
Power Sandbox: Power Awareness Redefined

Liwei Guo∗

Purdue ECE
Tiantu Xu∗

Purdue ECE
Mengwei Xu

Peking University

Xuanzhe Liu
Peking University

Felix Xiaozhu Lin
Purdue ECE

ABSTRACT

Many apps beneit from knowing their power consumption and

adapting their behaviors on the ly. To ofer apps power knowledge

at run time, an OS often meters system power and divides it among

apps. Since the impacts of concurrent apps on system power are

entangled, this approach not only makes it diicult to reason about

power but also results in power side channels, a serious vulnerabil-

ity.

To this end, we introduce a new OS principal called power sand-

box, which enables one app to observe the ine-grained power

consumption of itself running in its vertical slice of the hardware/-

software stack. The observed power is insulated from the impacts

of other apps. Our contribution is a set of lightweight kernel exten-

sions that simultaneously i) enforce the power sandbox boundaries

and ii) conine entailed performance loss to the sandboxed apps.

Our experiences on two embedded platforms show that power sand-

boxes simplify reasoning about power, maintain fairness among

apps, and minimize power side channels, thus facilitating construc-

tion of power-aware apps.

CCS CONCEPTS

· Computer systems organization → Embedded systems; ·

Software and its engineering → Operating systems; Power

management;

KEYWORDS

Operating systems; Embedded systems; Energy eiciency; Power

awareness

ACM Reference Format:

Liwei Guo, Tiantu Xu, Mengwei Xu, Xuanzhe Liu, and Felix Xiaozhu Lin.

2018. Power Sandbox: Power Awareness Redeined. In EuroSys ’18: Thirteenth

EuroSys Conference 2018, April 23ś26, 2018, Porto, Portugal. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3190508.3190533

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’18, April 23ś26, 2018, Porto, Portugal

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190533

HW
Power

(a) State of the Art (b) Power Sandbox

OS Accounting

Apps
Observe

Power

Sandbox

Insulation of

power impacts

Power

Metering Metering

Observe

Figure 1: An overview of this work

1 INTRODUCTION

The quest for app power awareness1 has lasted over a decade [28]:

an app, as one or a group of user processes, demands to observe

its power consumption online, in order to adapt its behaviors ac-

cordingly to lower power or higher eiciency. Traditionally, an

operating system (OS) supports app power awareness through a

two-step approach at run time as shown in Figure 1(a). First, the

OS meters system power by either consulting a power model [25,

26, 59, 70, 71, 81, 96, 97] or performing in situ direct measure-

ment [11, 28, 29, 79, 84]. Second, it divides the metered power

into per-app shares, based on certain heuristics chosen at the OS

development time.

Despite recent advances in ine-grained power metering [11, 79],

the above approach sufers from two key inadequacies.

(1) Reasoning diiculty: it fails to provide power observations

that are easy for apps to reason about and act upon.

(2) Security vulnerability: it creates power side channels [10],

allowing attackers to learn a victim app’s security-sensitive behav-

iors.

The latter inadequacy is already shown by prior work [37, 58,

95] and will be further demonstrated in this paper (ğ2.5): from its

observed GPU power, an attacker app can infer what website a co-

running victim browser is visiting. Such inference’s success rate is

6× higher than random guess. Fine-grained power metering further

exacerbates this vulnerability.

In summary, the two inadequacies are becoming the major ob-

stacles towards app power awareness.

Our key observation is that the metered system power contains

entangled impacts from concurrent apps, and the impacts cannot

1Power awareness and energy awareness are often used interchangeably in prior work.
To highlight power knowledge at ine temporal granularity, we use power awareness
in this paper unless stated otherwise.

https://doi.org/10.1145/3190508.3190533
https://doi.org/10.1145/3190508.3190533

be separated cleanly. Such power entanglement is rooted in work-

conserving OSs that aggressively multiplex apps on hardware re-

sources. Unfortunately, the existing approach to app power aware-

ness copes with power entanglement reactively at best without

attempting to eliminate it.

To this end, we advocate a fresh perspective on OS support

for power awareness, as illustrated in Figure 1(b). First, the OS

supports any app to observe the power of the app running in its

vertical environment (i.e., its vertical slice of the software/hardware

stack) and hence prompts the app to suit the vertical environment.

Furthermore, the OS insulates the app’s power observation from

the impacts of other apps.

Following this perspective, we propose a new abstraction called

power sandbox, or psbox for short. A psbox allows the enclosed

app to observe the collective power of the app itself and its vertical

environment at ine temporal granularities. In this observation,

the only possible contributions of concurrent apps are periods of

idle power. The OS enforces psbox as the only way for apps to

observe power: one app may enter or leave its psbox freely, but

is only allowed to observe power when it is in the psbox. Free of

power entanglement, the resultant power observation is not only

amenable to reasoning but also minimizing power side channels.

We stress that power sandbox insulates app power impacts but does

not isolate their executions: all apps, inside a psbox or not, share

the same system image as usual.

To support psbox, we have addressed two primary challenges:

Enforcing psbox boundaries We make the OS kernel respect

psbox boundaries in resource multiplexing. The kernel does so

with two extensions: i) it grants a psbox exclusive use of resource

partitions at ine spatial or temporal granularities, called resource

balloons; it meters and reports the power of resource balloons; ii) it

virtualizes hardware power states for every single psbox.

Conining performance loss to sandboxed apps As other

mechanisms for online resource monitoring [1, 46], psbox comes

with runtime costs, which is mainly due to lost sharing opportu-

nities. In response, a core mechanism of psbox is to conine the

costs to the sandboxed apps and therefore ensures performance

fairness among all the apps, regardless of their usage of psbox.

This mechanism is both powerful and critical: assuming two apps

co-running on a multicore equally share the CPU time and one

app enters its psbox, the unsandboxed app continues to enjoy its

original share normally ś half of the total CPU time, despite the

reduction in combined CPU utilization.

The OS kernel conines performance loss with two techniques.

It tracks the lost sharing opportunities and fully charges the loss to

the sandboxed app, disadvantaging this app in future resource com-

petitions. It encapsulates resource balloons as normal scheduling

entities and therefore reuses most of the existing kernel infrastruc-

ture for scheduling.

We intend psbox to be a łpay-as-you-gož service for apps: apps

use psbox to periodically sample power or to selectively monitor

power of key execution phases. Based on their power observation,

apps make power-aware decisions, which remain valid even after

they leave psbox. In most of their lifetime, they run outside of

psbox without overhead.

Atop a recent Linux kernel and two embedded platforms, we

implement psbox for a variety of major hardware components,

including CPU, GPU, DSP, and WiFi interface. psbox keeps an

app’s power observations highly consistent even when the app co-

runs with other diferent apps. Across these runs, the app’s energy,

as observed by the app itself, difers by less than 5%; by contrast,

energy shares reported by a prior approach difer by up to 60%.

In a benchmark of three co-running computer vision apps, the

use of psbox by one app leads to 10% total throughput loss. The

coninement of performance loss is robust: in a test with extremely

high resource contention, despite the throughput of the sandboxed

app dropping by 4×, the other co-running app only experiences 1%

throughput loss.

Based on psbox, we present an end-to-end use case. We build

a virtual reality app (in 2K SLoC) that periodically observes its

power and dynamically trades its idelity level for lower power,

demonstrating how psbox facilitates the construction of power-

aware apps.

This paper has made the following contributions:

• We present an analysis of existing approaches to app power

awareness, demonstrate the inadequacies, and identify the

cause as power entanglement. In response, we present a

novel OS principal called power sandbox (psbox) that sup-

ports an app to observe the power of itself and its vertical

environment.

• We enforce psbox and conine its performance cost to the

sandboxed app. We do so through a suite of techniques:

resource ballooning, power state virtualization, and track-

ing/charging the lost sharing opportunities.

• On top of a recent Linux kernel, we implement psbox for

CPU, GPU, DSP, and WiFi interface. Our evaluation shows

that psbox reliably insulates power impacts, incurs minor

cost, maintains fairness, and facilitates the construction of

power-aware apps.

The full source code of psbox is available at:

http://xsel.rocks/p/psbox

2 A CASE FOR A NEW OS PRINCIPAL

We next analyze the design space of supporting app power aware-

ness. First, we distill the essential power knowledge needed by apps

(ğ2.1). Next, we examine the classic two-step approach, showing

that while metering is becoming accurate and eicient (ğ2.2), ac-

counting encounters a fundamental diiculty which we dub power

entanglement (ğ2.3 ś ğ2.5). To address the diiculty, we advocate

eliminating power entanglement and empowering apps to observe

exactly what they need to know. This motivates a new OS principal

(ğ2.6).

2.1 Power awareness: what matters to apps?

We irst examine what power knowledge has been required by exist-

ing app adaptation strategies. Figure 2 illustrates the key concepts

of app power-aware adaptation.

App cares about its own power impact By design, most

adaptation strategies focus on optimizing one app’s behaviors. By

exploiting the app’s domain knowledge, these strategies reduce the

app’s power impact, which will be translated to a similar reduction

in the system power or energy. Often, apps demand to know their

power impacts at ine temporal granularities in order to map the

power to short-lived software activities [63, 70, 79, 81].

Figure 2: Concepts in app

power-aware adaptation

This app-centered approach

is extensively taken by prior

work: an app optimizes its own

code execution eiciency [17, 18,

63, 79, 101], reduces the power

impact of its own I/O activi-

ties [23, 65, 78], or does both si-

multaneously [7, 14].

App adapts to suit its ver-

tical environment As illus-

trated in Figure 2, a vertical

environment incorporates hard-

ware conditions, system soft-

ware conigurations, user pref-

erences, etc.

For higher power eiciency,

prior systems adapt to various

factors of a vertical environment.

Code generators adapt to CPU microarchitectures [63]. Mobile/-

cloud oloading [17, 18] and mobile data compression [7] adapt

to the comparative eiciency of CPU and wireless link. Content

idelity [16, 28, 60] and algorithm accuracy [38] adapt to user

preferences. Network transfer scheduler adapts to network condi-

tions [23, 65, 78] or app preference [6]. Web page or game rendering

adapts to user perception [39, 101]. As such, power-aware adapta-

tion decisions inherently depend on the app’s vertical environment.

By contrast, app-centered adaptation rarely considers łhorizon-

talž factors such as peer app activities, which would require apps to

have not only deep knowledge of each other but also mutual trust.

