
Fast Graph Scan Statistics Optimization Using
Algebraic Fingerprints

Jose Cadena, Saliya Ekanayake, and Anil Vullikanti
Network Dynamics and Simulation Science Laboratory (NDSSL), Virginia Tech

Email: {jcadena,esaliya,vsakumar}@vt.edu

Abstract—Graph scan statistics have become popular for
event detection in networks. This methodology involves find-
ing connected subgraphs that maximize a certain anomaly
function, but maximizing these functions is computationally
hard in general. We develop a novel approach for graph scan
statistics with connectivity constraints. Our algorithm APPROX-
MULTILINEARSCAN relies on an algebraic technique called
multilinear detection, and it improves over prior methods for
large networks. We also develop a Pregel-based parallel version
of this algorithm in Giraph, MULTILINEARSCANGIRAPH, that
allows us to solve instances with over 40 million edges, which is
more than one order of magnitude larger than existing methods.

I. INTRODUCTION

Many methods have been proposed for detecting anomalies
or “hotspots” in a graph; among those, graph scan statistics
has become one popular approach in recent years [1], [2], [3].
At a high level, a scan statistic is a function that assigns an
“anomalousness” score to a subgraph, and thus the anomaly
detection problem corresponds to maximizing a suitably de-
fined function over all connected subgraphs—informally, we
want to find the most “interesting” subgraph. However, finding
subgraphs of this kind generalizes NETWORK DESIGN prob-
lems [4], which are very challenging constrained optimization
problems. To cope with the complexity, several heuristics have
been developed over the years, and, while heuristics perform
well for certain types of graphs and particular functions, they
do not give any guarantees on the quality of the solution in
general, which is important in practice because suboptimal
solutions affect the detection power [5]. A different approach
recently proposed in [5] is based on designing fixed parame-
ter tractable algorithms, which is becoming a popular way
of handling NP-complete problems [6]. This gives optimal
solutions for a large class of scan statistics, but constrained
to an “effective” size of k, in time O((2e)km), where m is
the number of edges. All previous methods have only been
shown to scale to networks with less than a few million edges.
There is only one parallel algorithm [7], to the best of our
knowledge, but even that only scales to similar size networks.
We significantly improve these results by designing novel

sequential and parallel algorithms for optimizing graph scan
statistics. Our contributions are:
1. Efficient algorithms for graph scan statistics with guar-
antees. We propose APPROX-MULTILINEARSCAN, which
adapts an algebraic technique for detecting multilinear terms
in multivariate polynomials. Our method can maximize a large

Fig. 1: Summary of results. (Top) Comparison of the running times
for different graph sizes (Section IV-B). Our algorithm, MULTILIN-
EARSCANGIRAPH, is a Pregel algorithm implemented in Giraph, has
rigorous theoretical guarantees (Theorem 3), and scales to graphs with
millions of nodes, in contrast with most previous methods. (Bottom)
Using APPROX-MULTILINEARSCAN, we discover low-vaccination
clusters in the census block group graph of Minnesota (Section IV-E).

class of scan statistics with connectivity constraints, while
having a much lower memory overhead than the methods
of [5], We also develop a Pregel-based distributed algorithm
MULTILINEARSCANGIRAPH, which allows us to scale to very
large instances with over 40 million edges.
2. Experimental results. We evaluate our algorithms on dif-
ferent real and synthetic networks, and we observe significant
improvement over all prior sequential and parallel algorithms.
MULTILINEARSCANGIRAPH improves over FASTCOLCO-
DENP [5] by more than three orders of magnitude in running
time and 1-2 orders of magnitude in memory usage.
3. Case study: finding unvaccinated clusters. We illustrate
our methods by applying them to the task of finding clusters
of low-vaccination in Minnesota.

A preview of our results is presented in Figure 1. Com-
plete details of our algorithms, including missing proofs, and
additional results are presented in the full version [8].

