MinDelay: Low-Latency Joint Caching and
Forwarding for Multi-hop Networks

Milad Mahdian, Edmund Yeh
Department of Electrical and Computer Engineering
Northeastern University
Email: {mmahdian, eyeh} @ece.neu.edu

Abstract—We present a new unified framework for minimizing
congestion-dependent network cost in caching networks by jointly
optimizing forwarding and caching strategies. As caching vari-
ables are integer-constrained, the resulting optimization problem
is NP-hard. To make progress, we focus on a relaxed version of
the optimization problem, where caching variables are allowed
to be real-valued. We develop necessary optimality conditions for
the relaxed problem, and leverage this result to design MinDe-
lay, an adaptive and distributed joint forwarding and caching
algorithm, based on the conditional gradient algorithm. The
MinDelay algorithm elegantly yields feasible routing variables
and integer caching variables at each iteration, and can be
implemented in a distributed manner with low complexity and
overhead. Over a wide range of network topologies, simulation
results show that MinDelay typically has significantly better
delay performance in the low to moderate request rate regions.
Moreover, the MinDelay and VIP algorithms complement each
other in delivering superior delay performance across the entire
range of request arrival rates.

I. INTRODUCTION

Caching networks have many applications including
information-centric networking (ICN), content delivery net-
works (CDNs) and peer-to-peer networks. In particular, ICN
architectures have gained a significant amount of attention over
the past few years. One prominent issue in these networks is
how to jointly design traffic engineering and caching strategies
to maximally exploit the bandwidth and storage resources of
the network for optimal performance. While traffic engineering
and caching have been investigated separately for many years,
their joint optimization is still an under-explored area.

There have been many recent papers on caching strategies
in ICN networks [1], [2], [3], [4], [5], [6], [7]. When design-
ing and evaluating the effectiveness of a cache management
scheme for such networks, the primary performance metrics
have been cache hit probability [3], [5], the reduction of the
number of hops to retrieve the requested content [4], or content
download delay [6].

Similarly, there have been a number of attempts to enhance
traffic engineering in ICN [8], [9], [10], [11], [12]. In [8],
Carofiglio et al., formulate the problem of joint multipath
congestion control and request forwarding in ICN as an
optimization problem. By decomposing the problem into two
subproblems of maximizing user throughput and minimizing
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overall network cost, they develop a receiver-driven window-
based congestion control algorithm and a hop-by-hop dynamic
request forwarding algorithm which aim to balance the number
of pending Interest Packets of each content object (flow) across
the outgoing interfaces at each node. Unfortunately, the work
in [8] does not consider caching policies.

In [10], Detti et al. study different multipath forwarding
strategies. In particular, they compare strategies based on bal-
ancing Round-Trip Time (RTT) averages of each flow across
the outgoing interfaces with strategies based on balancing
pending interest packets across outgoing interfaces.

In [13], Yeh et al., present one of the first unified frame-
works for joint forwarding and caching for ICN networks with
general topology, in which a virtual control plane operates on
the user demand rate for data objects in the network, and
an actual plane handles Interest Packets and Data Packets.
They develop VIP, a set of distributed and dynamic forwarding
and caching algorithms which adaptively maximizes the user
demand rate the ICN can satisfy.

In this work, we present a new unified framework for mini-
mizing congestion-dependent network cost by jointly choosing
node-based forwarding and caching variables, within a quasi-
static network scenarios where user request statistics vary
slowly. We consider the network cost to be the sum of
link costs, expressed as increasing and convex functions of
the traffic rate over the links. When link cost functions are
chosen according to an M/M/1 approximation, minimizing the
network cost corresponds to minimizing the average request
fulfillment delay in the network. As caching variables are
integer-constrained, the resulting joint forwarding and caching
(JFC) optimization problem is NP-hard. To make progress to-
ward an approximate solution, we focus on a relaxed version of
the JFC problem (RJFC), where caching variables are allowed
to be real-valued. Using techniques first introduced in [14], we
develop necessary optimality conditions for the RJIFC problem.
We then leverage this result to design MinDelay, an adaptive
and distributed joint forwarding and caching algorithm for the
original JFC problem, based on a version of the conditional
gradient, or Frank-Wolfe algorithm. The MinDelay algorithm
elegantly yields feasible routing variables and integer caching
variables at each iteration, and can be implemented in a
distributed manner with low complexity and overhead.

