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A BSTRACT
Discrete graphical dynamical systems serve as e ect ive formal
models for simulat ions of agent -based models, propagat ion of
contagions in social networks and study of biological phenom-
ena. A class of Boolean funct ions, called nested canalyzing
funct ions (NCFs), has been used as a good model of cer-
tain biological phenomena. Mot ivated by these biological
applicat ions, we study a variety of analysis problems for
synchronous graphical dynamical systems (SyDSs) over the
Boolean domain, where each local funct ion is an NCF. We
present int ractability results for some propert ies as well as
e cient algorithms for others. In several cases, our results
clearly delineate int ractable and e cient ly solvable versions
of problems.
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1 IN TRODUCT ION
1.1 M ot ivat ion
Discrete graphical dynamical systems, which are generaliza-
t ions of cellular automata (CA) [16, 45], serve as an e ect ive
formal model for mult i-agent systems (see, e.g., [41, 46]).
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They have also been used in many other contexts, including
simulat ions of agent -based models, propagat ion of contagions
in social networks, study of biological phenomena, and game
theoret ic set t ings (see, e.g., [9, 10, 21, 23, 32, 34, 43]). Here,
we focus on synchronous discrete dynamical systems (SyDSs).
Informally, a SyDS consists of an undirected graph whose
vert ices represent ent it ies (agents) and edges represent local
interact ions among ent it ies. Each vertex 푣has a Boolean
state value and a local t ransit ion funct ion 푓푣 whose inputs
are the current state of 푣and those of it s neighbors; the
output of 푓푣 is the next state of 푣. The vector consist ing
of the state values of all the nodes at each t ime instant is
referred to as the con gur at ion of the system at that in-
stant . In each t ime step, all nodes of a SyDS compute and
update their states synchronously. Start ing from a (given)
init ial con gurat ion, the t ime evolut ion of a SyDS consists of
a sequence of successive con gurat ions. The SyDS formalism
with di erent classes of local t ransit ion funct ions has been
used in applicat ions such as disease propagat ion in urban
areas, di usion of innovat ions, etc. (see, e.g. [6, 10, 43]).
In this paper, we study a class of graphical dynamical

systems mot ivated by applicat ions in systems biology. Many
researchers have analyzed such models (see e.g., [14, 31, 39]);
others have invest igated their stability (see e.g., [17, 20, 26,
37]). Since the work by Waddington [44], the term canal iza-
t ion has been used to describe the stability of a biological
system with changes in external condit ions. In 1969, Kau -
man [17] int roduced a Boolean network model to explain the
stability of gene regulatory networks. Kau man found that
the use of one class of Boolean funct ions (which he called can-
alyzing B oolean funct ions) in the model captured many
observed propert ies of gene regulatory networks, including
stability. The subclass of nest ed canalyzing funct ions
(NCFs) was int roduced later by Kau man et al. [19] to facil-
itate a rigorous analysis of the Boolean network model for
gene regulatory networks. A precise de nit ion of NCFs (and
a more general version of NCFs) is given in Sect ion 2.1. Many
researchers have studied mathemat ical propert ies of NCFs
and have alluded to the importance of NCFs in modeling
biological phenomena (e.g., [19, 20, 26–30]).
We consider several analysis problems for graphical dy-

namical systems whose node funct ions are NCFs. We use the
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Problem Resul t ( s)

Reachability PSPACE-complete even when the maximum node degree and the t reewidth of the under-
lying graph are bounded (Sect ion 3).

Predecessor Existence N P-complete even when the maximum node degree is 3. The corresponding count ing
problem is # P -complete (Sect ion 4). (The problem and the count ing version are e cient ly
solvable when the maximum node degree is 2 [25].)

Fixed Point Existence N P-complete even when the maximum node degree is 3. The corresponding count ing
problem is # P -complete (Sect ion 5). (The problem and its count ing version are e cient ly
solvable when the maximum node degree is 2 [35].)

Garden of Eden
Existence

E cient ly solvable; when the answer is “ yes” , such a con gurat ion can also be found
e cient ly (Sect ion 6).
Table 1: Summar y of Resul t s P r esent ed in t he Paper

term NCF-SyDS to denote a SyDS where each local t ransi-
t ion funct ion is an NCF. Such analysis problems are studied
by considering the phase space of the SyDS, which is a di-
rected graph with one vertex for each possible con gurat ion
and a directed edge (푥,푦) from a vertex 푥to vertex 푦if the
SyDS can t ransit ion from the con gurat ion corresponding
to 푥to the one corresponding to 푦in one t ime step. When
an NCF-SyDS has a one step t ransit ion from a con gurat ion
풞′ to a con gurat ion 풞, we say that 풞 is the successor of
풞′ and that 풞′ is a pr edecessor of 풞. Since NCF-SyDSs
are determinist ic, each con gurat ion has a unique successor;
however, a con gurat ion may have zero or more predecessors.
Each self loop in the phase space of a SyDS represents a
xed point of the actual system, that is, a con gurat ion in

which the system will stay forever. Also, any vertex in the
phase space with no incoming edges represents a Gar den of
Eden (GE) con gurat ion. Such a con gurat ion cannot be
reached during the evolut ion of a SyDS; it can only occur as
an init ial con gurat ion.

1.2 Cont r ibut ions and T heir Signi cance
Our cont ribut ions (shown in Table 1) are explained below.

(1) The reachability problem asks whether a given NCF-
SyDS start ing from a given con gurat ion 풞will reach another
given con gurat ion 풞′. This problem formalizes the quest ion
whether a system modeled by an NCF-SyDS may reach an
undesirable con gurat ion in the future. (For example, in the
disease propagat ion context , 풞′ may represent a situat ion in
which a large number of agents are infected.) In Sect ion 3,
we show that the reachability problem for NCF-SyDSs is
PSPACE-complete even when the maximum node degree
and the t reewidth [11] of the underlying graph are constants.

