2017 IEEE International Conference on Big Data (BIGDATA)

A Parallel Algorithm for Generating a Random
Graph with a Prescribed Degree Sequence

Hasanuzzaman Bhuiyan™
Department of Computer Science
Network Dynamics and Simulation
Science Laboratory (NDSSL)
Biocomplexity Institute of Virginia Tech
Blacksburg, VA, USA
mhb@vt.edu

Abstract—Random graphs (or networks) have gained a signif-
icant increase of interest due to its popularity in modeling and
simulating many complex real-world systems. Degree sequence
is one of the most important aspects of these systems. Random
graphs with a given degree sequence can capture many character-
istics like dependent edges and non-binomial degree distribution
that are absent in many classical random graph models such as
the Erdés-Rényi graph model. In addition, they have important
applications in uniform sampling of random graphs, counting the
number of graphs having the same degree sequence, as well as
in string theory, random matrix theory, and matching theory. In
this paper, we present an OpenMP-based shared-memory parallel
algorithm for generating a random graph with a prescribed
degree sequence, which achieves a speedup of 20.4 with 32
cores. We also present a comparative study of several structural
properties of the random graphs generated by our algorithm with
that of the real-world graphs and random graphs generated by
other popular methods. One of the steps in our parallel algorithm
requires checking the Erdés-Gallai characterization, i.e., whether
there exists a graph obeying the given degree sequence, in
parallel. This paper presents a non-trivial parallel algorithm for
checking the Erdds-Gallai characterization, which achieves a
speedup of 23 with 32 cores.

Index Terms—graph theory, random graph generation,
degree sequence, Erdés-Gallai characterization, parallel
algorithms

I. INTRODUCTION

Random graphs are widely used for modeling many com-
plex real-world systems such as the Internet [1], biological [2],
social [3], and infrastructure [4] networks to understand how
the systems work through obtaining rigorous mathematical and
simulation results. Many random graph models such as the
Erdds-Rényi [5], the Preferential Attachment [6], the small-
world [7], and the Chung-Lu [8] models have been proposed to
capture various characteristics of real-world systems. Degree
sequence is one of the most important aspects of these systems
and has been extensively studied in graph theory [9-11]. It
has significant applications in a wide range of areas including
structural reliability and communication networks because
of the strong ties between the degrees of vertices and the
structural properties of and dynamics over a network [12].

*The author is now with Microsoft Inc.

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 3312

Maleq Khan
Department of Electrical Engineering
and Computer Science
Texas A&M University—Kingsville
Kingsville, TX, USA
maleq.khan@tamuk.edu

Madhav Marathe
Department of Computer Science
Network Dynamics and Simulation
Science Laboratory (NDSSL)
Biocomplexity Institute of Virginia Tech
Blacksburg, VA, USA
mmarathe@vt.edu

Random graphs with given degree sequences are widely
used in uniform sampling of random graphs as well as
in counting the number of graphs having the same degree
sequence [13—16]. For example, in an epidemiology study of
sexually transmitted diseases [17], anonymous surveys collect
data about the number of sexual partners of an individual
within a given period of time, and then the problem reduces to
generating a network obeying the degree sequence collected
from the survey, and studying the disease dynamics over the
network. Other examples include determining the total number
of structural isomers of chemical compounds such as alkanes,
where the valence of an atom is the degree. Moreover, the
random graphs with given degree sequences can capture many
characteristics such as dependent edges and non-binomial
degree distribution that are absent in many classical models
such as the Erdds-Rényi [5] graph model. They also have
important applications in string theory, random matrix theory,
and matching theory [10].

