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Abstract—We present a new unified framework for minimizing
congestion-dependent network cost in caching networks by jointly
optimizing forwarding and caching strategies. As caching vari-
ables are integer-constrained, the resulting optimization problem
is NP-hard. To make progress, we focus on a relaxed version of
the optimization problem, where caching variables are allowed
to be real-valued. We develop necessary optimality conditions for
the relaxed problem, and leverage this result to design MinDe-
lay, an adaptive and distributed joint forwarding and caching
algorithm, based on the conditional gradient algorithm. The
MinDelay algorithm elegantly yields feasible routing variables
and integer caching variables at each iteration, and can be
implemented in a distributed manner with low complexity and
overhead. Over a wide range of network topologies, simulation
results show that MinDelay typically has significantly better
delay performance in the low to moderate request rate regions.
Moreover, the MinDelay and VIP algorithms complement each
other in delivering superior delay performance across the entire
range of request arrival rates.

I. INTRODUCTION

Caching networks have many applications including

information-centric networking (ICN), content delivery net-

works (CDNs) and peer-to-peer networks. In particular, ICN

architectures have gained a significant amount of attention over

the past few years. One prominent issue in these networks is

how to jointly design traffic engineering and caching strategies

to maximally exploit the bandwidth and storage resources of

the network for optimal performance. While traffic engineering

and caching have been investigated separately for many years,

their joint optimization is still an under-explored area.

There have been many recent papers on caching strategies

in ICN networks [1], [2], [3], [4], [5], [6], [7]. When design-

ing and evaluating the effectiveness of a cache management

scheme for such networks, the primary performance metrics

have been cache hit probability [3], [5], the reduction of the

number of hops to retrieve the requested content [4], or content

download delay [6].

Similarly, there have been a number of attempts to enhance

traffic engineering in ICN [8], [9], [10], [11], [12]. In [8],

Carofiglio et al., formulate the problem of joint multipath

congestion control and request forwarding in ICN as an

optimization problem. By decomposing the problem into two

subproblems of maximizing user throughput and minimizing
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overall network cost, they develop a receiver-driven window-

based congestion control algorithm and a hop-by-hop dynamic

request forwarding algorithm which aim to balance the number

of pending Interest Packets of each content object (flow) across

the outgoing interfaces at each node. Unfortunately, the work

in [8] does not consider caching policies.

In [10], Detti et al. study different multipath forwarding

strategies. In particular, they compare strategies based on bal-

ancing Round-Trip Time (RTT) averages of each flow across

the outgoing interfaces with strategies based on balancing

pending interest packets across outgoing interfaces.

In [13], Yeh et al., present one of the first unified frame-

works for joint forwarding and caching for ICN networks with

general topology, in which a virtual control plane operates on

the user demand rate for data objects in the network, and

an actual plane handles Interest Packets and Data Packets.

They develop VIP, a set of distributed and dynamic forwarding

and caching algorithms which adaptively maximizes the user

demand rate the ICN can satisfy.

In this work, we present a new unified framework for mini-

mizing congestion-dependent network cost by jointly choosing

node-based forwarding and caching variables, within a quasi-

static network scenarios where user request statistics vary

slowly. We consider the network cost to be the sum of

link costs, expressed as increasing and convex functions of

the traffic rate over the links. When link cost functions are

chosen according to an M/M/1 approximation, minimizing the

network cost corresponds to minimizing the average request

fulfillment delay in the network. As caching variables are

integer-constrained, the resulting joint forwarding and caching

(JFC) optimization problem is NP-hard. To make progress to-

ward an approximate solution, we focus on a relaxed version of

the JFC problem (RJFC), where caching variables are allowed

to be real-valued. Using techniques first introduced in [14], we

develop necessary optimality conditions for the RJFC problem.

