
of the degrees, which restricts many degree sequences. A 
parallel algorithm for generating a random graph with a 
given expected degree sequence has been presented in [32]. 
However, there is no existing parallel algorithm for generating 
random graphs following an exact degree sequence, which 
can provably generate each possible graph, having the given 
degree sequence, with a positive probability. In this paper, we 
present an efficient parallel algorithm for generating a random 
graph with an exact given degree sequence. We choose to 
parallelize the sequential algorithm by Blitzstein et al. [14] 
because of its rigorous mathematical and theoretical results, 
and the algorithm supports all of the important and much- 
desired properties below, whereas the other algorithms are 
either heuristic-based or lack some of the following properties: 

• It can construct a random simple graph with a prescribed 
degree sequence. 

• It can provably generate each possible graph, obeying the 
given degree sequence, with a positive  probability. 

• It can be used in importance sampling by explicitly 
measuring the weights associated with the generated 
graphs. 

• It is guaranteed to terminate with a graph having the 
prescribed degree sequence. 

• Given a degree sequence of a tree, a small tweak while 
assigning the edges allows the same algorithm to generate 
trees uniformly at random. 

• It can be used in estimating the number of possible graphs 
with the given degree  sequence. 

Our Contributions. In this paper, we present  an  effi-  
cient shared-memory parallel algorithm for generating random 
graphs with exact given degree sequences. The dependencies 
among assigning edges to vertices in a particular order to 
ensure the algorithm always successfully terminates with a 
graph, the requirement of keeping the graph simple, main- 
taining an exact stochastic process as that of the sequential 
algorithm, and concurrent writing by multiple cores in the 
global address space lead to significant challenges in designing 
a parallel algorithm. Dealing with these requires complex 
synchronization among the processing cores. Our parallel 
algorithm achieves a maximum speedup of 20.4 with 32 cores. 
We also present a comparative study of various structural prop- 
erties of the random graphs generated by the parallel algorithm 
with that of the real-world graphs. One of the steps in our 
parallel algorithm requires checking the graphicality of a given 
degree sequence, i.e., whether there exists a graph with the 
degree sequence, using the Erdős-Gallai characterization [33] 
in parallel. We present here a novel parallel algorithm for 
checking  the  Erdős-Gallai  characterization,  which  achieves  a 
speedup of 23 using 32 cores. 

Organization. The rest of the paper is organized as follows. 
Section II describes the preliminaries and notations used in  
the paper. Our main parallel algorithm for generating random 
graphs along with the experimental results are presented in 
Section III. We present a parallel algorithm for checking the  
Erdős-Gallai  characterization  of  a  given  degree  sequence 
accompanied by the performance evaluation of the algorithm 
in Section IV. Finally, we conclude in Section   V. 

II. PRELIMINARIES 

Below are the notations, definitions, and computation model 
used in this paper. 

Notations. We use G = (V, E) to denote a simple graph, 
where V is the set of vertices and E is the set of edges. A self- 
loop is an edge from a vertex to itself. Parallel edges are two 
or more edges connecting the same pair of vertices. A simple 
graph is an undirected graph with no self-loops or parallel 
edges. We are given a degree sequence D = (d1, d2, . . . , dn). 
There are a total of n = |V| vertices labeled as 1, 2, . . . , n, 
and di is the degree of vertex i, where 0 ≤ di ≤ n ­ 1.   
For a degree sequence D and distinct u, v ∈ {1, 2, . . . , n}, we 



3314 

1  2  

TABLE I: Notations used frequently in the   paper. Degree seq.  D 1 Degree seq.  D 2
 

Symbol  Description Symbol  Description 

Degree sequence di Degree of vertex i 
Set of vertices n Number of vertices 
Set of edges m Number of edges 
Number of cores k Core with rank  k 

i 1   2   3   4  5 

di 

LHS 

RHS 

1   2  3  4 v5 

v2 v3 

 
v4 v1 

Candidate set Corrected Durfee number 
Graph K Thousands 

M Millions B Billions 
 

 

 

define  D to  be  the  degree  sequence  obtained  from  by 

Fig. 1: Graphicality check for the de- 
gree sequences 1 and 

2  using  the  Erdős-Gallai 
characterization, where LHS and RHS 
denote the left hand side and right hand 

Fig. 2: A sim- 
ple graph real- 
izing the degree 
sequence  1 

. 

subtracting  1  from  each  of  and  .  Let  be  the  degree side values of Eq. (2),  respectively. 

of vertex in the degree sequence D , then sequence and there is no simple graph realizing 2, as   shown 

if ,  (1) 
 

in Figs. 1 and  2. 
otherwise. 