As a result, power-saving opportunities from horizontal cooper-

ation (e.g., app co-execution [102], cooperative I/O [91], request

piggybacking [53]) are more limited, and are often exploited at the

OS level. These are complementary to the app-centered adaptation

under discussion.

Comparative power drives actions To make an adaptation

decision, an app often chooses one action out of multiple candi-

dates by comparing their power impacts. In existing power-aware

systems, these alternative actions include program partitioning

plans [17, 18, 59], code generation strategies [63], middleware con-

igurations [60], graphics rendering strategies [39], network trans-

fer plans [23, 65, 78], hardware component combinations [14], and

compression algorithms [7].

Summary: essential power knowledge We summarize the

power knowledge that is essential to app adaptation as follows:

(1) An app demands to observe power consumption of itself and

its vertical environment at ine temporal granularity. It is

often indiferent to the power impacts of peer apps.

(2) An app must be able to compare the above power observa-

tions quantitatively.

Unfortunately, this essential power knowledge mismatches what

apps are learning from the current approach to power awareness.

Next, we examine this approach, in particular its two key steps.

2.2 Fine-grained power metering is getting
easier

System-level power metering2 used to be the major challenge to-

wards power awareness. While most prior work metered power

using models [25, 26, 59, 70, 71, 81, 96, 97], such modeling for

modern hardware is increasingly diicult, due to processor het-

erogeneity, variation in fabrication [83], and changing operating

conditions [56].

Fortunately, directmeasurement, the alternativemeteringmethod,

starts to show high promise. Besides the known beneits of high rate

(>10KHz) and accuracy (in mW) [56], recent work demonstrates

that direct measurement can be eicient and therefore in situ, by of-

loading periodic power sampling and pre-processing to low-power

microcontrollers [11, 79]. Fine-grained, inexpensive power meter-

ing enables characterization of short-lived software activities, and

is likely to become a common feature of future hardware platforms.

We will discuss this in detail in ğ8.1.

2.3 Accounting is hard due to power
entanglement

Even though system power can be metered at a high resolution,

attributing it to separate apps encounters a fundamental diiculty:

Power entanglement: In a work-conserving OS that

aggressively multiplexes apps on hardware, concur-

rent apps impact the hardware power simultaneously,

and the impacts become inseparable.

We identify three major causes for power entanglement:

• Spatial concurrency in hardware Multiple apps concurrently

use disjoint hardware resources for which power can only be

metered as a whole. Note that such power metering scopes

are often hardware design choices. We show this with a

simple experiment in Figure 3(a). On a dual-core CPU with

one power rail, we measure the whole CPU power, and com-

pare i) only running one process on core 0 to ii) additionally

running a second instance of the same process on core 1.

As shown in the igure, one cannot simply extrapolate the

former run’s power, e.g., by doubling it, to get that of the

latter run. This is because in the latter run, the power im-

pacts of two active CPU cores are entangled, as has also been

conirmed by prior work [102].

• Blurry request boundary Many hardware components, no-

tably accelerators and I/O, accept requests from CPU and

execute the requests asynchronously. Since CPU lacks vis-

ibility into the execution durations of in-light requests, it

cannot diferentiate their power impacts. In Figure 3(b), we

show the durations of three consequent GPU commands

and the GPU power. The commands’ durations are to the

best of CPU’s knowledge. Each duration starts when the

command leaves the OS and enters the GPU, and ends when

the OS is notiied command completion by a GPU interrupt.

Although we expect that the power of command 2 is similar

to that of command 3 (they are of the same type), command

2 signiicantly overlaps with command 1 in time and their

2In this paper, we use łmeteringž to refer to both physically measuring energy and
inferring energy through software models.

 0

 2

 4

 6

 8

0.0 0.5 1.0

P
o
w

e
r/

W
a
tt

Time/Sec

2 instances
1 instance (doubled)

(a) Total CPU power of two co-running process instances,

one on each core, compared to 2× power of one instance

running alone. Hardware: 2×core Cortex-A15

1

2
3C

m
d
s

 0

 0.5

 1

 1.5

 2

0.0 5.0 10.0 15.0 20.0 25.0

1

2
3

P
o
w

e
r/

W
a
tt

Time/ms

(b) A sequence of three GPU commands (top) and the to-

tal GPU power (bottom). Commands of the same type

have the same color. Hardware: PowerVR SGX544MP

 0

 1

 2

 3

0.0 0.4 0.8

P
o
w

e
r/

W
a
tt

Time/Sec

exec after busy
exec after idle

(c) Comparison of CPU power of the same app when it

runs after aCPU idle period andwhen it runs after a busy

period.

Figure 3: Examples of power entanglement

power impacts are hence entangled. The OS is incapable of

separating power of these two commands.

• Lingering power state Software workloads may prompt

changes in the hardware power state, which will afect the

power of subsequent workloads. In Figure 3(c), we compare

the CPU power when one app runs in two diferent scenarios:

running after the CPU has been idle for a while; running

right after the completion of another busy workload. The

latter scenario incurs noticeably diferent power, as the CPU

clock rate raises prior to the app execution. Similar efects

exist in transmission power of wireless interfaces.

Power entanglement exists no matter how power is metered,

either through modeling or direct measurement. In particular, mod-

eling sufers from all the causes above, as most existing modeling

techniques infer system-level power from aggregated hardware ac-

tivities, e.g. total LLC misses read from performance counters [81].

High-rate direct measurement does not help either, since the above

causes prevent obtained power samples from being attributed to

apps, as we will demonstrate in evaluation (ğ6).

Existing approaches are inadequate Existing accounting

mechanisms cope with power entanglement reactively at best. They

divide system power among apps using a variety of heuristics: even

splitting [94], attributing each app’s marginal contribution [25],

attributing based on app hardware utilization [100], or attributing

to the app that uses the hardware most recently [70].

These heuristics are useful for system-level energy accounting,

in that they encapsulate the beliefs or policies of the OS designers.

However, they are unable to address the aforementioned major ob-

stacles in per-app power awareness, since no accounting heuristics

can eliminate power entanglement that has already occurred.

2.4 Power entanglement creates reasoning
diiculty

Existing accounting mechanisms provide per-app power shares

that are diicult for apps to reason about or reproduce. For instance,

merely based on its power share, one app can hardly tell why one

network transmission consumes more energy than others of the

same length (which could be because the OS charged the WiFi tail

energy to this particular transmission [70, 96]); or why multiple

invocations of the same function showmuch diferent power behav-

iors (which could be because varying workloads ran concurrently

on other CPU cores).

One may suggest that besides dividing the system power, OS

should open up its accounting internals to apps, e.g., publishing the

hardware usage of concurrent apps and the accounting heuristics

used by the OS. This will create more problems. i) Besides reasoning

about power, app developers now need to reason about power

accounting heuristics. As the heuristics become non-trivial (e.g.

based on cooperative game theory [25]), app development soon

becomes a daunting task. ii) Revealing apps’ hardware usage to

each other may create security vulnerabilities.

2.5 Power entanglement creates security
vulnerability

Dividing system power among apps may reveal their power be-

haviors to each other. When the apps are mutually distrusted, this

creates a known vulnerability called power side channels [10]: by

observing the power of a victim app, an attacker app may learn

the victim’s security-sensitive behaviors, such as encryption and

authentication procedures [51, 52, 95], GPS usage [58], or GUI

state [95].

We next demonstrate that power entanglement can be exploited

through power side channels, showingGPU power leaks a browser’s

deep information ś which website it is visiting. We co-run two apps:

a browser (victim) is scripted to open the Alexa top10 websites;

an attacker app, while executing light GPU workloads as camou-

lage, attempts to infer what website the browser is opening. We

train the attacker once with the GPU power traces collected when

the browser runs alone, labeled by website URLs. In subsequent

runs, the attacker infers the websites based the similarity between

its known and observed GPU power activities. The similarity is

measured with DTW, a well-known algorithm for time-series anal-

ysis [2].

Our results show that the attacker’s success rate of inference is

60%, 6× higher than random guess. This is because diferent web

pages tend to generate diferent GPU workloads, and hence unique

power signatures.

2.6 Design choices

We advocate an OS principal for any power-aware app to observe

the collective power of the app itself and its vertical environment.

Speciically, the OS should achieve three objectives:

(1) Insulate app power observation The OS shields an app’s

power observation from the impacts of other apps, and hence

eliminates power entanglement for this observation. The OS

does so by adjusting resource multiplexing.

(2) Preserve vertical environment The OS keeps an app vertical

environment unchanged, whether the app is using the OS

service for observing power or not. This enables apps to

make valid adaptation decisions based on their insulated

power observations.

(3) Track and charge cost The OS charges any overhead or lost

multiplexing opportunity in insulating power observations

to the requesting app. This ensures fairness among all apps

despite their diferent usages of the service.

Following these choices, we introduce a new OS principal called

power sandbox, or psbox, as will be presented below.

3 SYSTEM OVERVIEW

psbox is an OS principal enclosing one power-aware app, i.e., one

or a group of user processes. It is the only way for any app to

observe power. More speciically, a psbox exposes an interface of

virtual power meter to the enclosed app, from which the app may

read real-time power consumption incurred by the app and its

vertical environment. In this observed power, the only possible

contributions of concurrent apps are periods of idle power.

1 // Create a power sandbox
2 box=psbox_create(HW_CPU /* optional */);

3 psbox_enter(box);
4 // Continuous collection of power

samples
5 psbox_sample(box , &buf , NUM_SAMPLES);
6 // One -time query of energy
7 energy = psbox_read(box);
8 psbox_leave(box);

Listing 1: The psbox User API

Intended usage of psbox Since a psbox’s overhead is charged

to the sandboxed app, we expect apps to use psbox as a łpay as

you gož service. They use psbox to periodically sample power, or

selectively monitor power during interesting execution phases, and

leave psbox for full-speed execution. An app makes power-aware

decisions according to its psbox’s virtual powermeter. After the app

leaves the psbox, its decisions remain valid, since the OS preserves

the app’s vertical environment (ğ2.1). The app only pays the price

of psbox during a small fraction of its execution time.

We would like to stress this łpay as you gož power sandboxing

is complementary to, and may coexist with, the OS mechanisms

that optimize multiplexing of power-unaware apps for combined

eiciency [40, 66, 102].

The app interface Apps access psbox through the API sum-

marized in Listing 1. An app creates a psbox and binds it to a set

of hardware components of which power is reported (line 2). The

granularity of hardware sets is determined by the possible power

metering scopes as supported by hardware. For example, the hard-

ware can be a subset of CPU cores sharing one measurable power

rail [5]. During execution, the app is at liberty to enter or leave the

psbox (line 3 and 8).