2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 905

II. PRELIMINARIES

A. Graph Scan Statistics
We are given an undirected graph G = (V,E), where V

is a set of n vertices or nodes, and E is a set of m edges.
Each vertex v 2 V has two values associated with it: (1) a
baseline count, b(v)—for instance, the number of people in a
county corresponding to node v—and (2) an event count or
weight, w(v)—for instance, the number of cases of a disease
of interest in county v.
The methodology of graph scan statistics formalizes

anomaly detection as a hypothesis testing problem. Under the
null hypothesis, it is business as usual, and the event counts
for all nodes are generated proportionally to their baseline
counts. Under the alternative hypothesis, there exists a small
connected subset S ✓ V of vertices for which the counts are
generated at a higher rate than outside S. Then, the goal is
to find a set S that maximizes an appropriate scan statistic
function F (S), typically a log-likelihood ratio that compares
event counts to baseline counts. We define a scan statistic in
terms of the event and baseline counts of a node set:

F (S) = F (W (S), B(S),✓),
where W (S) =

P
v2 S w(v) is the total event count or weight

of S, B(S) =
P

v2 S b(v) is the baseline count of the set, and
✓represents possible additional arguments to F .
Depending on the assumptions that are satisfied by the data,

there are two broad types of scan statistics: parametric and
non-parametric. A well-known example of the former is the
Kulldorff scan statistic commonly used in disease surveillance
[9], [10], which assumes baseline counts drawn from a simple
distribution, such as Poisson. See [8] for details of this statistic.
For simplicity, we will focus on non-parametric functions
in this paper; an example is the Berk-Jones scan statistic
(BJ) [11] used for civil unrest events and network intrusion
detection [12], [13]. Each node v has a p-value p(v) 2 [0, 1],
and, for a significance level ↵, the event count w(v) is 1 if
p(v) < ↵(i.e., the node is significant) and 0 otherwise, and
the baseline count is b(v) = 1 for all nodes. This scan statistic
is defined as
max↵↵m a x B(S)

h
W (S)
B(S) log

⇣
W (S)/B(S)

↵
�
+
⇣
1 W (S)

B(S)

�
log
⇣
1 W (S)/B(S)

1 ↵
�i

.

B. Problem Formulation
From the discussion above, the graph anomaly detection

task can be posed as the following constrained optimization
problem: Given a graph G0= (V 0, E0), a scan statistic F (·),
and the associated counts for vertices—represented by vectors
w and b—find a connected subset S0 ✓ V 0 that maximizes
F (S0) = F (W (S0), B(S0),✓). For brevity, we will focus on
non-parametric scan statistics in the rest of the paper, using
the BJ statistic as a working example (our methods extend
to all the other scan statistics described in [8]). As discussed
above, for this function, B(S0) = |S0| is the size of the set.
Finding solutions with constraints on the effective size.
Following [5], we will consider connected subgraphs S0 that
maximize F (S0), with |S0|  k0, where k0 is a parameter. The

u

v

w

s

Input graph G'
constructed based on
specific scan statistic

Weighted graph G
constructed by
refinement

w(v)=4
w(p)=4
w(q)=2

Multiple snapshots of
graph with varying

attributes

p

S'p

S'v

q

S'q
rw

pp q

S={p, w, r, q} has effective size of 4 in G

S

Fig. 2: Example of an input graph G0 and the reduced graph G
constructed using the refinement process of [5]. The anomalous nodes
in G0 are shown in red. (Super-)node p in G represents a set of four
anomalous nodes in G0, denoted by the set S0p of weight W(p) = 4.
The subset S = { p, w, r , q} in the graph G corresponds to a subset
of size 8 in G0, but it has effective size 4 in G.

graph G0 can be transformed G0 ! G by merging connected
subsets S0v of anomalous nodes in G0 to form “supernodes”
v in G using the refinement method discussed in [5]; we use
w(v) to denote the number of anomalous nodes in S0v . This is
illustrated in Figure 4. We refer to keff = |S| as the “effective
solution size” for the set [v2 SS0v , which has size |[v2 SS0v|
keff. In the rest of the paper, we assume that we are given
the preprocessed graph G as input, and the goal is to find a
connected subset S that maximizes F (S), with |S|  keff;
this will be denoted by k, in order to simplify the notation.
Formally, the focus of the paper is the following problem:
Problem 1: Given a graph G = (V,E), scan statistic F (·),

node counts w and b , and parameter k ⌧ |V |, find a con-
nected subset S ✓ V that maximizes F (S) with B(S)  k.