(2) Given a con gurat ion 풞, the goal of the predecessor
existence problem is to determine whether 풞has a predeces-
sor con gurat ion. An algorithm for this problem is useful in
determining how a system reached the con gurat ion 풞; if 풞
is an undesirable one (e.g., one in which many agents are
infected), measures to prevent the system from reaching 풞
can be undertaken. In Sect ion 4, we show that the predeces-
sor existence problem for NCF-SyDSs is N P-complete even
when the maximum node degree of the underlying graph is

three. The reduct ion used in the proof also enables us to
conclude that the problem of count ing the number of pre-
decessors of an NCF-SyDS is # P -complete. This result is
t ight since it is known that when the maximum node degree
is two, the predecessor existence problem as well as the cor-
responding count ing version can be solved e cient ly for any
SyDS, regardless of the local t ransit ion funct ions [7, 25].

(3) Recall that a xed point of a SyDS is con gurat ion
풞which is it s own successor; thus, if a SyDS reaches 풞, it
stays in that con gurat ion forever. Again, in the context
of epidemics, xed points in which only a small number of
agents are infected are useful, since the number of infect ions
does not grow once the system reaches such a con gurat ion.
In Sect ion 5, we consider the xed point existence problem
for NCF-SyDSs. We show that this problem is N P-complete
even when the maximum node degree of the underlying
graph is three. The reduct ion also enables us to conclude the
hardness of the count ing version of the problem. This result
is also t ight ; when themaximum node degree is two, the xed
point existence problem aswell as the corresponding count ing
version can be solved e cient ly for any SyDS, regardless of
the local t ransit ion funct ions [35].

(4) In Sect ion 6, we consider the Garden of Eden (GE)
existence problem for NCF-SyDS. In cont rast to the other
analysis problems, we show that the GE existence problem
can be solved e cient ly, even when the local funct ions are
generalized NCFs. (This class of NCFs is de ned in Sec-
t ion 2.1.) Our result (Theorem 6.1), which characterizes the
existence of GE con gurat ions in SyDSs with generalized
NCFs, leads to a simple algorithm for the GE existence ques-
t ion. However, the proof of the result requires an int ricate
analysis.
Due to length rest rict ions, only proof sketches are given

in the paper. A complete version that includes all proofs is
available as [36].

1.3 Relat ed Work
Computat ional aspects of test ing phase space propert ies of
discrete dynamical systems and mult i-agent systems have
been addressed by many researchers. For example, Barret t et
al. [4, 5, 8] studied reachability problems as well as existence
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quest ions for xed points and GE con gurat ions under the
sequent ial update model; here, a permutat ion of the vert ices
is also given, and state updates are carried out in the or-
der speci ed by the permutat ion. Bounds on the lengths
of t ransients and cycles in rest ricted versions of dynamical
systems under the sequent ial update model are established in
[32]. A good discussion of complexity results for mult i-agent
systems appears in the well known text by Wooldridge [46].
Tosic [41, 42] presented results for xed point enumerat ion
problems for systems with special forms of local t ransit ion
funct ions. Kosub and Homan [24] presented dichotomy results
that delineate computat ionally int ractableand e cient ly solv-
able versions of count ing xed points, based on the class of
allowable local t ransit ion funct ions. The predecessor exis-
tence problem for determinist ic and stochast ic SyDSs was
considered in [6, 7]. These references present hardness results
for various rest ricted graph st ructures (e.g., grid graphs) and
for various rest ricted families of local t ransit ion funct ions
(e.g., 푘-threshold funct ions for any 푘≥ 2). Problems similar
to predecessor existence have also been considered for cellular
automata [12, 15].
We [35] int roduced thenot ion of graph predicates to specify

very general forms of phase space propert ies. There, it was
shown that for many graph predicates (e.g., those which
model problems such as xed point and GE existence), the
analysis problem can be solved in polynomial t ime when
the underlying graph is t reewidth-bounded and the local
t ransit ion funct ions are푟-symmet ric1 for some xed integer
푟. As we explain in Sect ion 2.4, NCFs are, in general, not
푟-symmet ric for any xed 푟. Moreover, our e cient algorithm
for GE existence (Sect ion 6) does not require any rest rict ion
on the underlying graph. Thus, our result for GE existence
is not implied by the results of [35].
The class of Boolean networks int roduced in [19] to model

many biological phenomena is also a variant of the SyDS
model. Results for many analysis problems under theBoolean
network model appear in [1, 2, 18, 39, 40]. In [33], the reacha-
bility problem for SyDSswas shown to be PSPACE-hard for
the Boolean network model where each local funct ion is from
{ AND, OR} . Since AND and OR are both NCFs, this shows
the computat ional int ractability of reachability for dynamical
systems under the Boolean network model where the local
funct ions are NCFs. It should be noted that in the Boolean
network model, the underlying graph of a dynamical system
is directed while our work uses undirected graphs. Moreover,
our result holds for a very rest ricted class of graphs, namely
those whose maximum node degree and t reewidth are both
constants. I t is not clear whether the result in [33] can be
readily modi ed to hold for this rest ricted class.

1T he de ni t ion of 푟-symmet r ic funct ions is given in Sect ion 2.4.

2 DEFIN I T IONS AND PROBLEM
FORM ULAT IONS

2.1 N est ed Canalyzing Funct ions
As ment ioned earlier, the class of nest ed canalyzing func-
t ions (NCFs), was int roduced in [19] to model the behavior
of certain biological systems. We follow the presentat ion in
[26] in de ning such a Boolean funct ion. (For a Boolean value
푏, the complement is denoted by 푏.)

Def init ion 1. Let 푋 = {푥1,푥2, . . . ,푥푛} denote a set of 푛
Boolean var iables. Let 휋be a permutation of { 1, 2, . . . ,푛} . A
Boolean function 푓(푥1,푥2, . . . ,푥푛) over 푋 is nested canalyz-
i ng in the var iable order 푥휋( 1) ,푥휋( 2) , . . . ,푥휋(푛) with canalyz-
i ng values푎1,푎2, . . . ,푎푛 and canalyzed values푏1,푏2, . . . ,푏푛
i f 푓can be expressed in the fol lowing form:

푓(푥1,푥2, . . . ,푥푛) =

⎧
｜｜｜｜｜｜｜｜｜｜｜｜｜｜⎨
｜｜｜｜｜｜｜｜｜｜｜｜｜｜⎩

푏1 if 푥휋( 1) = 푎1
푏2 if 푥휋( 1) ̸= 푎1 and 푥휋( 2) = 푎2
...