If there is a simple graph having the degree sequence , 
then there are edges in , where . The 
terms graph and network are used interchangeably throughout
the paper. We use K, M, and B to denote thousands, millions, 
and billions, respectively; e.g., 1M stands for one million. For 
the parallel algorithms, let be the number of processing
cores, and the core with rank , where . A 
summary of the frequently used notations (some of them are 
introduced later for convenience) is provided in Table I. 

Residual Degree. During the course of a graph generation 
process, the residual degree of a vertex is the remaining 
number of edges incident on , which have not been created 
yet. From hereon, we refer to the degree of a vertex as  
the residual degree of at any given time, unless otherwise 
specified. 

Graphical Sequence. A degree sequence of non-negative 
integers is called graphical if there exists a labeled simple
graph with vertex set , where vertex has de- 
gree . Such a graph is called a realization of the degree 
sequence . Note that there can be several graphs having 
the same degree sequence. Eight equivalent necessary and 
sufficient conditions for testing the graphicality of a degree
sequence  are  listed  in  [34].  Among  them,  the  Erdős-Gallai 
characterization [33] is the most famous and frequently used 
criterion. Another popular recursive test for checking a graph- 
ical sequence is the Havel-Hakimi method [27]. 

Erdős-Gallai  Characterization  [33].  Assuming  a  given 
degree  sequence  is  sorted  in  non-increasing  order,   i.e., 

,  the  sequence  is  graphical  if and 

Computation Model. We develop algorithms for shared- 
memory parallel systems. All the cores can read from and 
write to the global address space. In addition, each core can 
have its own local variables and data   structures. 

III. GENERATING RANDOM GRAPHS WITH PRESCRIBED 
DEGREE SEQUENCES 

We briefly discuss the sequential algorithm in Section III-A. 
Then we present our parallel algorithm in Section III-B and  
the experimental results in Section  III-C. 

A. Sequential Algorithm 
Blitzstein et al. [14] presented a sequential importance 

sampling [28] algorithm for generating random graphs with 
exact prescribed degree sequences. This approach first creates 
all edges incident on the vertex having the minimum degree   
in the sequence, then moves to the next vertex having the 
minimum degree to create its incident edges and so on. To 
create an edge incident on a vertex , a candidate list is 
computed  using  the  Erdős-Gallai  characterization  such  that, 
after adding an edge by connecting to any candidate vertex 
from the list , the residual degree sequence remains graphical 
and the graph remains simple. Then an edge is assigned 
by choosing from the candidate list with a probability 
proportional to the degree of . This process is repeated until 
all edges incident on vertex are   assigned. 

For example, for a given degree sequence , 
the algorithm starts by assigning edges incident on vertex 3. 
It computes the candidate list 1 2 4 5 . Say it 
chooses the vertex 5 from and assigns the edge 3 5 . 
Then the new degree sequence is , and the 

only if =1 is even and 

new candidate list for assigning the remaining edge incident 
on vertex 3  is 1 2  . Say the algorithm selects   1 from and assigns the edge 3 1 . Now the new degree 

for each sequence is , and the algorithm will proceed 
=1 = +1 (2) to assign edges incident on vertex 5 and so on. One   possible 

For example, 1 is a graphical sequence and 
there  is  a  realization  of  1  as  it  satisfies  the  Erdős-Gallai 

characterization, whereas 2 is not a graphical 

3 3 2 2 2 4 3 2 1 

3 6 8 1 1 4 7 9 10 

4 8 10 14 2 3 5 7 12 
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sequence of degree sequences  is 

(3, 3, 2, 2, 2) → (3, 3, 1, 2, 1) → (2, 3, 0, 2, 1) → (2, 2, 0, 2, 0) 
→ (1, 2, 0, 1, 0) → (0, 1, 0, 1, 0) → (0, 0, 0, 0, 0), 
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time complexity of the algorithm is    2 . 

