
2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 1

Finding and counting tree-like subgraphs using
MapReduce

Zhao Zhao, Langshi Chen, Mihai Avram, Meng Li, Guanying Wang, Ali Butt, Maleq Khan,
Madhav Marathe, Judy Qiu, Anil Vullikanti

Abstract—Several variants of the subgraph isomorphism problem, e.g., finding, counting and estimating frequencies of subgraphs in
networks arise in a number of real world applications, such as web analysis, disease diffusion prediction and social network analysis.
These problems are computationally challenging in having to scale to very large networks with millions of vertices. In this paper, we
present SAHAD, a MapReduce algorithm for detecting and counting trees of bounded size using the elegant color coding technique
developed by N. Alon et al. SAHAD is a randomized algorithm, and we show rigorous bounds on the approximation quality and the
performance of it. SAHAD scales to very large networks comprising of 107 − 108 vertices and 108 − 109 edges and tree-like (acyclic)
templates with up to 12 vertices. Further, we extend our results by implementing SAHAD in the Harp framework, which is more of a
high performance computing environment. The new implementation gives 100x improvement in performance over the standard
Hadoop implementation and achieves better performance than state-of-the-art MPI solutions on larger graphs.

Index Terms—subgraph isomorphism, color coding, approximation algorithm, MapReduce, Hadoop, Harp

1 INTRODUCTION

GIVEN two graphs G andH , the subgraph isomorphism
problem asks if H is isomorphic to a subgraph of G.

The counting problem associated with this seeks to count
the number of copies of H in G. These and other variants
are fundamental problems in Network Science and have a
wide range of applications in areas such as bioinformatics,
social networks, semantic web, transportation and public
health. Analysts in these areas tend to search for meaningful
patterns in networked data; and these patterns are often spe-
cific subgraphs such as trees. Three different variants of sub-
graph analysis problems have been studied extensively. The
first version involves counting specific subgraphs, which
has applications in bioinformatics [4], [20]. The second
involves finding the most frequent subgraphs either in a
single network or in a family of networks—this has been
used in finding patterns in bioinformatics (e.g., [24]), recom-
mendation networks [26], chemical structure analysis [34],
and detecting memory leaks [29]. The third involves find-
ing subgraphs which are either over-represented or under-
represented, compared to random networks with similar
properties—such subgraphs are referred to as “motifs”. Milo
et al. [30] identify motifs in many networks, such as protein-

• Zhao Zhao, Ali Butt, Madhav Marathe and Anil Vullikanti are with the
Network Dynamics and Simulation Science Laboratory, Biocomplexity
Institute & Department of Computer Science, Virginia Tech, VA, 24061.
E-mail: zhaozhao@vt.edu, butta@cs.vt.edu, mmarathe@vt.edu, vsaku-
mar@vt.edu

• Maleq Khan is with the Department of Electrical Engineering and Com-
puter Science, Texas A&M University-Kingsville.
E-mail: maleq.khan@tamuk.edu

• Langshi Chen, Mihai Avram, and Meng Li are with the Computer Science
Department, Indiana University.
Email: lc37@indiana.edu, mavram@umail.iu.edu, li526@umail.iu.edu

• Judy Qiu is with the Intelligent Systems Engineering Department, Indi-
ana University.
Email: xqiu@indiana.edu

• Guanying Wang is working with Google Inc.
Email: wang.guanying@gmail.com

protein interaction (PPI) networks, ecosystem food webs
and neuronal connectivity networks. Subgraph counts have
also been used in characterizing networks [32].

The Subgraph Isomorphism problem and its variants
is well known to be as computationally challenging as a
NP-complete problem. In general the decision version of
the problem is NP-hard, and the counting problem is #P-
hard. Extensive work has been done in theoretical computer
science on this problem; we refer the reader to the recent
papers by [13], [16], [28] for an extensive discussion on
the decision and counting complexity of the problem and
tractable results for various parameterized versions of the
problem.

The primary focus of this paper is on the three men-
tioned variants of the subgraph isomorphism problemwhen
k, the number of vertices in the template H , is fixed. Letting
n be the number of vertices in G, one can immediately get
simple algorithms with running time O(nk) to find and
count the number of copies of template H in G. Note that
in this paper we focus on non-induced subgraph matching.
When the template is a tree or has a bounded treewidth,
Alon et al. [4] present an elegant randomized approxima-
tion algorithm with running time O(k|E|2kek log (1/) 1

2),
where and are error and confidence parameters, respec-
tively, based on the color coding technique. Their result was
significantly improved by Koutis and Williams [23] who
gave an algorithm with running time of O(2k|E|).

A lot of practical heuristics have also been developed for
various versions of these problems, especially for the fre-
quent subgraph mining problem. An example is the “Apri-
ori” method, which uses a level-wise exploration of the
template [22], [24], in generating candidates for subgraphs
at each level; these have been made to run faster by better
pruning and exploration techniques, e.g., [19], [24], [44].
Other approaches in relational databases and data mining
involve queries for specifically labeled subgraphs, and have

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 2

combined relational database techniques with careful depth-
first exploration, e.g., [8], [35], [36].

Most of these approaches are sequential, and generally
scale to modest size graphs G and templates H . Paral-
lelism is necessary to scale to much larger networks and
templates. In general, these approaches are hard to par-
allelize as it is difficult to decompose the task into inde-
pendent subtasks. Furthermore, it is not clear if candidate
generation approaches [19], [24], [44] can be parallelized
and scaled to large graphs and computing clusters. Two
recent approaches for parallel algorithms, related to this
work, are [8], [46]. The approach of Bröcheler et al. [8]
requires a complex preprocessing and enumeration process,
which has high end-to-end time, while the approach of [46]
involves an MPI-based implementation with a very high
communication overhead for larger templates. Two other
papers [31], [40] develop MapReduce based algorithms for
approximately counting the number of triangles with a
work complexity bound of O(|E|). The development of par-
allel algorithms for subgraph analysis with rigorous poly-
nomial work complexity, which are implementable on het-
erogeneous computing resources remains an open problem.
Due to the complexity of enumerating subgraphs, people
propose to compute some metrics of the subgraph which is
anti-monotone to the subgraph size. The algorithm reported
in [3] is capable of computing subgraph support on large
networks with up to 1 Billion edges. However, it requires
each machine to have a copy of the graph in memory
which limits its scalability to larger graphs. Additionally,
computing support requires much less computational effort
than counting subgraphs. Another recent work also employs
MapReduce to match subgraphs [39] which scales to net-
works with up to 300 million edges.

Other approaches studied in the context of data mining
and databases, e.g., [8], [35], [36], are capable of processing
large networks, but are usually slow due to limitations of
database techniques for processing networks.
Our contributions. In this paper, we present SAHAD, a
new algorithm for Subgraph Analysis using Hadoop, with
rigorously provable polynomial work complexity for several
variants of the subgraph isomorphism problem when H is
a tree. SAHAD scales to very large graphs, and because
of the Hadoop implementation, runs flexibly on a variety
of computing resources, including Amazon EC2 cloud. In
addition, we developed HARPSAHAD+ which is an adap-
tation of SAHAD in the Harp [33] framework to utilize its
advanced MPI-like collective communication. It scales to
graphs with up to 1.2 billion edges and achieves two orders
of magnitude improvement in performance over SAHAD.

Our specific contributions are discussed below.
1. SAHAD is the first MapReduce-based algorithm for

finding and counting labeled trees in very large networks.
The only prior Hadoop based approaches have been on
triangles [31], [40], [41] on very large networks, or more
general subgraphs on relatively small networks [27]. Our
main technical contribution is the development of a Hadoop
version of the color coding algorithm of Alon et al. [4], [5],
which is a (sequential) randomized approximation algo-
rithm for subgraph counting. It is a randomized approxima-
tion algorithm that for any , , gives a (1±) approximation
to the number of embeddings with probability at least

1 − 2 . We prove that the work complexity of SAHAD is
O(k|EG|22kek log (1/) 1

2), which is more than the running
time of the sequential algorithm of [4] by just a factor of 2k.

2. We demonstrate our results on instances generated
using the Erdös-Renyi random graph model, the Chung-
Lu random graph model and on synthetic social contact
graphs for Miami city and Chicago city (with 52.7 and
268.9 million edges, respectively), constructed using the
methodology of [7]. We study the performance of counting
unlabeled/labeled templates with up to 12 vertices. The
total running times for templates with 12 vertices on Miami
and Chicago networks are 15 and 35 minutes, respectively;
note that these are the total end-to-end times, and do not
require any additional pre-processing (unlike, e.g. [8]).

3. SAHAD runs easily on heterogeneous computing re-
sources, e.g., it scales well when we request up to 16 nodes
on a medium size cluster with 32 cores per node. Our
Hadoop based implementation is also amenable to running
on public clouds, e.g., Amazon EC2 [6]. Except for a 10-
vertex template which produces an extremely large amount
of data so as to incur the I/O bottleneck on the virtual
disk of EC2. It is worth noting here that the performance
of SAHAD on EC2 is almost the same as on the local
cluster. This would enable researchers to perform useful
queries even if they do not have access to large resources,
such as those required to run previously proposed querying
infrastructures. We believe this aspect is unique to SAHAD
and lowers the barrier-to-entry for scientific researchers to
utilize advanced computing resources.

