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A bst r act
Using synchronous dynamical systems (SyDSs) as a formal model for networked
social systems, we study the problem of inferring users’ choices in such systems.
We observe that SyDSs with determinist ic and probabilist ic threshold funct ions as
local funct ions can capture users’ choices in the context of contagion propagat ion in
social networks. We use an act ive query mechanism where a user interacts with a
system by submit t ing queries, and the responses to the queries are used to infer the
local funct ions. We develop methods that provide provably efficient query sets for
inferring both determinist ic and probabilist ic forms of threshold funct ions. We also
present experimental results using real world social networks.

1 I nt roduct ion
1.1 M ot ivat ion
Inferring unknown parameters of systems is current ly an act ive area of research (see, e.g.,
[1, 6, 7, 12, 17, 28, 30]). In this paper, we study the problem of inferring the behaviors of
users in networked social systems. Using a discrete dynamical system [5, 22] as the formal
model of a networked system, we observe that in several contexts, behaviors that represent
users’ choices can be captured by classes of threshold funct ions. Thus, in such contexts,
the problem of learning users’ behaviors can be formally cast as that of learning the local
threshold funct ions of discrete dynamical systems.

One approach for the inference of user behavior is based on observing a system (e.g.,
[1, 12, 23]) while another approach uses act ive interact ion with the system in the form of
queries (e.g., [2, 6, 17]). We focus on the lat ter approach and consider two versions of
threshold funct ions, namely Granovet ter-styledeterminist ic thresholds [14] and probabilist ic
thresholds [4], to represent users’ behaviors. We also consider symmetric funct ions (defined
in Sect ion 2) which properly contain threshold funct ions. Threshold models have been
used by many researchers in the context of contagion propagat ion in social networks (e.g.,
[1,7,12]). Granovet ter-style threshold funct ions capture simple determinist ic choices by the
ent it ies comprising the social network. Here, if a node v’s threshold is tv , then v chooses
to change its state from 0 to 1 during a t ime step τ if at least tv of v’s neighbors are
in state 1 at t ime step τ − 1. This type of threshold behavior has been used to study
several types of social behavior such as init iat ion or cessat ion of smoking, joining or leaving
a protest movement , spreading of Twit ter hashtags, group coordinat ion, joining an online
health forum, and rare outbreaks [8, 12, 18, 24, 25, 27, 29]. Probabilist ic threshold funct ions
represent a more general form of social choice by including an addit ional degree of freedom,
namely, a probability value. In one example of this class of funct ions, each node v is
associated with two parameters: a threshold value tv and a probability value pv . If the
number of neighbors of v in state 1 is less than tv , the next state of v is 0. However, when
the number of neighbors of v in state 1 is at least tv , the next state of v is 1 with probability
pv and 0 with probability 1− pv . Note that when pv = 1, the probabilist ic model coincides
with the determinist ic threshold model. The probabilist ic threshold model has been used to
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capture thepropagat ion of epidemicsand other social phenomena in populat ions [3,4,10,20].
Addit ional applicat ion contexts where threshold models have been used will be presented
in the related work sect ion.

To discuss our cont ribut ions, we first need to present an informal descript ion of a syn-
chronous dynamical system (SyDS); a formal descript ion appears in Sect ion 2. A SyDS is
specified by an underlying undirected graph G(V, E), where |V | = n. Each node v ∈ V has
a state value from { 0, 1} which changes over t ime. Each node v also has a local funct ion
f v . The inputs to f v are the current state of v and those of its neighbors, and the output
of f v is the next state of v. The configurat ion C of a system at t ime τ is the n-tuple where
the i t h component of C represents the state of node vi at t ime τ, 1 ≤ i ≤ n. Given a
configurat ion Cat t ime τ, the successor C is the configurat ion1 of the system at t ime τ + 1.
In our formulat ions, we assume that the underlying network of the SyDS is given and that
the local funct ion at each node is a form of threshold funct ion. A query q to the system
specifies a configurat ion and the response to the query is the successor of q. We can now
provide an informal descript ion of the inference problem: given the underlying network of a
threshold SyDS and the model for its local funct ions, query the system and determine the
local funct ion at each node from the responses produced by the system for the queries. An
addit ional goal is to use as few queries as possible. We consider two query models, namely
bat ch (where all the queries must be submit ted in one group) and adapt ive (where the
responses received for some queries can be used in const ruct ing new queries).

This work is part of an ongoing project to define and demonstrate next -generat ion social
science principles. Among the goals of the project are to develop scalable, formal, and
rigorous methods for reproducible and transparent social science. The results in this paper
take concrete steps to realize these goals in that formal methods are provided and evaluated
for inferring propert ies of networked social systems. By learning propert ies of such systems,
a more rigorous and transparent understanding of these types of user choice models and
user behaviors can be gained.

1.2 Summary of Cont r ibut ions
Our contribut ions are summarized below. We use n to denote the number of nodes in the
given SyDS and ∆ to denote the maximum node degree of the underlying graph.

1. For SyDSs with symmetric local funct ions, we show that under the batch model, there
exists a query set Q of size O

(
∆ (log∆ )2.5

)
such that from the responses to the queries

in Q, the symmetric funct ion at each node can be correct ly ident ified. We establish this
upper bound through a probabilist ic argument that uses a result of Füredi and Kahn [11]
on hypergraphs. Our upper bound provides an asymptot ic improvement over a result
in [2] where it is shown that for SyDSs with symmetric local funct ions, there is a query
set of size O(∆ 1.5 logn) which can be used to correct ly ident ify all the local funct ions
with probability at least 1− 1

n .

2. For any integer n ≥ 1, we show that there are SyDSs with N ≥ n nodes where each
local funct ion is a threshold funct ion such that for such SyDSs, there are query sets of
sizeΩ(2N ) from which one cannot correct ly infer all the threshold values. (Note that for
a determinist ic SyDS with N nodes, the maximum number of possible queries, which is
equal to the number of dist inct configurat ions, is 2N .) The significance of this result is
explained in Sect ion 4.
1When the system is determinist ic, t he successor of a configurat ion is unique. In probabilist ic systems,

the successor may not be unique.
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3. Wepresent a randomized algorithm that generatesquery sets to infer probabilist ic thresh-
old funct ions. We show that our algorithm provides good performance guarantees on the
threshold as well as the probability values.