When it is in psbox, the appmay query the psbox’s virtual power

meter. Similar to accessing CPU performance events [62, 90], the

app may collect power samples in a user-provided bufer (line 5)

or poll to get the accumulated energy (line 7). Unlike existing CPU

events (including the power events [21]), all psbox power readings

are timestamped. These timestamps come from a standard clock

that apps can access through the clock_gettime() syscall. This

allows apps to readily map power readings to software activities at

ine granularities. Depending on metering methods, the timestamp

resolution can be as high as 10 µs, as will described Section 5.

Kernel enforces psbox boundaries The kernel eliminates

power entanglement for a psbox. To do so, the kernel allocates

spatial and temporal partitions of hardware resources at ine gran-

ularities, and grants exclusive use of them to the psbox. We term

these partitions resource balloons, which are exempliied by a set

of CPU cores and a time slice of the WiFi interface. Having estab-

lished the boundaries for resource balloons, the kernel meters the

corresponding hardware power, through either direct measurement

or modeling (ğ2). The kernel then reveals the metered hardware

power to the psbox’s virtual power meter.

Kernel conines performance loss A psbox incurs perfor-

mance overhead. Most notably, the exclusive use of resource bal-

loons likely leads to hardware under-utilization. The kernel tackles

the overhead in two ways. On one hand, the kernel reduces the

overhead by keeping resource balloons small, as will be shown

in Section 6. More importantly, the kernel conines the overhead

to the sandboxed app and minimizes the impact on apps outside

the psbox. To do so, the kernel tracks the lost sharing opportunity

due to resource ballooning, bills it to the sandboxed app, and prop-

erly disadvantages the sandboxed app in future competitions for

accessing the hardware.

4 KERNEL SUPPORT

To support psbox, we face a twist of two challenges: i) eliminating

power entanglement (ğ2.3) by changing how the kernel multiplexes

concurrent apps on hardware; ii) integrating the changes into ma-

ture kernel mechanisms to avoid disruptive modiications. To ad-

dress the irst challenge, we present a model for extending kernel

drivers; to address the second challenge, we describe how to apply

the model to the kernel subsystems that manage major hardware

components. For brevity, the remainder of this paper refers to these

kernel subsystems as drivers in general.

4.1 The driver model

We propose two lightweight extensions to existing drivers.

Resource ballooning Resource multiplexing must respect

psbox boundaries. More speciically, the kernel must conine spatial

concurrency and asynchronous requests, twomajor causes of power

entanglement (ğ2.3). To this end, we retroit the concept of memory

ballooning for virtual machines [89]. The kernel allocates ine-

grained resource partitions, called resource balloons, and makes

them exclusive to a psbox. The kernel schedules resources balloons

together with other normal apps, enforces balloon boundaries, and

meters the power of resource balloons for the psbox.

We next describe two types of balloons. In the discussion, we

use psbox⟨App ,hw⟩ to denote a psbox bound to hardware hw and

enclosing an app App . We useApp to refer to all other apps outside

the psbox.

• Spatial balloon is for conining spatial concurrency on OS-

schedulable, preemptable resources, most notably CPU cores.

It prevents App and App from using hw simultaneously.

To do so, when granting the access of hw to App , the OS

schedules in a spatial balloon that occupies all the resources

in hw , which efectively exclude App from hw .

• Temporal balloon is for conining request asynchrony on

accelerators and I/O devices. It prevents App and App from

having in-light requests submitted to hw simultaneously. To

do so, when granting App the access tohw , the OS schedules

in a temporal balloon, a time slice during which the OS only

dispatches the requests from App tohw . At the start and end

of the temporal balloon, the OS drains in-light requests by

holding back new requests until hw completes the existing

ones.

A key advantage of resource balloons is they appear as normal

scheduling entities to the existing kernel infrastructure. Hence, they

keep most of the latter oblivious and therefore unmodiied. i) The

kernel’s existing accounting mechanism does not diferentiate the

portion of hw used by App from the portion intentionally kept idle

by the balloons, e.g. unused CPU cores or stalled GPU cycles. The

kernel simply bills all the resource occupied by the balloons to App .

ii) The kernel’s existing schedulers, e.g. for CPU or for network

packets, still enjoy full freedom of choice: they are at liberty to

decide whether and when to schedule a balloon on hw , and may

freely multiplex App on hw without constraints.

Figure 7 in evaluation shows resource balloons in action.

Power state virtualization Enclosed in a psbox⟨App ,hw⟩,

App should neither observe any lingering power state (ğ2.3) on

hw nor leave any residual state after using hw . To this end, the OS

keeps a virtual copy of the power state of hw for each psbox (and

a separate copy for App). Upon scheduling in a resource balloon

on hw , the OS puts hw in the power state in which the psbox left

hw previously; when scheduling out the resource balloon, the OS

extracts the hardware power state and saves it for the psbox.

To make this idea practical, we put hardware power states into

two categories, depending on the costs of the related state transi-

tions, and treat them diferently:

• Of/suspended states, in which devices lose power or remain

in deep sleep. Examples include CPU deep sleep that re-

tains no cache content, or GPS cold start without any locked

satellite. Exiting these power states often requires expensive

hardware operations, e.g. device initialization. Once a device

exists such an of/suspended state, it often remains in an

operating state for a long period, as described below.

• Operating/idle states are rough equivalents of P and C states

in ACPI [36], which control performance settings of a work-

ing device or power saving of an idle device. A device can

switch among these states at low cost and with low delay

(often sub-milliseconds). Examples include CPU frequencies

and WiFi transmission power levels.

The kernel virtualizes operating/idle states and reports the cor-

responding hardware power to psboxes. By contrast, it neither

virtualizes of/suspended states nor reveals the power pertaining

to these states. The rationales are as follows. First, reconstructing

of/suspended states for each psbox can be prohibitively expensive,

e.g. it requires to cold restart a GPS device for each new psbox.

Furthermore, it is unsafe to reveal unvirtualized of/suspend hard-

ware states to apps, which would allow a malicious app to infer

the device usage, e.g. whether other apps have just used GPS for

localization, through power side channels (ğ2.5). Hence, for the

durations when hw is of/suspended, the kernel simply feeds psbox

with samples of hw’s idle power. To App , hw appears idle.

4.2 Applying the driver model

According to our model, a driver takes on two new responsibilities

for psbox:

(1) Enforcing resource balloon boundaries, including virtualiz-

ing power states;

(2) Tracking lost opportunities of resource sharing and counting

them against App .

Beyond these two, balloon scheduling is handled by existing

kernel mechanisms transparently.

Multicore CPU

We build spatial balloons into the CPU scheduler. A typical mul-

ticore CPU scheduler runs multiple instances, one for each core

and managing a runqueue of local tasks (processes or threads). To

choose the next running task, an instance picks the one with the

best scheduling credit. Scheduling credits are often computed from

tasks’ recent CPU usage. For scalability, scheduler instances rarely

communicate.

To enforce spatial balloons for psbox⟨App ,hw⟩, the CPU sched-

uler coschedules tasks of App on all the cores of hw. If the runnable

tasks in App are fewer than the cores, the scheduler runs dummy

tasks on the remaining cores to force them idle.

To do this, an existing multicore scheduler faces twofold chal-

lenges. First, it needs to decide when to start and end a coschedul-

ing period across a set of cores. However, in current designs each

scheduler instance schedules its local tasks independently. Second,

according to CPU cycles spent in coscheduling, the scheduler needs

to discount scheduling credits, and hence ensure fairness between

App and App across all the cores. However, in current designs an

instance focuses on maintaining fairness among its local tasks.

While the idea of coscheduling is long known [69], the above

challenges were still considered unaddressed on multicore, espe-

cially the fairness concern [20]. To address the challenges, we in-

troduce a new notion of scheduling loan with three key ideas: i)

we allow a scheduler instance to pick a task T for execution even

if T does not have the best scheduling credit among all the local

runnable tasks; ii) in order to be picked, T must get a loan to tri-

umph other runnable tasks and pay back the loan with its future

credits; iii) all tasks in App share their scheduling loans.

Our augmented multicore scheduler works as follows.

• Scheduling entities: Similar to a Linux cgroup, a psbox has

a set of scheduling entities {E}, one entity on each core. An

entity Ei encompasses all tasks in App on core i and keeps a

collective scheduling credit. The kernel schedules Ei together

with other normal tasks.

(1) Schedule in: Same as in current designs, the scheduler in-

stance on core i picks Ei when Ei has the best scheduling

credit. The instance further picks a task within Ei to run.

(2) Task shootdown: The scheduler instance thus requests all

other cores to schedule in their corresponding entities in {E}.

It does so by sending inter-processor interrupts to all other

cores. Upon request, the scheduler on a remote core j picks

Ej : it calculates ∆j , the initial loan of Ej , as the diference

between Ej ’s current scheduling credit and that of the most

favorable task on core j (which would otherwise run). After

shootdown, all tasks in App are of CPU and a coscheduling

period for App starts.

(3) Running & loan update: During coscheduling, scheduler in-

stances bill local CPU cycles to the corresponding entities

in {E}. When any scheduler instance, e.g., the one on core i ,

is invoked for rescheduling, it takes the chance to calculate

the extra loan needed by Ei to warrant Ei ’s continue use of

core i , and add this new loan to ∆i .

(4) Schedule out: The coscheduling of App continues until none

of {E} has the best credit on their corresponding cores, i.e.,

they all need extra loans to continue. At that time, the sched-

uler simultaneously schedules out all Ei from all the cores,

by performing another shootdown.

(5) Loan redistribution & repayment: When scheduling Ei out, a

current scheduler design will adjust Ei ’s credits based on the

time Ei just runs. We further make App pay back the loans

that have accumulated during the preceding coscheduling

period. To provide long-term fairness over all the cores, all

entities in {E} evenly split their total loans. The scheduler

redistributes the loans within {E}, which will disadvantage

App in future scheduling.

Accelerators

Accelerators, such as GPU and DSP, execute commands oloaded

from the CPU. The lowest CPU/accelerator interface is often a

shared command queue. To exploit hardware parallelism, the com-

mand queue is asynchronous: CPU may dispatch multiple com-

mands to the queue, and will be notiied by the accelerator on the

completion of these commands.