We then leverage this result to design MinDelay, an adaptive

and distributed joint forwarding and caching algorithm for the

original JFC problem, based on a version of the conditional

gradient, or Frank-Wolfe algorithm. The MinDelay algorithm

elegantly yields feasible routing variables and integer caching

variables at each iteration, and can be implemented in a

distributed manner with low complexity and overhead.

Finally, we implement the MinDelay algorithm using our

Java-based network simulator, and present extensive experi-
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mental results. We consider three competing schemes, includ-

ing the VIP algorithm [13], which directly competes against

MinDelay as a jointly optimized distributed and adaptive

forwarding and caching scheme. Over a wide range of net-

work topologies, simulation results show that while the VIP

algorithm performs well in high request arrival rate regions,

MinDelay typically has significantly better delay performance

in the low to moderate request rate regions. Thus, the MinDe-

lay and VIP algorithms complement each other in delivering

superior delay performance across the entire range of request

arrival rates.

II. NETWORK MODEL

Consider a general multi-hop network modeled by a directed

and (strongly) connected graph G = (N , E), where N and E
are the node and link sets, respectively. A link (i, j) ∈ E
corresponds to a unidirectional link, with capacity Cij > 0 (

bits/sec). We assume a content-centric setting, e.g. [15], where

each node can request any data object from a set of objects K.

A data object is requested by a requesting node generating an

Interest Packet retrieving a corresponding Data Packet which

contains the data object. We assume the Forwarding Interest

Base (FIB) tables has already been populated at each node,

using a loop-free content-based routing algorithm. Further, we

assume symmetric routing, where Data Packets containing the

requested data object take the same path as their corresponding

Interest Packets, in the reverse direction. Our framework can

be extended to the case where each data object consists of

a sequence of data chunks, each contained in a Data Packet

which is retrieved by a corresponding Interest Packet.

For simplicity, we do not consider interest suppression,

whereby multiple Interest Packets requesting the same data

object are collapsed into one forwarded Interest Packet. The

algorithm we develop can be extended to include Interest

suppression, by introducing a virtual plane in the manner

of [13].

For k ∈ K, let src(k) be the source node of content object

k. Each node in the network has a local cache of capacity ci
(object units), and can optionally cache Data Packets passing

through on the reverse path. Interest Packets requesting a given

data object can enter the network at any node, and exit the

network upon being satisfied by a matching Data Packet at the

content source for the object, or at the nodes which decide to

cache the object. For simplicity, we assume all data objects

have the same size L (bits). The results of the paper can be

extended to the more general case where object sizes differ.

We focus on quasi-static network scenarios where user

request statistics vary slowly. Let ri(k) ≥ 0 be the average

exogenous rate (in requests/sec) at which requests for data

object k arrive (from outside the network) to node i. Let ti(k)
be the total average arrival rate of object k requests to node i.
Thus, ti(k) includes both the exogenous arrival rate ri(k) and

the endogenous arrival traffic which is forwarded from other

nodes to node i.
Let xi(k) ∈ {0, 1} be the (integer) caching decision variable

for object k at node i, where xi(k) = 1 if object k is cached

at node i and xi(k) = 0 otherwise. Thus, ti(k)xi(k) is the

portion of the total incoming request rate for object k which

is satisfied from the local cache at node i and ti(k)(1−xi(k))
is the portion forwarded to neighboring nodes based on the

forwarding strategy. Furthermore, let φij(k) ∈ [0, 1] be the

(real-valued) fraction of the traffic ti(k)(1−xi(k)) forwarded

over link (i, j) by node i 6= src(k). Thus,
∑

j∈O(i,k) φij(k) =
1, where O(i, k) is the set of neighboring nodes for which

node i has a FIB entry for object k. Therefore, the total average

incoming request rate for object k to node i is

ti(k) = ri(k) +
∑

l∈I(i,k)

tl(k)(1− xl(k))φli(k), (1)

where I(i, k) is the set of neighboring nodes of i which have

FIB entries for node i for object k.