...

푏푛 if 푥휋( 1) ̸= 푎1 and . . .

푥휋(푛− 1) ̸= 푎푛− 1 and

푥휋(푛) = 푎푛
푏푛 if 푥휋( 1) ̸= 푎1 and . . .

푥휋(푛) ̸= 푎푛

For convenience, we will use a computat ional notat ion
int roduced in [38] to represent NCFs. For 1 ≤ 푖≤ 푛, line푖of
our representat ion has the following form:

푥휋(푖) : 푎푖 −→ 푏푖
We say that 푥휋(푖) is the canalyzing var iable that is t est ed
in line푖, with 푎푖and 푏푖denot ing respect ively the canalyzing
and canalyzed values in line푖as before, 1 ≤ 푖≤ 푛. The above
line is interpreted as follows: if the value of 푥휋(푖) = 푎푖, then
the value of the funct ion is 푏푖; otherwise, we consider the
next line in the descript ion. We refer to each such line as a
r ule. When none of the condit ions “푥휋(푖) = 푎푖” is sat is ed,
we have line 푛+ 1 with the “ Default ” rule for which the
canalyzed value is푏푛:

Default : 푏푛
We will refer to the above speci cat ion of an NCF as the
simpl i ed r epr esent at ion and assume (without loss of
generality) that each NCF is speci ed in this manner. The
simpli ed representat ion provides the following convenient
computat ional view of an NCF. Lines de ning an NCF are
considered sequent ially in a top-down manner. The compu-
tat ion stops at the rst line where the speci ed condit ion is
sat is ed, and the value of the funct ion is the canalyzed value
on that line. We now present an example of an NCF using
the two representat ions ment ioned above.
Example 1: Consider the Boolean funct ion 푓(푥1,푥2,푥3) =
푥1 (푥2 푥3). This funct ion is nested canalyzing using the
ident ity permutat ion 휋on { 1, 2, 3} with canalyzing values
1, 1, 1 and canalyzed values 1, 0, 1. We rst show how this
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funct ion can be expressed using the syntax of De nit ion 1.

푓(푥1,푥2,푥3) =

⎧
｜｜｜⎨
｜｜｜⎩

1 if 푥1 = 1

0 if 푥1 ̸= 1 and 푥2 = 1

1 if 푥1 ̸= 1 and 푥2 ̸= 1 and 푥3 = 1

0 if 푥1 ̸= 1 and 푥2 ̸= 1 and 푥3 ̸= 1

A simpli ed representat ion of the same funct ion is as follows.
푥1 : 1 −→ 1
푥2 : 1 −→ 0
푥3 : 1 −→ 1
Default : 0

A ddi t ional convent ions r egar ding N CFs: The cana-
lyzed value for the rule labeled “ Default ” is always the com-
plement of the canalyzed value on the line that immediately
precedes that rule. So, for simplicity, we will omit the “ De-
fault ” rule in specifying an NCF. To save space in present ing
examples and proofs, we list successive rules along a line
separated by commas. Thus, a linear representat ion of the
NCF shown in Example 1 (with the “ Default ” rule omit ted)
is as follows: 푥1 : 1 −→ 0, 푥2 : 1 −→ 0, 푥3 : 1 −→ 1.
Gener al ized N CFs: One of the problems considered in
this paper involves determining whether a given NCF-SyDS
has a GE con gurat ion. To extend the applicability of this
algorithm, we allow local funct ions to be in the form of
generalized NCFs, where rules are speci ed only for a subset
of the variables. A precise de nit ion of generalized NCFs is
given below.

Def init ion 2. A gener al ized N CF is a function repre-
sented as either a constant or an NCF representation of a
subset (not necessar i ly proper) of the function’s var iables.

Thus, every NCF is a generalized NCF; however, the con-
verse is not t rue. We note that 1-decision l ist s studied in
the context of computat ional learning [22] are the same as
generalized NCFs.
Example 2: The constant funct ion which takes on the value
0 for every combinat ion of inputs can be represented as a
generalized NCF using the following single rule:

Default : 0
As another example, a generalized NCF speci cat ion for a
funct ion 푓(푥1,푥2,푥3,푥4) is as follows.

푥1 : 0 −→ 1
푥3 : 1 −→ 1
Default : 0

In this case, the funct ion does not depend on the values of
variables푥2 and 푥4.
I f a generalized NCF speci es a constant funct ion (i.e.,

a funct ion which has the value 0 for all inputs or 1 for all
inputs), we will indicate that using just the “ Default ” rule.
Otherwise (i.e., there is at least one rule involving a variable),
we can assume without loss of generality that the canalyzed
value speci ed in the “ Default ” rule is the complement of that
speci ed on the line that immediately precedes the “ Default ”
rule; in such cases, we omit the “ Default ” rule for simplicity.