In multiplexing apps on an accelerator, the corresponding driver

schedules their commands. The driver picks one app’s pending

commands for dispatch, based on the scheduling credits of all apps,

e.g., their recent accelerator usages, and the driver’s scheduling

policy. To support psbox, we bake temporal balloons (ğ 4.1) in the

driver. We augment how the driver switches among commands

of diferent apps and bills the accelerator usage; meanwhile, we

keep any scheduling policy intact. In a nutshell, i) the augmented

driver treats App as a single app in scheduling; ii) the driver avoids

dispatching commands of App as long as any commands from App

are outstanding; iii) the driver bills any resultant lost opportunity

in utilizing the accelerator to App ; iv) the driver further virtualizes

the accelerator’s operating frequency, its most important power

state, for each psbox.

We next describe how the driver schedules in and out a temporal

balloon.

(1) Drain others: When the driver’s scheduling policy decides

to dispatch commands for App , the driver bufers all subse-

quent requests (from both App andApp) until the accelerator

hardware notiies the completion of all existing commands.

During this phase, the driver bills the unutilized portion of

the accelerator (e.g., idle DSP cores) to App as if the portion

was actually used by App .

(2) Flush psbox: After draining outstanding commands, the dri-

ver sends out any bufered command for App , which may

have accumulated during phase 1.

(3) Serve psbox: The driver directly dispatches all the subsequent

requests from App to the accelerator while bufering the

ones from App.

(4) Drain psbox: When the driver’s scheduling policy decides

that App deserves the access of accelerator, it drains any

outstanding commands from App in a way similar to phase

1. Over the course of phase 2ś4, the driver bills the usage of

entire accelerator to App .

(5) Flush others: The driver sends out any bufered commands

from App, which may have accumulated in phase 4, in their

queueing order. Thereafter, it bufers all subsequent com-

mands from App while dispatching ones from App directly.

The above design integrates well with existing schedulers, yet are

not tied to any speciic deinition of fairness or scheduling policy. A

challenge to demonstrating this, however, is that many production

accelerator drivers use simple scheduling policies, e.g., round-robin

dispatch, which do not guarantee fairness. In our implementation

described in Section 5, we have built fair queueing schedulers as

baseline designs for GPU and DSP on our test platform, and aug-

ment the schedulers for supporting psbox.

Wireless interfaces

Wireless network interfaces (NICs) such as WiFi interface, are asyn-

chronous by nature. Often, apps trap into the kernel to deposit their

packets into their corresponding kernel bufers; the driver incor-

porates a packet scheduler to dispatch these packets into a uniied

transmission queue, from which the driver will send packets to the

NIC in order. The packet scheduler determines scheduling credits

for apps based their total sent bytes; it ensures fairness through its

queueing discipline, e.g., the Linux fq_codel.

We tap into the packet scheduler to realize temporal balloons for

NICs. We realize packet draining phases similar to accelerators as

described above, while holding back packets in per-socket bufers

instead of a global queue. To better assess lost sharing opportuni-

ties, the packet scheduler inspects packets that are bufered due to

temporal balloons. It identiies any bufered packets that could have

been dispatched without the balloons. Based on the total bytes in

these packets, the driver discounts the scheduling credit of App as

a penalty for the lost opportunities.

A particular challenge is making packet reception respect psbox

boundaries (ğ4.1). To achieve this, the NIC should defer receiving

the packets that are not destined to the current temporal balloon,

a function unsupported by commodity wireless NICs. Because of

this, our current implementation is limited in insulating power

impacts of receiving diferent packets. Yet, we have observed that

such reception deferral can be achieved by exploiting virtual MAC

addresses, an emerging feature of recent WiFi NICs [13, 15, 92]: the

driver creates one virtual MAC for each psbox and switches among

virtual MACs as it switches among temporal balloons.

Wireless NICs often have non-trivial power state that must be

virtualized. Fortunately, modern WiFi NICs [86] often expose the

control of power states to the OS. Hence, we augment the WiFi NIC

driver to virtualize power states including transmission modes and

power saving timer, and drive an independent state machine for

each psbox. We recognize that cellular (4G) NICs have uncontrol-

lable power states [41] which we will discuss in Section 7.

5 IMPLEMENTATION

We have built psbox into the Linux kernel 4.4 with about 2250

SLoC. We have assembled two hardware prototypes capable of

measuring each of the major hardware components in situ and

separately, as shown in Figure 4. The power sampling is as fast as

100KHz. Besides acquiring power samples, the power meter and the

CPU synchronize their respective clocks to align power samples

with software activities. It is worth noting that the purpose of our

hardware prototypes is for evaluating psbox; they are not intended

to be free-roaming devices as other systems [11, 79].

CPU We build psbox into the Linux completely fair scheduler

(CFS) [61]. Although a CFS instance is able to schedule a process

group (cgroup) as one scheduling entity, it does not coordinate

multiple scheduler instances. We encapsulate each power sandbox

in a Linux cgroup, and coordinate the tasks within through IPI.

GPU We implement psbox for PowerVR SGX544, a mobile

GPU on the platform in Figure 4(a). Due to diversity of modern

GPUs, we further evaluate psbox atop Qualcomm Adreno420 on

Nexus 6. The two GPUs belong to diferent families, and have very

diferent hardware/software stacks.

For both GPUs, we tap into their GPU command queues to im-

plement fair schedulers in the spirit of the Linux CFS [61]: our

scheduler tracks per-app virtual GPU runtime and favors GPU com-

mands from the app that has the minimal virtual GPU runtime.

Atop the schedulers, the drivers enforce temporal balloon bound-

aries diferently, based on their existing structures: since SGX544

directly dispatches commands from syscall contexts to GPU, the

driver bufers app locking requests; by contrast, since Adreno330

DAQ
(MCCDAQ USB1608G)

DAQ Controller
(BeagleboneBlack)

Power

readings

AM57EVM

DSPGPUCPU

To controller

To DAQ

Sampling

Power

DAQ
(MCCDAQ USB1608G)

Wi-Fi Module
(WiLink 8)

BeagleboneBlack

Sampling

Power

To controller

To DAQ

WiFi

GPUCPU DSP

AM57EVM

P
ow

er
 r

ea
di

ng
s In Situ Power Meter

Dual

Cortex A15

SGX

544MP

TMS320

C66x

BeagleboneBlack

 Cortex

A8

TI

WiLink8

(a) Platform for testing psbox on

CPU, GPU, and DSP

(b) Platform for testing psbox on

WiFi interface

In Situ Power Meter

Sampling

power

S
D

IO
 +

 P
o

w
e

r

CPU

Figure 4: Our prototype hardware platforms used in evalua-

tion. In situ, per component power metering (through four

distinct power rails) is built atop a Cortex-A8 controlling

MCCDAQ USB1608G [57] sampling at 100KHz. Time syn-

chronization is over GPIO (not shown). In (b), the Beagle-

bone Black acts as both the target system and the DAQ con-

troller.

bufers GPU commands in per-process queues before dispatching

them, the driver bufers commands from apps.

DSP We implement psbox for TI c66x, a popular multicore

DSP that supports OpenCL. During execution, CPU dispatches DSP

commands, e.g., task execution or cache lush, via a kernel-managed

command queue. Similar to GPU, we enforce resource partitions

atop a fair scheduler along the command queue. The driver further

inspects DSP commands for tracking their dispatch and completion

time.

WiFi We build psbox for the TIWiLink8 NICwith a wl1837 chip

as shown in Figure 4(b). The chip accepts packets and commands

from CPU over SDIO, and runs its own irmware to implement

MAC layer and below.

We build temporal resource partitions into the Linux’s fair packet

scheduler and virtualize the NIC power state in the driver. Despite

the NIC’s support of multiple MACs, when we switch MAC at

run time the NIC resets and loses its association with base sta-

tion. Therefore, the lack of true MAC virtualization defeats our

efort in insulating energy impacts of receiving diferent packets,

as described in Section 4.2.

6 EVALUATION

We evaluate the drivers augmented for psbox reported in Section 5

using benchmark apps summarized in Table 5. The evaluation an-

swers the following questions:

ğ6.1 Does psbox eliminate power entanglement?

ğ6.2 How does psbox impact app performance?

Benchmark Description

C
P
U

bodytrack A vision program tracking human body move (P)

calib3d Camera calibration and 3D reconstruction (O)

dedup Compressing data stream with deduplication (P)

G
P
U

browser A webkit browser opening a Google homepage (T)

magic Rendering a “magic lantern” scene at 60fps (V)

cube Rendering a rotating cube scene at 60fps (Q)

triangle A synthetic app drawing 100k triangles /sec offscreen

D
S
P

sgemm Single-precision matrix-multiplication (T)

dgemm Double-precision matrix-multiplication (T)

monte Monte Carlo simulation. (T)

W
iF
i browser A Links browser opening a Yahoo homepage

scp Transmitting a 50MB data file over ssh

wget Transmitting a 50MB data file over http

Figure 5: Benchmark apps used in evaluation. P-PARSEC 3;

O-OpenCV 3.1; T-TI am57 SDK; V-PowerVR SDK; Q-Qt SDK

ğ6.3 Does psbox conine throughput loss to sandboxed apps?

ğ6.4 Does psbox facilitate building power-aware apps?

6.1 Elimination of power entanglement

Methodology To test each driver, we run a set of scenarios as

shown in Figure 6. Designating a benchmark app App to be power-

aware, we irst runApp alone and then co-run it with other apps. For

co-running scenarios, we compare psbox to an existing kernel-level

accounting mechanism [96] without psbox. This prior mechanism

derives App’s power by dividing each system power sample among

co-running apps based on their hardware usages in each power

sampling interval. Note that we implement this prior mechanism

favorably by tracking hardware usage at the lowest software level

and at very ine granularities (10µs, 10× smaller than prior work [11,

79]).

Our experiments demonstrate that psbox achieves its primary

goal of eliminating power entanglement. As shown in the igure, no

matter whether App is executed alone or co-executed with difer-

ent apps, psbox keeps App’s power observations highly consistent,

e.g., preserving signiicant power spikes and dips. By contrast, the

power shares produced by the prior mechanism exhibit signiicant

variations. The power diferences are relected in that of the accu-

mulated energy: while the energy values reported by psbox are less

than 5% within each other in most scenario sets, that of the prior

approach can be as high as 60%. This also supports our argument

in Section 2.3: existing accounting approaches are fundamentally

inadequate, despite of the high metering rate. Note that psbox does

not seek absolute reproducibility of power observations, which is

diicult, if not impossible, on commodity computers. This is be-

cause OS resource scheduling and app behaviors are not guaranteed

to be the same across diferent runs.