Next, let Fij be the Data Packet traffic rate (in bits/sec)

corresponding to the total request rate (summed over all data

objects) forwarded on link (i, j) ∈ E :

Fij =
∑

k∈K

L · ti(k)(1− xi(k))φij(k). (2)

Note that by routing symmetry, the Data Packet traffic of rate

Fij actually travels on the reverse link (j, i).
As in [14], we assume the total network cost is the sum of

traffic-dependent link costs. The cost on link (j, i) ∈ E is due

to the Data Packet traffic of rate Fij generated by the total

request rate forwarded on link (i, j), as in (2). We therefore

denote the cost on link (j, i) as Dij(Fij) to reflect this

relationship.1 We assume Dij(Fij) is increasing and convex

in Fij . To implicitly impose the link capacity constraint, we

assume Dij(Fij) → ∞ as Fij → C−
ji and Dij(Fij) = ∞ for

Fij ≥ Cji. As an example,

Dij(Fij) =
Fij

Cji − Fij

, for 0 ≤ Fij < Cji. (3)

gives the average number of packets waiting for or under

transmission at link (j, i) under an M/M/1 queuing model

[16]. Summing over all links, the network cost
∑

(i,j) Dij(Fij)
gives the average total number of packets in the network,

which, by Little’s Law, is proportional to the average system

delay of packets in the network.

III. OPTIMIZATION PROBLEM

We now pose the Joint Forwarding and Caching (JFC)

optimization problem in terms of the forwarding variables

(φij(k))(i,j)∈E,k∈K and the caching variables (xi(k))i∈N ,k∈K

as follows:






































min
∑

(i,j)∈E Dij(Fij)

subject to:
∑

j∈O(i,k) φij(k) = 1, for all i ∈ N , k ∈ K

φij(k) ≥ 0, for all (i, j) ∈ E , k ∈ K
∑

k∈K xi(k) ≤ ci, for all i ∈ N

xi(k) ∈ {0, 1}, for all i ∈ N , k ∈ K.

(4)

1Since Interest Packets are small compared to Data Packets, we do not
account for costs associated with the Interest Packet traffic on link (j, i).



The above mixed-integer optimization problem can be

shown to be NP-hard [17]. To make progress toward an

approximate solution, we relax the problem by removing the

integrality constraint in (4). We formulate the Relaxed JFC

(RJFC) problem by replacing the integer caching decision

variables xi(k) ∈ {0, 1} by the real-valued variables ρi(k) ∈
[0, 1]:






































minD ,
∑

(i,j)∈E Dij(Fij)

subject to:
∑

j∈O(i,k) φij(k) = 1, for all i ∈ N , k ∈ K

φij(k) ≥ 0, for all (i, j) ∈ E , k ∈ K
∑

k∈K ρi(k) ≤ ci, for all i ∈ N

0 ≤ ρi(k) ≤ 1, for all i ∈ N , k ∈ K.

(5)

It can be shown that D in (5) is non-convex with respect

to (w.r.t.) the forwarding and caching variables (φ, ρ), where

φ ≡ (φij(k))(i,j)∈E,k∈K and the caching variables ρ ≡
(xi(k))i∈N ,k∈K. In this work, we use the RJFC formulation

to develop an adaptive and distributed forwarding and caching

algorithm for the JFC problem.

We proceed by computing the derivatives of D with respect

to the forwarding and caching variables, using the technique

of [14]. For the forwarding variables, the partial derivatives

can be computed as

∂D

∂φij(k)
= (1− ρi(k))Lti(k)δij(k), (6)

where the marginal forwarding cost is

δij(k) = D′
ij(Fij) +

∂D

∂rj(k)
. (7)

Note that ∂D
∂rj(k)

in (7) stands for the marginal cost due to a

unit increment of object k request traffic at node j. This can

be computed recursively by

∂D

∂rj(k)
= 0, if j = src(k),

∂D

∂ri(k)
= (1− ρi(k))L

∑

j=O(i,k)

φij(k)δij(k), if i 6= src(k).