4. We study the performance improvement for some
extensions of the standard Hadoop framework. The en-
hanced algorithm is called EN-SAHAD. First, we consider
techniques to explicitly control the sorting and inter parti-
tion communications in Hadoop. We find that reducing the
sorting step by pre-allocating can improve the performance
by about 20%.

5. Finally, we implement SAHAD within the Harp [33]
framework – the new algorithm is called HARPSAHAD+.
HARPSAHAD+ yields two order of magnitude improve-
ment in performance, as a result of its flexibility in task
scheduling, data flow control and in memory cache. We are
therefore able to scale to networks with up to billions of
edges using the HARPSAHAD+ and obtain a comparable
performance when compared to a state-of-the-art MPI/C++
implementation.
Organization. Section 3 introduces the background of the
subgraph counting problem and MapReduce, as well as
the open-sourced implementation Hadoop and the Harp
system. Then in Section 4, we give a brief overview of the
color coding algorithm proposed by Alon et. al in [4]. In
Section 5 we present our MapReduce implementations and
its variations including SAHAD, EN-SAHAD and HARPSA-
HAD+. In Section 6 we study the computation cost of our
algorithm. Section 7 discusses various experiment results
and findings. Finally, Section 8 concludes the paper.
Extension from conference version. The SAHAD algorithm
appeared in [47]. The results on EN-SAHAD and HARPSA-
HAD+ are new additions. Since the publication of [47], there
has been more work done on parallelizing the color coding

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 3

technique, e.g., [37], [38]. However, none of these have been
based on MapReduce and its generalizations.

2 RELATED WORK

As mentioned earlier, the subgraph isomorphism problem
and its variant has been studied extensively by theoreti-
cal computer scientists; see [13], [16], [17], [21], [28], [42]
for complexity theoretic results. Marx and Pilipczuk [28]
undertake a comprehensive study of the decision problem
and provide strong lower bounds including fixed parameter
intractability results. They also study the complexity of the
problem as a function of structural properties of G and H .

A variety of different algorithms and heuristics have
been developed for different domain specific versions of
subgraph isomorphism problems. One version involves
finding frequent subgraphs, and many approaches for this
problem use the Apriori method from frequent item set min-
ing [18], [22], [24]. These approaches involve candidate gen-
eration during a breadth first search on the subset lattice and
a determination of the support of item sets by a subset test.
A variety of optimizations have been developed, e.g., using
a depth first search order to avoid the cost of candidate
generation [19], [44] or pruning techniques, e.g., [24]. A re-
lated problem is that of computing the “graphlet frequency
distribution”, which generalizes the degree distribution [32].

Another class of results for frequent subgraph finding is
based on the powerful technique of “color coding” (which
also forms the basis of our paper), e.g., [4], [20], [46], which
has been used for approximating the number of embeddings
of templates that are trees or “tree-like”.

In [4], Alon et al. use color coding to compute the
distribution of treelets with sizes 8, 9 and 10, on the protein-
protein interaction networks of Yeast. The color coding
technique is further explored and improved in [20], in terms
of worst case performance and practical considerations. For
example, by increasing the number of colors, they speed up
the color coding algorithmwith up to 2 orders of magnitude.
They also reduce the memory usage for minimum weight
paths finding, by carefully removing unsatisfied candidates,
and reducing the color set storage. A recent work developed
by Venkatesan et al. [10] extends color coding to subgraphs
with treewidth up to 2, and they scale their algorithm to
graphs with up to 2.7 million edges.

Most of these approaches in bioinformatics applications
involve small templates, and have only been scaled to
relatively small graphs with at most 104 vertices (apart
from [46], which shows scaling to much larger graphs
by means of a parallel implementation). Other settings in
relational databases and data mining have involved queries
for specific labeled subgraphs. Some of the approaches for
these problems have combined relational database tech-
niques, based on careful indexing and translation of queries,
with such depth-first exploration strategy that is distributed
over different partitions of the graph e.g., [8], [35], [36],
and scale to very large graphs. For instance, Bröcheler
et al. [8] demonstrate labeled subgraph queries with up
to 7-vertex templates on graphs with over half a billion
edges, by carefully partitioning the massive network using
minimum edge cuts, and distributing the partitions on 15
computing nodes. A shared-memory parallelization with an

OpenMP implementation of the color coding approach is
given in [37]. This algorithm achieves a speed up of 12 in
a graph with 1.5 million vertices and 31 million edges. A
more recent work [38] parallelizes the dynamic processing
of the color-coding algorithm to enumerate subgraphs and
is able to handle networks as large as 2 billion edges, with
template size up to 10 vertices.

3 BACKGROUND

3.1 Preliminaries and problem statement

We consider labeled graphs G = (VG, EG, L, G), where
VG and EG are the sets of vertices and edges, L is a set
of labels and G : V L is a labeling on the vertices.
A graph H = (VH , EH , L, H) is a non-induced subgraph
of G if we have VH VG and EH EG. We say that
a template graph T = (VT , ET , L, T) is isomorphic to a
non-induced subgraph H = (VH , EH , L, H) of G if there
exists a bijection f : VT VH such that: (i) for each
(u, v) ET , we have (f(u), f(v)) EH , and (ii) for each
v VT , we have T (v) = H(f(v)). In this paper, we
assume T is a tree. We will consider trees to be rooted,
and use = (T) VT to denote the “root” of T , which
is arbitrarily chosen. If T is isomorphic to a non-induced
subgraph H with the mapping f(·), we also say that H is a
non-induced embedding of T with the root (T) mapped to
vertex f((T)). Figure 1 shows an example of a non-induced
embedding of template T in a graph G. Let emb(T,G)
denote the number of all embeddings of template T in
graph G, taking automorphisms into account. Therefore, an
embedding H will be counted only once here even if there
exist multiple mappings f(·) that map T to H . Here, we
focus on approximating emb(T,G).

GT v1

v2

v3

v6
v9

v8

v7

v5

v4
u1

u2

u3

u4

Fig. 1: Here the shaded subgraph is a non-induced embed-
ding of T. The mapping of the template to the subgraph is
denoted with the arrow.

An (,)-approximation to emb(T,G). We say that a
randomized algorithm A produces an (,)-approximation
to emb(T,G), if the estimate Z produced by A satisfies:
Pr[|Z−emb(T,G)| > ·emb(T,G)] 2 ; in other words,A
is required to produce an estimate that is close to emb(T,G),
with high probability.

3.2 MapReduce, Hadoop and Harp

MapReduce and its extensions have become a dominant
computation model in big data analysis. It involves two
stages for data processing: (a) dividing the input into dis-
tinct map tasks and distributing to multiple computing
entities, and (b) merging the results of individual computing
entities in the reduce tasks to produce the final output [14].

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 4

The MapReduce model processes data in the form of
key-value pairs k, v . An application first takes pairs of
the form k1, v1 as input to the map function, in which
one or more k2, v2 pairs are produced for each input
pair. Then the MapReduce re-organizes all k2, v2 pairs and
aggregates all items v2 that are associated with the same key
k2, which are then processed by a reduce function.

Hadoop [43] is an open-sourced implementation of
MapReduce. By defining application specific map and re-
duce functions, the user can employ Hadoop to manage
and allocate appropriate resources in order to perform the
tasks, without knowing the complexity of load balancing,
communication and task scheduling. Due to the reliability
and scalability in handling vast amount of computation in
parallel, Hadoop is becoming a de facto solution for large
parallel computing tasks.

Hadoop falls short in two aspects though: (i) the high
I/O cost involved within the mapper, shuffling and the
reducer since the data is always read and write from the
disk in every stage of a Hadoop job and (ii) global synchro-
nization of the mapper and reducer, i.e. reducers can start
only when all mappers have completed their tasks and vice
versa, thus reducing the efficient usage of the computing
resources. To conquer the problems that Hadoop is facing,
we further extend our work to use the Harp platform [33].

Harp introduces full collective communication (broad-
cast, reduce, allgather, allreduce, rotation, regroup or push
& pull), adding a separate communication abstraction. The
advantage of in-memory collective communication replac-
ing the shuffling phase is that fine-grained data alignment
and data transfer of many synchronization patterns can be
optimized.

Harp categorizes four types of computation models
(Locking, Rotation, Allreduce, Asynchronous) that are based
on the synchronization patterns and the effectiveness of
the model parameter update. They provide the basis for
a systematic approach to parallelizing iterative algorithms.
Figure 2 shows the four categories of the computing model.

Fig. 2: Harp has 4 computation models: (A) Locking,(B)
Rotation, (C) AllReduce, (D) Asynchronous

The Harp framework has been used by 350 students
at Indiana University for their course projects. Now it has
been released as an open source project that is available at
the public github domain [1]. Harp provides a collection of

iterative machine learning and data analysis algorithms (e.g.
Kmeans, Multi-class Logistic Regression, Random Forests,
Support Vector Machine, Neural Networks, Latent Dirichlet
Allocation, Matrix Factorization, Multi-Dimensional Scal-
ing) that have been tested and benchmarked on OpenStack
Cloud and HPC platforms including Haswell and Knights
Landing architectures. It has also been used for Subgraph
mining, Force-Directed Graph Drawing, and Image classifi-
cation applications.