The problem of generating a random graph with a given
degree sequence becomes considerably easier if self-loops
and parallel edges are allowed. Throughout this paper,
we consider simple graphs with no self-loops or parallel
edges. Most prior work on generating random graphs in-
volves sequential algorithms, and they can be broadly cat-
egorized in two classes: (i) edge swapping and (i) stub-
matching. Edge swapping [18-21] uses the Markov chain
Monte Carlo (MCMC) scheme on a given graph having the
degree sequence. An edge swap operation replaces two edges
er = (a, b) and e> = (c, d), selected uniformly at random
from the graph, by new edges e3 = (a, d) and es+= (c, b),
i.e., the end vertices of the selected edges are swapped with
each other. This operation is repeated either a given number
of times or until a specified criterion is satisfied. It is easy to
see that the degree of each vertex remains invariant under an
edge swap process. Unfortunately, very little theoretical results
have been rigorously shown about the mixing time [18,22] of
the edge swap process and they are ill-controlled. Moreover,
most of the results are heuristic-based.

On the other hand, among the swap-free stub-matching
methods, the configuration or pairing method [23] is very

popular and uses a direct graph construction method. For each
vertex, it creates as many stubs or “dangling half-edges” as
of its degree. Then edges are created by choosing pairs of
vertices randomly and connecting them. This approach creates
parallel edges, which are dealt with by restarting the process.
Unfortunately, the probability of restarting the process ap-
proaches 1 for larger degree sequences. Many variants [24-26]
of the configuration models have been studied to avoid parallel
edges for the regular graphs. By using the Havel-Hakimi
method [27], a deterministic graph can be generated following
a given degree sequence. Bayati et al. [15] presented an
algorithm for counting and generating random simple graphs
with given degree sequences. However, this algorithm does
not guarantee to always generate a graph, and it is shown
that the probability of not generating a graph is small for a
certain bound on the maximum degree, which restricts many
degree sequences. Genio et al. [16] presented an algorithm to
generate a random graph from a given degree sequence, which
can be used in sampling graphs from the graphical realizations
of a degree sequence. Blitzstein et al. [14] also proposed
a sequential importance sampling [28] algorithm to generate
random graphs with an exact given degree sequence, which can
generate every possible graph with the given degree sequence
with a non-zero probability. Moreover, the distribution of the
generated graphs can be estimated, which is a much-desired
result used in sampling random graphs.

A deterministic parallel algorithm for generating a simple
graph with a given degree sequence has been presented
by Arikati et al. [29], which runs inO(log n) time us-
ing @ + m) CRCW PRAM [30] processors, where n and
m denote the number of vertices and edges in the graph,
respectively. From a given degree sequence, the algorithm
first computes an appropriate bipartite sequence (degree se-
quence ofabipartite graph), generates a deterministic bipartite
graph obeying the bipartite sequence, applies some edge swap
techniques to generate a symmetric bipartite graph, and then
reduces the symmetric bipartite graph to a simple graph
havingthe given degree sequence. Another parallel algorithm,
with a time complexity o !Iog4 N using~ ') EREW
PRAM processors, has been presented in [31], where the
maximum degree is bounded by the square-root of the sum
of the degrees, which restricts many degree sequences. A
parallel algorithm for generating a random graph with a
given expected degree sequence has been presented in [32].
However, there is no existing parallel algorithm for generating
random graphs following an exact degree sequence, which
can provably generate each possible graph, having the given
degree sequence, with a positive probability. In this paper, we
present an efficient parallel algorithm for generating arandom
graph with an exact given degree sequence. We choose to
parallelize the sequential algorithm by Blitzstein et al. [14]
because of its rigorous mathematical and theoretical results,
and the algorithm supports all of the important and much-
desired properties below, whereas the other algorithms are
eitherheuristic-based orlack some ofthe followingproperties:

3313

- It can construct a random simple graph with a prescribed
degree sequence.

- It can provably generate each possible graph, obeying the
given degree sequence, with a positive probability.

- It can be used in importance sampling by explicitly
measuring the weights associated with the generated
graphs.

- It is guaranteed to terminate with a graph having the
prescribed degree sequence.

- Given a degree sequence of a tree, a small tweak while
assigning the edges allows the same algorithm to generate
trees uniformly at random.

- It can be used in estimating the number of possible graphs
with the given degree sequence.