C. Multilinear Detection
Let X = x1, . . . , xn be a set of variables, and let P (X)

be a polynomial, which is a sum of monomials on X . An
example of a polynomial on 4 variables is P (x1, x2, x3, x4) =
x21x2 + x1x2x3 + x2x24. A monomial is called multilinear or
square-free if all its variables have exponent 1; its degree is
the sum of the exponents of all its variables. For instance,
x1x2x3 is a multilinear monomial of degree 3. Given variables
X = x1, . . . , xn and a polynomial P (X), the goal in the k-
Multilinear Detection (k-MLD) problem is to decide whether
or not P (X) has a multilinear monomial of degree exactly
k. Note that P (X) may have an arbitrary number of terms—
i.e., exponential on n. Therefore, the problem is not as trivial
as writing the polynomial explicitly and checking each term.
Rather, we assume that P (X) is given succinctly in a recursive
form, and the decision has to be made without unrolling this
recursion. For brevity, we assume some familiarity with group
algebras; a more detailed discussion of the algebraic concepts
used here is presented in the full version [8].
Algorithm for Multilinear Detection. The main idea in the
algorithm of [14] is that, if we evaluate a polynomial over the
“right” algebra, monomials that have square terms evaluate
to 0̄ (which is the additive identity in the algebra), and the
remaining terms, which are multilinear, do not cancel out, with
high probability. Then, a polynomial P (X) has a k multilinear
term if P (X) 6= 0̄. Let Zk

2 be the group formed by all the k-
dimensional binary vectors, and define the group multiplica-
tion operation as entry-wise XOR. For example, Z22 consists of
the vectors v0 = (0, 0), v1 = (0, 1), v2 = (1, 0), v3 = (1, 1).

906

Now, we define a group algebra Z2[Zk
2]. Each element in the

group algebra is a sum of elements from Zk
2 with coefficients

from Z2 (i.e., either 1 or 0):
P

v2 Zk2
avv, where av 2 {0, 1}.

The addition operator of the group algebra is
X

v 2 Zk2

av v +
X

v 2 Zk2

bv v =
X

v 2 Zk2

(av + bv)v,

where the addition of the coefficients is modulo 2, and the
multiplication is defined as

0

B
@

X

v 2 Zk2

av v

1

C
A

0

B
@

X

u 2 Zk2

bu u

1

C
A =

X

v 2 Zk2

(av · bu) (v · u) .

The key insight in [14] is that, for any vi 2 Zk
2 , the square

of the term (v0 + vi) 2 Z2[Zk
2] evaluates to 0̄:

(v0+ vi)
2 = v20+ 2(v0·vi)+ v

2
i = v0+ (0 mod 2)vi + v0 = 2v0 = 0̄.

Then, the algorithm of [14] is roughly as follows:
1) For each variable xi, sample a vector vi uniformly at

random from Zk
2 and assign xi = (v0 + vi) 2 Z2[Zk

2].
2) Evaluate the polynomial P (x1, . . . , xn) on this random

assignment.
3) If P (x1, . . . , xn) 6= 0̄ return “yes”; else, return “no”.

The algorithm was later refined in [15] by using the group
algebra GF (23+ log2 k)[Zk

2], where GF (p) is the finite field of
order p [16]. A polynomial P (x1, . . . , xn) with variables from
GF (23+ log2 k)[Zk

2] can be evaluated in time O(2kpoly(n)) and
space O(kpoly(n)), resulting in the following theorem.

Theorem 1 (Koutis [14] and Williams [15]) There exists
an algorithm that, given an instance P (x1, . . . , xn) of the
k-MLD problem, correctly returns “no” if P (X) does not
contain a k multilinear term. Otherwise, it returns “yes” with
probability at least 1/5. The algorithm has time complexity
O(2kpoly(n)) and space complexity O(kpoly(n)).

III. SCAN STATISTICS USING MULTILINEAR DETECTION

A. Subgraphs as Monomials
We define the sets K = {1, 2 . . . , k} where k is a size

parameter, and R = {0, 1, 2, . . . ,W (V)}, where W (V) is
the weight of the entire node set—this is an upper bound on
the weight of any subgraph. After the graph transformation of
[5] illustrated in Figure 3, the input graph will have a weight
w(v) for each node v 2 V .
We now define a set of variables {xv : v 2 V }, and

we construct a polynomial over these variables. Every term
in the polynomial will represent a connected subgraph of
size at most k and weight at most W (V). For i 2 K
and j 2 R, let Mv(i, j) be the polynomial corresponding
to a subgraph (1) containing node v, (2) of size i, and (3)
weight j. The polynomials Mv(i, j) will be constructed and
evaluated recursively. As a result, there can be monomials in
the polynomial representation for Mv(i, j) with squared terms,
e.g., the monomial x21x2 in Figure 4—these terms correspond
to the same node being considered multiple times during the
recursive construction.