4 THE SEQUENTIAL ALGORITHM: COLOR CODING

TABLE 1: Notations

symbol description symbol description
G graph T, T ′, T ′′ template and sub-templates
n, m # vertices, # edges k # vertices in T
ρ root of T S, si color set, the i t h color

d(v) degree of vertex v N (v) neighbors of vertex v

We briefly introduce the color coding algorithm for
subgraph counting [5], which gives a randomized approx-
imation scheme for counting trees in a graph. Some of the
notation used in the paper is listed in Table 1.
High level description. There are two main ideas underly-
ing the color coding algorithm of [5].
1) Colorful embeddings:

Color the vertices of the graph with k colors where
k |VT |, and only count “colorful” embeddings—an
embedding H of the template T is colorful if each vertex
in H has a distinct color. The advantage of this is that
the number of colorful embeddings can be counted by a
simple and natural dynamic program.
a) In particular, let C(v, T (), S) be the number of color-

ful embeddings of T with vertex v VG mapped to
the root , and using the color set S, where |VT | = |S|.

b) Suppose (= u1, u2) is an edge incident on the root
vertex in T . Let tree T be partitioned into trees T1 and
T2 when the edge (u1, u2) is removed, with roots 1 =
u1 and 2 = u2 of the trees T1 and T2, respectively.

c) Suppose S1 and S2 are disjoint subsets of colors such
that |S1| = |VT1 |, |S2| = |VT2 |. Let H1 and H2 be two
colorful embeddings of T1 and T2 using color sets S1

and S2, respectively, with 1 and 2 mapped to neigh-
boring vertices v1 VG and v2 VG, respectively.
Then,H1 andH2 must be non-overlapping, because they
have distinct colors.

d) Therefore,

C(v1, T, S) =
v2 N(v1) S=S1 S2

C(v1, T1(v1), S1)·

C(v2, T2(v2), S2),

where the first summation is over all neighbors v2 of v1
and the second summation is over all partitions S1 S2

of S.
2) Random colorings: If the coloring is done randomly with

k = |VT | colors, there is a reasonable probability k!
kk

that
an embedding is colorful—this allows us to get a good
approximation of the number of embeddings.
Algorithm 1 describes the sequential color coding algo-

rithm. Figure 3 gives an example of computing Eq. 1.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 5

Algorithm 1 The sequential color coding algorithm.

1: Input: Graph G = (V,E) and template T = (VT , ET)
2: Output: Approximation to emb(T,G)
3:
4: For each v VG, pick a color c(v) S = {1, . . . , k}

uniformly at random, where k = |VT |.
5: Partition the tree T into subtrees recursively to form a

set T using algorithm PARTITION(T ()). For each tree
T ′ T , we have a root ′. Furthermore, if |VT ′| > 1,
T ′ is partitioned into two trees T ′

1, T
′
2 with roots ′

1 = ′

and ′
2, respectively, which are referred to as the active

and passive children of T ′.
6: For each v VG, Ti T with root i, and subset Si S,

with |Si| = |Ti|, we compute C(v, Ti(i), Si) using the
the recurrence (1) below:

c(v, Ti(i), Si) =
1
d

u

c(v, T ′
i (i), S

′
i)·

c(u, T ′′
i (i), S

′′
i),

(1)

where d is equal to one plus the number of siblings of i

which are roots of subtrees isomorphic to T ′′
i (i).

7: For the jth random coloring, let

C(j) = 1
q
kk

k!

∑
v VG

c(v, T (), S), (2)

where q denotes the number of vertices ′ VT such
that T is isomorphic to itself when is mapped to ′.

8: Repeat the above steps N = O(e
k log(1/)

2) times
[5], and partition N estimates C(1), ..., C(N) into t =
O(log(1/)) sets. Let Zj be the average of set j. Output
the median of Z1, ..., Zt.

Algorithm 2 Partition(T ())

1: if T / T then
2: if |VT | = 1 then
3: T T
4: else
5: Add T to T
6: Pick N(), the set of the neighbors of , and

partition T into two sub-templates by cutting the
edge (,)

7: Let T ′ be the sub-template containing (name as
active child) and T ′′ the other (name as passive child)

8: Partition(T ′())
9: Partition(T ′′())

5 PARALLEL ALGORITHMS

In this section, we present a parallelization of the color
coding approach using MapReduce framework, we will
first describe SAHAD [47], followed by EN-SAHAD and
HARPSAHAD+ respectively.

5.1 SAHAD

SAHAD takes a sequence of templates T = {T0, ..., T}
as input. Here T represents a set of templates generated
by partitioning T using Algorithm 2. Then it performs a
MapReduce variation of Algorithm 1 to compute the num-
ber of embeddings of T .

Fig. 3: The example shows one step of the dynamic
programming in color coding. T in Figure 1 is
split into T ′ and T ′′. To count C(w1, T (v1), S), or
the number of embeddings of T (v1) rooted at w1,
using color set S = {red, yellow, blue, purple, green},
we first obtain C(w1, T

′(v1), {r, y, b}) = 2 and
C(w5, T

′′(v3), {p, g}) = 1. Then, C(w1, T (v1), S) =
C(w1, T

′(v1), {r, y, b})C(w5, T
′′(v3), {p, g}) = 2.

The embeddings of T are subgraphs with vertices
{w3, w4, w1, w5, w6} and {w3, w2, w1, w5, w6}. Here
s, c, b represents the label of the vertices. Details of labeled
subgraph counting can be found at [47].

As shown in Equation 1, the counts of all colorful em-
beddings isomorphic to T rooted from a single vertex v is
computed by aggregating the same measurement of T ′ and
T ′′, i.e., the two sub-templates, with T ′ rooted from v and
T ′′ rooted from u N(v). We can parallelize color-coding
algorithm by distributing the computation among multiple
machines, and sending data related with v and N(v) to a
computation unit for the aggregation. In our MapReduce
algorithm, we manage this by assigning v as the key for
both the counts of T ′ rooted at v and the counts of T ′′ rooted
at v’s neighbors, such that all data required for computing
counts for T rooted at v has the same key and will be
handled by a single reduce function.

Let XT,v be a sequence of color-count pairs (S0 =
{s01, s02, ..., s0k}, c0), (S1 = {s11, s12, ..., s1k}, c1), ..., where Si

represents a color set containing k colors, and ci represents
the counts of the subgraphs isomorphic to T and rooted at v
that are colored by Si. Here k = |V (T)|, and each subgraph
is a colorful match.

There are 3 types of Hadoop jobs in SAHAD, which are 1)
colorer (Algorithm 3) that performs line 4 of Algorithm 1; 2)
counter (Algorithm 4, 5) which performs line 6 of Algorithm
1 and 3) finalizer (Algorithm 6, 7) that performs line 7 of
Algorithm 1.

The first step is to randomly color network G with k
colors. The map function is described in Algorithm 3:

Algorithm 3 mapper(v,N(v))

1: Pick si {s1, . . . , sk} uniformly at random
2: color v with si
3: Let T0 be the single vertex template
4: Let c(v, T0, {si}) = 1 since v is the only colorful match-

ing
5: XT0,v {({si}, 1)}
6: Collect(key v, value XT0,v, N(v))

Here “Collect” is a standard MapReduce operation that
will emit the key-value pairs to global space for further

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 6

process such as shuffling, sorting or I/O. N(v) represents
the neighbors of v. Note that template T0 is a single ver-
tex, therefore XT0,v contains only a single color-count pair
(sv, 1)

According to Equation 1, to compute XTi ,v , we need
XT ′

i ,v
for sub-template T ′

i and XT ′′
i ,u for all u N(v) for

sub-template T ′′
i . We use a mapper and a reducer function to

implement this as shown in Algorithm 4 and 5, respectively.

Algorithm 4 mapper(v,Xt,v, N(v))

1: if t is T ′
i then

2: Collect(key v, value Xt,v, f lag
′)

3: else
4: for u N(v) do
5: Collect(key u, value Xt,v, f lag

′′)

Note that in Algorithm 4, the second Collect emits XT ′′
i ,v

to all its neighbors. Therefore, as shown in Algorithm 5,
XT ′

i ,v
andXT ′′

i ,u from all u N(v) are handled by the same
reducer, which is sufficient for computing Eq. 1. Also note
that for a given vertex v, the number of entries with flag′ is
1, and the number of entries with flag′′ equals |N(v)|.

Algorithm 5 reducer(v, (X, flag), (X, flag), ...)

1: pick X1 where flag = flag′

2: for all colorset S′
i from X1 do

3: for each X other than X1 do
4: for all colorset S′′

i from X do
5: if S′

i S′′
i = then

6: c(v, Ti, S
′
i S′′

i)+ = 1
7: Collect(key v, value XTi ,v, N(v))

The last step is to compute the total count described in
Eq. 2, and is shown in Algorithm 6 and 7.

Algorithm 6 mapper(v,XT,v, N(v))

1: Collect(key “sum′′, value XT,v)

Algorithm 7 reducer(“sum′′, XT,v1 , XT,v2 , ...)

1: Y = mm

m! · 1
q

∑
∀v∈VG

X
2: Collect(key “sum′′, value XT,v)

Note that in Algorithm 6, XT,v only contains one ele-
ment, which is the count corresponding to the entire color
set. Then in the reducer shown in Algorithm 7, all the
counts are added together and properly factorized, to obtain
the final count. For a comprehensive description of the
MapReduce version of color coding, please refer to [47].

5.2 EN-SAHAD

For general MapReduce problems, the set of keys that are
processed in the Mapper and Reducer vary among different
jobs. Therefore, MapReduce uses external shuffling and
sorting in-between Mappers and Reducers to deploy the
keys to computing nodes.