Our Contributions. In this paper, we present an effi-
cient shared-memory parallel algorithm for generating random
graphs with exact given degree sequences. The dependencies
among assigning edges to vertices in a particular order to
ensure the algorithm always successfully terminates with a
graph, the requirement of keeping the graph simple, main-
taining an exact stochastic process as that of the sequential
algorithm, and concurrent writing by multiple cores in the
global address space lead to significant challenges in designing
a parallel algorithm. Dealing with these requires complex
synchronization among the processing cores. Our parallel
algorithm achieves a maximum speedup of 20.4 with 32 cores.
We also present a comparative study of various structural prop-
erties of the random graphs generated by the parallel algorithm
with that of the real-world graphs. One of the steps in our
parallel algorithm requires checking the graphicality of a given
degree sequence, i.e., whether there exists a graph with the
degree sequence, using the Erd6s-Gallai characterization [33]
in parallel. We present here a novel parallel algorithm for
checking the Erdds-Gallai characterization, which achieves a
speedup of 23 using 32 cores.

Organization. The rest of the paper is organized as follows.
Section II describes the preliminaries and notations used in
the paper. Our main parallel algorithm for generating random
graphs along with the experimental results are presented in
Section III. We present a parallel algorithm for checking the
Erdds-Gallai characterization of a given degree sequence
accompanied by the performance evaluation of the algorithm
in Section IV. Finally, we conclude in Section V.

II. PRELIMINARIES

Below are the notations, definitions, and computation model
used in this paper.

Notations. We use G = (V, E) to denote a simple graph,
where V is the set of vertices and E is the set of edges. A self-
loop is an edge from a vertex to itself. Parallel edges are two
or more edges connecting the same pair of vertices. A simple
graph is an undirected graph with no self-loops or parallel
edges. We are given a degree sequence D = (di, d, . . ., dh).
There are a total of n = |V| vertices labeled as 1, 2, . . ., n,
and djis the degree of vertex /, where 0 < di< n — 1.

For a degree sequence D and distinct u, v € {1,2,..., n}, we

TABLE I: Notations used frequently in the paper.

Symbol Description Symbol Description

Degree sequence di Degree of vertex i

D

V Set of vertices n Number of vertices

E Set of edges m Number of edges

P Number of cores Py Core with rank k

C Candidate set (o} Corrected Durfee number
G Graph K Thousands

M Millions B Billions

define %tho be the degree sequence obtained from D by

subtracting 1 from each of dy and dy. Let d; be the degree
of vertex j in the degree sequence ©F , then

iij {U, V}, (1)

otherwise.

{
d = dj—1
J dj

If there is a simple graph G having the degree seguence D,
then there are m = B edges in G, where 2m = d;. The
terms graph and network are used interchangeably throughout
the paper. Weuse K, M, and B to denote thousands, millions,
and billions, respectively; e.g., 1M stands for one million. For
the parallel algorithms, lePbe the number of processing
cores, and Pk the core with rank k, wherecO k <p. A
summary of the frequently used notations (some of them are
introduced later for convenience) is provided in Table L.

Residual Degree. During the course of a graph generation
process, the residual degree of a vertex U is the remaining
number of edges incident on u, which have not been created
yet. From hereon, we refer to the degree dyof a vertex U as
the residual degree of u at any given time, unless otherwise
specified.

Graphical Sequence. A degree sequence D of non-negative
integers is called graphical if there exists a labeled simple
graph with vertex set ¢ 2, . . ., #, where vertex / has de-
gree di. Such a graph is called a realization of the degree
sequence D. Note that there can be several graphs having
the same degree sequence. Eight equivalent necessary and
sufficient conditions for testing the graphicality of a degree
sequence are listed in [34]. Among them, the Erdds-Gallai
characterization [33] is the most famous and frequently used
criterion. Another popular recursive test for checking a graph-
ical sequence is the Havel-Hakimi method [27].