Finally, we implement the MinDelay algorithm using our
Java-based network simulator, and present extensive experi-
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mental results. We consider three competing schemes, includ-
ing the VIP algorithm [13], which directly competes against
MinDelay as a jointly optimized distributed and adaptive
forwarding and caching scheme. Over a wide range of net-
work topologies, simulation results show that while the VIP
algorithm performs well in high request arrival rate regions,
MinDelay typically has significantly better delay performance
in the low to moderate request rate regions. Thus, the MinDe-
lay and VIP algorithms complement each other in delivering
superior delay performance across the entire range of request
arrival rates.

II. NETWORK MODEL

Consider a general multi-hop network modeled by a directed
and (strongly) connected graph G = (N, &), where N and €
are the node and link sets, respectively. A link (i,5) € &
corresponds to a unidirectional link, with capacity C; > 0 (
bits/sec). We assume a content-centric setting, e.g. [15], where
each node can request any data object from a set of objects K.
A data object is requested by a requesting node generating an
Interest Packet retrieving a corresponding Data Packet which
contains the data object. We assume the Forwarding Interest
Base (FIB) tables has already been populated at each node,
using a loop-free content-based routing algorithm. Further, we
assume symmetric routing, where Data Packets containing the
requested data object take the same path as their corresponding
Interest Packets, in the reverse direction. Our framework can
be extended to the case where each data object consists of
a sequence of data chunks, each contained in a Data Packet
which is retrieved by a corresponding Interest Packet.

For simplicity, we do not consider interest suppression,
whereby multiple Interest Packets requesting the same data
object are collapsed into one forwarded Interest Packet. The
algorithm we develop can be extended to include Interest
suppression, by introducing a virtual plane in the manner
of [13].

For k € K, let src(k) be the source node of content object
k. Each node in the network has a local cache of capacity c;
(object units), and can optionally cache Data Packets passing
through on the reverse path. Interest Packets requesting a given
data object can enter the network at any node, and exit the
network upon being satisfied by a matching Data Packet at the
content source for the object, or at the nodes which decide to
cache the object. For simplicity, we assume all data objects
have the same size L (bits). The results of the paper can be
extended to the more general case where object sizes differ.

We focus on quasi-static network scenarios where user
request statistics vary slowly. Let ;(k) > 0 be the average
exogenous rate (in requests/sec) at which requests for data
object k arrive (from outside the network) to node i. Let ¢;(k)
be the total average arrival rate of object k requests to node .
Thus, t;(k) includes both the exogenous arrival rate r;(k) and
the endogenous arrival traffic which is forwarded from other
nodes to node <.

Let z;(k) € {0, 1} be the (integer) caching decision variable
for object k at node i, where z;(k) = 1 if object k is cached

at node ¢ and z;(k) = 0 otherwise. Thus, t;(k)z;(k) is the
portion of the total incoming request rate for object & which
is satisfied from the local cache at node ¢ and ¢;(k)(1 —x;(k))
is the portion forwarded to neighboring nodes based on the
forwarding strategy. Furthermore, let ¢;;(k) € [0,1] be the
(real-valued) fraction of the traffic ¢;(k)(1 —xz;(k)) forwarded
over link (4, j) by node i # src(k). Thus, - co; 1) @i5 (k) =
1, where O(i, k) is the set of neighboring nodes for which
node ¢ has a FIB entry for object k. Therefore, the total average
incoming request rate for object k to node i is

ti(k) =ri(k)+ > t(k)1 -z (k)pu(k), (1)

1€Z(i,k)

where Z(i, k) is the set of neighboring nodes of i which have
FIB entries for node ¢ for object k.

Next, let F;; be the Data Packet traffic rate (in bits/sec)
corresponding to the total request rate (summed over all data
objects) forwarded on link (i, ) € &:

Fij =Y L-ti(k)(1 — 2i(k))¢i; (k). 2)
kex
Note that by routing symmetry, the Data Packet traffic of rate
F;; actually travels on the reverse link (3, 7).