In our algorithm, however, the dynamic program aggre-
gates counts based on the root vertex of the subtree, and
therefore the key is the vertex index v. In EN-SAHAD, we
use this pre-knowledge to predefine a reducer that corre-
sponds to a set of vertices. We also assign the predefined
reducers to computing nodes prior to the beginning of the
dynamic program. Therefore, a data entry with key v will be
directly sent to the corresponding computing node and pro-
cessed by designated Reducer. Using this mechanism, we
can reduce the cost of shuffling and sorting in intermediate
stage of Hadoop jobs.

5.3 HARPSAHAD+

HARPSAHAD+ is built upon the Harp framework [45] [11],
which adopts a variety of advanced technologies in the
research area of high performance Java. HARPSAHAD+
has the following optimizations when compared to the
MapReduce Sahad version: 1) It uses a two-level parallel
programming model. At the inter-node level, workload is
distributed by Harp mappers; At the intra-node level, local
workload is divided and assigned to multiple Java threads.
2) For inter-node communication, it utilizes a MPI-AlltoAll
like regroup operation owned by Harp. 3) For intra-node
computation, it utilizes Habanero Java thread library from
Rice University [9] and adopts a Long-Running-Thread pro-
gramming style [15] to unleash the potential performance of
the Java language.

5.3.1 Inter-Node Communication
In SAHAD, the template counts of a vertex v and all of its
neighbours N(v) are assigned the same key value v, there-
fore, they are shuffled into the same reducer to complete the
counting process. In HARPSAHAD+ however, we remove
the reducer module and replace it by a user-defined mapper
function. In this function, the whole set of vertices V is
distributed and cached into the memory space of p Harp
mappers. Furthermore, each mapper i holds a subset of ver-
tices Vi where si = |Vi|. In the mapper function, we create
a table LTable with si entries, and each entry 0 j < si
serves as a “reducer” for vertex vj . HARPSAHAD+ then
uses a regroup operation to “shuffle” the data within the
memory in a collective way. Additionally, each mapper
function creates another Harp Table object RTable, contain-
ing multiple partitions, to transfer data. A preprocessing
function is fired to record re-usable information required by
regroup operations in each iteration. In the preprocessing
stage, each mapper holds a copy of all the vertex IDs v and
the mapper ID j, v Vj by an allgather communication
operation. The mapper then parses the neighbour lists N(v)
of all the local vertices Vi and labels each vertex u, where
u N(v) but u / Vi, with a mapper ID j that satisfies
u Vj . Therefore, each mapper i keeps a queue of vertex
IDs for each mapper j = i with v Qi,j , v Vj . By
sending Qi,j to mapper j, finally each mapper j obtains a
sending queue Qj,i of vertices.

In each iteration of HARPSAHAD+, the regroup opera-
tion fired by mapper i has three steps: 1) For each sending
queue Qi,j , subtemplate counts of v are loaded for sending
queue Qi,j into a partition Pari,j of RTable. 2) The sender
and receiver mapper identities, i and j, are coded into a

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 7

single partition ID for Pari,j . During the collective regroup-
ing, a designed Harp partitioner will decode the partition
ID and deliver the partition Pari,j to the receiver mapper
j. 3) After the regroup operation, the Harp Table RTable of
each mapper i now contains counts of vertices u N(v) to
update subtemplate counts of local vertices v in the LTable.

5.3.2 Intra-Node Computation
HARPSAHAD+ extends the MapReduce framework by tak-
ing advantage of the multi-threading programming model
in a shared-memory node. We favor the Habanero Java
threads instead of the Java.lang.Thread implementation be-
cause it allows users to set up thread affinity in multi-
core/many-core processors. We also embrace the so-called
Long-Running-Thread programming style, where we create
the threads at the outermost loop and keep them running
until the end of the program. This approach avoids the
overhead of frequently creating and destroying threads, and
instead uses the java.util.concurrent.CyclicBarrier object to
synchronize threads if required.

6 PERFORMANCE ANALYSIS

In this section, we discuss the performance of SAHAD in
terms of the overall work and time complexity. Throughout
this section, we denote the number of vertices and edges in
the network by n and m respectively. Similarly we use k to
represent the number of vertices in the template.
Lemma 6.1. For a template Ti, suppose the sizes of the two

sub-templates T ′
i and T ′′

i are k′i and k′′i , respectively.
As a result, the sizes of the input, output, and work
complexity corresponding to a vertex v are given below:
• The sizes of the input and output of Algorithm 4 are
O(
(k
k′i

)
+
(k
k′′i

)
+ d(v)) and O(

(k
k′′i

)
d(v)), respectively.

• The size of the input to Algorithm 5 is O(
(k
k′′i

)
d(v)).

Proof For a vertex v, the input to Algorithm 4 involves the
corresponding XT ′

i ,v
and XT ′′

i ,v for T ′
i and T ′′

i , as well as
N(v), which together have size O(

(k
k′i

)
+
(k
k′′i

)
+ d(v)). If

the input is for T ′′
i , Algorithm 4 generates multiple key-

value pairs for a vertex v, in which each key-value pair
corresponds to some vertex u N(v). Therefore, the output
has size O(

(k
k′′i

)
d(v)).

For a given v, the input to Algorithm 5 is the combina-
tion of the above, and therefore, has size O(

(k
k′′i

)
d(v)).

Lemma 6.2. The total work complexity is
O(k|EG|22kek log (1/) 1

2).

Proof For vertex v and each neighbor u N(v), Algorithm
5 aggregates every pair of the form (Sa, Ca) in XT ′

i ,v
, and

(Sb, Cb) in XT ′′
i ,u, which leads to a work complexity of

O(
(k
k′i

) (k
k′′i

)
d(v)). Since |T | k, the total work, over all

vertices and templates is at most

O(
v,Ti

k

k′i

k

k′′i
d(v)) = O(

v

k22kd(v)) = O(k|EG|22k)

(3)
SinceO(ek log (1/) 1

2) iterations are performed in order
to get the (,)-approximation, the lemma follows.

Time Complexity. We use P to denote the number of
machines. We assume each machine is configured to run
a maximum ofM Mappers and R Reducers simultaneously.
Finally, we assume a uniform partitioning, so that each
machine processes n/P vertices.
Lemma 6.3. The time complexity of Algorithm 3 and 4 is

O(n
PM) and O(m

PM), respectively.

Proof We first consider Algorithm 3, which takes as input
an entry of the form (v,N(v)) for some vertex v, and
perform a constant work. There are n

P entries processed by
each machine. Since M Mappers are run simultaneously,
this gives a running time of O(n

PM). Next, we consider
Algorithm 4. Each Mapper outputs (v,X) for input T ′

i and
d entries for input T ′′

i for each u N(v), where d is
the degree of v. Therefore, each computing node performs
O(
∑ n/P

i=1 di) = O(m/P) steps. Here di is the degree for
vi. Again, since M Mappers run simultaneously, the total
running time is O(m

PM).

Lemma 6.4. The time complexity of Algorithm 5 isO(m·22k

PR).

Proof Suppose |S′i| = k′i and |S′′i | = k′′i . The number of
possible color sets S′i and S′′i is

(k
k′i

)
and

(k
k′′i

)
, respectively.

Line 2 of Algorithm 5 involves O(
(k
k′i

)
) = O(2k) steps.

Similarly, line 4 also involves O(2k) steps and Line 3 in-
volves O(d) steps. Therefore the totally running time is
O(d) · 22k. Each machine processes n

P entries corresponding
to different vertices, leading to a total of O(nd·2

2k

P) steps.
Since R reducers run in parallel on each machine, this leads
to a total time of O(m·22k

PR).

Lemma 6.5. The time complexity of Algorithm 6 and 7 is
O(n

PM) and O(n), respectively.

Proof Algorithm 6 maps out a single entry for each input.
Following the same outline as the proof of 6.3, its running
time is O(n

PM). Algorithm 7 will take O(n) time since we
have only one key “sum”, and only one Reducer will be
assigned for the summation for all v V (G), which takes
O(n) time.

Lemma 6.6. The overall running time of SAHAD is bounded
by

O(k2
2k m
P · (1

M + 1
R)ek log (1/) 1

2) (4)

Proof Algorithm 3 takes O(n
PM) time. Algorithm 4 and

5 run for each step of the dynamic programming, i.e.,
joining two sub-templates into a larger template as shown
in Figure 3. Since the number of total sub-templates is
O(k) when T is a tree, Algorithm 4 and 5 run O(k)

times. Therefore the total time is O(k · (m
PM + m·22k

PR)) =

O(k2
2k m
P · (1

M + 1
R). Finally, the entire algorithm as to be

repeated O(ek log (1/) 1
2) times, in order to get the (,)-

approximation, and the lemma follows.

6.1 Performance Analysis of Intermediate Stage
With SAHAD, a major bottleneck of a Hadoop job in terms
of running time is the shuffling and sorting cost in the
intermediate stage between Mapper and Reducer, due to the

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 8

high I/O and synchronization cost as shown by the black
bar in Figure 4.

Fig. 4: The figure shows the time spent in each stage of a
running Hadoop job to produce a color-count for a 5-vertex
template, by aggregating the 2-vertex and 3-vertex sub-tree.
The black bar is the time for the intermediate stage, which
is for shuffling and sorting.