(8)

Finally, we can compute the partial derivatives w.r.t. the

(relaxed) caching variables as follows:

∂D

∂ρi(k)
= −Lti(k)

∑

j=O(i,k)

φij(k)δij(k). (9)

The minimization in (5) is equivalent to minimizing

the Lagrangian function L(F, λ, µ) =
∑

(i,j)∈E Dij(Fij) −
∑

i,k λik

(

∑

j φij(k)− 1
)

+
∑

i µi

(
∑

k∈K ρi(k)− ci
)

, sub-

ject to the following constraints:

0 ≤ ρi(k) ≤ 1, for all i ∈ N , k ∈ K,

φij(k) ≥ 0, for all (i, j) ∈ E , k ∈ K,

µi ≥ 0, for all i ∈ N .

A set of necessary conditions for a local minimum to the

RJFC problem can now be derived as

∂D

∂φij(k)

{

= λik, if φij(k) > 0

≥ λik, if φij(k) = 0
(10)

∂D

∂ρi(k)











= −µi, if 0 < ρi(k) < 1

≥ −µi, if ρi(k) = 0

≤ −µi, if ρi(k) = 1

(11)

with the complementary slackness condition

µi

(

∑

k∈K

ρi(k)− ci

)

= 0, for all i ∈ N . (12)

The conditions (10)-(12) are necessary for a local minimum

to the RJFC problem, but upon closer examination, it can be

seen that they are not sufficient for optimality. An example

from [14] shows a forwarding configuration (without caching)

where (10) is satisfied at every node, and yet the operating

point is not optimal. In that example, ti(k) = 0 at some node

i, which leads to (10) being automatically satisfied for node i.
This degenerate example also applies to the joint forwarding

and caching setting considered here.

A further issue arises for the joint forwarding and caching

setting where ρi(k) = 1 for some i and k. In this case, the

condition in (10) at node i is automatically satisfied for every

j ∈ O(i, k), and yet the operating point need not be optimal.

A simple network example to illustrate this issue is described

in [18], which is omitted here for brevity.

In both cases, when ρi(k) = 1 or ti(k) = 0, node i
still needs to assign forwarding variables for object k in the

optimal way. By removing the term ti(k)(1−ρi(k)) from (10),

non-optimal forwarding choices in these degenerate cases are

prevented. Furthermore, since the term ti(k)(1−ρi(k)) is not a

function of j ∈ O(i, k), it can also be removed from condition

(10) when ti(k)(1 − ρi(k)) > 0. We therefore focus on the

following modified conditions:

δij(k)

{

= δi(k), if φij(k) > 0

≥ δi(k), if φij(k) = 0.
(13)

ti(k)δi(k)











= µ′
i, if 0 < ρi(k) < 1

≤ µ′
i, if ρi(k) = 0

≥ µ′
i, if ρi(k) = 1.

(14)

where δi(k) = minm∈O(i,k) δim(k), and µ′
i = µi/L.

In (14), we used the fact that
∑

j=O(i,k) φij(k)δij(k) =
δi(k) if condition (13) is satisfied. Condition (13) suggests that

requests for object k arriving at node i, should be forwarded

on an outgoing link (i, j) whose “marginal cost” δij(k)
is minimal. Similarly, condition (14) suggests a structured

caching policy, where one sorts the data objects in decreasing

order with respect to the “cache scores” {ti(k)δi(k)}, and

cache the top ci objects, i.e. set ρi(k) = 1 for the top ci
objects. This is indeed the main idea underlying our proposed

caching algorithm described in the next section.



IV. DISTRIBUTED ALGORITHM: MINDELAY

The conditions in (13)-(14) give the general structure for

a joint forwarding and caching algorithm for solving the

RJFC problem. To describe the joint forwarding and caching

algorithm, we first describe a protocol for calculating the

marginal costs, and then describe an algorithm for updating

the forwarding and caching variables.