As in [14], we assume the total network cost is the sum of
traffic-dependent link costs. The cost on link (j,4) € £ is due
to the Data Packet traffic of rate F}; generated by the total
request rate forwarded on link (4, 7), as in (2). We therefore
denote the cost on link (j,i) as D;;(F;;) to reflect this
relationship.! We assume D;;(F;;) is increasing and convex
in F;;. To implicitly impose the link capacity constraint, we
assume D;;(F;) — oo as Fi; — C}; and D;;(Fi;) = oo for
Fi; > Cji. As an example,

Fi;

Cji —

Di;(Fyj) = 7
)

for 0 < Fij < le 3)
gives the average number of packets waiting for or under
transmission at link (j,4) under an M/M/1 queuing model
[16]. Summing over all links, the network cost 3 ; -y Di; (Fi;)
gives the average total number of packets in the network,
which, by Little’s Law, is proportional to the average system
delay of packets in the network.

III. OPTIMIZATION PROBLEM

We now pose the Joint Forwarding and Caching (JFC)
optimization problem in terms of the forwarding variables

(¢ij (k))(i7j)eg7ke;(: and the caching variables (x;(k))icn ke
as follows:

min 3 jyee Dis (Fij)

subject to:

Zjeo(i,k) oi(k) =1, foralli e N,k e K @
¢ij (k) = 0, for all (i,j) € £,k € K

Y kex Ti(k) < ey for all i e N

z;(k) € {0,1}, for all i € N,k € K.

ISince Interest Packets are small compared to Data Packets, we do not
account for costs associated with the Interest Packet traffic on link (j,4).



The above mixed-integer optimization problem can be
shown to be NP-hard [17]. To make progress toward an
approximate solution, we relax the problem by removing the
integrality constraint in (4). We formulate the Relaxed JFC
(RJFC) problem by replacing the integer caching decision
variables x;(k) € {0,1} by the real-valued variables p;(k) €
[0, 1]:

min D £ > ijyee Dij(Fij)

subject to:

2jeoix %ij(k) =1, foralli e N, ke K )
¢ij (k) = 0, for all (i,7) € £,k € K

> kex Pilk) < ci, for all i € N

0<pi(k) <1, foralli e N,k € K.

It can be shown that D in (5) is non-convex with respect
to (w.r.t.) the forwarding and caching variables (¢, p), where
¢ = (¢ij(k)),j)ee ke and the caching variables p =
(zi(k))ien ke In this work, we use the RIFC formulation
to develop an adaptive and distributed forwarding and caching
algorithm for the JFC problem.

We proceed by computing the derivatives of D with respect
to the forwarding and caching variables, using the technique
of [14]. For the forwarding variables, the partial derivatives
can be computed as

oD
——— = (1 — pi(k))Lt;i(k)d;; (K), (6)
D65, () (1= pi(K)) Lti(k)di; (k)
where the marginal forwarding cost is
) = DL 4 2P
d;j(k) = D;;(Fij) + s (k) 7

Note that af%?k) in (7) stands for the marginal cost due to a
(%
unit increment of object k request traffic at node j. This can
be computed recursively by

8D . .
ar; (k) =0, if j = sre(k),
ai(Dk’) = (= pilk))L Z bij(k)dij(k), if i # src(k).

J=0(i,k)
®)
Finally, we can compute the partial derivatives w.r.t. the
(relaxed) caching variables as follows:

oD
— _Lt,(k 1 (k)85 (k). 9
T = M 3 e O

The minimization in (5) is equivalent to minimizing
the Lagrangian function L(F, A p) = 32 iyee Dij(Fij) —

Dok ik (Zj ¢ij (k) — 1) + 3 i (e pi(k) — ¢;), sub-

ject to the following constraints:

0<pi(k) <1, forall i e N,k € K,
¢ij(k) >0, for all (i,j) € £,k € K,
wi >0, forall i € NV.