We observe that the external shuffling and sorting stage
takes roughly twice the time of the reducing stage, which
dramatically increase the overall running time. Given that
the keys in Mappers and Reducers are always the index
of all the vertices v V (G), we can enhance SAHAD
by removing the shuffling and sorting in the intermediate
stages. Instead, we can designate Reducers and directly send
the data to corresponding Reducers.

7 EXPERIMENTAL ANALYSIS OF SAHAD, EN-
SAHAD & HARPSAHAD+
We carry out a detailed experimental analysis of SAHAD,
EN-SAHAD and HARPSAHAD+, by focusing on three as-
pects:

(i) Quality of the solution: We compare the color coding
results with exact counts on small graphs in order to mea-
sure the empirical approximation error of our algorithms
and show that the error is very small (less than 0.5% with
one iteration as shown in Figure 7) so in the following
experiments we run the program for a single iteration.

(ii) Scalability of the algorithms as a function of template size,
graph size and computing resources: We carried out experi-
ments using templates with sizes ranging from 3 to 12 ver-
tices, including both labeled and unlabeled templates. The
graphs we use go from several hundreds of thousands of
vertices to tens of millions. We also study how our algorithm
scales in terms of computing resources including number of
threads per node, number of computing nodes, as well as
different settings of mappers and reducers, etcetera.

(iv) Enhancing overall performance by system tuning: We
also investigate different components of the system and
their impact to the overall performance. For example, EN-
SAHAD studies the communication and sorting cost in
the intermediate stage of the system and gives approaches
for improvement. Table 2 highlights the main results we
obtained with various methods.

7.1 Experiment Design
7.1.1 Datasets
For our experiments, we use synthetic social contact net-
works of the following cities and regions: Miami, Chicago,
New River Valley (NRV), and New York City (NYC) (see [7]

TABLE 2: Comparison on SAHAD, EN-SAHAD and HARP-
SAHAD+

Method Network Templates Performance
SAHAD 268M edges 12 vertices tens of min for

7 vertex template
on Chicago

EN-SAHAD 12M edges 5 vertices 20% improvement
over SAHAD

HARPSAHAD+ 1.2B edges up to 12 vertices 100-200 times faster
than SAHAD

for detains). We consider demographic labels – {kid, youth,
adult, senior} based on the age and gender for individu-
als. We also run experiments on a G(n, p) graph (denoted
GNP100) with n vertices, where each pair of vertices are
connected with probability p, and are randomly assigned
vertex labels. We also experiment on a few other networks:
Web-Google [2], RoadNet (rNet) [2], Twitter [25] and Chung-
Lu random graphs [12]. Table 3 summarizes the characteris-
tics of the networks.

TABLE 3: Networks used in the experiments

Network No. of vertices(in million) No. of Edges(in million)
Twitter 41.7 1202.5
Miami 2.1 52.7
Chicago 9.0 268.9
NYC 18.0 480.0
NRV 0.2 12.4
rNet 2.0 2.8

GNP100 0.1 1.0
Web-Google 0.9 4.3

7.1.2 Templates
The templates we use in the experiments are shown in
Figure 5. The templates vary in size from 5 to 12 vertices,
in which U5-1,. . .U10-1 are the unlabeled templates and L7-
1 ,L10-1 as well as L12-1 are the labeled templates. In the
labels, m, f, k, y, a and s stand for male, female, kid, youth,
adult and senior, respectively.

U5-1 U5-2 U5-3 U7-1 U10-1

L7-1 L10-1

ms
ma fa

fa
my

my fy

fk
fy fy

fy

fy fa
fa fs fa

fs L12-1

mk

ma

ms mk

ms

my fk

fk

my

mk

ms

ma

Fig. 5: Templates used in the experiments.

7.1.3 Computing Environment
For experiments with SAHAD, we use a computing cluster
Athena, with 42 computing nodes and a large RAM mem-
ory footprint. Each node has a quad-socket AMD 2.3GHz
Magny Cour 8 Core Processor, i.e., 32 cores per node or
1344 cores in total, and 64 GB RAM (12.4 TFLOP peak).
The local disk available on each node is 750GB. Therefore,
we can have maximum 31.5TB storage for the HDFS. In
most of our experiments, we use up to 16 nodes, which
give up to 12TB capacity for the computation. Although

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 9

the number of cores and RAM capacity on each node can
support a large number of mappers/reducers, the avail-
ability of a single disk on each node limits aggregate I/O
bandwidth of all parallel processes on each node. To make it
worse, aggregate I/O bandwidth of parallel processes doing
sequential I/O could result in many extra disk seeks and
hurt overall performance. Therefore, disk bandwidth is the
bottleneck for more parallelism in each node. This limitation
is further discussed in section 7.2.2. We also use the public
Amazon Elastic Computing Cloud (EC2) for some of our
experiments. EC2 enables customers to instantly get cheap
yet powerful computing resources, and start the computing
process with no upfront cost for hardware. We allocated 4
High-CPU Extra-Large instances from EC2. Each instance has
8 cores, 7 GB RAM, and two 250 GB virtual disks (Elastic
Block Store Volume).

For experiments with HARPSAHAD+, we use the Juliet
cluster (Intel Haswell architecture) with 1, 2, 4, 8 and 16
nodes. The Juliet cluster contains 32 nodes each with two
18-core 36-thread Intel Xeon E5-2699 processors and 96
nodes each with two 12-core 24-thread Intel Xeon E5-2670
processors. All the nodes used in the experiments are with
Intel Xeon E5-2670 processors and 128 GB memory. All
the experiments are performed on InfiniBand FDR with
10Gbit/s per link.

7.1.4 Performance metrics
We carry out experiments on SAHAD, EN-SAHAD and
HARPSAHAD+. For SAHAD, we measure the approxima-
tion bounds, the impact of Hadoop configuration including
number of Mapper/Reducers and performance on queries
related with various templates and graphs. For enhanced
SAHAD, we measure the performance improvement gained
by eliminating the sorting in the intermediate stage. Then
using Harp, similar to SAHAD, we measure the perfor-
mance impact with various templates and graphs, as well
as the system performance regarding number of computing
nodes. We also compare HARPSAHAD+ and SAHAD to
study the improvement Harp brings.

7.2 Performance of SAHAD

In this section, we evaluate various aspects of the per-
formance. Our main conclusions are summarized below.
Table 4 summarizes the different experiments we perform,
which are discussed in greater details later.

1. Approximation bounds: While the worst case bounds
on the algorithm imply O(ek log (1/) 1

2) rounds to get an
(,)-approximation (see Lemma 6.2), in practice, we find
that far fewer iterations are needed.

2. System performance: We run our algorithm on a
diverse set of computing resources, including the publicly
available Amazon EC2 cloud. Here, we find that our algo-
rithm scales well with the number of nodes, and disk I/O is
one of the main bottlenecks. We posit that employing multiple
disks per node (a rising trend in Hadoop) or using I/O caching will
help mitigate this bottleneck and boost performance even further.

3. Performance on various queries: We evaluate the
performance on templates with sizes ranging from 5 to 12.
Here, we find that labeled queries are significantly faster

than unlabeled ones, and the overall running time is under
35 minutes for these queries on our computing cluster
(described below). We also get comparable performance on
EC2.

7.2.1 Approximation bounds
As discussed in Section 3, the color coding algorithm aver-
ages the estimates over multiple iterations. Figure 6 shows
the error for each iteration in counting U5-1 for Miami and
Web-Google, respectively. It is observed that the standard
deviation for the error is 2% and 0.4% for Miami and Web-
Google, which is very small.

-0.001

-0.0005

 0

 0.0005

 0.001

 5 10 15 20 25 30

Standard deviation = 0.000418088

(a) Miami

-0.04

-0.02

 0

 0.02

 0.04

 5 10 15 20 25 30

Standard deviation = 0.0221689

(b) Web-Google

Fig. 6: Error in counting U5-1 for 30 iteration

In Figure 7, we show that the approximation error is
below 0.5% for the template U7-1 for the GNP100 graph,
even for one iteration. The figure also plots the results based
on using more than 7 colors, which can sometimes improve
the running time, as discussed in [20]. In the rest of the
experiments, we only use the estimation from one iteration,
because of the small error shown in this section. The error
for i iterations is computed using |(

∑
i Zi)/i− emb(T,G)|

emb(T,G) .

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1 2 3 4 5 6 7 8

er
ro

r

number of iterations

size of colorset = 7
size of colorset = 8
size of colorset = 9

size of colorset = 10
size of colorset = 11

Fig. 7: Approximation er-
ror in counting U7-1 on
GNP100.

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14

ru
nn

in
g

tim
e

(m
in

)

number of computing nodes

Miami
GNP100

Fig. 8: Running time for
counting U10-1 vs number
of computing nodes.

7.2.2 Performance Analysis
We now study how the running time is affected by the
number of total computing nodes and number of reduc-
ers/mappers per node. We carry out 3 sets of experiments:
(i) how the total running time scales with the number of
computing nodes; (ii) how the running time is affected by
varying assignment of mappers/reducers per node.