4. We present experimental results obtained by implement ing our algorithm ment ioned in
Item 3 above on real world networks. We address four topics. First , we show how the
algorithm makes progress toward est imat ing thresholds by converging to t rue thresholds.
Second, we describe the value and penalty associated with repeat ing queries that are
necessary for stochast ic local funct ions. Third, we show how the maximum number of
queries required to est imate thresholds tends toward the mean number of queries as the
t ransit ion probability and number of query repet it ions increase. Fourth, we compare
the number of queries required for est imat ing thresholds for stochast ic and determinist ic
local funct ions.

1.3 Relat ed Work
Theproblem of learning the parameters of unknown systems has at t racted a lot of at tent ion
in the literature. We first discuss the work where inference is done by observing a system.
The problem of learning finite automata and normal forms of Boolean funct ions are stud-
ied in [23] and [16] respect ively. For social networks, González-Bailón et al. [12] present
techniques for learning thresholds of nodes in a Twit ter network using data from retweets.
Algorithms for learning thresholds of a dynamical system using informat ion about the sys-
tem’s t rajectoriesarepresented in [1]. Also, several researchers (e.g., [13,26]) haveaddressed
the problem of learning influenceprobabilit ies in social networks from observed data such as
system logs and t imed traces. In cont rast to inference from passive observat ions, a number
of researchers have recent ly studied the use of act ive interact ions with a system in learning
the system’s parameters. For example, Bei et al. [6] discuss methods for a seller to learn
ut ility funct ions of buyers in a market by announcing prices of items and obtaining a set
of goods that each buyer is willing to procure. Urschel et al. [28] present algorithms for in-
ferring parameters of certain probabilist ic processes (called determinantal point processes)
through an appropriate sampling procedure. Zhou et al. [30] show how one can use queries
to learn Nash equilibria in two-player games where the probability dist ribut ions used by
players in choosing st rategies are unknown. The use of queries to learn users’ choices from a
finite set of ranked opt ions is studied in [15,17]. The use of act ive queries to infer the local
funct ions of a SyDS was int roduced in [2]. That paper presented methods for generat ing
query sets for SyDSs where the local funct ions are either determinist ic threshold funct ions
or symmetric funct ions. Probabilist ic threshold funct ions were not considered in [2].

2 Prel iminar ies
2.1 Synchronous Dynamical Syst ems
We follow the presentat ion in [1] to discuss the basic definit ions associated with discrete
dynamical systems. Let B denote theBoolean domain { 0,1} . A Synchronous Dynamical
Syst em (SyDS) S over B isspecified asa pair S = (G, F ), where (a) G(V, E), an undirected
graph with |V | = n, represents the underlying graph of the SyDS, with node set V and edge
set E , and (b) F = { f 1, f 2, . . . , f n } is a collect ion of funct ions in the system, with f i
denot ing the local funct ion associated with node vi , 1 ≤ i ≤ n. Each node of G has a
state value from B. Each funct ion f i specifies the local interact ion between node vi and its
neighbors in G. The inputs to funct ion f i are the state of vi and those of the neighbors of vi
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in G; funct ion f i maps each combinat ion of inputs to a value in B. This value becomes the
next state of node vi . It is assumed that each local funct ion can be computed efficient ly.

At any t ime τ, the configurat ion C of a SyDS is the n-vector (sτ1 , sτ2 , . . . , sτn ), where
sτi ∈ B is the state of node vi at t ime τ (1 ≤ i ≤ n). Given a configurat ion C, the state of a
node v in C is denoted by C(v). In a SyDS, all nodes compute and update their next state
synchronously. Other updatedisciplines (e.g., sequent ial updates) havealso been considered
in the literature (e.g., [22]). If a given SyDS can transit ion in one step from a configurat ion
C′ to a configurat ion C, then C is a successor of C′.

Given a graph G(V, E) and a node vi ∈ V, the closed neighborhood of vi , denoted
by N [vi ], is defined by N [vi ] = { vi } ∪ { vj : { vi , vj } ∈ E} . Thus, the inputs to the local
funct ion f i at vi are the states of the nodes in N [vi ]. For any node v and configurat ion C,
the score of v in C, denoted by score(v, C), is the number of nodes in N [v] whose state
value in C is 1. Thus, the score of v in configurat ion C gives the number of 1’s in the input
to the local interact ion funct ion f v when C is the current configurat ion of the SyDS.

2.2 Local I nt eract ion Funct ions
We consider three classes of local interact ion funct ions (or simply local funct ions).
(a) T hreshold Funct ions. The local funct ion f v associated with node v of a SyDS S is
a tv -t hreshold funct ion for some integer tv ≥ 0 if the following condit ion holds: the value
of f v is 1 if v’s score in the current configurat ion is at least tv ; otherwise, the value of the
funct ion is 0. Let t ing dv denote the degree of node v, the number of inputs to the funct ion
f v is dv + 1. Thus, we assume that 0 ≤ tv ≤ dv + 2. (The threshold values 0 and dv + 2
allow us to realize local funct ions that always output 1 and 0 respect ively.)
(b) Symmet r ic Funct ions. The local funct ion f v associated with node v of a SyDS S is
symmet r ic if the value of f v depends only on the number of 1’s in the input to f v [9]. It
is easy to see that each threshold funct ion is also a symmetric funct ion.
(c) Probabi l ist ic T hreshold Funct ions. Here, each node v is associated with two pa-
rameters: a threshold tv and a probability pv . The local funct ion f v is defined as follows.
Let σv denote v’s score in the current configurat ion. If σv < tv , the output of f v is 0; other-
wise (i.e., σv ≥ tv ), the output of f v is 1 with probability pv and 0 with probability 1− pv .
The nodes are assumed to make choices independently of each other. Probabilist ic thresh-
old funct ions generalize the class of threshold funct ions since when pv = 1, a probabilist ic
threshold funct ion coincides with the corresponding threshold funct ion.

When each local funct ion is a symmetric funct ion, the corresponding SyDS is determin-
istic; thus, each configurat ion has exact ly one successor. However, when one or more local
funct ions are probabilist ic threshold funct ions, the t ransit ion from one configurat ion to an-
other is stochast ic; thus, a configurat ion may have two or more successors. An example of
a SyDS with determinist ic and probabilist ic threshold funct ions is given in the appendix.