We further show the details of resource multiplexing, without

and with psbox. As shown in Figure 7, psbox creates spatial and

temporal balloons on CPU and DSP, respectively, and hence makes

resource multiplexing respect the psbox boundaries. Outside of

these balloons, the kernel multiplexes other apps freely as usual.

6.2 Performance impact

Latency increase All apps in the system may experience extra

latency in some of their hardware access, if the hardware access

happens to trigger resource balloon switch. Our implementation

keeps the extra latency relatively low. Throughout our benchmark

scenarios, the CPU scheduling latency is increased by tens of µs for

task shootdown; the command dispatch latencies for GPU and DSP

are increased by 1.8 ms and 100 ms on average, respectively.

The increased latency for WiFi packet transmission can be long,

sometimes hundreds of ms. We found this is likely due to internal

notiication batching by the irmware of the WiLink NIC on the

platform in Figure 4(b). In addition, the platform’s wimpy CPU also

contributes to interrupt handling latency. The combined software

and hardware behaviors prolong draining phases.

Throughput loss As mentioned in Section 3, the exclusion of

resource balloons may lead to lost sharing opportunities, which will

reduce the total throughput on hardware. In our experiments, the

total throughput loss can be noticeable, ranging from 0.9% (WiFi)

to 9.8% (CPU). In face of the hardware throughput loss, we next

discuss how well psbox maintains fairness among apps.

6.3 Coninement of throughput loss

Our system maintains throughput fairness among apps which may

have diferent usages of psbox. To ease the comparison of app

throughput loss, we co-run multiple instances of the same app. We

show the throughputs of all the apps in Figure 8. When one app

enters its psbox, it is the only one experiencing throughput loss;

in comparison, the throughputs of other co-executing apps remain

largely unafected despite the total throughput decrease. Note that

this is achieved without changing existing scheduling policies. This

validates our key design of fully charging lost sharing opportunities

to the sandboxed app (ğ4.2). We further test the robustness of our

fairness guarantee under extremely high resource contention: we

test the GPU driver, by co-running browser (in psbox) with triangle,

a synthetic, intensive benchmark. Our results show that while the

GPU throughput of browser drops by 4× due to excessive draining

time, that of triangle only decreases by 1%.

6.4 An end-to-end use case

We demonstrate the eicacy of psbox on a virtual reality (VR)

scenario derived from a SDK demo (2K SLoC) [85]. The VR scenario

lets a human user move her hand in order to control animated water

waves. Two CPU tasks are running continuously. The gesture task

processes video frames, identiies hand contours, and recognizes

hand gestures. The rendering task translates the recognized gestures

to wind directions, generates Phillips spectrum and 2D IFFT, and

keeps refreshing a height map for animating the waves.

We, as app programmers, set to make rendering power-aware, so

that it can trade the rendering idelity (e.g. framerate, resolution)

for lower power at run time. Without psbox, reasoning about the

power of rendering is diicult due to power entanglement, as shown

in Figure 9. To worsen the problem, the gesture task’s workloads

(and hence its power impacts) largely vary based on inputs, i.e.,

the number of contours in a frame. With psbox, the rendering task

observes its power without the varying impacts of gesture. By ad-

justing the rendering idelity based on its power observation in

psbox, rendering achieves a wide range (8.9×) of power, from 90mW

to 800mW.

Running alone Co-running scenarios
psbox Existing approach

C
P
U

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d

936mJ

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ body]

922mJ (-1.5%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ dedup]

925mJ (-1.2%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ body]

853mJ (-8.9%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ dedup]

804mJ (-14.1%)

D
SP

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm

3018mJ

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm [w/ sgemm]

2906mJ (-3.7%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm[w/monte+sgemm]

2959mJ (-2.0%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm [w/ sgemm]

1560mJ (-48.3%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm[w/monte+sgemm]

1110mJ (-63.2%)

G
P
U

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser

201mJ

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ magic]

199mJ (-0.9%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ triangle]

201mJ (0%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ magic]

211mJ (+5.0%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ triangle]

172mJ (-14.4%)

W
iF
i

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser

267mJ

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ scp]

273mJ (+2.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ wget]

313mJ (+17.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ scp]

412mJ (+35.2%)

browser [w/ wget]

455mJ (+41.3%)

Figure 6: Power of the benchmark scenarios. In all plots, x-axis: Time/Sec; y-axis: Power/Watt. In each row: even as an app

co-runs with diferent apps (column 2ś5), psbox provides it with consistent power observations (column 2 & 3), which are close

to the power of the app running alone (column 1). This contrasts to the power attributed to the app by an existing accounting

approach (column 4 & 5). The numbers under each plot show the app’s total energy and the diference compared to the energy

when the app runs alone. Some plots cannot display full length of power activities due to space limit.

Without psbox isolation, the rendering task will mistakenly take

entangled power impacts into account. This incorrect power knowl-

edge will mislead the app’s power adaptation strategy, lowering

energy eiciency or user experience. This VR scenario demonstrates

the beneit from insulating power impacts.

7 LIMITATIONS & DISCUSSIONS

Support psbox on extra hardware (1) Display may consume

more than 50% of energy of a smartphone or tablet [12]. Fortunately,

modern displays, notably OLED, are known free of power entan-

glement: each pixel contributes to the total power independently

with little lingering power state [24]. Hence, OS may simply divide

the display power among apps based the pixels produced by each

app [70]. (2) GPS power is unafected by concurrent uses once the

device is operating. Therefore, the kernel can safely reveal GPS

hardware power, except when the GPS is in of/suspended state,

to individual psboxes. This avoids expensive power state virtual-

ization as described in Section 4.1. (3) Cellular interface While

temporal balloons for cellular interface (4G) can be constructed in a

way similar to WiFi NICs (ğ4.2), a unique challenge is for the kernel

to virtualize a cellular interface’s power state [96]. In practice, the

state transitions of a cellular interface are not controllable by the

OS, but by the cellular standard that must be agreed with cellular

towers. To this end, psbox will be made feasible on cellular inter-

faces through future hardware support. (4) DRAM consume 5%

ś 25% of system energy [8, 12]. Given that DRAM power is often

metered at the level of DIMM [19] or controller [21], it is possible

to realize psbox on DRAM through temporal balloons, However, it

is challenging to track app DRAM usage and ensure fairness, for

which the OS may need to consult hardware performance counters.

Calib3D*
(Idle)

Bodytrack
Others

 0

 2

 4

0 50 100 150

P
o
w

e
r/

W
a
tt

Time/ms

(a) Dual-core CPU w/o psbox

Calib3D*
(Idle)

Bodytrack
Others

 0

 2

 4

0 50 100 150

P
o
w

e
r/

W
a
tt

Time/ms

(b) Dual-core CPU w/ psbox and spatial balloons

for calib3d*

 0

 10

 20

C
o
m

m
a
n
d

sgemm
monte

dgemm*

 0

 0.5

 1

 1.5

1.0 2.0 3.0 4.0 5.0

P
o
w

e
r/

W
a
tt

Time/Sec

(c) DSP w/o psbox. Commands

overlap in time freely.

 0

 10

 20

C
o
m

m
a
n
d

sgemm
monte

dgemm*

 0

 0.5

 1

 1.5

1.0 2.0 3.0 4.0 5.0

P
o
w

e
r/

W
a
tt

Time/Sec

(d) DSP w/ psbox and temporal

balloons for dgemm*

Figure 7: Resource multiplexing and the resultant system

power, before and after one app* enters psbox. (a)(b): CPU

schedule and power. When Calib3D runs, the system power

consumption is lower because Calib3D’s psbox forces the

otherCPUcore to stay idle. (c)(d): DSP commands andpower.

Userspace OS daemon Our current implementation focuses

on kernel drivers. In other systems especially Android, multiplexing

of app requests also happens in user-level daemons. It is possible

to build psbox into these daemons by making their request multi-

plexing respect psbox boundaries.

Power-aware entities other than apps Some scenarios de-

ine alternative entities for power awareness, e.g. a user request

served by multiple processes or even machines [30, 81]. psbox may

enclose these entities in addition to an app. To do support this, each

involved process or machine, as points of multiplexing, must be

augmented to respect psbox boundaries.

Alternative OSmechanisms for supporting psbox Besides

our Linux-based instantiation of psbox (ğ4.2), there are existing OS

mechanisms that are absent in the mainline Linux yet suiting the

need of enforcing psbox. First, scheduler activations [3] help move

 0

 10

 20

 30

 40

Before After

K
B

/s

calib3d
calib3d

calib3d*

(a) CPU

 0

 2

 4

 6

 8

Before After

G
F
L
O

P
S

sgemm1
sgemm2

sgemm3*

(b) DSP

 0

 200

 400

 600

Before After

C
o
m

m
a
n
d
s
/s

cube1
cube2*

(c) GPU

 0

 400

 800

 1200

 1600

Before After

K
B

/s

wget1
wget2*

(d) WiFi

Figure 8: Throughputs of co-running app instances, before

and after one instance (marked with *) enters psbox.

 0

 1

 2

 3

0.0 0.5 1.0

P
o
w

e
r/

W
a
tt

Time/Sec

others
rendering (in psbox)

Figure 9: CPU power of a VR scenario. The rendering task

enters psbox to observe its power and adapts accordingly

much of the CPU scheduling logic for psbox to user space. With

such a mechanism, an app in its psbox spawns dummy threads

to occupy unused cores for enforcing the balloon boundary; as

the app’s actual threads suspend/resume, the kernel notiies the

app through upcalls, which adjust the number of dummy threads

accordingly. Second, gang scheduling [20], commonly seen in real-

time kernels, directly supports executing all threads in a psbox (a

gang) simultaneously and enforces mutual exclusion among gangs.

Third, systems like Dune [9] creates per-app virtualized views of

the baremetal CPU hardware. This idea can be further extended

to create per-app views of baremetal I/O devices, e.g. WiFi NIC.

The virtualization cost can be further reduced by only enforcing

power insulation (as required by psbox) while eschewing strong

state isolation.

8 ROAD TO EXISTING ECOSYSTEMS

To bring psbox and the power awareness into today’s mobile and

embedded ecosystems, the major challenges are twofold: i) process-

ing high-rate power data with low hardware cost and ii) reusing ma-

ture APIs. We next discuss how these can be achieved by leveraging

the existing software/hardware support for sensor data processing.