1

2

3

4

6

5

8

7
2

4

1

3

4

4

0

0
0

0

0

2

M 1(3,8)= x1x2x3 + x1x3x4

+ x21x2 + x21x6 ...

Subgraphs of weight 8

Fig. 4: Example showing the graph G(V, E) constructed in Figure
3, with |V | = 8, and the node weights shown in red next to the node
ID. M1(3, 8) is the polynomial consisting of node 1 and two other
nodes, with weight 8. Two of the terms in the polynomial, x1x2x3
and x1x3x4 , are multilinear, but there are other terms, such as x21x2
and x21x6 that arise because they also satisfy the weight constraint.
These will be canceled out when the polynomial is evaluated.

B. BASIC-MULTILINEARSCAN: Optimal, but slow
We first give the intuition behind the algorithm BASIC-
MULTILINEARSCAN and the high level steps.
• Preprocessing step: The algorithm starts by performing the
graph refinement of [5] (Section II). This corresponds to the
for loop in lines 4–6 in Algorithm 2, which is run for each
possible p-value ↵2 A.

• Evaluating the polynomials Mv(i, j): Algorithm 1, CON-
NECTEDSUBGRAPHSEARCH, constructs and evaluates the
polynomial Mv(i, j) for each node v, size i 2 K and
weight j 2 R in the graph G (line 6 of Algorithm 2). These
polynomials are constructed recursively through a dynamic
program. Only the results of their evaluation are stored and
not the complete representation of each Mv(i, j).

• Finding the best solution: The algorithm evaluates
F (j, i,↵) for each i, j such that M(i, j) 6= 0̄, and
for each ↵, and returns the best solution in line 7. Let
OPT (F, k) = maxS:ik F (W (S), i,✓) be the optimal
solution over connected subgraphs of H with size i  k;
our algorithm returns OPT (F, k) with constant probability.

• Reducing space with matrix representations: The results of
the polynomial evaluations are elements of Q[Zk

2], and we
require O(2k) bits for storing them. Instead, we use the idea
of matrix representations of the elements of Zk

2 from [14].
This allows us to evaluate the polynomial requiring only
O(1) space for each Mv(i, j). We describe this method in
the full version [8].

Algorithm 1 CONNECTEDSUBGRAPHSEARCH(G(V, E), w , k).

1: Input: Instance (G(V, E), w) and parameter k
2: Output: Polynomial M , such that M (i , j) is non-zero if G has

a subgraph S with size i  k and weight j  W(V)
3: For each node v, pick a random vector xv 2 Q[Zk2]
4: Mv (i , j) = 0̄ for i 2 K , j 2 R
5: for v 2 V do
6: Mv (1, w(v)) = xv
7: for v 2 V , i = 2 to k, j = 0 to W(V) do
8: Mv (i , j) =

P
u 2 N br (v)

P i 1
i 0= 1

P j
j 0= 0(M v (i 0, j 0) · M u (i

i 0, j j 0))
9: M (i , j) =

P
v M v (i , j) for i 2 K , j 2 R

10: return M

Theorem 2: Let F (·) be a non-parametric scan statistic, as
defined in Section II. Algorithm BASIC-MULTILINEARSCAN

907

M (i,j) =
P

v M v (i,j)

Check i f
M (i,j) 6= 0̄

ret urn
maxi,j :M (i,j)= 1 F(j,i,↵)

For each ↵, choose random xv 2 Q[Zk2]

u

v

w

s

Mv (i , j) = Mv (1, j 1)Mu (i 1, j 1)+

Mv(1, j 1)Mw (i 1, j 1) + ···

M v(1, j 1) =
0
1

+
1
0

, M u (1, j 1) =
0
0

+
1
0

,···

M v(1, j) =
0
1

+
1
1

+
1
0

+
0
0

+ ···

Evaluate polynomials through recurrence

Example (polynomials not stored explicitly)