2.2 Synchronous Boolean Dynamical
Syst ems

Let B denote the Boolean domain { 0,1} . A Synchr onous
D ynam ical Syst em (SyDS) 풮 over B is speci ed as a pair
풮 = (퐺,ℱ ), where (i) 퐺(푉,퐸), an undirected graph with
|푉| = 푛, represents the underlying graph of the SyDS, with
node set 푉 and edge set 퐸, and (ii) ℱ = {푓1,푓2, . . . ,푓푛} is
a set of funct ions in the system, with 푓푖denot ing the local
t r ansi t ion funct ion associated with node푣푖, 1 ≤ 푖≤ 푛.
Each node of 퐺 has a state value from B. Each funct ion

푓푖 speci es the local interact ion between node 푣푖 and its
neighbors in 퐺. The inputs to funct ion 푓푖are the state of
푣푖and those of the neighbors of 푣푖 in 퐺; funct ion 푓푖maps
each combinat ion of inputs to a value in B. This value be-
comes the next state of node푣푖. I t is assumed that each local
funct ion is speci ed as an NCF or generalized NCF using
the notat ion discussed in Sect ion 2.1. In a SyDS, all nodes
compute and update their next state synchronously. Other
update disciplines (e.g., sequent ial updates) for discrete dy-
namical systems have also been considered in the literature
(e.g., [5, 32]). At any t ime푡, the con gur at ion 풞of a SyDS
is the 푛-vector (푠푡1,푠

푡
2, . . . ,푠

푡
푛), where 푠

푡
푖 B is the state of

node푣푖at t ime푡(1 ≤ 푖≤ 푛).
Example 3: Consider the graph shown in Figure 1. In de n-
ing local t ransit ion funct ions for the corresponding SyDS
as NCFs, we use the name of a node to be the variable
represent ing its state.
(1) The funct ion 푓1 at 푣1 is the OR funct ion (i.e., 푣1 푣2 푣3)
with the following NCF descript ion: 푣1 : 1 −→ 1,
푣2 : 1 −→ 1, 푣3 : 1 −→ 1.
(2) The funct ion 푓2 at 푣2 is the AND funct ion (i.e., 푣1 푣2
푣3 푣4) with the following NCF descript ion: 푣1 : 0 −→ 0,
푣2 : 0 −→ 0, 푣3 : 0 −→ 0, 푣4 : 0 −→ 0.
(3) The funct ion 푓3 at 푣3 is 푣1 푣2 푣3 푣4 whose NCF
descript ion is: 푣1 : 1 −→ 1, 푣2 : 0 −→ 1, 푣3 : 1 −→ 1,
푣4 : 0 −→ 1.
(4) The funct ion 푓4 at 푣4 is theAND funct ion (i.e., 푣2 푣3 푣4)
with the following descript ion: 푣2 : 0 −→ 0, 푣3 : 0 −→ 0,
푣4 : 0 −→ 0.
(5) The funct ion 푓5 at 푣5 is푣4 푣5 whose NCF representat ion
is: 푣4 : 1 −→ 0, 푣5 : 1 −→ 0.

We specify a con gurat ion by list ing the states of the
nodes in the order 푣1 through 푣5. Assume that the init ial
con gurat ion of the system is (0, 1, 0, 1, 1). During the
rst t ime step, 푣3 remains in state 0 while the states of the
other nodes change in the following manner: 푣1 changes to 1
(since its neighbor 푣2 is in state 1), 푣2 changes to 0 (since its
neighbor 푣3 is in state 0), 푣4 changes to 0 (since its neighbor
푣3 is in state 0) and 푣5 changes to 0 (since both 푣4 and 푣5 are
in state 1). Thus, the con gurat ion at t ime 1 is (1, 0, 0, 0, 0).
The con gurat ion at t ime 2 can be seen to be (1, 0, 1, 0, 1).
Subsequent ly, while the state values of nodes푣1 through 푣4
remain unchanged, the state value of 푣5 gets complemented
at each t ime step. Thus, the system cycles between the two
con gurat ions (1, 0, 1, 0, 1) and (1, 0, 1, 0, 0).
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푣5

푣1

푣3

푣2

푣4

Init ial Con g.: (0, 1, 0, 1, 1)
Con g. at t ime 1: (1, 0, 0, 0, 0)
Con g. at t ime 2: (1, 0, 1, 0, 1)
Con g. at t ime 3: (1, 0, 1, 0, 0)
Con g. at t ime 4: (1, 0, 1, 0, 1)

N ot e: The system cycles between the two con gurat ions at
t imes 3 and 4.

F igur e 1: A n Example of a SyDS.

2.3 Problem Formulat ions
We consider a number of analysis problems for SyDSs whose
local funct ions are speci ed as NCFs (or generalized NCFs).
Precise de nit ions of these problems are given below.

I . R eachabi l i t y P r oblem :

Instance: An NCF-SyDS풮with underlying graph 퐺(푉,퐸);
two con gurat ions ℐ and ℬ of 풮.
Quest ion: Does풮 start ing from ℐ reach ℬ?
I I . F ixed Point Ex ist ence:

Instance: An NCF-SyDS풮with underlying graph 퐺(푉,퐸).
Quest ion: Does풮 have a xed point , that is, a con gurat ion
풞such that the successor of 풞 is풞 it self?

I I I . P r edecessor Ex ist ence:
Instance: A NCF-SyDS풮with underlying graph 퐺(푉,퐸); a
con gurat ion 풞of 풮.
Quest ion: Does풞have a predecessor, that is, a con gurat ion
풞′ such that the successor of 풞′ is풞?

I V . Gar den-of-Eden Ex ist ence:
Instance: A SyDS 풮 with underlying graph 퐺(푉,퐸) and
generalized NCF local funct ions.
Quest ion: Does풮 have a GE con gurat ion, that is, a con g-
urat ion 풞which has no predecessor?

2.4 NCFs and Symmet r ic Funct ions
Asment ioned in Sect ion 1.3, several references haveaddressed
the analysis problems formulated above for 푟-symmet r ic
Boolean funct ions (e.g., [3, 4, 6, 7, 25, 35]). A Boolean func-
t ion 푓with ℓ inputs is symmet r ic if the value of the funct ion
depends only on the number of inputs which have the value
1 and not on the order in which the values are speci ed.
Examples of symmet ric funct ions include AND, OR, NAND,
NOR, XOR, etc. A Boolean funct ion 푓with ℓ inputs is 푟-
symmet r ic if the inputs can be part it ioned into 푟subsets
such that the value of the funct ion depends only on the
number of 1-valued inputs in each subset . For example, it
is observed in [25] that the class of bi-threshold funct ions
is 2-symmet ric. The results for analysis problems presented
in the above references assume that each local funct ion is
푟-symmet ric for some xed 푟. We present an example to
show that NCFs are, in general, di erent from 푟-symmet ric
funct ions for xed values of 푟.
Example 4: Consider the Boolean funct ion 푓(푥1,푥2,푥3) =
푥1 (푥2 푥3). An NCF representat ion for this funct ion was
given in Example 1. The funct ion is not symmet ric since