8.1 Hardware support

We next discuss how situ power metering (ğ 2.2) can be realized

atop existing hardware platforms with little addition.

Integrating with existing sensor hubs To harness rich sen-

sors, most modern mobile/embedded devices incorporate sensor

hubs, whose overall market is projected to exceed 2 billion units [42].

Sensors hubs are dedicated, extremely eicient processors for pre-

processing sensor data, typically incarnated as Arm Cortex-M

MCUs. As the volume of sensor hubs grows, their cost keeps de-

creasing: it is several US dollars per unit at the time of writing. They

are penetrating most of the mobile/embedded SoC market.

By their design, sensor hubs directly suit pre-processing of power

samples. A Cortex-M0 sensor hub clocked at 32 MHz consumes as

low as 13 mW, and is capable of real-time processing of power data

sampled at 1 KHz [50]. Such a sampling frequency already exceeds

what is demanded by existing power-aware systems [28, 29, 79], and

is able to diferentiate microscopic power activities, e.g. scheduler

context switch as shown in Figure 7.

Asymmetric cores We recognize that there exist mobile/em-

bedded devices that do not have sensor hubs (yet). To increase

eiciency of pre-processing power samples, they can leverage the

lower-power cores inmodern Arm architecture, e.g. big.LITTLE and

DynamIQ [64]. The trend of increasing architectural asymmetry

promises better processing eiciency.

Utilizing low-cost power sensors Modern mobile devices

are already sensor-rich. For instance, the recent iPhone X has eight

sensors of diferent types [43], ranging from the accelerometer to

proximity sensor. Often, it is the types of sensors that diferentiate

mobile devices. While existing sensors are for extrospection, we be-

lieve it is equally valuable and feasible for the devices to additionally

incorporate power sensors for introspection.

Power sensors can be very cost efective. The simplest power

sensor can be a shunt resistor accompanied by an analog-to-digital

converter (ADC); the latter can be further integrated into an on-chip

I/O controller [5]. The combined cost is less than $1 [87]. Standalone

current sensing ICs provide additional design convenience. At mi-

nor cost (around $1 per unit) [44], such an IC can be attached to a

device’s I2C bus with little extra hardware complexity. A typical

current sensing IC [45] is capable of sampling three power rails

at 500KHz simultaneously and returns digitalized power samples.

They are already pervasive on experimental devices including Tegra

X1 [67], X2 [68], Odroid XU3 [35].

8.2 Software support

To foster its adoption, psbox can further leverage the existing soft-

ware infrastructure. This includes mature API frameworks and

processing algorithms of sensor samples.

High-level sensor APIs Mobile OSes such as Android and

iOS support tens of sensor types. They already ofer mature APIs for

apps to retrieve sensor data and subscribe to sensor events [4, 33].

The psbox native interface, as presented in Section 3, can be further

wrapped under such APIs, adding a new łpowerž sensor type. For in-

stance, through calling Android’s SensorManager.registerListener,

an app is able to retrieve power samples or register callbacks for

łhigh powerž events. This is exactly how today’s apps monitor

existing sensors such as accelerometers.

To cater to app-deined power events, existing sensor APIs can be

further augmented with simple temporal predicates [73]. Through

embedded scripting languages such as Lua or Javascript, the apps

can specify events such as łfrequent power spikesž or łpower keeps

increasingž. The predicates are continuously evaluated over power

samples by the OS or the sensor hub.

Sensor hub runtime As discussed before, processing of power

samples can be oloaded to sensor hub hardware for eicient execu-

tion. Fortunately, there exist rich runtime software on sensor hubs

that facilitates such oloading. First, existing commodity sensor hub

runtimes, e.g. SenseMe [74], are already mature; they provide an

arsenal of signal processing algorithms, e.g. denoising, that can pre-

process power samples with high eiciency. Second, recent research

has proposed a variety of techniques for simplifying new code devel-

opment for sensor hubs. For instance, our work Relex [55] creates a

software distributed shared memory between CPU and sensor hubs;

MobileHub [80] automatically learns sensor events and produces

event detection code for sensor hubs; Sidewinder [54] supports

composition of parameterized, pre-deined algorithms for sensor

hubs. These rich techniques are applicable to development of power

data processing algorithms for sensor hubs.

9 RELATED WORK

Power metering Much work infers power from software-visible

events, such as syscall activities [70, 71], kernel activities [96], hard-

ware states [26, 59, 81, 82, 94, 97, 100]. They often construct linear

models either during development [59, 70, 71, 81, 96, 97, 100] or

at run time [26, 82, 94]. Although convenient, energy modeling is

limited by complex hardware [56] and high variation in semicon-

ductor process [83]. Intel RAPL [21] is a CPU feature: the irmware

monitors hardware activities and infers power based on pre-deined

models. Yet, lacking timestamps, RAPL power samples can hardly

be mapped to software activities at ine time granularity [22, 34]. Di-

rect measurement allows accurate power metering through external

multimeters [28, 29], ine-grained hardware instrumentation [84],

smart switching regulators [27], smart battery interfaces [11, 79],

and specialized metering circuits [32, 88]. Regardless of metering

approaches, power entanglement is inevitable as explained in Sec-

tion 2, which necessitates power sandboxes.

Power accounting heuristics As mentioned in Section 2,

prior work attributes power using various heuristics. Eprof [70,

71] attributes lingering tail power to the last triggering entity.

HaPPy [99] splits hyperthreading CPU power based on per-thread

aggregated cycles. Ghanei et al. [31] track asynchronous hardware

use and evenly divides power among concurrent apps. Dong et

al. [25] attribute energy based game theory. Power Containers [81]

meters per core power, while evenly splitting the power of shared re-

sources among active cores. Joulemeter [47] models per-VM power

in the server by inferring system power from hardware activities

reported by OS or performance counters. However, without elim-

inating power entanglement, they sufer from the inadequacies

described in Section 2. It is also diicult to apply the performance

counter-based approaches to many accelerators and I/Os that lack

performance counters.

OS-level power management Power management has been

a key OS responsibility. Odyssey [28, 29] enables the OS to guide

apps for energy-aware adaptation. ECOSystem [97] and Cinder [77]

present OS-level abstractions for energy. Koala [82] builds energy

models in the kernel and sets performance/eiciency dynamically.

Rao et al. [75] build a controller to balance performance loss and

energy saving, based on application-speciic data proiled oline. OS

also manages power for accelerators [72] and I/O devices [93, 98].

However, none prior work presented virtualized power view to

individual apps.

Power side-channel attacks Prior work exploits power side

channels to steal private information on smartphones [95], recover

cryptographic keys [51, 52], reveal mobile user geolocations [58],

and leak information across virtual machines [37]. However, few

systems prevent power side channels through active resource man-

agement as we do.

OS resource scheduling Several proposals on scheduling are

in particular related to psbox. GPU scheduling has been advocated

for long. TimeGraph [48] prioritizes and isolates performance of

competing apps. PTask [76], Gdev [49], andMenychtas et al. support

fair sharing of GPU. ShuleDog [40] prioritizes UI tasks through

resource scheduling. SmartIO [66] reduces app delay by prioritiz-

ing disk reads over writes. Energy discounted computing [102]

co-schedules tasks to improve total system eiciency. Complemen-

tary to psbox, these scheduling proposals target performance or

eiciency for power-unaware apps.

10 CONCLUSIONS

An app’s power observation should be insulated from the impacts of

concurrent apps. We introduce power sandbox, a new OS principal

capturing the power of the enclosed app and its vertical environ-

ment. To support power sandbox, our key techniques are two: to

allocate exclusive resource partitions at ine granularities and bill

the lost sharing opportunities; to virtualize hardware power states.

Our experience shows that power sandbox simpliies reasoning,

eliminates security vulnerability, and still ensures fairness among

apps.

ACKNOWLEDGMENTS

For this project: the authors ailiated with Purdue ECE were sup-

ported in part by NSF Award #1464357, NSF Award #1718702, and

a Google Faculty Award; the authors ailiated with Peking Uni-

versity were supported in part by the National Key Research and

Development Program of China under Grant 2016YFB1000105 and

the National Natural Science Foundation of China under Grant

61725201. The authors thank the anonymous reviewers and the

paper shepherd, Prof. Romain Rouvoy, for their useful feedback.

REFERENCES
[1] Perf. https://perf.wiki.kernel.org/index.php/Tutorial.
[2] Dynamic Time Warping, pages 69ś84. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2007.
[3] Thomas E Anderson, Brian N Bershad, Edward D Lazowska, and Henry M Levy.

Scheduler activations: Efective kernel support for the user-level management
of parallelism. ACM Transactions on Computer Systems (TOCS), 10(1):53ś79,
1992.

[4] Apple. Core Motion. https://developer.apple.com/documentation/coremotion.
[5] ARM. 64 bit juno arm development platform. http://www.arm.com/iles/pdf/

Juno_ARM_Development_Platform_datasheet.pdf, 2014.
[6] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani.

Energy consumption in mobile phones: A measurement study and implications
for network applications. In Proceedings of the 9th ACM SIGCOMM Conference

on Internet Measurement, IMC ’09, pages 280ś293, New York, NY, USA, 2009.
ACM.

[7] Kenneth C. Barr and Krste Asanović. Energy-aware lossless data compression.
ACM Trans. Comput. Syst., 24(3):250ś291, August 2006.

[8] Luiz AndrÃľ Barroso, Jimmy Clidaras, and Urs HÃűlzle. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 2013.

[9] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. Dune: Safe user-level access to privileged cpu features. In
Proc. USENIX OSDI, OSDI’12, pages 335ś348, Berkeley, CA, USA, 2012. USENIX
Association.

[10] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Anal-
ysis with a Leakage Model, pages 16ś29. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[11] Niels Brouwers, Marco Zuniga, and Koen Langendoen. Neat: A novel energy
analysis toolkit for free-roaming smartphones. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems, SenSys ’14, pages 16ś30, New
York, NY, USA, 2014. ACM.

[12] Aaron Carroll and Gernot Heiser. The systems hacker’s guide to the galaxy:
energy usage in a modern smartphone. In Proc. of the 4th Asia-Paciic Workshop
on Systems (APSYS), page 5. ACM, 2013.

[13] Microsoft Hardware Dev Center. Virtual wii in kernel mode.
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/
virtual-wii-in-kernel-mode/, 2017.