Weighted graph
constructed by
refinement

w(v)=4
w(p)=4
w(q)=2

Construct polynomials by dynamic program (Algorithm ConnectSubgraphSearch) Combine all polynomials
(Algorithm MultilinearScan)

p

qr

Fig. 3: Overview of graph scan statistics using Algorithm BASIC-MULTILINEARSCAN. The input is a weighted graph G, which is constructed
as in Figure 2. The subroutine CONNECTEDSUBGRAPHSEARCH constructs and evaluates the polynomials Mv (i , j) for each node v, size
i  k and weight in the interval [(1 + ✏)j 1 , (1 + ✏)j]. More terms of the polynomial Mv (3, 4) are shown in Figure 4, where node 1
corresponds to node v here. Q denotes the field GF (23+ log2 k), and 0̄ denotes the additive identity of Q[Zk2].

Algorithm 2 BASIC-MULTILINEARSCAN((G0(V 0, E 0), p,↵m ax), k).

1: Input: Instance (G0(V 0, E 0), p,↵m ax), parameter k
2: Output: Score OPT(F, k)
3: Let A be the set of p-values of nodes in V below ↵m ax

4: for ↵2 A do
5: Run refinement step of [5] to create a weighted graph G(V, E)

on “super nodes”. Let w(v) denote the weight of node v.
6: M ↵ = CONNECTEDSUBGRAPHSEARCH(G(V, E), w , k)
7: return max↵2 A maxi , j :M ↵(i , j) 6= 0̄ F (j , i ,↵)

returns OPT (F, k) defined above with probability at least 1/5,
in time O(2k|A|mk2W (V)2), and using space O(knW (V))),
where A and is defined in line 3 of Algorithm 2.

C. Scaling Algorithm 2 with logarithmic binning
The quadratic dependence on W (V) creates a bottleneck in

CONNECTEDSUBGRAPHSEARCH. To make the computation
scalable, we group the weights of the input graph by consid-
ering powers of (1+✏), where ✏> 0 is an error parameter: if
w(v) 2 [(1 + ✏)j 1, (1 + ✏)j), we say that v is in the weight
group j; this definition is extended to the weight of a subgraph.
For instance, if ✏= 1, nodes with weight in [8, 16) are in group
4. The goal is to scale the weights of the input graph down by
a logarithmic factor and run Algorithm 1 on this much smaller
set of weights.
With a slight abuse of notation, let us redefine R as

{0, 1, 2, . . . , r}, where r is a weight parameter. Now the poly-
nomialMv(i, j) corresponds to a subgraph (1) containing node
v, (2) of size i, and (3) total weight in [(1 + ✏)j 1, (1 + ✏)j).
Mv(i, 0) represents subgraphs of weight 0.

We need to modify CONNECTEDSUBGRAPHSEARCH to
satisfy condition (3). In the base case, we set Mv(1, j) to
be xv if node v is in group j and 0 otherwise. For i 2, we
consider the following cases:
Case 1. For j = 0, a polynomialMv(i, 0) represents connected
subgraphs of weight 0. For a graph to have weight 0, its two
parts must both have weight 0 as well.
Case 2. For j = 1, a polynomialMv(i, 1) represents connected
subgraphs of weight 1. For a graph to have weight 1, one of
its two parts must have weight 1, and the other must have
weight 0.

Case 3. For j 2, a polynomialMv(i, j) represents connected
subgraphs of weight between (1+✏)j 1 and (1+✏)j . We could
obtain a subgraph with this weight in one of two ways. The
first is to combine two subgraphs, each of weights between
(1 + ✏)j 2 and (1 + ✏)j 1. The second way is to combine a
subgraph with weight between (1 + ✏)j 1 and (1 + ✏)j with
one of weight 0.
We propose APPROX-MULTILINEARSCAN, which takes an

extra parameter, ✏, and sets the weight parameter to r =
dlog(1+ ✏) (kwmax + 1)e, where wmax = maxv w(v) is the
maximum weight of a node. That way, r is the maximum
(scaled down) weight of a subgraph of size k. Let W1+ ✏(S) =
(1+✏)dlog1+ ✏(W (S)+ 1)e be the approximate weight of S, and let
OPT (F, k,✏) = maxS:ik F (W1+ ✏(S), i,✓) be the optimal
solution over connected subgraphs of G0 with size i  k and
rounded weights. Then, we obtain the following result.
Theorem 3: Algorithm APPROX-MULTILINEARSCAN

returns OPT (F, k,✏) with probability at least 1/5,
in time O(2k|A|mk2 log1+ ✏(kwmax)) and space
O(kn log1+ ✏(kwmax)), for A and wmax defined above.