Erdés-Gallai Characterization [33]. Assuming a given
degree sequence D is sorted in non-increasing order, i.e.,

, the sequence D is graphical ifand

onlyif 7, diis even and

d12d222dn k

foreachk € {1,2,...,n}, di< k(k—1)+
=1 i=k+1 (2)

For example, D1 = (3, 3, 2, 2, 2) is a graphical sequence and
there is a realization of D; as it satisfies the Erd6s-Gallai

3314

Degree seq. D ; Degree seq. D »

i 12345 1234 Vs
d|3]3]2]2]2] [4]3]2]1]
vV v
tHs[3]6]8]1 1] [4[7]°fid 2 ®
RRS[TeTolalz] [3T517h2 v, Vi

Fig. 1: Graphicality check for the de-
gree sequences D; = (3, 3, 2, 2, 2) and
D, = (4, 3,2, 1) using the Erdés-Gallai
characterization, where LHS and RHS
denote the left hand side and righthand
side values of Eq. (2), respectively.

Fig. 2: A sim-
ple graph real-
izing the degree
sequence D; =
(3,3,2,2,2).

sequence and there is no simple graph realizing D2, as shown

in Figs. 1 and 2.

Computation Model. We develop algorithms for shared-
memory parallel systems. All the cores can read from and
write to the global address space. In addition, each core can
have its own local variables and data structures.

III. GENERATING RANDOM GRAPHS WITH PRESCRIBED
DEGREE SEQUENCES

We briefly discuss the sequential algorithm in Section III-A.
Then we present our parallel algorithm in Section III-B and
the experimental results in Section III-C.

A. Sequential Algorithm

Blitzstein et al. [14] presented a sequential importance
sampling [28] algorithm for generating random graphs with
exact prescribed degree sequences. This approach first creates
all edges incident on the vertex having the minimum degree
in the sequence, then moves to the next vertex having the
minimum degree to create its incident edges and so on. To
create an edge incident on a vertex u, a candidate list C is
computed using the Erdds-Gallai characterization such that,
after adding an edge by connecting U to any candidate vertex v
from the list C, the residual degree sequence remains graphical
and the graph remains simple. Then an edge (u, v) is assigned
by choosing v from the candidate list C with a probability
proportional to the degree of v. This process is repeated until
all edges incident on vertex U are assigned.

For example, fora given degree sequence D= (3, 3, 2, 2, 2),
the algorithm starts by assigning edges incident on vertex Vs.
It computes the candidate list C = Vi, V2, Va4, Vg Say it
chooses the vertex vs from C and assigns the edge (v, vs).
Then the new degree sequence is D = (3, 3, 1,2, 1), and the

{ 7
new candidate list for assigning the remaining edge incident

ABKCEERN BGuTs e ¥aeeSt; he)2IROHMRL SELSE e e

min(k, dj). sequenceisD=(2,3,0,2,1),andthe algorithm will proceed

to assign edges incident on vertex Vs and so on. One possible
characterization, whereas D, = (4, 3,2, 1) is not a graphical

sequence of degree sequences is
(3,3,2,2,2)>(3,3,1,2,1)—>(2,3,0,2,1) > (2,2,0,2,0)
—(1,2,0,1,0)—(0,1,0,1,0)—(0,0,0,0,0),

3315

:E«—@ [initially empty set of edges
2: while D € 0 do

3: Select the least u such that d, is a minimal positive
degree in D

4. whiled, € 0do A

5 C—{vBu:(uv)£E "~ BE is graphical}

6: vV « a random candidate in C where probability of
selecting v is proportional to dy

7: E—Eu{(uv)}

8: D07

u,v

9 Output E

Fig. 3: A sequential algorithm [14] for generating a random
graph with a given degree sequence.

with the corresponding edge set
E = {(v3, vs), (v3, V1), (V5, v2), (V1, v4), (V1, V2), (V2, Va)}.

The corresponding graph is shown in Fig. 2. Note that during
the assignment of incident edges on a vertex U, a candidate at
a later stage is also a candidate at an earlier stage. The
pseudocode of the algorithm is shown in Fig. 3. Since a total
of m edges are generated for the graph G and'conjputing the
candidate list (Line 5) for each edge takes O) n? time, the
time complexity of the algorithmis O mn?’.