[14] Geofrey Challen and Mark Hempstead. The case for power-agile computing.
In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems,
HotOS’13, pages 15ś15, Berkeley, CA, USA, 2011. USENIX Association.

[15] R. Chandra, P. Bahl, and P. Bahl. Multinet: connecting to multiple ieee 802.11
networks using a single wireless card. In IEEE INFOCOM 2004, volume 2, pages
882ś893 vol.2, March 2004.

[16] Hui Chen, Bing Luo, and Weisong Shi. Anole: A case for energy-aware mobile
application design. In Proceedings of the 2012 41st International Conference on
Parallel Processing Workshops, ICPPW ’12, pages 232ś238, Washington, DC, USA,
2012. IEEE Computer Society.

[17] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. Clonecloud: Elastic execution between mobile device and cloud. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, pages
301ś314, New York, NY, USA, 2011. ACM.

[18] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last
longer with code oload. In Proc. USENIX/ACM MobiSys, MobiSys ’10, pages
49ś62, New York, NY, USA, 2010. ACM.

[19] Zehan Cui, Yan Zhu, Y. Bao, and M. Chen. A ine-grained component-level
power measurement method. In 2011 International Green Computing Conference
and Workshops, pages 1ś6, July 2011.

[20] Nikunj A. Dadhania. Gang scheduling in cfs. https://lwn.net/Articles/472797/,
2011.

[21] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian
Le. Rapl: Memory power estimation and capping. In Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED
’10, pages 189ś194, New York, NY, USA, 2010. ACM.

[22] Spencer Desrochers, Chad Paradis, and Vincent M.Weaver. A validation of dram
rapl power measurements. In Proceedings of the Second International Symposium
on Memory Systems, MEMSYS ’16, pages 455ś470, New York, NY, USA, 2016.
ACM.

[23] Ning Ding, Daniel Wagner, Xiaomeng Chen, Abhinav Pathak, Y. Charlie Hu,
and Andrew Rice. Characterizing and modeling the impact of wireless signal
strength on smartphone battery drain. In Proceedings of the ACM SIGMETRIC-
S/International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’13, pages 29ś40, New York, NY, USA, 2013. ACM.

[24] M. Dong and L. Zhong. Chameleon: A color-adaptive web browser for mobile
oled displays. IEEE Transactions on Mobile Computing, 11(5):724ś738, May 2012.

[25] Mian Dong, Tian Lan, and Lin Zhong. Rethink energy accounting with cooper-
ative game theory. In Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking, MobiCom ’14, pages 531ś542, New York,
NY, USA, 2014. ACM.

[26] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling
for battery-powered mobile systems. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages
335ś348, New York, NY, USA, 2011. ACM.

[27] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy metering for free:
Augmenting switching regulators for real-time monitoring. In 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008), pages 283ś
294, April 2008.

[28] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile appli-
cations. In Proceedings of the Seventeenth ACM Symposium on Operating Systems
Principles, SOSP ’99, pages 48ś63, New York, NY, USA, 1999. ACM.

https://perf.wiki.kernel.org/index.php/Tutorial
https://developer.apple.com/documentation/coremotion
http://www.arm.com/files/pdf/Juno_ARM_Development_Platform_datasheet.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/virtual-wifi-in-kernel-mode/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/virtual-wifi-in-kernel-mode/

[29] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for proiling the energy
usage of mobile applications. In Proceedings of the Second IEEE Workshop on
Mobile Computer Systems and Applications, WMCSA ’99, pages 2ś, Washington,
DC, USA, 1999. IEEE Computer Society.

[30] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: Tracking
energy in networked embedded systems. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, pages
323ś338, Berkeley, CA, USA, 2008. USENIX Association.

[31] Farshad Ghanei, Pranav Tipnis, Kyle Marcus, Karthik Dantu, Steve Ko, and
Lukasz Ziarek. Os-based resource accounting for asynchronous resource use
in mobile systems. In Proceedings of the 2016 International Symposium on Low
Power Electronics and Design, ISLPED ’16, pages 296ś301, New York, NY, USA,
2016. ACM.

[32] Bartosz Golaszewski. sigrok: Adventures in integrating a power-measurement
device. http://events.linuxfoundation.org/sites/events/iles/slides/ELC_pres_
bgolaszewski.pdf.

[33] Google. Sensors Overview. https://developer.android.com/guide/topics/sensors/
sensors_overview.html.

[34] D. Hackenberg, T. Ilsche, R. SchÃűne, D. Molka, M. Schmidt, and W. E. Nagel.
Power measurement techniques on standard compute nodes: A quantitative
comparison. In 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 194ś204, April 2013.

[35] Hardkernel. Odroid xu3: Board detail. http://www.hardkernel.com/main/
products/prdt_info.php?g_code=g140448267127&tab_idx=2, 2014.

[36] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Acpi - advanced
coniguration and power interface. http://www.acpi.info/.

[37] H. Hlavacs, T. Treutner, J. P. Gelas, L. Lefevre, and A. C. Orgerie. Energy
consumption side-channel attack at virtual machines in a cloud. In 2011 IEEE
Ninth International Conference on Dependable, Autonomic and Secure Computing,
pages 605ś612, Dec 2011.

[38] Henry Hofmann. Jouleguard: Energy guarantees for approximate applications.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pages 198ś214, New York, NY, USA, 2015. ACM.

[39] Mohammad Hosseini, Alexandra Fedorova, Joseph Peters, and Shervin Shirmo-
hammadi. Energy-aware adaptations in mobile 3d graphics. In Proceedings of
the 20th ACM International Conference on Multimedia, MM ’12, pages 1017ś1020,
New York, NY, USA, 2012. ACM.

[40] G. Huang, M. Xu, F. X. Lin, Y. Liu, Y. Ma, S. Pushp, and X. Liu. Shuledog:
Characterizing and adapting user-perceived latency of android apps. IEEE
Transactions on Mobile Computing, PP(99):1ś1, 2017.

[41] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata
Sen, and Oliver Spatscheck. A close examination of performance and power
characteristics of 4g lte networks. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages
225ś238, New York, NY, USA, 2012. ACM.

[42] IHS Inc. Led by iphone 6s, sensor hubs market is growing fast, ihs says, ihs
markit press release, 2017.

[43] Apple Inc. iPhone X, Tech Specs. https://www.apple.com/iphone-x/specs/, 2017.
[44] Texus Instruments. Ina231, ina3221 triple-channel, high-side measurement,

shunt and bus voltage monitor with i2c and smbus-compatible interface. http:
//www.ti.com/lit/ds/symlink/ina3221.pdf, 2016.

[45] Texus Instruments. Ina3221, 28-v, bi-directional, zero-drift, low-/high-side, i2c
out current/powermonitor w/ alert in wcsp. http://www.ti.com/product/INA231,
2018.

[46] John Levon. OProile - A System Proiler for Linux. http://oproile.sourceforge.
net/about/.

[47] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhattacharya.
Virtual machine power metering and provisioning. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages 39ś50, New York, NY,
USA, 2010. ACM.

[48] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka Ishikawa.
Timegraph: Gpu scheduling for real-time multi-tasking environments. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’11, pages 2ś2, Berkeley, CA, USA, 2011. USENIX Association.

[49] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt. Gdev:
First-class gpu resource management in the operating system. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
pages 37ś37, Berkeley, CA, USA, 2012. USENIX Association.

[50] Kionix. Kx23h-1035: Arm-based sensor hub with accelerometer. http://www.
kionix.com/product/KX23H-1035, 2014.

[51] Paul Kocher, Joshua Jafe, Benjamin Jun, and Pankaj Rohatgi. Introduction to
diferential power analysis. Journal of Cryptographic Engineering, 1(1):5ś27,
2011.

[52] Paul C. Kocher, Joshua Jafe, and Benjamin Jun. Diferential power analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’99, pages 388ś397, London, UK, UK, 1999. Springer-
Verlag.

[53] Nicholas D. Lane, Yohan Chon, Lin Zhou, Yongzhe Zhang, Fan Li, Dongwon Kim,
Guanzhong Ding, Feng Zhao, and Hojung Cha. Piggyback crowdsensing (pcs):
Energy eicient crowdsourcing of mobile sensor data by exploiting smartphone
app opportunities. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13, pages 7:1ś7:14, New York, NY, USA, 2013.
ACM.

[54] Daniyal Liaqat, Silviu Jingoi, Eyal de Lara, Ashvin Goel, Wilson To, Kevin
Lee, Italo De Moraes Garcia, and Manuel Saldana. Sidewinder: An energy
eicient and developer friendly heterogeneous architecture for continuous
mobile sensing. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, pages 205ś215, New York, NY, USA, 2016. ACM.

[55] Felix Xiaozhu Lin, Zhen Wang, Robert LiKamWa, and Lin Zhong. Relex: using
low-power processors in smartphones without knowing them. In Proc. ACM
ASPLOS, pages 13ś24, New York, NY, USA, 2012. ACM.

[56] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan
Kuppuswamy, Alex C. Snoeren, and Rajesh K. Gupta. Evaluating the efec-
tiveness of model-based power characterization. In Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference, USENIXATC’11,
pages 12ś12, Berkeley, CA, USA, 2011. USENIX Association.

[57] Measurement Computing. USB-1608G Series User’s Guide, 2012.
[58] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan

Boneh, and Gabi Nakibly. Powerspy: Location tracking using mobile device
power analysis. In 24th USENIX Security Symposium (USENIX Security 15), pages
785ś800, Washington, D.C., 2015. USENIX Association.

[59] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to
estimate app energy consumption. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, Mobicom ’12, pages 317ś328,
New York, NY, USA, 2012. ACM.

[60] Shivajit Mohapatra, Nalini Venkatasubramanian, Nikil Dutt, Cristiano Pereira,
and Rajesh Gupta. Energy-aware adaptations for end-to- end video streaming
to mobile handheld devices. In E. Macii, editor, Ultra Low-Power Electronics and
Design. Springer Science & Business Media, 2007.

[61] Ingo Molnar. [patch] modular scheduler core and completely fair scheduler.
http://lwn.net/Articles/230501/, 2007.

[62] Philip J. Mucci. PapiEx - execute arbitrary application and measure hardware
performance counters with PAPI. http://icl.cs.utk.edu/~mucci/papiex.

[63] L. Mukhanov, D. S. Nikolopoulos, and B. R. d. Supinski. Alea: Fine-grain energy
proiling with basic block sampling. In 2015 International Conference on Parallel
Architecture and Compilation (PACT), pages 87ś98, Oct 2015.