D. APPROX-MULTILINEARSCAN in Pregel
We implement parallel versions of CONNECTEDSUB-

GRAPHSEARCH and BASIC-MULTILINEARSCAN in Giraph.
We have also explored a GraphX [17] version of the algorithm,
but it performs poorly, and we omit the results.
Our parallel algorithm, MULTILINEARSCANGIRAPH, calls

subroutine PARCONNECTEDSUBGRAPHSEARCH; this is a
parallel version of CONNECTEDSUBGRAPHSEARCH. As in
the sequential version, this is described without the more
efficient matrix representation, which requires a for loop with
2k steps around the Pregel call. PARCONNECTEDSUBGRAPH-
SEARCH exploits two levels of parallelism in the sequential
implementation: (1) the outer for loop, which corresponds to
the matrix representation; (2) the for v 2 V loop in line 7 of
CONNECTEDSUBGRAPHSEARCH happens in parallel.

IV. EXPERIMENTS

A. Experimental Setup
Datasets. A summary of the datasets is provided in Table I.
See the full version [8] for more details.

908

TABLE I: Datasets used in our experiments
Dataset Description Nodes Edges Snap-

shots
CitHepPh Citation network 11,895 76,284 4
NEast Network of counties 245 683 10,000

in Northeastern USA
Traffic Traffic Network of 1,870 1,993 1,488

Los Angeles Country, CA
Twitter Follower network collected 2,645 17,108 182

through Twitter API
BWSN Battle of the 12,527 14,831 22

Water Sensors
Random Erdos-Renyi graphs 100 to

106
⇠ 100
to⇠ 106

5

soc-Live-
Journal1

The largest connected subgraph of
soc-Live-Journal data from SNAP

4,843,864 42,843,302 1

as-Skitter The largest connected subgraph of
as-Skitter data from SNAP

1,694,538 11,093,792 1

MN-blkgrp Block group network of Minnesota 4,084 12,660 1

Baseline methods. We compare our proposed algorithms to
FASTCOLCODENP [5], which, to the best of our knowledge,
is the only method for scan statistics optimization in graphs
with approximation guarantees. Additionally, we compare
scalability with graph size to 5 state-of-the-art heuristic meth-
ods: (1) NPHGS [12], (2) AdditiveGraphScan (GS) [18],
(3) DepthFirstScan (DFS) [1], (4) GraphLaplacian
(GL [19], (5) EdgeLasso (EL) [20].

B. Scalability of our algorithms
In Figure 1 (top), we show the running time of MULTI-

LINEARSCANGIRAPH and the baseline methods as a function
of the size of the graph. MULTILINEARSCANGIRAPH is the
only one besides FASTCOLCODENP that is able to process
the instance of 106 nodes. All the other algorithms run out of
memory or do not finish running within 24 hours.
1) Scalability with k: We compare the time and space

scalability of APPROX-MULTILINEARSCAN to FASTCOLCO-
DENP [5] in terms of the size parameter k. In Figure 5
a–b, we show the ratio of FASTCOLCODENP to APPROX-
MULTILINEARSCAN with respect to time (a) and memory
usage (b). Higher is better, and points above the dashed black
line (ratio of 1) indicate that our proposed method improves
over FASTCOLCODENP, which is the case for k 6. Our
algorithm is up to 1,000 times faster for a solution size of
12 and uses as little as a tenth of memory compared to
FASTCOLCODENP. The total running time (c) and memory
usage (d) for k = 7 are also shown.

C. Approximation Error and Solution Quality
We now study the effect of the ✏ parameter, which

controls the approximation guarantee of APPROX-
MULTILINEARSCAN. Figure 6 shows the objective score for
different values of ✏, for k = 5. We compare this score to
that obtained by FASTCOLCODENP, which is optimal with
high probability. The solutions discovered by our algorithm
are much better than the worst case approximation bound
from Theorem 3, and they are usually close to the optimal
solution. Even for ✏= 2 (i.e, approximation guarantee of 3),
APPROX-MULTILINEARSCAN yields a good estimate while
keeping the running time low. We observe similar trends in
the remaining datasets.