2.3 Query M odel
Our focus is on determining the local funct ions of a SyDS by act ively interact ing with the
system. This interact ion is in the form of queries to the system. Each query q specifies
a system configurat ion. When the system is determinist ic, the output for query q is the
successor of q. When the system is stochast ic, the system may return any successor of q. As
in [2], we consider two modes of interact ion, namely the bat ch mode (where all the queries
must be submit ted together) and adapt ive mode (where a new query may be const ructed
using the responses to the previous queries).
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Given a query q, we use score(v, q) to denote the score of v with respect to q, that is, the
number of 1’s in the input to the local funct ion f v . We say that a query set Q is complet e
if for every node v and every integer j ∈ [0 .. dv + 1], there is a query q ∈ Q such that
score(v, q) = j . It can be seen that for SyDSs where each local funct ion is a determinist ic
threshold funct ion, all the threshold values can be correct ly ident ified from the responses to
the queries in any complete query set . We use 0 (1) to denote the query in which the state
of each node is 0 (1).

2.4 Ot her Graph T heoret ic Concept s
Given an undirected graph G(V, E) and a pair of nodes u and v, the dist ance between u
and v, denoted by δG(u, v), is the length of a shortest path (in terms of edges) between
u and v in G. We assume that for any node u, δG(u, u) = 0. The square of G, denoted
by G2(V, E ′), is defined as follows: for any pair of nodes u and v, G2 has the edge { u, v}
iff δG(u, v) ≤ 2. The closed dist ance-2 neighborhood of a node v in G, denoted by
N [v,G2], is defined by N [v,G2] = { u : δG(u, v) ≤ 2} .

A hypergraph H (VH , EH ) consists of a node set VH and a hyperedge set EH . Each
hyperedge h ∈ EH is a nonempty subset of VH . Any graph can be regarded as a hypergraph
in which each hyperedge has exact ly two elements. We will use hypergraphs in proving the
results in Sect ion 3.

3 Complet e Query Set s for Symmet r ic Funct ions
In this sect ion, we show an upper bound of O(∆ (log∆ )2.5) on the size of complete query
sets under the batch mode for SyDSs with symmetric local funct ions. As ment ioned in
Sect ion 1.2, this is an asymptot ic improvement over the upper bound established in [2].

We begin with a number theoret ic definit ion. Given a posit ive real number x, we use
〈x〉to denote the integer obtained by rounding x to the nearest integer; that is, 〈x〉= bxc if
the fract ional part of x is less than 0.5; otherwise,〈x〉= dxe. We use the following technical
lemma whose proof appears in the appendix.

Lemma 3.1. Let b, d and D be positive integers such that b ≤ d ≤ D and let z =
〈 bD

d
〉
.

Then,
( d
b
) ( z

D
) b(1− z

D
) d− b ≥ 1

11
√
d+ 1 .

Our next lemma provides an important intermediate result regarding query sets. This
lemma is a key ingredient in our proof of the main result of this sect ion (Theorem 3.5).
To state this lemma, we need to int roduce some notat ion. Suppose G(V, E) is a graph and
V ′ ⊆ V. We use N [v, V ′] to denote the closed neighborhood of v rest ricted to V ′; that is,
N [v, V ′] = N [v] ∩V ′.

Lemma 3.2. Let G(V, E) be the underlying graph of a SyDSwith symmetric local functions.
Let V ′ be a non-empty subset of V such that ∀v ∈ V, |N [v, V ′]| ≤ `. Then, there exists
a set Q with at most 22`3/ 2 log |V ′| + 2 queries such that (i) ∀v ∈ V \ V ′ and q ∈
Q, q(v) = 0 and (i i) ∀v ∈ V and every i ∈ { 0, 1, . . . , |N [v, V ′]|} , there exists q ∈ Q such
that score(v, q) = i .

Proof. The all zeros query 0 is such that ∀v ∈ V, score(v, 0) = 0. The configurat ion q with
all nodesof V ′ in state1 and theother nodes in state0 yields∀v ∈ V, score(v, q) = |N [v, V ′]|.
Thesetwo queriesaccount for theaddit ive term of 2 in thenumber of queries. Let D(p, V ′) be
thedist ribut ion whereeach q ~ D(p, V ′) is const ructed as follows: ∀v ∈ V ′, Pr(q(v) = 1) = p
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and v V \ V ′, q(v) = 0. Let Q =
{
qi j ~ D

(
i
` , V

′
)
| 1 ≤ i < `, 1 ≤ j ≤ 22`

√
` + 1 log |V ′|

}
.

Let d′[v] = |N [v, V ′]|. For any b { 1, . . . , d′[v]} and q ~ D
(
z, V ′

)
, where z =

++++
b`
d′[v ]

oooggggggg

,

Pr
(
score(v, q) = b

)
≥

d′[v]
b

z
`

b

1−
z
`

d′[v ]− b

≥
1

11
√
d′[v] + 1

≥
1

11
√
` + 1

, (1)

where the second inequality follows from Lemma 3.1.

Pr
(
score(v, q) 6= b for any q Q

)
≤ Pr

(
score(v, qj ) 6= b, 1 ≤ j ≤ 22`

√
` + 1 log |V ′|

)

≤ 1−
1

11
√
` + 1

22`
√
` + 1 log |V ′|

< e− 2` log |V
′| .

Since for every v, |N [v, V ′]| ≤ `, the number of dist inct closed neighborhoods rest ricted
to V ′ is at most

∑ `
i = 1

( |V ′|
i

)
≤

( e|V ′|
`

) `
. Note that if v V and b { 1, . . . , `} such

that score(v, q) 6= b for any q Q, then there is a subset of V ′ of size ≤ ` for which in no
query, b vert ices are in state 1. Therefore, using union bound,

Pr
(
v V, b { 1, . . . , `} such that score(v, q) 6= b, q Q

)
≤

e|V ′|
`

`

e− 2` log |V
′| < 1.

Hence, there exists a query set of size at most |Q| = (` − 1) × 22
√
` + 1 log |V ′| + 2 <

22`3/ 2 log |V ′| + 2 that sat isfies the condit ions in the statement of the lemma.