Note that each node i can estimate, as a time average, the

link traffic rate Fij for each outgoing link (i, j). This can be

done by either measuring the rate of received Data Packets

on each of the corresponding incoming links (j, i), or by

measuring the request rate of Interest Packets forwarded on

the outgoing links (i, j). Thus, given a functional form for

Dij(.), node i can compute D′
ij(Fij).

To update the marginal forwarding costs, the nodes use the

following protocol. Each node i waits until it has received the

value ∂D/∂rj(k) from each of its upstream neighbors with

respect to object k (with the convention ∂D/∂rsrc(k)(k) = 0).

Node i then calculates ∂D/∂ri(k) according to (8) and

broadcasts this to all of its downstream neighbors with respect

to k. The information propagation can be done by either

piggybacking on the Data Packets of the corresponding object,

or by broadcasting a single message regularly to update the

marginal forwarding costs of all the content objects at once.

Having described the protocol for calculating marginal

costs, we now specify the algorithm for updating the for-

warding and caching variables. Our algorithm is based on the

conditional gradient or Frank-Wolfe algorithm [19]. Let

Φn =

[

(

φn
ij(k)

)

i∈N ,k∈K,j∈O(i,k)

(ρni (k))i∈N ,k∈K

]

be the vector of forwarding and caching variables at iteration

n. Then, the conditional gradient method is given by

Φn+1 = Φn + an(Φ̄n − Φn), (15)

where an ∈ (0, 1] is a positive stepsize, and Φ̄n is the solution

of the direction finding subproblem

Φ̄n ∈ arg min
Φ∈F

OD(Φn)′(Φ− Φn). (16)

Here, OD(Φn) is the gradient of the objective function with

respect to the forwarding and caching variables, evaluated at

Φn. The set F is the set of forwarding and caching variables

Φ satisfying the constraints in (5), seen to be a bounded

polyhedron.

In applying the conditional gradient algorithm, we encounter

the same problem regarding degenerate cases as seen in

Section III with respect to optimality conditions. Note that

when ti(k)(1−ρi(k)) = 0, the ∂D
∂φij(k)

component of OD(Φn)
is zero, and thus provides no useful information for the

optimization in (16) regarding the choice of Φ̄n. On the other

hand, when ti(k)(1 − ρi(k)) > 0, eliminating this term from
∂D

∂φij(k)
in (16) does not change the choice of Φ̄n, since

ti(k)(1 − ρi(k)) > 0 is not a function of j ∈ O(i, k).
Motivated by this observation, we define

G(Φn) ,





(

δnij(k)
)

i∈N ,k∈K,j∈O(i,k)
(

−tni (k)
∑

j=O(i,k) φ
n
ij(k)δ

n
ij(k)

)

i∈N ,k∈K



 ,

where δnij(k) and tni (k) are the marginal forwarding costs and

total request arrival rates, respectively, evaluated at Φn.

We consider a modified conditional gradient algorithm

where the direction finding subproblem is obtained by

Φ̄n ∈ arg min
Φ∈F

G(Φn)′(Φ− Φn),

which is easily seen to be separable into two subproblems.

The subproblem for (φij(k)) is given by



















min
∑

(i,k)

∑

j∈O(i,k) δ
n
ij(k)(φij(k)− φn

ij(k))

subject to:
∑

j∈O(i,k) φij(k) = 1, for all i ∈ N , k ∈ K

φij(k) ≥ 0, for all i ∈ N , k ∈ K, j ∈ O(i, k).
(17)

where

δnij(k) = D′
ij(F

n
ij) +

∂D

∂rnj (k)
. (18)

It is straightforward to verify that a solution φ̄n
i (k) =

(φ̄n
ij(k))j∈O(i,k) to (17) has all coordinates equal to zero

except for one coordinate, say φ̄n
im(k), which is equal to 1,

where m ∈ argminj∈O(i,k) δ
n
ij(k), corresponds to an outgoing

interface with the minimal marginal forwarding cost.