A set of necessary conditions for a local minimum to the
RJFC problem can now be derived as

oD = )‘ik7 if gb”(k) >0 (10)
99ii(k) | > ik, if ¢;;(k) =0
= — if ; 1
oD i i 0 < pi(k) <
(k) > —Hi, if pi(k) =0 (1D
' < — i, if p;(k) =1
with the complementary slackness condition
ui<2p,;(k)ci) =0,forall i € N. (12)

ke

The conditions (10)-(12) are necessary for a local minimum
to the RJFC problem, but upon closer examination, it can be
seen that they are not sufficient for optimality. An example
from [14] shows a forwarding configuration (without caching)
where (10) is satisfied at every node, and yet the operating
point is not optimal. In that example, ¢;(k) = 0 at some node
1, which leads to (10) being automatically satisfied for node 1.
This degenerate example also applies to the joint forwarding
and caching setting considered here.

A further issue arises for the joint forwarding and caching
setting where p;(k) = 1 for some ¢ and k. In this case, the
condition in (10) at node ¢ is automatically satisfied for every
j € O(i, k), and yet the operating point need not be optimal.
A simple network example to illustrate this issue is described
in [18], which is omitted here for brevity.

In both cases, when p;(k) = 1 or t;(k) = 0, node 4
still needs to assign forwarding variables for object k in the
optimal way. By removing the term ¢;(k)(1—p;(k)) from (10),
non-optimal forwarding choices in these degenerate cases are
prevented. Furthermore, since the term ¢,;(k)(1—p;(k)) is not a
function of j € O(i, k), it can also be removed from condition
(10) when t;(k)(1 — p;(k)) > 0. We therefore focus on the
following modified conditions:

iy = 6;(k), if ¢;5(k) >0

&J(k){ S 5.(). i bus(k) = 0. (13)
= Hi» if 0 < pi(k) <1

ti(k)oi(k) § <wiy  if pi(k) =0 (14)
> Mg if p;(k) = 1.

where 6;(k) = min,,co k) dim (k), and i = p;/L.

In (14), we used the fact that 3, o ) @i (k)dij (k) =
9; (k) if condition (13) is satisfied. Condition (13) suggests that
requests for object k arriving at node i, should be forwarded
on an outgoing link (7,7) whose “marginal cost” §;;(k)
is minimal. Similarly, condition (14) suggests a structured
caching policy, where one sorts the data objects in decreasing
order with respect to the “cache scores” {t;(k)d;(k)}, and
cache the top ¢; objects, i.e. set p;(k) = 1 for the top ¢;
objects. This is indeed the main idea underlying our proposed
caching algorithm described in the next section.



IV. DISTRIBUTED ALGORITHM: MINDELAY

The conditions in (13)-(14) give the general structure for
a joint forwarding and caching algorithm for solving the
RJFC problem. To describe the joint forwarding and caching
algorithm, we first describe a protocol for calculating the
marginal costs, and then describe an algorithm for updating
the forwarding and caching variables.

Note that each node ¢ can estimate, as a time average, the
link traffic rate F;; for each outgoing link (¢,7). This can be
done by either measuring the rate of received Data Packets
on each of the corresponding incoming links (j,%), or by
measuring the request rate of Interest Packets forwarded on
the outgoing links (4, 7). Thus, given a functional form for
D;j(.), node i can compute Dj;(F;;).

To update the marginal forwarding costs, the nodes use the
following protocol. Each node ¢ waits until it has received the
value 0D/0r;(k) from each of its upstream neighbors with
respect to object k (with the convention 9D /07 i) (k) = 0).
Node ¢ then calculates 9D/0r;(k) according to (8) and
broadcasts this to all of its downstream neighbors with respect
to k. The information propagation can be done by either
piggybacking on the Data Packets of the corresponding object,
or by broadcasting a single message regularly to update the
marginal forwarding costs of all the content objects at once.

Having described the protocol for calculating marginal
costs, we now specify the algorithm for updating the for-
warding and caching variables. Our algorithm is based on the
conditional gradient or Frank-Wolfe algorithm [19]. Let

n _ (¢?j(k))i€N,keK,jEO(i,k)
(p?(k))iej\/,kelc

be the vector of forwarding and caching variables at iteration
n. Then, the conditional gradient method is given by
Pl = " 4 ¢ (" — D), (15)

where a™ € (0, 1] is a positive stepsize, and ®" is the solution
of the direction finding subproblem

1 : ny/ n

P EargglelgVD(CD ) (P — 7). (16)
Here, VD(®") is the gradient of the objective function with
respect to the forwarding and caching variables, evaluated at
®". The set F' is the set of forwarding and caching variables
® satisfying the constraints in (5), seen to be a bounded
polyhedron.