Wealso use the following two lemmasof Füredi and Kahn [11] based on theLovász Local
Lemma [21].

Lemma 3.3. Let H(V, EH ) be a hypergraph on a set of n elements V such that each
hyperedge has at most b elements and each element belongs to at most b hyperedges,
where b ≥ 500. Then, V can be partitioned into α =

⌈
b

log b

⌉
sets X 1, X 2, . . . , X α of V

such that |H ∩X i | ≤ d4.7 logbe for all H EH .

Lemma 3.4. Let V ′ V such that v V , |N [v, V ′]| ≤ `. Then, V ′ can be partitioned
into k ≤ (` − 1)Δ + 1 sets V ′

1 , . . . , V
′
k such that v, |N [v, V ′] ∩V ′

j | ≤ 1 for 1 ≤ j ≤ k.

We can now prove the main result of this sect ion.

T heorem 3.5. Let G(V, E) be the underlying graph of a SyDS S with symmetric local
functions. Let Δ denote the maximum node degree in G. Under the batch mode, there is a
complete query set Q for S with |Q| = O

(
Δ (logΔ )2.5

)
.

Proof. It is shown in [2] that for any SyDS with symmetric local funct ions, there is a
complete query set Q with |Q| ≤ Δ 2 + 1. For Δ ≤ 500, we can choose an appropriate
constant c such that Δ 2 < cΔ (logΔ )2.5; thus, the theorem holds when Δ ≤ 500. Therefore,
for the rest of the proof, we will assume that Δ > 500.

For any graph G, let H be the hypergraph where each hyperedgeHv corresponds to the
closed neighborhood of vertex v. Since the maximum degree is Δ , for all v, |Hv | ≤ Δ + 1
and v belongs to at most Δ + 1 hyperedges. By Lemma 3.3, for any Δ ≥ 500, the vert ices of
G can be part it ioned into α ≤

⌈
Δ + 1

log(Δ + 1)

⌉
subsets X 1, X 2, . . . , X α , such that every vertex is

adjacent to at most ` = d4.7 log(Δ + 1)e vert ices in any X i . For 1 ≤ i ≤ α, let n≤ i (v) denote
the number of neighbors of v in

⋃
j ≤ i X j . The query set Q is st ructured in the following
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manner. It is part it ioned into α subsets Q1,Q2, . . . , Qα such that Qi determines f v (b), b=
n≤ i − 1(v) + 1, . . . , n≤ i (v) for each v, where n≤ 0(v) = 0 by definit ion. In the remaining part ,
we will show that this can be achieved with |Qi | ≤ 22

√
∆ log2 ∆ + 2 for each i .

We will part it ion each X i into subsets X i 1, X i 2, . . . , X i k such that every vertex in V
is adjacent to at most one vertex in X i j for any j . Since ∀v ∈ V, |N [v, X i ]| ≤ `, by
set t ing V ′ = X i in Lemma 3.4, this can be achieved for k ≤ (` − 1)∆ + 1. Now, we const ruct
an auxiliary graph Ĝ with vertex set V̂ = V ∪{ xi j | j = 1, . . . , k} whereeach xi j corresponds
to X i j . The edge set Ê contains edges from V to { xi j | 1 ≤ j ≤ k} where a vertex v is
adjacent to xi j if and only if it has a neighbor in X i j in G. The local funct ions f v (·) remain
the same ∀v ∈ V. Applying Lemma 3.2 to Ĝ with V ′ = { xi j | 1 ≤ j ≤ k} , since ∀v ∈ V,
|N [v, X i ]| ≤ `, we note that there exist at most 22`2

√
` logk + 2 ≤ 23`2

√
` log(`∆ ) queries q̂

such that ∀v ∈ V, q̂(v) = 0 and for each b = 0, 1, ..., |N [v, X i ]|, there exists a query q̂ such
that v is adjacent to exact ly b vert ices in { xi j | 1 ≤ j ≤ k} . Let this set of configurat ions
be denoted by Q̂i .

For each q̂ ∈ Q̂i , we const ruct a query q ∈ Qi as follows: ∀v ∈ X j , j < i , we set q(v) = 1,
and ∀v ∈ X j , j > i , we set q(v) = 0. For v ∈ X i , q(v) = q̂(X i j ), where X i j is the set to
which v belongs. Suppose in a configurat ion q̂, v ∈ V has b neighbors in state 1. We will
now show that score(v, q) = n≤ i − 1(v) + b. By definit ion of q, for any u ∈ X i , q(u) = 1
if and only if q̂(X i j ) = 1. Since v is adjacent to at most one vertex in X i j for any j ,
there are exact ly b vert ices of N [v, X i ] with state 1 in q. Further, recalling that every
vertex in set X j for j < i is in state 1 in q, score(v, q) = n≤ i − 1(v) + b. Finally, since for
every b = n≤ i − 1(v) + 1, . . . , n≤ i (v), there exists a query q̂ ∈ Q̂ with b neighbors of v in
state 1, the proof follows.

Therefore, |Q| ≤ α|Qi | ≤ 2∆
log ∆ 23`2

√
` log(`∆ ) < 2500∆ (log∆ )2.5, since ` ≤

4.7dlog(∆ + 1)e. This completes our proof of Theorem 3.5.

It should be noted that Theorem 3.5 shows the existence of a small complete query set
for SyDSs with symmetric funct ions. Developing an algorithm that can const ruct such a
query set is left for future work.

4 Exist ence of Large Incomplet e Query Set s
In thissect ion, weshow that even for SyDSswhereeach local funct ion isa threshold funct ion,
one can const ruct exponent ially large query sets which are incomplete, that is, they cannot
be used to correct ly infer all the threshold values. For space reasons, our proof of the
following result appears in the appendix.

T heorem 4.1. For any n ≥ 1, there is a SyDS S with N ≥ n nodes such that (i) each local
function of S is a deterministic threshold function and (i i) under the batch mode, there is
an incomplete query set of size Ω(2N ) for S.