Fig. 6: Effect of the error parameter (✏) on the quality of the
solution discovered. BASIC-MULTILINEARSCAN obtains close-to-
optimal solutions (i.e., close to the horizontal line) despite the worst-
case error bound (black dashed lines).

Fig. 7: Running time with (a) k for soc-LiverJournal1 and as-Skitter,
and (b) number of nodes in random graphs

We also evaluate APPROX-MULTILINEARSCAN in terms of
event detection power in the BWSN dataset. Table II reports
the average performance of FASTCOLCODENP and our al-
gorithm on all the snapshots of the dataset. We improve on
the precision, recall, and F1 score of the color-coding based
method, while having similar performance in terms of the
objective score, but being almost 3 times faster.

TABLE II: Detection performance in the BWSN dataset.

FASTCOLCODENP APPROX-MSCAN
Precision 0.977 0.985
Recall 0.955 0.957
F1 Score 0.952 0.961
Accuracy 0.973 0.945
Obj. Score 602.164 601.938
Running Time 987 366

D. Parallel evaluation
Figure 7(a) shows parallel runtime for two of the largest

graphs found in SNAP. Figure 7(b) shows the variation of the
running time with the number of nodes for random networks,
which is much more gradual. The communication cost in
Giraph and GraphX is the main bottleneck in our algorithm,
which has a very different computing pattern from standard
benchmarks for distributed systems. For instance, PageRank
algorithms stop sending messages to specific nodes as the
algorithm proceeds, when certain criteria are met, leading
to reduced communication over time. In contrast, in our
algorithm, in each super step, vertices always send the same
amount of data to neighbors, which contributes to significant
overheads. In as-Skitter, for instance, we observed over 80%
overhead with 256 and 512 parallel tasks over 16 machines.

E. Application: finding undervaccinated clusters
As an application, we study undervaccinated clusters in

Minnesota1, which have become a concern for public health

1//www.health.state.mn.us/divs/idepc/immunize/stats/school/

909

Fig. 5: Running time (a) and memory improvement (b) when using APPROX-MULTILINEARSCAN over FASTCOLCODENP. For k 6,
our algorithm is orders of magnitude faster than FASTCOLCODENP; thus, we can discover larger anomalous subgraphs in a fraction of the
time. Memory usage also improves by up to an order of magnitude. We also show total running time (c) and memory usage (d) for k = 7.

officials in recent years. For each school, the dataset provides
the number of students who received the MMR vaccine, which
has a 97.5% average vaccination rate statewide in Minnesota.
Our goal is to discover geographical clusters where the vacci-
nation rate for MMR is much lower than the statewide average.
Figure 1 shows the block group network and a connected
subgraph discovered by our method. The unvaccination rate
in the cluster is 6%, 2.5 times higher than expected. All prior
work on finding undervaccinated clusters has only considered
well-rounded shapes [21], which would not find such a cluster.

V. RELATED WORK
There is a large body of work on anomaly detection that

relates to our paper (see [22] for a comprehensive discussion
on graph anomaly detection). For brevity, we only discuss
results for scan statistics optimization; an extended related
work is presented in the full version of the paper [8]. Al-
gorithms for parametric scan statistics include exhaustive
search [23], AdditiveGraphScan [18], EdgeLasso [20],
GraphLaplacian [19], and FASTCOLCODEP [5]; (2) Algo-
rithms for non-parametric scan statistics include NPHGS [12]
and FASTCOLCODENP [5]. To the best of our knowledge, the
latter is the only method with approximation guarantees for
graph scan statistics. FASTCOLCODENP is a fixed-parameter
tractable algorithm with running time and space complexity
O((2e)km) and O(2km), respectively. Our algorithm im-
proves both the time and space bounds to O(2km) and O(km),
respectively. As discussed above, these improved bounds lead
to orders of magnitude of improvement on scalability.
Finally, we note that there has been limited work on parallel

algorithms for network problems, especially in the emerging
frameworks, such as Spark, Giraph, and Graphlab. Most of this
work has been restricted to simple problems like PageRank
and shortest paths [24]. The only prior work on parallel
algorithms for scan statistics is by Zhao et al. [7]. However,
they show results only for datasets with up to 12,000 nodes.
Our algorithms improve on the running time of [7] for these
instances and also scale to very large networks.