1. Varying number of computing nodes Figure 8 shows
that the running time for Miami reduces from over 200
minutes to less than 30 minutes when the number of com-
puting nodes increases from 3 to 13. However, the curve
for GNP100 does not show good scaling. The reason is that
the actual computation for GNP100 only consumes a small

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 10

TABLE 4: Summary of the experiment results (refer to Section 7.1 for the terminology used in the table)

Experiment Computing resource Template & Network Key Observations
Approximation bounds Athena U7-1 & GNP100 error well below 0.5%
Impact of the number of data nodes Athena U10-1 & Miami, GNP100 scale from 4 hours to 30 minutes with

data nodes from 3 to 13
Impact of the number of concurrent reducers Athena & EC2 U10-1 & Miami performance worsen on Athena
Impact of the number of concurrent mappers Athena & EC2 U10-1 & Miami no apparent performance change
Unlabeled/labeled templates counting Athena & EC2 templates from Figure 5

and networks from Table 3
all tasks complete in less than 35 minutes

portion of the running time, and there is overhead from
managing the mappers/reducers. In other words, the curve
for GNP100 shows a lower bound on the running time in
our algorithm.

2.Varying number of mappers/reducers per node Here
we consider two cases.

2.a. Varying number of reducers per node. Figure 9 shows
the running time on Athena when we vary the number of
reducers per node. Here we fix the number of nodes to be 16
and the number of mappers per node to be 4. We find that
running 3 reducers concurrently on each node minimizes
the total running time. In addition we find that although
increasing the number of reducers per node can reduce the
time for the Reduce stage for a single job, the running time
increases sharply in Map and Shuffle stage. As a result, the
total running time increases with the number of reducers.
This can be explained by the visible I/O bottleneck for
concurrent accessing on Athena, since Athena has only 1
disk per node. This phenomenon is not present on EC2, as
seen from Figure 11b, indicating that EC2 is better optimized
for concurrent disk accessing for cloud usage.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18

ru
nn

in
g t

im
e (

m
in

)

number of reducers per node

(a) Total running time v.s. num-
ber of reducers.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18

ru
nn

in
g t

im
e (

m
in

)

number of reducers per node

mapper
shuffle and sorting

reducer

(b) Running time of job stages
v.s. number of reducers.

Fig. 9: Running time v.s. number of reducers per node

2.b. Varying number of mappers per node. Figure 10 shows
the running time on Athena when we vary the number of
mappers per node while fixing the number of reducers as 7
per node. We find that varying the number of mappers per
node does not affect the performance. This is also validated
in EC2, as shown in Figure 11.

2.c. Reducers’ running time distribution. Figure 12 shows
the distribution of the reducers’ running time on Athena. We
observe that when we increase the number of reducers per
node, the distribution becomes more volatile; for example,
when we concurrently run 15 reducers per node, the reduc-
ers’ completion time vary from 20 minutes to 120 minutes.
This also indicates the bad I/O performance on Athena for
concurrent accessing.

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

ru
nn

in
g t

im
e (

m
in

)

number of mappers per node

(a) Total running time v.s. num-
ber of mappers.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

ru
nn

in
g t

im
e (

m
in

)

number of mappers per node

mapper
shuffle and sorting

reducer

(b) Running time of job stages
v.s. number of mappers.

Fig. 10: Running time v.s. number of mappers per node

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

ru
nn

in
g t

im
e (

m
in

)

number of mappers per node

(a) Total running time v.s. num-
ber of mappers on EC2.

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

ru
nn

in
g t

im
e (

m
in

)

number of reducers per node

(b) Total running time v.s. num-
ber of reducers on EC2.

Fig. 11: Running time w.r.t. number of mappers and reduc-
ers on EC2.

 0

 5

 10

 15

 20

 25

 300 320 340 360 380 400 420 440

nu
m

be
r o

f t
he

 re
du

ce
rs

running time (min)

3 reducers on each node

(a) 3 reducers per computing
node.

 0

 5

 10

 15

 20

 25

 30

 140 150 160 170 180 190 200

nu
m

be
r o

f t
he

 re
du

ce
rs

running time (min)

7 reducers on each node

(b) 7 reducers per computing
node.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180

nu
m

be
r o

f t
he

 re
du

ce
rs

running time (min)

11 reducers on each node

(c) 11 reducers per computing
node.

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140

nu
m

be
r o

f t
he

 re
du

ce
rs

running time (min)

15 reducers on each node

(d) 15 reducers per computing
node.

Fig. 12: Reducers completion time distribution.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 11

7.2.3 Illustrative applications
In this section, we illustrate the performance on 3 different
kinds of queries. We use Athena and assign 16 nodes as
the data nodes; for each node, we assign a maximum of 4
mappers and 3 reducers per node. Our experiments on EC2
for some of these queries are discussed later in Section 7.2.4.

1. Unlabeled subgraph queries: Here we compute the
counts of templates U5-1, U7-1 and U10-1 on GNP100 and
Miami, as well as the running time, as shown in Figure 13
– we observe that for unlabeled templates with up to 10
vertices on the Miami graph, the algorithm runs in less than
25 minutes.

 1e+08
 1e+09
 1e+10
 1e+11
 1e+12
 1e+13
 1e+14
 1e+15
 1e+16
 1e+17

MiamiGNP100

nu
m

be
r o

f s
ub

gr
ap

h m
atc

hi
ng

s

graph

U5-1
U5-2
U5-3
U7-1

U10-1

(a) The counts of unlabeled sub-
graphs.

 0

 5

 10

 15

 20

 25

 30

MiamiGNP100

ru
nn

in
g t

im
e (

m
in

)

graph

U5-1
U5-2
U5-3
U7-1

U10-1

(b) Running time for counting
unlabeled subgraphs.

Fig. 13: Querying unlabeled subgraphs on GNP100 and
Miami

2. Labeled subgraph queries: Here we count the total
number of embeddings of templates L7-1, L10-1 and L12-1
in Miami and Chicago. Figure 14b shows that the running
time for counting templates up to 12 vertices is around 15
minutes on Miami, which is less than 35minutes needed for
Chicago. The running time is much less for the labeled sub-
graph queries than that for the unlabeled subgraph queries.
This is due to the fact that labeled templates contain a much
fewer number of embeddings due to the label constraints.

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

ChicagoMiami

nu
m

be
r o

f s
ub

gr
ap

h m
atc

hi
ng

s

graph

L7-1
L10-1
L12-1

(a) The counts of labeled sub-
graphs.

 0

 5

 10

 15

 20

 25

 30

 35

ChicagoMiami

ru
nn

in
g t

im
e (

m
in

)

graph

L7-1
L10-1
L12-1

(b) Running time for counting
labeled subgraphs.

Fig. 14: Querying labeled subgraphs on Miami and Chicago.

7.2.4 Performance Study with Amazon EC2
On EC2, we run unlabeled and labeled subgraph queries on
Miami and GNP100 for templates U5-1, U7-1, U10-1, L7-1,
L10-1 and L12-1. Here we use the same 4 EC2 instances as
discussed previously, and each node runs up to a maximum
of 2 mappers and 8 reducers concurrently. As shown in
Figure 15, the running time on EC2 is comparable to that
on Athena, except for U10-1 on Miami, which takes roughly
2.5 hours to finish on EC2, but only 25 minutes on Athena.
This is because for large templates and graphs as large as

Miami, the input/output data as well as the I/O pressure on
disks is tremendous. EC2 uses virtual disks as local storage,
which hurt overall performance when dealing with such a
large amount of data.

 0

 2

 4

 6

 8

 10

 12

 14

L12-1L10-1L7-1U10-1U7-1U5-1

ru
nn

in
g t

im
e (

m
in

)

template

unlabeled
labeled

(a) GNP100

 0

 20

 40

 60

 80

 100

 120

 140

L12-1L10-1L7-1U10-1U7-1U5-1

ru
nn

in
g t

im
e (

m
in

)

template

unlabeled
labeled

(b) Miami

Fig. 15: Running time for various templates on EC2.

7.3 Performance of EN-SAHAD

In this section we experiment our algorithms on two real-
world networks NRV and RoadNet and a number of their
shuffled versions. We generate shuffled networks with 20,
40, 60, 80 and 100 percent shuffling ratio, and name them as
nrv20 to nrv100, and rNet20 to rNet100.

As discussed in Section 5.2, a major factor that impacts
the overall performance is the heavy shuffling and sorting
cost in the intermediate stage of a Hadoop job. We mitigate
this factor by designating vertex index v to Reducers, and
pre-allocating Reducers among computing nodes. In this
way, the key-value pairs from Mappers can be directly
sent to corresponding Reducers without being shuffled and
sorted.

Figure 16 shows the overall running time of our algo-
rithm on NRV, RoadNet and their variations. Here we gen-
erate the variations of the graph by shuffling a proportion
of the edges in the graph, e.g., nrv40 is a NRV with 40%
of its edges being shuffled. As a result, we observe that pre-
allocating a Reducer can deliver roughly a 20% performance
improvement.

 0

 100

 200

 300

 400

 500

nrv nrv20 nrv40 nrv60 nrv80 nrv100

ru
nn

in
g t

im
e (

se
c)

graphs

SAHad
Enhanced-SAHad

(a) NRV and its variations

 0

 100

 200

 300

 400

 500

rnet rnet20 rnet40 rnet60 rnet80 rnet100

ru
nn

in
g t

im
e (

se
c)

graphs

SAHad
En-SAHad

(b) RoadNet and its variations

Fig. 16: SAHAD v.s. EN-SAHAD on RoadNet and NRV.