In applying the conditional gradient algorithm, we encounter
the same problem regarding degenerate cases as seen in
Section III with respect to optimality conditions. Note that
when t;(k)(1—p;(k)) = 0, the % component of VD (P")
is zero, and thus provides no useful information for the
optimization in (16) regarding the choice of ®". On the other
hand, when ¢;(k)(1 — p;(k)) > 0, eliminating this term from
% in (16) does not change the choice of d", since

t;(k)(1 — pi(k)) > 0 is not a function of j € O(i, k).
Motivated by this observation, we define

(5%' (k))ieN,keK,jeO(i»k)

(‘f?(k)EZj:CXLk) %<k)6%(k))ieAfkeK

G(om) 2

where 47 (k) and ' (k) are the marginal forwarding costs and
total request arrival rates, respectively, evaluated at ®".

We consider a modified conditional gradient algorithm
where the direction finding subproblem is obtained by

P" € arg 21612 G(®™) (® — ™),

which is easily seen to be separable into two subproblems.
The subproblem for (¢;;(k)) is given by

minZ(i,k) Zje(?(i,k) 615 (k) (045 (k) — 97 (k)

subject to:
Yicogin bii(k) =1, forallie M, ke K
$ij(k) >0, foralli e N,k e K,j € O®, k).
a7
where oD
15 (k) = D;J(F[j‘) + 8T;L(k)' (18)

It is straightforward to verify that a solution ¢7(k) =
(q@%(k))jeo(i’k) to (17) has all coordinates equal to zero
except for one coordinate, say ¢ (k), which is equal to 1,
where m € arg minc (i) 07 (k), corresponds to an outgoing
interface with the minimal marginal forwarding cost.

The subproblem for (p;(k)) is equivalent to

max Z(i,k) wi (k) (ps(k) — p} (K))

subject to: (19)
ke pilk) < i, for all i € N/
0 < pi(k) <1, forall i € N,k € K.

where w?(k) = t7(k) (Zje(’)(i,k) ¢;;(k)5;;(k)). The sub-
problem (19) is a max-weighted matching problem which has
an integer solution. For node i, let w} (k1) > wl'(ke) > ... >
w;' (k|x|) be a re-ordering of the w}*(k)’s in decreasing order.
A solution p? to (19) has pl*(k) = 1 for k € {k1,ka,..., ke, },
and p? (k) = 0 otherwise. That is, pf*(k) = 1 for the ¢; objects
with the largest w] (k) values, and p* (k) = 0 otherwise.

As mentioned above, the solutions p;' to (19) are integer-
valued at each iteration. However, for a general stepsize
a™ € (0,1], the (relaxed) caching variables corresponding to
the update in (15) may not be integer-valued at each iteration.
In particular, this would be true if the stepsize follows a
diminishing stepsize rule. Although one can explore rounding
techniques and probabilistic caching techniques to obtain fea-
sible integer-valued caching variables « (k) from continuous-
valued relaxed caching variables pI'(k) [7], this would entail
additional computational and communication complexity.

Since we are focused on distributed, low-complexity for-
warding and caching algorithms, we require p!'(k) to be either
0 or 1 at each iteration n. This is realized by choosing the



stepsize a™ = 1 for all n. In this case, the update equation
(15) is reduced to:
(I)n+1 _ (T)n7

where ®" is the solution to (17) and (19). That is, the
solutions to the direction finding subproblems provide us
with forwarding and caching decisions at each iteration. We
now summarize the elegant MinDelay forwarding and caching
algorithm.

MinDelay Forwarding Algorithm: At each iteration n,
each node 7 and for each object k, the forwarding algorithm
chooses the outgoing link (i, m) to forward requests for object
k, where m is chosen according to

min 07 (k).

m € ar
8 jeolin) 7

(20)
That is, requests for object k£ are forwarded on an outgoing
link with the minimum marginal forwarding cost.