푓(1, 0, 0) = 1 while 푓(0, 1, 0) = 0. We can also argue that
funct ion 푓 is not 2-symmet ric by considering each possible
part it ion of {푥1,푥2,푥3} into two subsets. Suppose the par-
t it ion is {푥1,푥2} and {푥3} . Note that 푓(1, 0, 0) = 1 while
푓(0, 1, 0) = 0; in both assignments, the number of 1-valued
inputs in the subset {푥1,푥2} is 1. In a similar way, we can
rule out the other part it ions of {푥1,푥2,푥3} into two subsets.
The above example can be generalized to show that there

are NCFs with 푛variables which are not 푛− 1-symmet ric.
Thus, the results presented in this paper for NCF-SyDSs
are not implied by the known results [35] for SyDSs with
푟-symmet ric funct ions for xed 푟.

3 COM PLEX IT Y OF REACHAB I L I T Y
Here, we establish the computat ional int ractability of the
reachability problem for NCF-SyDSs. To prove this result ,
we use a reduct ion from the L inear B ounded A ut omat on
(LBA ) A ccept ance problem (i.e., given a determinist ic
LBA 푀 and a st ring 푥, does푀 accept 푥?) which is known
to be PSPACE-complete [13].

T heor em 3.1. There exist constants 푑0 and 푝0 such that
the Reachabil it y problem for NCF-SyDSs is PSPACE-
complete, even when the maximum node degree of the under-
lying graph is 푑0 and the treewidth of the graph is ≤ 푝0.

P r oof: I t is easy to see that the problem is in PSPACE. We
show the PSPACE-hardness of reachability via a reduct ion
from the LBA acceptance problem. Suppose the LBA con-
tains푛cells. Then, the underlying graph of the const ructed
SyDS consists of 푛 clusters of nodes, with the 푖t h cluster
represent ing the푖t h cell of the LBA tape. This node cluster
encodes the tape symbol on the푖t h cell, as well as whether
the tape head is residing on that cell, and if so, the state
of the LBA. Thus, the SyDS con gurat ion corresponds to
an instantaneous descript ion of the LBA. The t ransit ion
funct ion of the LBA is captured by appropriate NCF local
t ransit ion funct ions so that successive con gurat ions of the
SyDS correspond to successive instantaneous descript ions
of the LBA. In each step of the SyDS, the state of a given
node of the SyDS changes if and only if the corresponding
element in the LBA’s instantaneous descript ion changes. In
the simulat ion of the LBA by the const ructed SyDS, the LBA
accepts it s input st ring in 푡steps if and only if the SyDS
reaches a speci ed con gurat ion in 푡steps. Details of this
const ruct ion are given below.
Let 푀 = (푄,Σ ,Σ ′,푞0,푞푓,퐹) denote the given determinis-

t ic LBA where 푄 is the ( nite) set of states, Σ is the tape
alphabet , Σ ′ Σ is the input alphabet , 푞0 푄 is the init ial
state, 푞푓 푄 is the accept ing state and 퐹 : (푄 × Σ ) −→
(푄× Σ × {퐿,푅,푆} ) is the t ransit ion funct ion. Given the cur-
rent state and the current symbol scanned by the (read-write)
head, 퐹 speci es the next state, the symbol to be writ ten
on the cell scanned by the head and the direct ion of head
movement (left or right by one tape cell or stay on the same
cell). Let 푥= 푎1푎2 . . .푎푛 be the input st ring given to 푀 with
푎1 = $ and 푎푛 = © being the endmarkers.
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An instantaneous descript ion (ID) of 푀 consists of the
current state, the contents of the tape cells and the posit ion
of the head. 푀 starts at 푞0 with it s head on the tape cell
containing 푎1 = $. We represent the ID at t ime zero by the
vector ℐ푀 = ⟨(푞0,푎1),푎2, . . . ,푎푛⟩. We may assume without
loss of generality that if 푀 accepts푥, then it replaces all the
symbols on the tape cells between the endmarkers with the
symbol ̸ 푏, moves the head to the cell containing $, and cycles
in state푞푓. Thus, the unique accept ing ID can be represented
by the vector ℬ푀 = ⟨(푞푓, $), ̸ 푏, . . . , ̸ 푏, © ⟩.
Given 푀 and input st ring 푥, we create a SyDS풮푀 푥 and

two con gurat ions ℐ푆 and ℬ푆 such that 풮푀 푥 start ing from
con gurat ion ℐ푆 reaches con gurat ion ℬ푆 if and only if 푀
accepts푥.
Let 푛= |푥|, 푝= |Σ |, and 푞= |푄|. SyDS 풮푀 푥 contains

푛푝+ 푛푝푞nodes, which can be viewed as being arranged into푛
clusters, each with 푝+ 푝푞nodes. Within cluster 푖, 1 ≤ 푖≤ 푛,
there are푝nodes, denoted as {푎푖,푘 |푘 Σ } , which we refer
to as passive nodes. Also within cluster 푖there are푝푞nodes,
denoted as {푠푖,푗,푘 |푗 푄,푘 Σ } , which we refer to as act ive
nodes. Intuit ively, node 푎푖,푘 having value 1 corresponds to
tape cell 푖containing symbol 푘, and node푠푖,푗,푘 having value
1 corresponds to the tape head residing on tape cell 푖in state
푗, with tape cell 푖containing symbol 푘.
We say that a con gurat ion of 풮푀 푥 is val id if it sat is es

the following three condit ions: (1) For each cluster 푖, exact ly
one of the passive nodes in the cluster has value 1. (2) Exact ly
one act ive node of 풮푀 푥 has value 1. (3) I f a given node푠푖,푗,푘
has value 1, then the node푎푖,푘 also has value 1.
We de ne a biject ion 휓 from IDs of 푀 onto the set of valid