[64] Nandan Nayampally. ARM DynamIQ: Expanding the possibilities for artiicial
intelligence. 2017.

[65] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and
David Wetherall. Reducing network energy consumption via sleeping and rate-
adaptation. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’08, pages 323ś336, Berkeley, CA, USA, 2008.
USENIX Association.

[66] David T. Nguyen, Gang Zhou, Guoliang Xing, Xin Qi, Zijiang Hao, Ge Peng,
and Qing Yang. Reducing smartphone application delay through read/write
isolation. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, pages 287ś300, New York, NY,
USA, 2015. ACM.

[67] Nvidia. Jetson tx1 voltage and current monitor coniguration application note.
https://developer.nvidia.com/embedded/tegra-2-reference, 2017.

[68] Nvidia. Tegra x2: Technical reference manual. https://developer.nvidia.com/
embedded/tegra-2-reference, 2017.

[69] John K. Ousterhout. Scheduling techniques for concurrebt systems. In Pro-
ceedings of the 3rd International Conference on Distributed Computing Systems,
Miami/Ft. Lauderdale, Florida, USA, October 18-22, 1982, pages 22ś30, 1982.

[70] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent
inside my app?: Fine grained energy accounting on smartphones with eprof. In
Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys
’12, pages 29ś42, New York, NY, USA, 2012. ACM.

[71] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.
Fine-grained power modeling for smartphones using system call tracing. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, pages
153ś168, New York, NY, USA, 2011. ACM.

[72] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. Integrated CPU-GPU
power management for 3D mobile games. In Proc. of the 51st Annual Design
Automation Conference (DAC), pages 40:1ś40:6, 2014.

[73] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, pages 46ś57,
Washington, DC, USA, 1977. IEEE Computer Society.

[74] QuickLogic. SenseMeâĎć - Sensor Algorithm Library for Mobile Devices. https:
//www.quicklogic.com/technologies/sensor-hub/senseme/.

[75] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and Y. Handong. Application-speciic
performance-aware energy optimization on android mobile devices. In 2017 IEEE

http://events.linuxfoundation.org/sites/events/files/slides/ELC_pres_bgolaszewski.pdf
http://events.linuxfoundation.org/sites/events/files/slides/ELC_pres_bgolaszewski.pdf
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=2
http://www.acpi.info/
https://www.apple.com/iphone-x/specs/
http://www.ti.com/lit/ds/symlink/ina3221.pdf
http://www.ti.com/lit/ds/symlink/ina3221.pdf
http://www.ti.com/product/INA231
http://oprofile.sourceforge.net/about/
http://oprofile.sourceforge.net/about/
http://www.kionix.com/product/KX23H-1035
http://www.kionix.com/product/KX23H-1035
http://lwn.net/Articles/230501/
http://icl.cs.utk.edu/~mucci/papiex
https://developer.nvidia.com/embedded/tegra-2-reference
https://developer.nvidia.com/embedded/tegra-2-reference
https://developer.nvidia.com/embedded/tegra-2-reference
https://www.quicklogic.com/technologies/sensor-hub/senseme/
https://www.quicklogic.com/technologies/sensor-hub/senseme/

International Symposium on High Performance Computer Architecture (HPCA),
pages 169ś180, Feb 2017.

[76] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Em-
mett Witchel. Ptask: Operating system abstractions to manage gpus as compute
devices. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 233ś248, New York, NY, USA, 2011. ACM.

[77] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières,
and Nickolai Zeldovich. Energy management in mobile devices with the cinder
operating system. In Proceedings of the Sixth Conference on Computer Systems,
EuroSys ’11, pages 139ś152, New York, NY, USA, 2011. ACM.

[78] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pral-
had Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N. Padmanabhan.
Bartendr: A practical approach to energy-aware cellular data scheduling. In Pro-
ceedings of the Sixteenth Annual International Conference on Mobile Computing
and Networking, MobiCom ’10, pages 85ś96, New York, NY, USA, 2010. ACM.

[79] Aaron Schulman, Tanuj Thapliyal, Sachin Katti, Neil Spring, Dave Levin, and
Prabal Dutta. Stanford CS battor: Plug-and-debug energy debugging for appli-
cations on smartphones and laptops. Technical report, 2016.

[80] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and DavidWetherall.
Enhancing mobile apps to use sensor hubs without programmer efort. In
Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’15, pages 227ś238, New York, NY, USA, 2015.
ACM.

[81] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan
Chen. Power containers: An os facility for ine-grained power and energy
management on multicore servers. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 65ś76, New York, NY, USA, 2013. ACM.

[82] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser.
Koala: a platform for OS-level power management. In Proc. of the 4th ACM
European Conference on Computer Systems (EuroSys), pages 289ś302, 2009.

[83] Guru Prasad Srinivasa, Rizwana Begum, Scott Haseley, Mark Hempstead, and
Geofrey Challen. Separated by birth: Hidden diferences between seemingly-
identical smartphone cpus. In Proceedings of the 18th International Workshop
on Mobile Computing Systems and Applications, HotMobile ’17, pages 103ś108,
New York, NY, USA, 2017. ACM.

[84] T. Stathopoulos, D. McIntire, and W. J. Kaiser. The energy endoscope: Real-time
detailed energy accounting for wireless sensor nodes. In 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008), pages 383ś
394, April 2008.

[85] Texas Instruments. Processor SDK Demos Video Analytics. http://processors.
wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics.

[86] Texas Instruments. WL18x7MOD WiLink 8 Dual-Band Industrial Module âĂŞ
Wi-Fi, Bluetooth, and Bluetooth Low Energy, 2015.

[87] Texus Instruments. Ads7040: Ultra-low-power ultra-small-size sar adc. http:
//www.ti.com/product/ADS7040, 2017.

[88] Patrick Titiano. Leveraging open-source power measurement standard so-
lution. http://events.linuxfoundation.org/sites/events/iles/slides/Leveraging_
Open-Source_Power_Measurement_Standard_Solution_0.pdf.

[89] Carl A. Waldspurger. Memory resource management in VMware ESX server.
SIGOPS Oper. Syst. Rev., 36(SI):181ś194, December 2002.

[90] Vince Weaver. The unoicial Linux Perf Events web-page. http://web.eece.
maine.edu/~vweaver/projects/perf_events. Last accessed: Dec. 12, 2013.

[91] Andreas Weissel, Björn Beutel, and Frank Bellosa. Cooperative i/o: A novel i/o
semantics for energy-aware applications. SIGOPS Oper. Syst. Rev., 36(SI):117ś129,
December 2002.

[92] Lei Xia, Sanjay Kumar, Xue Yang, Praveen Gopalakrishnan, York Liu, Sebastian
Schoenberg, and Xingang Guo. Virtual wii: Bring virtualization from wired to
wireless. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’11, pages 181ś192, New York, NY,
USA, 2011. ACM.

[93] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. Automated os-level
device power management for socs. In Proc. ACM ASPLOS, New York, NY, USA,
2015. ACM.

[94] Fengyuan Xu, Yunxin Liu, Qun Li, and Yongguang Zhang. V-edge: Fast self-
constructive power modeling of smartphones based on battery voltage dynamics.
In Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 43ś55, Lombard, IL, 2013. USENIX.

[95] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A study on power side
channels on mobile devices. In Proceedings of the 7th Asia-Paciic Symposium on
Internetware, Internetware ’15, pages 30ś38, New York, NY, USA, 2015. ACM.

[96] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha.
Appscope: Application energy metering framework for android smartphone
using kernel activity monitoring. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12), pages 387ś400, Boston, MA,
2012. USENIX.

[97] Heng Zeng, Carla Schlatter Ellis, and Alvin R Lebeck. Experiences in managing
energy with ecosystem. IEEE Magazine Pervasive Computing, 4(1):62ś68, 2005.

[98] Shuang Zhai, Liwei Guo, Xiangyu Li, and Felix Xiaozhu Lin. Decelerating
suspend and resume in operating systems. In Proceedings of the 18th International
Workshop on Mobile Computing Systems and Applications, HotMobile ’17, pages
31ś36, New York, NY, USA, 2017. ACM.

[99] Yan Zhai, Xiao Zhang, Stephane Eranian, Lingjia Tang, and Jason Mars. Happy:
Hyperthread-aware power proiling dynamically. In 2014 USENIX Annual Techni-
cal Conference (USENIX ATC 14), pages 211ś217, Philadelphia, PA, 2014. USENIX
Association.

[100] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick,
Zhuoqing Morley Mao, and Lei Yang. Accurate online power estimation and
automatic battery behavior based power model generation for smartphones. In
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES/ISSS ’10, pages 105ś114, New
York, NY, USA, 2010. ACM.

[101] B. Zhao, W. Hu, Q. Zheng, and G. Cao. Energy-aware web browsing on smart-
phones. IEEE Transactions on Parallel and Distributed Systems, 26(3):761ś774,
March 2015.

[102] Meng Zhu and Kai Shen. Energy discounted computing on multicore smart-
phones. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages
129ś141, Denver, CO, 2016. USENIX Association.

http://processors.wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics
http://processors.wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics
http://www.ti.com/product/ADS7040
http://www.ti.com/product/ADS7040
http://events.linuxfoundation.org/sites/events/files/slides/Leveraging_Open-Source_Power_Measurement_Standard_Solution_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Leveraging_Open-Source_Power_Measurement_Standard_Solution_0.pdf
http://web.eece.maine.edu/~vweaver/projects/perf_events
http://web.eece.maine.edu/~vweaver/projects/perf_events

	Abstract
	1 Introduction
	2 A Case for A New OS Principal
	2.1 Power awareness: what matters to apps?
	2.2 Fine-grained power metering is getting easier
	2.3 Accounting is hard due to power entanglement
	2.4 Power entanglement creates reasoning difficulty
	2.5 Power entanglement creates security vulnerability
	2.6 Design choices

	3 System Overview
	4 Kernel Support
	4.1 The driver model
	4.2 Applying the driver model

	5 Implementation
	6 Evaluation
	6.1 Elimination of power entanglement
	6.2 Performance impact
	6.3 Confinement of throughput loss
	6.4 An end-to-end use case

	7 Limitations & Discussions
	8 Road to Existing Ecosystems
	8.1 Hardware support
	8.2 Software support

	9 Related Work
	10 Conclusions
	References