MinDelay Caching Algorithm: At each iteration n, each
node ¢ calculates a cache score C'S™(i, k) for each object k
according to

CS"(i, k) = 7 (k)6 (k). 1)

where 47'(k) = minjeo,k) 675 (k). Upon reception of data
object ke not currently in the cache of node i, if the
cache is not full, then k,,., is cached. If the cache is full,
then C'S™ (i, kpew) is computed, and compared to the lowest
cache score among the currently cached objects, denoted by
CS™ (i, kppin). If CS™ (i, knew) > CS™ (i, kmin), then replace
kmin With k,,¢,,. Otherwise, the cache contents stay the same.

The cache score given in (21) for a given content k at node
1 is the minimum marginal forwarding cost for object k at 1,
multiplied by the total request rate for k£ at 7. By caching
the data objects with the highest cache scores, each node
maximally reduces the total cost of forwarding request traffic.

One drawback of using stepsize a” = 1 in the MinDelay
algorithm is that it makes studying the asymptotic behavior of
the algorithm difficult. Nevertheless, in extensive simulations
shown in the next section, we observe that the algorithm
behaves in a stable manner asymptotically. Moreover, the
MinDelay significantly outperforms several state-of-the-art
caching and forwarding algorithms in important operating
regimes.

V. SIMULATION EXPERIMENTS

In this section, we present the results of extensive simu-
lations performed using our Java-based ICN Simulator. We
have considered three competing schemes for comparison
with MinDelay. First, we consider the VIP joint caching
and forwarding algorithm introduced in [13]. This algorithm
uses a backpressure (BP)-based scheme for forwarding and a
stable caching algorithm, both based on VIP (Virtual Interest
Packet) queue states [13]. In the VIP algorithm discussed
in [13], multiple Interest Packets requesting the same Data
Packet are aggregated. Since we do not consider Interest
Packet aggregation in this paper, we compare MinDelay with
a version of VIP without Interest aggregation, labeled BP. We

consider the VIP algorithm (or BP) to be the direct competitor
with MinDelay, since to the best of our knowledge, it is the
only other scheme that explicitly jointly optimizes forwarding
and caching to reduce congestion-dependent costs in general
multi-hop networks.

The other two approaches implemented here are based on
the LFU cache eviction policy. We note that for stationary
input request processes, the performance of LFU is typically
much better than those of LRU and FIFO. In the first approach,
denoted by LFUM-PI, multipath request forwarding is based
on the scheme proposed in [8]. Here, the forwarding decision
is made as follows: an Interest Packet requesting a given
object is forwarded on an outgoing interface with a probability
inversely proportional to the number of Pending Interest (PI)
Packets for that object on that outgoing interface. In the second
LFU-based approach implemented here, denoted by LFUM-
RTT and described in [10], an Interest Packet requesting an
object is forwarded on an outgoing interface with a probability
inversely proportional to the exponentially weighted moving
average of the RTT recorded for that object on that outgoing
interface.

We tested the MinDelay forwarding and caching algo-
rithm against the described approaches on several well-known
topologies depicted in Fig. 1. In the following, we explain the
simulation scenarios and results in detail.

The simulator emulates all the ICN functionalities, including
content-based loop-free routing and the corresponding pop-
ulation of the FIBs. Each simulation generates requests for
1000 seconds and terminates when all the requested packets
are fulfilled. For the MinDelay implementation, we update the
marginal forwarding costs given in (18) at the beginning of
each update interval (with a length between 2-5 seconds), and
cache the results in a sorted array for future use. Hence, the
forwarding decision given in (20) takes O(1) operations.

For the caching strategy in MinDelay, the forwarder regu-
larly updates the cache score of the currently-cached contents
using (21) at the beginning of the update intervals and keeps
a sorted list of the cached content objects using a hash
table and a priority queue. When a new Data Packet arrives,
the forwarder computes its cache score, and compares the
score with the lowest cache score among the currently-cached
content objects. If the score of the incoming Data Packet
is higher than the current lowest cache score, the forwarder
replaces the corresponding cached object with the incoming
one. Otherwise, the cached contents remain the same.

In all topologies shown in Figure 1, the number of content
objects is 5000. Each requester requests a content object ac-
cording to a Zipf distribution with power exponent o = 0.75,
by generating an Interest Packet each of size 1.25 KBytes.
All content objects are assumed to have the same size and
can be packaged into Data Packets of size 500 KBytes. The
link capacity of all the topologies, except in Abilene topology
illustrated in Fig. 1a, is 50 Mbps.