We now briefly discuss the significance of Theorem 4.1. For a SyDS with N nodes, the
number of possible configurat ions, and hence the maximum number of dist inct queries is,
2N . Theorem 4.1 points out that one may not get a complete query set even if a constant
fract ion of all the possible configurat ions is included in the query set . This result provides
an indicat ion of the difficulty of finding small complete query sets even when all the local
funct ions are threshold funct ions. In part icular, the theorem suggests that naive random
sampling schemes are unlikely to produce complete query sets even after generat ing a large
number of samples. Thus, methods for choosing queries should be carefully designed so that
the result ing query set is both complete and concise. In the next sect ion, we present such
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a method for probabilist ic threshold funct ions which are more general than determinist ic
threshold funct ions.

5 Result s for t he Probabil ist ic T hreshold M odel

A lgor i t hm 1: Inf er Pr obT hr eshol d
Dat a: G(V, E), , δ, pmin , oracle FPT

Result : Est imates p̂v and t̂v for each v V
1 / * Phase I: Infer the threshold value for each v V . * /
2 v V, tL (v) = 0, tH (v) = d(v) + 2; Vrem = V ;
3 while Vrem 6= do
4 A = Vrem ; q = 0;
5 while A 6= do
6 vmax = argmaxv A (t

H (v) − tL (v));
7 A = A \ N [vmax ,G2]; / * Remove closed distance-2 neighborhood of vmax . * /
8 In q, set the states of nodes in N [vmax ] such that
9 score(vmax , q) =

⌈
(tH (vmax ) + tL (vmax ))/ 2

⌉
;

10 end

11 Let si = FPT (q) for i = 1, . . . , r t =
⌈

1
pm i n

log(2n/ δ)
⌉
;

12 v V, let s(v) = max1≤ i ≤ r t { si (v)} ;

13 for v Vrem do
14 i f s(v) = 1 and tH (v) > score(v, q) t hen
15 tH (v) = max

(
tL (v), score(v, q)

)
;

16 else i f s(v) = 0 and tL (v) ≤ score(v, q) t hen
17 tL (v) = min

(
tH (v), score(v, q) + 1

)
;

18 end
19 v Vrem such that tH (v) = tL (v), remove v from Vrem .
20 end
21 t̂ (v) = tL (v); / * or tH (v)* /

22 / * Phase I I: Est imate the probability for each v V . * /
23 q = 1;

24 Let si = FPT (q) for i = 1, . . . , r p =
⌈

3
2 pm i n

log(2n/ δ)
⌉
;

25 v V, p̂v =

[ r prrrr

i = 1

si (v)

]

/ r p;

In this sect ion, we present our algorithm for inferring probabilist ic threshold funct ions.
The inputs to the algorithm are the underlying graph G(V, E), values and δ that are used
to specify the performance guarantees of the algorithm and a value pmin such that each
probability value to be est imated is at least pmin . The algorithm assumes the availability of
an oracle FPT which returns a successor of a given query q. The outputs of the algorithm
are the est imates for the threshold and probability value for each node.

Thealgorithm operates in two phases (seeAlgorithm 1 for details). In Phase I, it uses the
adapt ive query mode along with a binary search procedure to successively reduce the range
of the threshold value for each node. Since the system is stochast ic, queries are repeated
an appropriate number of t imes to meet the required performance guarantees. In Phase I I,
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est imates for the probability values of nodes are obtained by simply repeat ing the query in
which every ent ry is 1 and comput ing the number of t imes a node’s state changes to 1 in
the successor. We now establish the performance guarantees provided by the algorithm.

T heorem 5.1. Let G(V, E) be the underlying graph of a SyDS where each local function is
a probabilistic threshold function. Let FPT be the oracle corresponding to the probabilistic
threshold model defined over G with probabili ty p(v) and threshold t(v) for each vertex v.
Let |Q| be the number of distinct queries generated by Algorithm 1 for the particular case
of p(v) = 1, v V . Let ,δ, pmin (0, 1) be given values. Algorithm 1 infers the proba-
bilistic threshold model corresponding to FPT using at most 1

pm i n
log

(
2n
δ

) (
|Q| + 3

2

)
queries

with the following guarantees: With probabili ty at least 1 − δ, (i) thresholds of all vertices
are determined and (i i) for every vertex v, the probabili ty p(v) is estimated within a factor
of 1 ± , provided p(v) ≥ pmin .

Proof. Since Q is a complete query set when p(v) = 1 (i.e., for the determinist ic threshold
case), we note that for every

(
v, t(v)

)
, there exists q Q such that score(v, q) = t(v). For r t

repet it ions of this query, the probability that the est imated threshold is not equal to t(v)
is (1− p(v))r t , the probability that the state of v is 0 for every repet it ion of query q. Let t̂v
be the inferred threshold. By union bound,

Pr
(
v V such that t̂v 6= t(v)

)
≤

v V

Pr
(
t̂v = t(v)

)
=

v V

(1− p(v))r t

≤ n(1− pmin)r t ≤
δ
2

(2)

for r t ≥ 1
pm i n

log(2n/ δ).

Let xv =
∑ r p

i = 1 si (v). Recall that p̂v = x v
r p
. Since xv is a sum of r p i.i.d. Bernoulli

random variables with E[xv ] = rpp(v), we can apply Chernoff bounds (parts (4a) and (4c)
of Theorem A.1 in the appendix) to get

Pr
(
|p̂v − p(v)| ≥ p(v)

)
= Pr

(
|xv − r pp(v)| ≥ r pp(v)

)
≤ 2e−

2 r p p ( v )
3 ≤ 2e−

2 r p pm i n
3 .

Again using the union bound,

Pr
(
v V such that |p̂v − p(v)| ≥ p(v)

)
≤ 2ne−

2 r p pm i n
3 ≤

δ
2

(3)

for r p ≥ 3
2 pm i n

log(2n/ δ). Combining (2) and (3), we have the guarantees specified in the
theorem.

Table 1: Networks used in our experiments and their propert ies [19].

N etwor k T ype N um . N odes A vg. D eg. M ax . D eg.

ca-condmat co-author 21,363 8.55 279
ca-grqc co-author 4,158 6.46 81
ca-hepth co-author 8,638 5.74 65

6 Exper iment al Result s

The purpose of the experiments is to evaluate Algorithm 1 using a set of social networks.
Here, we focus on est imated threshold results, and leave probability est imat ion for an ex-
panded version of the paper. The quality of the probability est imat ions is comparable to
that of threshold est imates.
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Table 2: Summary of t he parameters and their values used in the analyses.