con gurat ions of 풮푀 푥, as follows. Node 푎푖,푘 has value 1 i
tape cell 푖contains tape symbol 푘, and node푠푖,푗,푘 has value
1 i the tape head resides on tape cell 푖in state푗, with tape
cell 푖containing symbol 푘.
SyDS풮푀 푥 will be const ructed so that if ID 퐶1 of the LBA

is followed by ID 퐶2, then con gurat ion 휓(퐶1) of 풮푀 푥 is
followed by con gurat ion 휓(퐶2).
The nodes in each cluster are interconnected as a clique,

and are connected to all the nodes in adjacent clusters. Thus,
themaximum nodedegree푑0 is3푝(푞+ 1)− 1, and the t reewidth
푝0 is at most 2푝(푞+ 1) − 1.
We now give the local t ransit ion funct ions of 풮푀 푥, explain-

ing how they operate when evaluated on a valid con gurat ion.
First , we give the NCF representat ion for a passive node, say
node푎푖,푘. The rst 푝푞lines of the NCF representat ion test
all the act ive nodes in cluster 푖. I f any of these nodes has
value 1, then the t ransit ion funct ion of LBA 푀 determines
the new contents of tape cell 푖. More speci cally, the line in
the NCF representat ion that tests variable푠푖,푗,푘′ is

푠푖,푗,푘′ : 1 −→ 푏
where푏is 1 i 퐹(푗,푘′) = (푗′,푘,푑) for some푗′ and 푑.
Since in a valid con gurat ion of 풮푀 푥, at most one of the

canalyzing variables in the above lines will equal 1, the above
lines can be writ ten in any order.
I f the above 푝푞canalyzing variables are all 0, then the

tape head is not on cell 푖, so the contents of tape cell 푖will
be unchanged by the next LBA t ransit ion. So, the next three

lines of the NCF representat ion keep the value of node푎푖,푘
unchanged. Let 푘1 and 푘2 be two tape symbols di erent from
tape symbol 푘. Note that in any valid con gurat ion, at least
one of the nodes푎푖,푘1 and 푎푖,푘2 has value 0. The next three
lines of the NCF representat ion are: 푎푖,푘 : 1 −→ 1,
푎푖,푘1 : 0 −→ 0, 푎푖,푘2 : 0 −→ 0.
Note that for any valid con gurat ion, at least one of the

above 푝푞+ 3 lines will sat isfy it s test condit ion, so the re-
maining lines of the NCF representat ion can be arbit rary.
We now give the NCF representat ion for an act ive node,

say node푠푖,푗,푘. The rst 푝푞lines of the NCF representat ion
test all the act ive nodes in cluster 푖. I f any of these nodes has
value 1, then the t ransit ion funct ion of LBA 푀 determines
the new value of node푠푖,푗,푘. More speci cally, the line in the
NCF representat ion that tests variable푠푖,푗′,푘′ is

푠푖,푗′,푘′ : 1 −→ 푏
where푏is 1 i 퐹(푗′,푘′) = (푗,푘,푆).
I f the above 푝푞canalyzing variables are all 0, then the

tape head is not on cell 푖, so the contents of tape cell 푖will
be unchanged by the next LBA t ransit ion. The next 푝− 1
lines of the NCF representat ion check whether the current
contents of tape cell 푖is not tape symbol 푘, in which case
the contents of tape cell 푖after one t ransit ion is not 푘. Thus,
for each 푘′ ̸= 푘, we have the line: 푎푖,푘′ : 1 −→ 0.
If all the above tests fail, and this point in the NCF evalu-

at ion is reached, then 푘is the tape symbol on cell 푖, and the
tape head is not on cell 푖. So, we next test whether the tape
head will move onto cell 푖in state푗.
I f 푖> 1, we have an NCF line for each possibility of the

tape head moving to the right onto cell 푖, in state푗. Thus,
for each (푗′,푘′) such that 퐹(푗′,푘′) = (푗,푘′′,푅) for some푘′′,
we have the line: 푠푖− 1,푗′,푘′ : 1 −→ 1.
If 푖< 푛, we have an NCF line for each possibility of the

tape head moving to the left onto cell 푖, in state푗. Thus, for
each (푗′,푘′) such that 퐹(푗′,푘′) = (푗,푘′′,퐿) for some푘′′, we
have the line: 푠푖+ 1,푗′,푘′ : 1 −→ 1.
If all the above tests fail, and this point in the NCF eval-

uat ion is reached, then node 푠푖,푗,푘 should be set to 0. The
next two lines of the NCF representat ion accomplish this.
Let 푖′ be the index of an adjacent cluster, and let 푘1 and 푘2
be any two tape symbols. The next two lines of the NCF
representat ion are: 푎푖′,푘1 : 0 −→ 0, 푎푖′,푘2 : 0 −→ 0.
Note that for any valid con gurat ion, at least one of the

above lines will sat isfy it s test condit ion, so the remaining
lines of the NCF representat ion can be arbit rary.
We now consider the reachability problem for 풮푀 푥. The

init ial con gurat ion ℐ푆 of 풮푀 푥 is const ructed from the init ial
ID ℐ푀 , so we const ruct ℐ푆 to be휓(ℐ푀 ). Similarly, the nal
con gurat ion ℬ푆 of 풮푀 푥 is const ructed from the nal ID ℬ푀 ,
so we const ruct ℬ푆 to be 휓(ℬ푀 ). Thus, 풮푀 푥 reaches the
required con gurat ion ℬ푆 i 푀 accepts푥.