We first consider the Abilene topology [8] depicted in
Figure la. There are three servers, at nodes 1, 5, and 8, each
serving 1/3 of the content objects. That is, object k is served



(d) Tree topology.

(b) GEANT topology [13].

(e) Ladder topology.

GEANT Topology DTelekom Topology

(c) DTelekom topology [13].

(f) Fat Tree topology.

Fig. 1: Network topologies used for the simulations.

by server k mod 3 + 1 for k = 1,2,...,5000. The other
eight nodes of the topology request objects according to Zipf
distribution with @ = 0.75. Also, each requester has a content
store of size 250 MBytes, or equivalently 500 content objects.

In the GEANT and DTelekom topologies, illustrated in
Figures 1b and lc, there are 22 and 68 nodes in the network,
respectively. All nodes request content objects. Each content
object is randomly assigned to one of the nodes in the network
as its source node. Each node has a content store of size 250
MBytes, or equivalently 500 content objects.

In the Tree topology, depicted in Figure 1d, there are four
requesting nodes at the leaves, C1, C2, C3 and C4. There
are three edge nodes, E1, E2, and E3. Each content object is
randomly assigned to one of the two source nodes, S1 and S2.
Each requesting and edge node has a content store of size 125
MBytes, or equivalently 250 content objects.

In the Ladder topology [8], depicted in Figure le, there are
three requesting nodes, Al, A2 and A3. The source of all
the content objects is at node D3. Each node in the network,
except node D3, has a content store of size 125 MBytes, or
equivalently 250 content objects.

Finally, in the Fat Tree topology, depicted in Figure If,
requesters are at the roots, i.e., nodes C1, C2, C3 and C4.
There are 16 servers at the leaves. In this topology, each
content object is randomly assigned to two servers, one chosen
from the first 8 servers, and the other from the second 8
servers. All the requesting nodes as well as Aggregation and
Edge nodes have a content store, each of size 125 MBytes, or
equivalently 250 content objects.

In Figure 2, the results of the simulations are plotted.
The figures illustrate the performance of the implemented
schemes in terms of total network delay for satisfying all
generated requests (in seconds) versus the arrival rate in

requests/node/second, respectively. We define the delay for
a request as the difference between the creation time of the
Interest Packet and the arrival time of its corresponding Data
Packet at the requesting node.

To reduce randomness in our results, we ran each simulation
10 times, each with a different seed number, and plotted the
average performance of each scheme in Figure 2.

Figure 2 shows the total network delay in seconds versus
the per-node arrival rate in request/seconds, for the above-
mentioned topologies. As can be seen, in all the considered
topologies, MinDelay has lower delay in the low to moderate
arrival rate regions. In the higher arrival rate regions, BP’s
outperforms MinDelay in 3 of the tested topologies (Abilene,
GEANT, and Tree),

As shown in [13], the BP performs well in high arrival
rate regions since the VIP algorithm adaptively maximizes
the throughput of Interest Packets, thereby maximizing the
stability region of user demand rates satisfied by the network.
When the network is operating well within the stability region,
however, MinDelay typically has superior performance. Thus,
the MinDelay and VIP algorithms complement each other in
delivering superior delay performance across the entire range
of request arrival rates.

VI. CONCLUSION

In this work, we established a new unified framework for
minimizing congestion-dependent network cost in multi-hop
caching networks by jointly choosing node-based forwarding
and caching variables. Relaxing integer constraints on caching
variables, we used a version of the conditional gradient
algorithm to develop MinDelay, an adaptive and distributed
joint forwarding and caching algorithm for the original mixed-
integer optimization problem. The MinDelay algorithm ele-
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Fig. 2: Total network delay (sec) vs. request arrival rate (requests/node/sec).

gantly yields feasible routing variables and integer caching
variables at each iteration, and can be implemented in a
distributed manner with low complexity and overhead.

Simulation results show that while the VIP algorithm per-
forms well in high request arrival rate regions, MinDelay has
significantly better delay performance when the network is
operating well within its stability region. Thus, the MinDelay
and VIP algorithms complement each other in delivering
superior delay performance across the entire range of request
arrival rates.
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