Par amet er D escr ipt ion
Networks. Three networks in Table 1.
Threshold model. The Probabilist ic Threshold Funct ions (PTFs) of Sect ion 2.2.
Threshold
fract ion, t f .

The threshold fract ion 0 ≤ t f ≤ 1 (taken as 0.5 and 1 here) determines the
range over which t rue thresholds tv are determined for nodes v, and the range
over which thresholds are evaluated in est imat ing thresholds t̂ v according to
Algorithm 1. We have tm = (dv + 2)/ 2 and tr = t f (dv + 2)/ 2, such that the
threshold range is given by the interval [tm − t r , tm + t r ].

Threshold
instance, t i .

For each network, there are five independent threshold assignments made to
nodes for each of t f = 0.5 and 1, called t rue thresholds. Values for instances
are labeled 1 through 5.

Probabilit ies,
p ≡ ph .

For PTFs, when a node’s threshold is met , with probability p, a node will
t ransit ion from state 0 to 1; with 1 − p, a node will not t ransit ion, even
though its threshold is met . We examine values of p = 0.25, 0.5, 0.75, and 1.
Values are uniform or homogeneous for all nodes of a network in each analysis.

Number r of
repet it ions of the
same query.

The number of repet it ions of the query, to obtain successor configurat ions, is
to account for the stochast icity in the local funct ion. The number of repet i-
t ions are 10, 20, 30, 40, 50, 100, 500, and 1000. This is an input parameter,
versus r t and r p being computed in Algorithm 1.

Est imated
solut ions.

For each assignment of t rue thresholds and probabilit ies, ten est imated solu-
t ions are computed according to Algorithm 1. Thus, many results below are
the average of 50 values (5 t rue instances × 10 est imated solut ions per t rue
instance).

6.1 Exper iment al Procedures and Paramet ers

(a) (b)

Figure 1: Evolut ion in progress toward solut ions for est imated node
thresholds as a funct ion of number of queries for ca-condmat . (a) t f = 1
and ph = 0.25. Curves, in moving from left t o right , correspond to r = 10,
20, 30, 40, 50, 100, 500, and 1000. As r increases, more queries are
executed. (b) The average number of queries to produce small et does not
decrease with increasing number of repet it ions. Curves are coincident for
all combinat ions of (t f , ph , r ). T he take-away is t hat while increasing r
in the range 20 to 100 does improve (reduce) et , t he effect is not marked.
See text .

Table 1 lists the net-
works studied. All are
co-authorship networks.
Experimental parameters
aresummarized in Table2.
For each network, we pro-
duce two sets of five t rue
threshold assignments.
Let t f be a real value
in the range [0, 1], called
the threshold fract ion,
let tm = (dv + 2)/ 2 be
the mean threshold, and
let tr = t f (dv + 2)/ 2 be
the threshold amplitude.
Then when tf = 0.5
(resp., t f = 1), the thresh-
old range for v, from
which tv is selected uniformly at random, is [(dv + 2)/ 4, 3(dv + 2)/ 4] (resp., [0, (dv + 2)]).
In this way, the threshold ranges are always centered about tm for each v. The threshold
limits 0 and dv + 2 are selected because the former threshold will always be sat isfied and the
lat ter never will. We generate five t rue threshold assignments (instances t i ), per network,
for each of t f = 0.5 and 1.0. Therefore, we have 10 different threshold assignments for each
network.

10



Node probabilit ies p are set uniformly for all nodes in a network. We examine uniform
or homogeneous probabilit ies p = 0.25, 0.5, 0.75, and 1. We often write the probability
as ph to emphasize the probabilit ies are homogeneously assigned to all nodes of a network.
The purpose of Algorithm 1 is to est imate the t rue thresholds and probabilit ies of the
node funct ions. Henceforth, we use PTF as the abbreviat ion for the phrase “ probabilist ic
threshold funct ion” .

Finally, for Algorithm 1, when ph < 1, we submit a query repeatedly to assess stochas-
t icity. The numbers of repet it ions r examined are 10, 20, 30, 40, 50, 100, 500, and 1000. We
note that these repet it ions are counted in the number of queries submit ted. For example,
when r = 30, for each query formed, this counts as 30 queries submit ted whose successor
states are returned. For ph = 1, only r = 1 repet it ion is required. For each set of t rue values
(thresholds and probabilit ies), we compute ten est imated solut ions to account for stochast ic
effects; typically, we average these results in Sect ion 6.2 below.

6.2 Evaluat ion of True T hreshold A ssignment s and Est imat ed
T hresholds

Four different types of experimental results are presented for the three networks. Our
findings are confined to the parameters of this study.

Effect of number of quer ies and number of r epet i t ions on er ror s in est imat ed
t hresholds. Figure 1a provides average threshold error as a funct ion of the number of
queries for ca-condmat . Average threshold error is given by et = (1/ n) Σ v V

∣∣[tv − t̂ v ]
∣∣.

(a) (b)

Figure 2: Reduct ions in the ranges of numbers of queries to compute
est imated threshold solut ions. Data are shown for (a) ca-grqc and t f =
0.5, and (b) ca-hepth and t f = 1. For these data, t he differences between
maximum and average are greatest for ph = 0.25 and least ph = 0.75 at
r = 10. However, as r increases to 50, t he maximum number of queries,
over 50 instances, decreases toward the average number of queries (but
not monotonically for ca-hepth).

Each curve is data from
one analysis, for a par-
t icular r value, and cap-
tures the dynamic nature
of reduct ions in et asAlgo-
rithm 1 executes. Curves,
in moving left to right , cor-
respond to increasing r ,
from 10 to 1000. Final
et values are approached
asymptot ically for each r .