Unlike many other graph generation algorithms, this method
never gets stuck, i.e., it always terminates with a graph
realizing the given degree sequence (proof provided in The-
orem 3 in [14]) or creates loops or parallel edges through the
computation of the candidate list using the Erdds-Gallai
characterization. The algorithm can generate every possible
graph with a positive probability (proof given in Corollary 1
in [14]). For additional details about the importance sampling
and estimating the number of graphs for a given degree
sequence, see Sections 8 and 9 in [14]; and we omit the details
in this paper due to space constraints.

B. Parallel Algorithm

To design an exact parallel version by maintaining the same
stochastic process (in order to retain the same theoretical and
mathematical results) as that of the sequential algorithm, the
vertices are considered (to assign their incident edges) in the
same order in the parallel algorithm, i.e., in ascending order
of their degrees. Hence, we emphasize parallelizing the com-
putation of the candidate list C, i.e., Line 5 of the sequential
algorithm in Fig. 3. For computing the candidate list to assign
edges incident on a vertex U, we need to consider all other
vertices v with non-zero degrees dy as potential — candidates;
and we parallelize this step. While considering a particular
vertex V as a candidate, we need to check whether ©P u Vis
a graphical sequence using the Erdos-Gallai characterization.
If ©b,v is graphical, then v is added to the candidate list C.
The time complexity of the best known sequential algorithm
for testing the Erdés-Gallai characterization is O (n) [14, 35].
Thus to have an efficient parallel algorithm for generating
random graphs, we need to use an efficient parallel algorithm
for checking the Erdés-Gallai characterization. In Section IV,
we present an efficient parallel algorithm for checking the
Erdés-Gallai characterization that runs in o !%+ log P)time.

3316

I.E—g@ [initially empty set of edges
| Assign the edges until the degree of
each vertex reduces to 0

2: while D £ 0 do

3: Select the least u such that d, is a minimal positive
degree in D

4 Cey B candidate list

fl Assign all dy, edges incident on u

5: whiled, € 0do

6: if C = Othen A

7: Fe{vBu:(uveE d>0}

8: else

9: F—C

10: Ceyg

[l compute the candidate list

1L for each v € F in parallel do ()

12: flag < PARALLEL-ERDOS-GALLAI "H7 ,

13: ifflag= T RUE then

14: C—cCu{vy Bvis a candidate

15: ifdy = ICl then

16: for each v € C in parallel do

17: E—EU{(yVv)}

18: 0,

19: break

Assign an edge (u,Vv) from C

20: v «a random candidate in C where probability of
selecting v is proportional to dy

21 E—EuU{(uv

22: D« EB,\;{ (. v}

23: C—C-{v}

24: Output E final set of edges

Fig. 4: A parallel algorithm for generating a random graph
with a prescribed degree sequence.

The parallel algorithm for the Erdds-Gallai characterization
returns 7RUE if the given degree sequence is graphical and
FALSE otherwise.

Once the candidate list is computed, if the degree of u is
equal to the cardinality [C| of the candidate list, then new
edges are assigned between U and all candidate vertices V in
the candidate list C in parallel. Otherwise, like the sequential
algorithm, a candidate vertex Vv is chosen randomly from C, a
new edge (u, V) is assigned, the degree sequence D is updated
by reducing the degrees of each of v and v by 1, and the
process is repeated until dy is reduced to 0. After assigning
all edges incident on vertex u, the algorithm proceeds with as-
signing edges incident on the next vertex having the minimum
positive degree in D and so on. We present the pseudocode of
our parallel algorithm for generating random graphs in Fig. 4.
Theorem 1. The parallel algorithm for generating random

graphs maintains an exact stochastic process as that of the
sequential algorithm and preserves all mathematical and
theoretical results of the sequential algorithm.

Proof. The parallel algorithm always selects the vertex u with
the minimum degree in the sequence (Line 3), assigns dy
edges incident on U (Lines 5-23), and then proceeds with the