4 PREDECESSOR EX ISTENCE
Theor em4.1. The predecessor existence problem for NCF-

SyDSs is NP-complete even when the maximum node degree
of the under lying graph is 3.
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Proof sket ch: I t is easy to see that the predecessor existence
problem is in N P . We show N P-hardness via a parsimonious
reduct ion from 3SAT.
Suppose the given 3SAT formula 푓has 푛variables and

푚 clauses. The reduct ion const ructs an NCF-SyDS푆and a
con gurat ion 퐶. The underlying graph 퐺 of 푆contains푛+ 푚
nodes. For each variable, there is a node, which we denote
as푥푖, 1 ≤ 푖≤ 푛. For each clause, there is a node, which we
denote as푦푗, 1 ≤ 푗≤ 푚. There is an edge between each node
for a clause and the nodes for the variables occurring in that
clause.
We rst describe the local t ransit ion funct ion for the nodes

corresponding to the variables of the 3SAT formula 푓. For
each node푥푖, the rst line of the NCF representat ion for the
local t ransit ion funct ion at 푥푖 is: 푥푖: 0 −→ 1.
Each subsequent line of the funct ion at 푥푖corresponds to a

clause in which the variable corresponding to 푥푖appears. For
each such clausenode푦푗, such that the variable corresponding
to 푥푖 appears in the clause corresponding to 푦푗, the local
funct ion for 푥푖has the following line: 푦푗 : 0 −→ 1.
We now describe the local t ransit ion funct ion for the nodes

corresponding to the clauses of the 3SAT formula 푓. For each
푦푗, the rst line of the NCF for 푦푗 is: 푦푗 : 1 −→ 0.
This line is followed by a line for each literal occurring

in clause 푗. I f a given literal is posit ive, say 푥푔, then the
corresponding line is: 푥푔 : 1 −→ 1; if a given literal is
negat ive, say 푥̄ℎ , then the corresponding line is: 푥ℎ : 0 −→ 1.
The const ructed con gurat ion 퐶 has the value 1 for every

node. It is easy to see that the const ruct ion can be carried out
in polynomial t ime. It can be veri ed that the con gurat ion
퐶 has a predecessor i the given 3SAT instance is sat is able.
I t is well known that 3SAT is N P-complete even when

each variable occurs in at most three clauses [13]. Using a
reduct ion from this rest ricted version of 3SAT, it can be
veri ed that in the underlying graph of the SyDS result ing
from the above const ruct ion, the maximum node degree is
3. Thus, the predecessor problem remains N P-complete for
NCF-SyDSs even when the maximum node degree is 3.
Theorem 4.1 is t ight with respect to maximum node degree

of the underlying graph. This is because when the maximum
node degree is 2, the predecessor existence problem can be
solved e cient ly for all local t ransit ion funct ions [25].
I t can bealso seen that theabove reduct ion isparsimonious;

that is, the number of predecessors of the con gurat ion 퐶
const ructed in the above proof is equal to the number of
sat isfying assignments of the 3SAT formula 푓. Since the
count ing problem for 3SAT is # P -complete, we have:

Cor ol l ar y 1. The problem of counting the number of
predecessors of a given con guration of an NCF-SyDS is
# P-complete.

5 FIX ED POINT EX IST ENCE
Theor em 5.1. The xed point existence problem for NCF-

SyDSs is NP-complete even when the maximum node degree
of the under lying graph is 3.

P r oof sket ch: I t is easy to see that the xed point existence
for SyDSs is in N P . We show NP-hardness via a parsimo-
nious reduct ion from 3SAT. Without loss of generality, we
assume that each variable of the given 3SAT instance occurs
(posit ively or negat ively) in at least one clause.
Suppose the given 3SAT formula 푓has푛variables and 푚

clauses. The reduct ion const ructs a SyDS푆whose underlying
graph 퐺 contains 푛+ 푚 nodes. For each variable, there is
a node, which we denote as 푥푖, 1 ≤ 푖≤ 푛. For each clause,
there is a node, which we denote as 푦푗, 1 ≤ 푗≤ 푚. There
is an edge between each node for a clause and the nodes for
the variables occurring in that clause.
We rst discuss the NCF representat ion of the funct ions

at the nodes corresponding to the variables of the given
3SAT instance. For each 푥푖, the rst line of the NCF for
푥푖: 푥푖: 0 −→ 0.
The subsequent lines of the NCF representat ion for the

funct ion at 푥푖 are const ructed as follows. For each clause
node푦푗 such that 푥푖appears in the clause corresponding to
푦푗, we have the line: 푦푗 : 1 −→ 1.
We now present the NCF representat ion of the funct ions

at the nodes corresponding to the clauses of the given 3SAT
instance. For each clause node푦푗, the rst line of the NCF
representat ion for 푦푗 is: 푦푗 : 0 −→ 1.
This is followed by a line for each literal occurring in clause

푗. I f a given literal is posit ive, say 푥푔, then the corresponding
line is: 푥푔 : 1 −→ 1; if a given literal is negat ive, say 푥̄ℎ ,
then the corresponding line is: 푥ℎ : 0 −→ 1.

It can be seen that the const ruct ion can be carried out in
polynomial t ime. It can be shown that the result ing SyDS
has a xed point i the given 3SAT instance is sat is able.
I t is known that 3SAT is N P-complete even when each

variableoccurs in at most threeclauses [13]. Using a reduct ion
from this rest ricted version of 3SAT, it can be veri ed that
themaximum node degree of the underlying graph is 3. Thus,
the xed point existence problem for NCF-SyDSs is N P-
complete when the maximum node degree is 3.
The above hardness result is also t ight with respect to

maximum node degree since it follows from the results in [35]
that when the maximum node degree is 2, the xed point
existence can be solved e cient ly. Further, it can also be
seen that the above reduct ion is parsimonious. Thus:

Cor ol l ar y 2. The problem of counting the number of
xed points of an NCF-SyDS is # P-complete.

6 GARDEN OF EDEN EX IST ENCE
Wenow consider theGarden-of-Eden (GE) existence problem.
To develop our algorithm for this problem, we need to rst
de ne a new operat ion (called project ion) on NCFs.

Def init ion 3. Given a Boolean function 푓, a var iable
푥, and a Boolean value 푎, the pr oj ect ion of 푓 on 푥= 푎,
denoted by 푓푥= 푎, is the function on the remaining var iables
whose value on any assignment 훼 to these var iables is the
value of 푓when 훼 is extended to a complete assignment for
푓by setting the var iable 푥 to the value 푎.
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The project ion operat ion is used in the proof of our result
for theGE existence problem for SyDSswhose local funct ions
are generalized NCFs. A statement of this result is as follows.