7.4 Performance of HARPSAHAD+
In the following experiments, we evaluate the performance
of HARPSAHAD+ by comparing it with a state-of-the-art
MPI subgraph counting program called MPI-Fascia. MPI-
Fascia is developped by Slota et al. [38], which implements
the same color coding algorithm as SAHAD and HARP-
SAHAD+. MPI-Fascia uses a MPI+OpenMP programming
model. In our tests, it is compiled with g++ 4.4.7 and

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 12

compiler option -O3 as well as OpenMPI 1.8.1. Also, we
choose InfiniBand instead of Ethernet as the interconnect
to test MPI-Fascia and HARPSAHAD+, thus offering more
challenges to the Java based communication operation of
HARPSAHAD+.

7.4.1 Execution Time
In Figure 17a, we observe that HARPSAHAD+ has a 100x
to 200x speedup over SAHAD on a single Haswell node.
This tremendous improvement comes from two sides: 1)
HARPSAHAD+ has a better utilization of the hardware
resources (logical cores) by using Habanero Java threads
and affinity binding. 2) Compared to the disk based shuffle
process of SAHAD, HARPSAHAD+ caches all of the data
in main memory, which significantly reduces the overhead
of data access. In Figure 17, we compare HARPSAHAD+

M iami Web-Google

10

100

1 000

4

2

800

170

8

2

1200

260

Graphs

R
u
n
n
in
g
ti
m
e
(S
ec
)

H arpSahad+ u5-1
SA Had u5-1

H arpSahad+ u7-1
SA Had u7-1

(a) SAHAD vs. HARPSAHAD+

NYC Twit t er
0

2 000

4 000

6 000

355

1 360

546

1 887
1 201

6 874

1 486

7 217

Graph

R
u
n
n
in
g
ti
m
e
(S
ec
)

H arpSahad+ U10-1
M PI -Fascia U10-1
HarpSahad+ U12-2
M PI -Fascia U12-2

(b) HARPSAHAD+ vs. MPI-Fascia

Fig. 17: (a) Test on 1 Haswell Node and each node running
40 threads; (b) Test on 16 Haswell Nodes and each node
running 24 threads

with MPI-Fascia on a Twitter dataset with templates of
large size in a distributed environment of 16 Haswell nodes.
HARPSAHAD+ achieves comparable or even slightly bet-
ter performance than MPI-Fascia, which comes from its
optimized communication operations. Figure 18 illustrates
a breakdown of the execution time into computation and
communication on Twitter with template U12-2. Because
of the highly intensive computation workload, MPI-Fascia
consumes less time in computation thanks to the compiler-
level O3 optimization. However, HARPSAHAD+ as a pure
Java implementation can still achieve almost the same total
counting time with the help of optimized collective commu-
nication operations.

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

HarpSahad+

MPI-Fascia

Count ing T ime in Seconds
Comput at ion Communicat ion

Fig. 18: Breakdown of Time for Twitter-U12-2 on 16 Nodes

7.4.2 Problem Size Scaling
Next we study the performance of HARPSAHAD+ by con-
trolling the number of vertices in a graph while increasing
the number of edges. In this experiment, we use the Chung-
Lu model [12] to generate a series of random graphs given

the degree sequence and its variations of Miami and NYC.
The average degree of the generated random graphs range
from 50 to 150 for Miami and 10 to 100 for NYC. In Figure 19,
the running time generally increases with the number of
edges, which meets the time complexity we propose in
Section 6. For Miami, when the average degree increases
from 50 to 150, the running time only increases by 1.7x.
Also, a tenfold (x10) increase in average degree for the
NYC graph only accounts for less than 2x of an increase
in running time. This indicates that our HARPSAHAD+
implementation maintains good performance in computing
the neighbours of vertices in parallel, which is due to the
high efficiency of Java threads.

CL0 CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9
0

50

100

150

200

110
118

146
136

161 161 157

185 188 188

Graph Name

C
ou
n
ti
n
g
T
im
e
(s
ec
)

H arpSahad+

(a) Miami Dataset

CL0 CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9
0

200

400

600

800

1 000

1 200

1 400

712
777

886
956

1 004
1 049 1 016

1 179

1 312
1 240

Graph Name

C
ou
n
ti
n
g
T
im
e
(s
ec
)

H arpSahad+

(b) NYC Dataset

Fig. 19: (a) Test on Miami graph, Template U10-1, 4 Haswell
Nodes, and 40 threads/node; (b) Test on NYC graph, Tem-
plate U10-1, 4 Haswell Nodes and 40 threads/node;

7.4.3 Varying number of computing nodes

In this section, we study the performance of HARPSAHAD+
as a function of computing resources, i.e., computing nodes
and threads per node. In Figure 20, we compare the inter-
node strong scaling test results between HARPSAHAD+ and
MPI-Fascia. For the NYC dataset, we ran strong scaling tests
on three templates, and the value of the y-axis represents
the speedup on N nodes by dividing the time on a single
node by the time on N nodes. Since the NYC dataset is rela-
tively small for HARPSAHAD+ and MPI-Fascia, both of the
two implementations are not bounded by the computation
overhead, which prevents them from achieving the linear
speedup. However, HARPSAHAD+ (solid lines) still obtains
a better strong scalability than MPI-Fascia (dashed lines).
Furthermore, MPI-Fascia could not run on two nodes due
to a memory capacity bottleneck and it shows no scalability
after 4 nodes. For the Twitter Dataset, HARPSAHAD+ again
outperforms MPI-Fascia after 4 nodes. The speedup is also
improved as Twitter gives a much larger workload than
NYC and HARPSAHAD+ is more bounded by computation
overhead.

8 CONCLUSION

In this paper we described an efficient parallel algorithm
to compute the number of isomorphic embeddings of a
subgraph in very large networks using MapReduce and the
color coding technique. Hence, we first develop SAHAD
– a Hadoop based implementation and also provide per-
formance analysis in terms of work and time complexity.
After observing large sorting, communication and I/O costs
in SAHAD, we further explore two approaches to remedy

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE

Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 13

2 4 8 16
0 2

0 4

0 6

0 8

1

1 2

1 4

0 4

0 6

0 7

0 9

0 4

0 5

0 7

0 8

0 6

0 8

1

1 4

Num of Nodes

S
p
ee
d
u
p
(T
1/
T
n
)

H arpSahad+
U5-1

H arpSahad+
U7-1

H arpSahad+
U10-1

M PI -Fascia
U5-1

M PI -Fascia
U7-1

M PI -Fascia
U10-1

(a) NYC Dataset

2 4 8 16
0

2

4

6

8

2

2 9

4 4

7 2

2

3 1

5 6

8 4

2
2 5

4 3

5 1

Num of Nodes

S
p
ee
d
u
p
(T
1/
T
n
)

H arpSahad+
U3-1

H arpSahad+
U5-1

H arpSahad+
U7-1

M PI -Fascia
U3-1

M PI -Fascia
U5-1

M PI -Fascia
U7-1

(b) Twitter Dataset

Fig. 20: (a) Test on NYC graph each node running 24 threads;
(b) Test on Twitter graph each node running 24 threads

these problems. The first approach called EN-SAHAD, en-
tails the tight coupling of the number of graph vertices to
mappers and reducers, so as to reduce the sorting and shuf-
fling phases of the MapReduce jobs. The second approach
is the implementation of the color coding algorithm using
the Harp framework, called HARPSAHAD+, which employs
collective communication and shared memory to better fa-
cilitate computation and communication. Our experiments
show that HARPSAHAD+ has significantly improved per-
formance when compared to SAHAD — by almost two
orders of magnitude, and simultaneously achieves com-
parable or even better execution time and scalability than
state-of-the-art MPI solutions. HARPSAHAD+ can process
networks with 1.2 Billion edges and 12 vertex templates. We
also explore the performance of these implementations on
different cluster architectures such as EC2 on-demand nodes
and Intel Haswell nodes. As directions for future research,
it would be interesting to devise new algorithms that scale
to larger instances. Additionally, it would be interesting
to implement a variant of these algorithms for restricted
classes of networks.

REFERENCES

[1] Harp. https://dsc-spidal.github.io/harp/.
[2] Snap – stanford network analysis project.

http://snap.stanford.edu/index.html.
[3] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour.

Scalemine: scalable parallel frequent subgraph mining in a single
large graph. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 61.
IEEE Press, 2016.

[4] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. Sahinalp.
Biomolecular network motif counting and discovery by color
coding. Bioinformatics, 24(13):i241, 2008.

[5] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM
(JACM), 42(4):856, 1995.

[6] Amazon. Elastic computing cloud (ec2). http://aws.amazon.
com/ec2.

[7] C. Barrett, R. Beckman, M. Khan, V. Kumar, M. Marathe, P. Stretz,
T. Dutta, and B. Lewis. Generation and analysis of large synthetic
social contact networks. In Winter Simulation Conference, 2009.

[8] M. Bröcheler, A. Pugliese, and V. Subrahmanian. Cosi: Cloud
oriented subgraph identification in massive social networks. In
2010 International Conference on Advances in Social Networks Analysis
and Mining, pages 248–255. IEEE, 2010.

[9] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: The
New Adventures of Old X10. In Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, PPPJ
’11, pages 51–61, New York, NY, USA, 2011. ACM.

[10] V. T. Chakaravarthy, M. Kapralov, P. Murali, F. Petrini, X. Que,
Y. Sabharwal, and B. Schieber. Subgraph counting: Color coding
beyond trees. In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 2–11. Ieee, 2016.