If 

Fig. 3: A sequential algorithm [14] for generating a random 
graph with a given degree  sequence. 
with the corresponding edge  set 

3 5 3 1 5 2 1 4 1 2 2 4

The corresponding graph is shown in Fig. 2. Note that during
the assignment of incident edges on a vertex , a candidate at 

a later stage is also a candidate at an earlier stage. The
pseudocode of the algorithm is shown in Fig. 3. Since a total
of edges are generated for the graph and computing the

candidate list (Line 5) for each edge takes 2           time, the

Unlike many other graph generation algorithms, this method 
never gets stuck, i.e., it always terminates with a graph 
realizing the given degree sequence (proof provided in The- 
orem in [14]) or creates loops or parallel edges through the  
computation  of  the  candidate  list  using  the  Erdős-Gallai 
characterization. The algorithm can generate every possible 
graph with a positive probability (proof given in Corollary 
in [14]). For additional details about the importance sampling 
and estimating the number of graphs for a given degree 
sequence, see Sections and in [14]; and we omit the details 
in this paper due to space   constraints. 

B. Parallel Algorithm
To design an exact parallel version by maintaining the same 

stochastic process (in order to retain the same theoretical and 
mathematical results) as that of the sequential algorithm, the 
vertices are considered (to assign their incident edges) in the 
same order in the parallel algorithm, i.e., in ascending order  
of their degrees. Hence, we emphasize parallelizing the com- 
putation of the candidate list , i.e., Line 5 of the sequential 
algorithm in Fig. 3. For computing the candidate list to assign 
edges incident on a vertex , we need to consider all other 
vertices with non-zero degrees as potential     candidates; 
and we parallelize this step. While considering a particular 
vertex as a candidate, we need to check whether D      is 

Fig. 4: A parallel algorithm for generating a random graph 
with a prescribed degree  sequence. 

The  parallel  algorithm  for  the  Erdős-Gallai  characterization 
returns TRUE if the given degree sequence is graphical and 
FALSE otherwise. 

Once the candidate list is computed, if the degree of is 
equal to the cardinality of the candidate list, then new  
edges are assigned between and all candidate vertices in 
the candidate list in parallel. Otherwise, like the sequential 
algorithm, a candidate vertex is chosen randomly from , a 
new edge is assigned, the degree sequence is updated 
by reducing the degrees of each of and by , and the 
process is repeated until is reduced to . After assigning   
all edges incident on vertex , the algorithm proceeds with as- 
signing edges incident on the next vertex having the minimum 
positive degree in and so on. We present the pseudocode  of 

a graphical sequence using the Erdős-Gallai characterization. our parallel algorithm for generating random graphs in Fig.  4. 
D is graphical, then is added to the candidate list . Theorem  1.  The  parallel  algorithm  for  generating random 

The time complexity of the best known sequential algorithm 
for testing the Erdős-Gallai characterization is [14, 35]. 
Thus to have an efficient parallel algorithm for generating
random graphs, we need to use an efficient parallel algorithm 
for checking the Erdős-Gallai characterization. In Section IV, 
we present an efficient parallel algorithm for checking the
Erdős-Gallai characterization that runs in       time. 

graphs maintains an exact stochastic process as that of the 
sequential algorithm and preserves all mathematical and 
theoretical results of the sequential  algorithm. 

Proof. The parallel algorithm always selects the vertex with 
the minimum degree in the sequence (Line 3), assigns  
edges incident on (Lines 5-23), and then proceeds with    the 

1:  initially empty set of edges 1: 
2:  while =  0 do 
3:  Select  the  least  u  such  that  du   is  a minimal positive

degree in 
4: 4:

           

g
while du  =  0 do 

u , v is graphical} 
6: v  a  random  candidate  in  where  probability of 

7: { (u, v)} 
selecting v is proportional to  dv 

8: 
9:  Output 

{
 

u ,v

1:  initially empty set of edges 

Assign the edges until the degree of 
each vertex reduces to 0 

2:  while =  0 do 2:  while 0 do
3:  Select  the  least  u  such  that  du   is  a minimal positive

degree in
4: 

gree in
candidate list 

Assign all du   edges incident on u 
5: 
6: 
7: 
8: 
9: 

10: 

while du  =  0 do hile du  =  0 === do
if =  then 

else 

= then
         dv  > 0} 

Compute the candidate list 
11: 
12: 
13: 
14: 

15: 
16: 
17: 
18: 
19: 

Compute the candida
for each v do r each v do

   
( ) 

u , v 
if f lag =  T RUE then lag =  T RUE

{ v} v  is a candidate

if du  =  | | then du  = | | then
for each v do r each v 

{ (u, v)} 

break 
18:
19:

{

break
u , v 

20:
selecting v is proportional to  dv i i i l d

Assign an edge (u, v)  from 
v  a  random  candidate  in  where  probability of

21: 
22: 
23: 

ing v is proportion
{ (u, v)} 

 
u , v 

23:
u ,
− { v} 

24:  Output final set of edges 