T heor em 6.1. A SyDS whose local transition functions
are al l generalized NCFs has a GE con guration unless the
generalized NCF for each node involves exactly one canalyzing
var iable, and each node occurs as a canalyzing var iable in
exactly one of these generalized NCFs.
Moreover, when the local transition functions are speci ed

as generalized NCFs, i f a GE con guration exists, then such
a con guration can be constructed in linear time.

Before present ing a proof sketch for Theorem 6.1, we note
that the rst part of the theorem provides the following simple
two-step algorithm to check whether a GE con gurat ion exists
in a SyDS where each node funct ion is a generalized NCF.

1. I f there is any local funct ion whose number of variables is

̸= 1, output “ Yes” and st op.

2. (Here, each local funct ion has exact ly only one variable.)
I f a node occurs in two or more local funct ions, output “ Yes” ;
otherwise, output “ No” .

A proof of Theorem 6.1 and the const ruct ion of a GE
con gurat ion when one exists, require an int ricate analysis
involving the edges of the graph and the local funct ions of
the nodes. A sketch of the proof is given below.

P r oof sket ch for T heor em 6.1: Let 풮 be a given SyDS
where each local t ransit ion funct ion is speci ed as a gener-
alized NCF. Let 푛 denote the number of nodes of 풮, and
푋 denote the set of nodes. For convenience, we let 푥푖 푋
denote both a node and its corresponding variable. Let 풞
denote the set of con gurat ions of 풮. For any con gurat ion
퐵, we let 푆(퐵) denote the successor con gurat ion of 퐵.
For a con gurat ion 퐶 of 풮and a con gurat ion 퐷푍 on a set

of variables푍 푋, we say that 퐶 and 퐷푍 are compat ib le
if for every node푧 푍, 퐶(푧) = 퐷푍(푧), and incompat ib le
if there exists a node푧 푍 such that 퐶(푧) ̸= 퐷푍(푧).
We now describe an algorithm to const ruct a GE con gura-

t ion. The algorithm proceeds in stages. Stage 1 might report
that no GE con gurat ion exists, and then exit the algorithm.
Otherwise, a given stage either returns a GE con gurat ion
and exits the algorithm, or the given stage is completed, and
the next stage begins.
After Stage푖, where푖≥ 0, the following objects will have

been const ructed: (i) A set of 푖nodes, which we refer to
as pr edecessor nodes, and denote as 푋푖. (ii) A set of 푖
nodes, which we refer to as successor nodes, and denote
as 푌푖. (Sets 푋푖 and 푌푖 are not necessarily disjoint .) (iii)
A con gurat ion 퐵푖 on node set 푋푖. We refer to 퐵푖 as a
pr edecessor pat t er n. (iv) A con gurat ion 퐶푖on node set
푌푖. We refer to 퐶푖as a successor pat t er n.
Init ially, 푋0 and 푌0 are empty, and 퐵0 and 퐶0 contain

no components. For each node푥푝, let 푓푥푝,0 denote the given
NCF representat ion of the t ransit ion funct ion for 푥푝. At
the end of a given stage, say stage 푖, 푓푥푝,0 will have been

t ransformed into a generalized NCF funct ion, denoted as
푓푥푝,푖, represent ing the project ion of 푓푥푝,0 onto the variables
in 푋 − 푋푖, obtained by set t ing each variable in 푋푖 to it s
value in 퐵푖.
Let ℬ푖be the set of con gurat ions of 풮 that are compat ible

with predecessor pat tern 퐵푖. Note that ℬ푖contains 2푛− 푖con-
gurat ions, and that 풞− ℬ푖contains 2푛− 2푛− 푖con gurat ions.
We refer to the con gurat ions in ℬ푖as el igib le con gur a-
t ions, and those in 풞− ℬ푖as inel igib le con gur at ions.

The const ructed objects can be seen to have the following
two propert ies: (i) For every ineligible con gurat ion 퐵
풞− ℬ푖, it s successor 푆(퐵) is incompat ible with 퐶푖. (ii) I f
푖> 0, let 푦푗 be the last node added to 푌푖. Then there is
at least one eligible con gurat ion 퐵 ℬ푖whose successor
con gurat ion 푆(퐵) has (푆(퐵))(푦푗) = 퐶푖(푦푗), so that 푆(퐵) is
incompat ible with 퐶푖.
A consequence of these two propert ies is that after the

complet ion of stage푖, where푖> 0, there is at least one con g-
urat ion that is an extension of 퐶푖, and is a GE con gurat ion.
From Property 1, if a con gurat ion that is compat ible with
퐶푖 has a predecessor, this predecessor must be an eligible
con gurat ion. However, there are only 2푛− 푖eligible con g-
urat ions. From Property 2, the successor of at least one of
the eligible con gurat ions is incompat ible with 퐶푖. Thus,
there are at most 2푛− 푖− 1 con gurat ions whose successor is
compat ible with 퐶푖. Since there are 2푛− 푖con gurat ions that
are compat ible with 퐶푖, at least one of these con gurat ions
has no predecessor, and so is a GE con gurat ion.

Each stage that completes without exit ing adds one more
variable to the successor pat tern. I f a given stage푖exits with
a GE con gurat ion, this GE con gurat ion is an extension of
the current successor pat tern 퐶푖. Addit ional details and an
e cient implementat ion of the algorithm appear in [36].

7 FUTURE WORK
There are two useful future research direct ions. One direct ion
is to consider rest rict ions on the dynamical system that
can lead to e cient algorithms for the analysis problems
considered in this paper. Another direct ion is to develop
algorithms that work well in pract ice, even though their
running t imes may be exponent ial in the worst case. For
problems that are e cient ly solvable, it would be of interest
to see if the algorithms can be extended to more general
versions along the lines of [35].
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