[11] L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang, R. Henschel,
C. Stewart, Z. Zhang, E. Mccallum, T. Zahniser, O. Jon, and J. Qiu.
Benchmarking Harp-DAAL: High Performance Hadoop on KNL
Clusters. In IEEE Cloud 2017, Honolulu, Hawaii, US, June 2017.

[12] F. Chung and L. Lu. Connected components in random graphs
with given expected degree sequences. Annals of combinatorics,
6(2):125–145, 2002.

[13] R. Curticapean and D. Marx. Complexity of counting subgraphs:
Only the boundedness of the vertex-cover number counts. In
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 130–139. IEEE, 2014.

[14] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[15] S. Ekanayake, S. Kamburugamuve, P. Wickramasinghe, and G. C.
Fox. Java thread and process performance for parallel machine
learning on multicore HPC clusters. In 2016 IEEE International
Conference on Big Data (Big Data), pages 347–354, Dec. 2016.

[16] J. Flum and M. Grohe. The parameterized complexity of counting
problems. SIAM Journal on Computing, 33(4):892–922, 2004.

[17] F. V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, and B. Rao.
Faster algorithms for finding and counting subgraphs. Journal of
Computer and System Sciences, 78(3):698–706, 2012.

[18] L. Getoor and C. Diehl. Link mining: a survey. ACM SIGKDD
Explorations Newsletter, 7(2):3–12, 2005.

[19] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal
frequent subgraphs from graph databases. In Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 581–586. ACM, 2004.

[20] F. Hüffner, S. Wernicke, and T. Zichner. Algorithm engineering
for color-coding with applications to signaling pathway detection.
Algorithmica, 52(2):114–132, 2008.

[21] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns.
The complexity of planar counting problems. SIAM Journal on
Computing, 27(4):1142–1167, 1998.

[22] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algo-
rithm for mining frequent substructures from graph data. Princi-
ples of Data Mining and Knowledge Discovery, pages 13–23, 2000.

[23] I. Koutis and R. Williams. Limits and applications of group
algebras for parameterized problems. In Proc. ICALP, pages 653–
664, 2009.

[24] M. Kuramochi and G. Karypis. Finding frequent patterns in a large
sparse graph. Data mining and knowledge discovery, 11(3):243–271,
2005.

[25] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? In WWW ’10: Proceedings of the 19th
international conference on World wide web, pages 591–600, New
York, NY, USA, 2010. ACM.

[26] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence in
a recommendation network. Advances in Knowledge Discovery and
Data Mining, pages 380–389, 2006.

[27] Y. Liu, X. Jiang, H. Chen, J. Ma, and X. Zhang. Mapreduce-
based pattern finding algorithm applied in motif detection for
prescription compatibility network. Advanced Parallel Processing
Technologies, pages 341–355, 2009.

[28] D. Marx and M. Pilipczuk. Everything you always wanted to
know about the parameterized complexity of subgraph isomor-
phism (but were afraid to ask). In 31st International Symposium on
Theoretical Aspects of Computer Science, page 542, 2014.

[29] E. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory
leaks using graph mining on heap dumps. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 115–124. ACM, 2010.

[30] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon. Network motifs: simple building blocks of complex
networks. Science, 298(5594):824, 2002.

[31] R. Pagh and C. Tsourakakis. Colorful triangle counting and a
mapreduce implementation. Arxiv preprint arXiv:1103.6073, 2011.

[32] N. Pržulj. Biological network comparison using graphlet degree
distribution. Bioinformatics, 23(2):e177, 2007.

[33] J. Qiu, S. Jha, A. Luckow, and G. C. Fox. Towards hpc-abds: an
initial high-performance big data stack. Building Robust Big Data
Ecosystem ISO/IEC JTC 1 Study Group on Big Data, pages 18–21,
2014.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2768426, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 14

[34] J. Raymond and P. Willett. Maximum common subgraph isomor-
phism algorithms for the matching of chemical structures. Journal
of computer-aided molecular design, 16(7):521–533, 2002.

[35] R. Ronen and O. Shmueli. Evaluating very large datalog queries
on social networks. In Proceedings of the 12th International Confer-
ence on Extending Database Technology: Advances in Database Technol-
ogy, pages 577–587. ACM, 2009.

[36] S. Sakr. Graphrel: A decomposition-based and selectivity-
aware relational framework for processing sub-graph queries.
In Database Systems for Advanced Applications, pages 123–137.
Springer, 2009.

[37] G. M. Slota and K. Madduri. Fast approximate subgraph counting
and enumeration. In Parallel Processing (ICPP), 2013 42nd Interna-
tional Conference on, pages 210–219. IEEE, 2013.

[38] G. M. Slota and K. Madduri. Parallel color-coding. Parallel
Computing, 47:51–69, 2015.

[39] B. Suo, Z. Li, Q. Chen, and W. Pan. Towards scalable subgraph
pattern matching over big graphs on mapreduce. In Parallel
and Distributed Systems (ICPADS), 2016 IEEE 22nd International
Conference on, pages 1118–1126. IEEE, 2016.

[40] S. Suri and S. Vassilvitskii. Counting triangles and the curse of
the last reducer. In Proceedings of the 20th international conference on
World wide web, pages 607–614. ACM, 2011.

[41] C. Tsourakakis, U. Kang, G. Miller, and C. Faloutsos. Doulion:
Counting triangles in massive graphs with a coin. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 837–846. ACM, 2009.

[42] L. G. Valiant. The complexity of enumeration and reliability
problems. SIAM Journal on Computing, 8(3):410–421, 1979.

[43] T. White. Hadoop: The definitive guide. Yahoo Press, 2010.
[44] X. Yan, X. Zhou, and J. Han. Mining closed relational graphs

with connectivity constraints. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data
mining, pages 324–333. ACM, 2005.

[45] B. Zhang, Y. Ruan, and J. Qiu. Harp: Collective communication on
Hadoop. Proceedings - 2015 IEEE International Conference on Cloud
Engineering, IC2E 2015, pages 228–233, 2015.

[46] Z. Zhao, M. Khan, V. Kumar, and M. Marathe. Subgraph enumer-
ation in large social contact networks using parallel color coding
and streaming. In Parallel Processing (ICPP), 2010 39th International
Conference on, pages 594–603, 2010.

[47] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. Kumar, and M. V.
Marathe. Sahad: Subgraph analysis in massive networks using
hadoop. In Parallel & Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International, pages 390–401. IEEE, 2012.

Zhao Zhao is pursuing his Ph.D degree in Com-
puter Science at Virginia Tech. He is also a Soft-
ware Engineer in Verisign Labs, Verisign Inc. His
research interests are in Network Science and
analytics, especially in the design and analysis
of parallel graph algorithms.

Langshi Chen is a Postdoctoral researcher at
the School of informatics and Computing in Indi-
ana University. His research interests include lin-
ear solvers for HPC systems, energy efficiency
of HPC applications, data intensive machine
learning applications on manycore architectures,
and so forth.

Mihai Avram is currently a Masters student who
is studying Computer Science at Indiana Uni-
versity. His research interests involve applying
various CS sub-domains such as Big Data, High
Performance Computing, IoT, Machine Learning,
HCI, and Data Mining to solve large scale social
problems.

Meng Li is a Computer Science Ph.D. student
in the School of informatics and Computing at
Indiana University. His advisor is Prof. Judy Qiu.
His research interest is distributed systems and
parallel computing.

Guanying Wang earned his PhD in Computer
Science from Virginia Tech in 2012. He is now a
software engineer at Google.

Ali Butt received his Ph.D. degree in Electrical
& Computer Engineering from Purdue University
in 2006. He is a recipient of an NSF CAREER
Award, IBM Faculty Awards, a VT College of En-
gineering (COE) Dean’s award for ”Outstanding
New Assistant Professor”, and NetApp Faculty
Fellowships. Ali’s research interests are in dis-
tributed computing systems and I/O systems.

Maleq Khan is an Assistant Professor in
the Department of Electrical Engineering and
Computer Science at Texas A&M University–
Kingsville. He received his Ph.D. in Computer
Science from Purdue University. His research in-
terests are in parallel and distributed computing,
big data analytics, high performance computing,
and data mining.

Madhav Marathe is a professor of Computer
Science and the Director of the Network Dy-
namics and Simulation Science Laboratory, Bio-
complexity Institute, Virginia Tech. His research
interests include high performance computing,
modeling and simulation, theoretical computer
science and socio-technical systems. He is a
fellow of the IEEE, ACM and AAAS.

Judy Qiu is an associate professor of Intelligent
Systems Engineering in the School of Informat-
ics and Computing at Indiana University. Her re-
search interests are parallel and distributed sys-
tems, cloud computing, and high-performance
computing. Her research has been funded by
NSF, NIH, Intel, Microsoft, Google, and Indiana
University. Judy Qiu leads the Intel Parallel Com-
puting Center (IPCC) site at IU. She is the recip-
ient of a NSF CAREER Award in 2012.

Anil Vullikanti is an Associate Professor in
the Department of Computer Science and the
Biocomplexity Institute of Virginia Tech. His in-
terests are in the areas of approximation and
randomized algorithms, distributed computing,
graph dynamical systems and their applications
to epidemiology, social networks and wireless
networks. He is a recipient of the NSF and DOE
Career awards.