VI. CONCLUSIONS

We present a novel approach for graph scan statistics based
on algebraic techniques for multilinear detection, which gives
provable tradeoffs between running time and approximation
guarantee. Our method leads to significant improvement both
in time and space over the state-of-the-art methods. Further,

our algorithm can be used without any modification for a broad
class of parametric and non-parametric functions.
Acknowledgements. This work was partially supported by the
following grants: DTRA CNIMS Contracts HDTRA1-11-D-
0016-0010, HDTRA1-17-0118, and NSF grants IIS-1633028,
ACI-1443054.

REFERENCES

[1] S. Speakman et al., “Scalable detection of anomalous patterns with
connectivity constraints,” Jl Comp Graphical Stat, 2015.

[2] M. Leiserson et al., “Pan-cancer network analysis identifies combina-
tions of rare somatic mutations across pathways and protein complexes,”
Nature genetics, vol. 47, no. 2, pp. 106–114, 2015.

[3] T. Hansen and F. Vandin, “Finding mutated subnetworks associated with
survival in cancer,” arXiv preprint arXiv:1604.02467, 2016.

[4] D. Williamson and D. Shmoys, The Design of Approximation Algo-
rithms. Cambridge University Press, 2011.

[5] J. Cadena, F. Chen, and A. Vullikanti, “Near-optimal and practical
algorithms for graph scan statistics,” in SIAM Data Mining (SDM), 2017.

[6] R. Downey and M. Fellows, Parameterized Complexity. Springer, 2012.
[7] J. Zhao et al., “Parallel algorithms for anomalous subgraph detection,”

Concurrency and Computation: Practice and Experience, 2016.
[8] J. Cadena et al., “Fast graph scan statistics optimization using algebraic

fingerprints,” http://tinyurl.com/y76veog5, 2017.
[9] M. Kulldorff, “A spatial scan statistic,” Communications in Statistics:

Theory and Methods, 1997.
[10] D. B. Neill, “Fast subset scan for spatial pattern detection,” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 2012.
[11] R. H. Berk and D. H. Jones, “Goodness-of-fit test statistics that dominate

the kolmogorov statistics,” Z. Wahrsch. Verw. Gebiete, 1979.
[12] F. Chen and D. Neill, “Non-parametric scan statistics for event detection

and forecasting in heterogeneous social media graphs,” in KDD, 2014.
[13] E. McFowland, S. Speakman, and D. B. Neill, “Fast generalized subset

scan for anomalous pattern detection,” JMLR, vol. 14(1), 2013.
[14] I. Koutis, “Faster algebraic algorithms for path and packing problems,”

in Proc. ICALP, 2008.
[15] R. Williams, “Finding paths of length k in o(k2) time,” Information

Processing Letters, vol. 109, no. 6, pp. 315–318, 2009.
[16] G. Mullen and C. Mummert, “Finite fields and applications,” American

Mathematical Society, vol. 3, pp. 19–20, 2007.
[17] J. Gonzalez et al., “Graphx: Graph processing in a distributed dataflow

framework,” in Proc OSDI, 2014.
[18] S. Speakman, Y. Zhang, and D. B. Neill, “Dynamic pattern detection

with temporal consistency and connectivity constraints,” in ICDM, 2013.
[19] J. Sharpnack, A. Singh, and A. Rinaldo, “Changepoint detection over

graphs with the spectral scan statistic.” in AISTATS, 2013.
[20] ——, “Sparsistency of the edge lasso over graphs.” in AISTATS, 2012.
[21] T. A. Lieu et al., “Geographic clusters in underimmunization and vaccine

refusal,” Pediatrics, vol. 135, no. 2, pp. 280–289, 2015.
[22] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and

description: a survey,” Data Mining and Knowledge Discovery, 2014.
[23] K. Takahashi et al., “A flexibly shaped space-time scan statistic for dis-

ease outbreak detection and monitoring.” Int. Jl. of Health Geographics,
2008.

[24] J. Wei et al., “Benchmarking of distributed computing engines: Spark
and graphlab for big data analytics,” in Proc. IEEE BigData, 2016.

910