L im it at ions in t he
effect iveness of quer y
repet i t ions. Figure 1b
shows final results from
the data in Figure 1a,
and other data, for ca-
condmat , but now the
average number of queries to obtain small threshold errors is shown as a funct ion of r ,
for all combinat ions of t f , ph , and r of this study. The major result is that driving up
the number r of repet it ions does not bring major benefits: the total number of queries to
produce small et does not decrease for large r . (One might hypothesize that increasing r
will enable bet ter est imates of t(v) and p(v) with a fewer overall number of queries.) While
there is benefit in increasing r , because et may reduce from 0.01 to 0.0001 with increasing
r in the range 20 to 100, it is not a major effect in pract ical terms. Rather, r serves as a
mult iplier for each unique query formed, which increases the cost of est imat ing thresholds
(in terms of total numbers of queries). Note that each data point is the average of 50 values
from Table 2.
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(a) (b)

Figure 3: Effect of stochast ic t ransit ions on the number of queries to
est imate thresholds for (a) ca-grqc and (b) ca-condmat . Rat io of number
of queries wit h t ransit ion probability ph < 1, normalized by the number
of queries when the t ransit ion probability ph = 1. To be conservat ive,
we assume that t he r = 20 result s give sufficient ly accurate et values.
These data indicate that when ph < 1, so that t he model is stochast ic, a
factor of roughly 20 on the number of queries is required to obtain good
threshold est imates, compared to the number of queries required in the
determinist ic case (ph = 1).

Reduct ion in t he var i-
ance of t he numbers
of quer ies t o achieve
solut ions, and it s l im-
i t s. Figure 2 provides
two plots, for ca-grqc and
ca-hepth, to evaluate how
the maximum number of
queries reduces toward the
average number of queries,
as r increases. Note that
there is a permanent dif-
ference between the max-
imum and average that
does not vanish as r in-
creases up to 1000: 5% for
ca-grqc and 10% for ca-
hepth. These data show
that the biggest range in
numbers of queries is for ph = 0.25 and least for ph = 0.75.

Compar isons in numbers of quer ies t o est imat e t hresholds for st ochast ic PT Fs
and det erminist ic t hreshold funct ions. Comparisons are made between stochast ic
PTFs where ph < 1 and the analogous determinist ic model where ph = 1. Results are
shown in Figure 3 for ca-grqc and ca-condmat , for t f = 0.5 and 1 (although the results
for different t f essent ially overlay). The number of queries for ph = 1 (see [2]) are used
to normalize the results at all ph values to obtain the mult iplier in the number of queries
required to est imate thresholds for stochast ic models. From these plots, the mult iplier is
about 20. Note that if we required exact solut ions, which correspond to r ≈ 100, then this
mult iplier would increase to about 100; in this sense, these results are conservat ive.

7 Fut ure Research D irect ions

We considered the problem of inferring users’ choice funct ions in networked systems. Using
the synchronous dynamical system formalism for a networked system, we modeled users’
choice funct ions by threshold and probabilist ic threshold funct ions. There are several direc-
t ions for futurework. Onedirect ion is to further improve thebounds on the size of complete
query sets for symmetric funct ions. Another direct ion is to consider other classes of local
funct ions to capture users’ choices. A limitat ion of our work is the assumpt ion that the
ent ire system is observable; that is, queries and responses specify the states of all the nodes
in the system. It is of interest to invest igate techniques that can overcome this limitat ion.
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A Appendix
A .1 A n Example of a Synchronous Dynamical Syst em (SyDS)

v5v1

v2

v3

v4

Figure 4: The underlying
graph of a SyDS

Example: Consider the graph of a SyDS shown in Figure 4.
Assume that init ially, v1, v4 and v5 are in state 1 and all other
nodes are in state 0. Thus, the init ial configurat ion C0 of the
system is (1, 0, 0, 1, 1).

We first consider the case when each local funct ion is a
threshold funct ion (i.e., the system is determinist ic). Suppose
the local t ransit ion funct ionsat each of thenodesv1, v2 and v3 is
the 2-threshold funct ion and those at v4 and v5 are 1-threshold
funct ions. During the first t ime step, the states of nodes v2 and
v3 change to 1 since each of them has a score of 2 and their

local funct ions are 2-threshold funct ions. The states of v4 and v5 remain at 1 (since each
of them has a score of 1 and their local funct ions are 1-threshold funct ions). The state of
v1 changes to 0 since its threshold is 2 and its score is 1. Thus, the configurat ion C1 of the
system at t ime 1 is (0, 1, 1, 1, 1). In the next t ime step, it can be seen that v1 changes to
1 while the other nodes remain at 1. Thus, the configurat ion C2 of the system at t ime 2
is (1, 1, 1, 1, 1). The system remains in this configurat ion forever; that is, the configurat ion
(1, 1, 1, 1, 1) reached at t ime 2 is a fixed point for the system.

Now, suppose the local funct ions are probabilist ic threshold funct ions. Let the local
t ransit ion funct ions at each of the nodes v1, v2 and v3 be the 2-threshold funct ion with
probability 0.75 and those at v4 and v5 be 1-threshold funct ions with probability 0.9. Fur-
ther, let the init ial configurat ion C0 be (1, 0, 0, 1, 1) as before. At t ime 1, the state of v1
changes to 0 (since its score is 1 but its threshold is 2). For each of the nodes v2 through v5,
even though the score is at least as largeas its threshold, there is a non-zero probability that
their states will change to 0 in t ime step 1. Thus, the system may reach the configurat ion
(0, 0, 0, 0, 0) at t ime step 1 with probability 1/ 16. This configurat ion is a fixed point for the
stochast ic system.

A .2 Chernoff bounds
Some of our results rely on the following theorem for independent binary random variables.
For a proof of this theorem, the reader is referred to [21].

T heorem A .1 (Chernoff bounds). Suppose X 1, . . . , X n are independent random binary
variables, X denotes their sum, and µ = E[X ]. Then

Pr[X ≥ (1 + β)µ] ≤ e− β2 µ / 3, 0 < β < 1, (4a)
Pr[X ≥ (1 + β)µ] ≤ e− βµ/ 3, 1 < β, (4b)

Pr[X ≤ (1− β)µ] ≤ e− β2 µ / 2, 0 < β < 1. (4c)

A .3 Proof of Lemma 3.1
We first establish three claims which are useful in proving Lemma 3.1.

Claim A .2.
(
1 + 1

b
) b is monotone increasing in b for positive integers.

Proof: Consider the collect ion of (b+ 1) numbers
(
1, b+ 1b , . . . , b+ 1b

)
. Using the fact that
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their arithmet ic mean is ≥ their geometric mean, we have

1+ b
(
b+ 1
b

)

b+ 1
≥ 11

b+ 1
b

b
1

b+ 1

Hence,

(b+ 1) + 1
b+ 1

≥
b+ 1
b

b
b+ 1

.

Claim A .3.
( d
b

) (
b
d

) b(
1− b

d

) d− b
≥ 1√

2(d+ 1)
.

Proof: Let h(b, d) =
( d
b

) (
b
d

) b(
1− b

d

) d− b
. Wewill first show that for b≤

⌊
d
2

⌋
− 1, h(b+ 1, d) <

h(b, d) and for b ≥
⌊
d
2

⌋
, h(b + 1, d) ≥ h(b, d), and hence, h(·) at tains a minimum value

at b=
⌊
d
2

⌋
.

h(b+ 1, d)
h(b, d)

=

( d
b+ 1

)

( d
b

)

(
b+ 1
d

) b+ 1

(
b
d

) b

(
1− b+ 1

d

) d− b− 1

(
1− b

d

) d− b

=
d − b
b+ 1

b+ 1
b

bb+ 1
d

d − b− 1
d − b

d− b d
d − b− 1

=
b+ 1
b

b d − b− 1
d − b

d− b− 1
=

b+ 1
b

b b′

b′ + 1

b′

,

where, b′ = d − b− 1. When b ≤
⌊
d
2

⌋
− 1, b′ > b and when b ≥

⌊
d− 1
2

⌋
+ 1, b′ ≤ b. The

rest follows by applying Claim A.2. When b is even, it is well-known that h
(
d
2 , d

)
≥ 1√

2d
(using a lower bound on the central binomial coefficient ). Now we will show that when b is
odd, h

(
d− 1
2 , d

)
≥ 1√

2(d+ 1)
. Let b= 2k + 1.

h
(
k, 2k + 1

)

h k, 2k + 2
=

(2k+ 1
k

)

( 2k+ 2
k

)

(
k

2k+ 1

) k

(
k

2k+ 2

) k

(
1− k

2k+ 1

) k+ 1

(
1− k

2k+ 2

) k+ 2

=
k + 2
2k + 2

2k + 2
2k + 1

k k + 1
k + 2

k+ 1 2k + 2
2k + 1

k+ 1 2k + 2
k + 2

= 1+
1

2k + 1

2k+ 1
1 +

1
k + 1

− (k+ 1)
> 1.

The inequality follows from Claim A.2. Therefore, when d is odd,

h
(
d− 1
2 , d

)
> h

(
d− 1
2 , d + 1

)
≥ h

(
d+ 1
2 , d + 1

)
≥ 1√

2(d+ 1)
.

This completes the proof of Claim A.3.

Claim A .4. For any positive x ≤ 1
2 , 1− x ≥ e− 2x .
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Proof: e2x (1− x) > (1 + 2x)(1− x) = 1+ x(1− 2x) ≥ 1.

St at ement of Lemma 3.1: Let b, d and D be posit ive integers such that b≤ d ≤ D and
let z =

〈
bD
d

〉
. Then,

( d
b

) (
z
D

) b(
1− z

D

) d− b
≥ 1

11
√
d+ 1

.

Proof of Lemma 3.1: We have two cases to consider: (a) z ≤ bD
d and (b) z > bD

d . But
first we note that by definit ion,

∣∣z − bD
d

∣∣ ≤ 1
2 .

Case (a) : bD
d − 1

2 ≤ z ≤ bD
d .

d
b

z
D

b
1−

z
D

d− b
≥

d
b

z
D

b
1−

b
d

d− b

≥
d
b

b
d
−

1
2D

b
1−

b
d

d− b

≥
d
b

b
d

b
1−

b
d

d− b
1−

d
2bD

b

≥
1

2
√
d
1−

d
2bD

b
≥

1

e2
√
2(d + 1)

≥
1

11
√
d + 1

.

The last but one inequality above follows from Claim A.4 and the t rivial bound d/ D ≤ 1.

Case (b) : bD
d ≤ z ≤ bD

d + 1
2 .

d
b

z
D

b
1−

z
D

d− b
≥

d
b

b
d

b
1−

z
D

d− b

≥
d
b

b
d

b
1−

b
d
−

1
2D

d− b

≥
d
b

b
d

b
1−

b
d

d− b
1−

1
2D

1− b
d

d− b

≥
1

√
2(d + 1)

1−
d

2(d − b)D

d− b
>

1

11
√
d + 1

.

This completes the proof of Lemma 3.1.

A .4 Proof of T heorem 4.1

St at ement of T heorem 4.1: For any n ≥ 1, there is a SyDS S with N ≥ n nodes such
that (i) each local funct ion of S is a determinist ic threshold funct ion and (ii) under the
batch mode, there is an incomplete query set of sizeΩ(2N ) for S.

Proof: Weshow that the result holdseven for SyDSswhoseunderlying graphsarecomplete
binary t rees. We const ruct such a SyDS S as follows. Given an integer n ≥ 1, choose the
smallest integer N ≥ n such that N = 2k − 1 for some posit ive integer k ≥ 3. Let the
underlying graph G(V, E) of S be the complete binary t ree with k levels. To specify the
queries, assume that the root is named v1, the two children of the root are named v2 and
v3 respect ively, and the remaining N − 3 nodes are labeled arbit rarily using the labels v4
through vN . The local funct ion at each node is a threshold funct ion, where the threshold
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value is st rict ly posit ive. However, different nodes may have different threshold values and
the goal is to infer the threshold values of all the nodes.

For a query q, let q(i ) denote the value specified by q for node vi , 1 ≤ i ≤ N . (Note that
q(i ) ∈ { 0, 1} , 1 ≤ i ≤ N .) Consider the query set Q defined by

Q = { q : q(i ) = 0, i = 1, 2, 3} .

Thus, Q contains each query q such that the first three entries of q are all 0. Hence
|Q| = 2N − 3 = Ω(2N ). The root node v1 has a degree of 2 and has a posit ive threshold; that
is, its threshold value can be any integer in the range 1 through d(v1) + 2 = 4. If a query
set is complete, then for each j ∈ { 0, 1, 2, 3} , it must contain a query q such that score(v1, q)
= j . However, from the way Q is const ructed, it can be seen that for every query q ∈ Q,
score(v1, q) = 0. Thus, from the responses to the queries in Q, one cannot correct ly ident ify
the threshold of the root node v1. In other words, even though |Q| = Ω(2N ), Q is not a
complete query set under the batch mode.
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