The subproblem for (ρi(k)) is equivalent to


















max
∑

(i,k) ω
n
i (k)(ρi(k)− ρni (k))

subject to:
∑

k∈K ρi(k) ≤ ci, for all i ∈ N

0 ≤ ρi(k) ≤ 1, for all i ∈ N , k ∈ K.

(19)

where ωn
i (k) = tni (k)

(

∑

j∈O(i,k) φ
n
ij(k)δ

n
ij(k)

)

. The sub-

problem (19) is a max-weighted matching problem which has

an integer solution. For node i, let ωn
i (k1) ≥ ωn

i (k2) ≥ . . . ≥
ωn
i (k|K|) be a re-ordering of the ωn

i (k)’s in decreasing order.

A solution ρ̄ni to (19) has ρ̄ni (k) = 1 for k ∈ {k1, k2, . . . , kci},

and ρ̄ni (k) = 0 otherwise. That is, ρ̄ni (k) = 1 for the ci objects

with the largest ωn
i (k) values, and ρ̄ni (k) = 0 otherwise.

As mentioned above, the solutions ρ̄ni to (19) are integer-

valued at each iteration. However, for a general stepsize

an ∈ (0, 1], the (relaxed) caching variables corresponding to

the update in (15) may not be integer-valued at each iteration.

In particular, this would be true if the stepsize follows a

diminishing stepsize rule. Although one can explore rounding

techniques and probabilistic caching techniques to obtain fea-

sible integer-valued caching variables xn
i (k) from continuous-

valued relaxed caching variables ρni (k) [7], this would entail

additional computational and communication complexity.

Since we are focused on distributed, low-complexity for-

warding and caching algorithms, we require ρni (k) to be either

0 or 1 at each iteration n. This is realized by choosing the



stepsize an = 1 for all n. In this case, the update equation

(15) is reduced to:

Φn+1 = Φ̄n,

where Φ̄n is the solution to (17) and (19). That is, the

solutions to the direction finding subproblems provide us

with forwarding and caching decisions at each iteration. We

now summarize the elegant MinDelay forwarding and caching

algorithm.

MinDelay Forwarding Algorithm: At each iteration n,

each node i and for each object k, the forwarding algorithm

chooses the outgoing link (i,m) to forward requests for object

k, where m is chosen according to

m ∈ arg min
j∈O(i,k)

δnij(k). (20)

That is, requests for object k are forwarded on an outgoing

link with the minimum marginal forwarding cost.

MinDelay Caching Algorithm: At each iteration n, each

node i calculates a cache score CSn(i, k) for each object k
according to

CSn(i, k) , tni (k)δ
n
i (k). (21)

where δni (k) ≡ minj∈O(i,k) δ
n
ij(k). Upon reception of data

object knew not currently in the cache of node i, if the

cache is not full, then knew is cached. If the cache is full,

then CSn(i, knew) is computed, and compared to the lowest

cache score among the currently cached objects, denoted by

CSn(i, kmin). If CSn(i, knew) > CSn(i, kmin), then replace

kmin with knew. Otherwise, the cache contents stay the same.

The cache score given in (21) for a given content k at node

i is the minimum marginal forwarding cost for object k at i,
multiplied by the total request rate for k at i. By caching

the data objects with the highest cache scores, each node

maximally reduces the total cost of forwarding request traffic.

One drawback of using stepsize an = 1 in the MinDelay

algorithm is that it makes studying the asymptotic behavior of

the algorithm difficult. Nevertheless, in extensive simulations

shown in the next section, we observe that the algorithm

behaves in a stable manner asymptotically. Moreover, the

MinDelay significantly outperforms several state-of-the-art

caching and forwarding algorithms in important operating

regimes.

V. SIMULATION EXPERIMENTS

In this section, we present the results of extensive simu-

lations performed using our Java-based ICN Simulator. We

have considered three competing schemes for comparison

with MinDelay. First, we consider the VIP joint caching

and forwarding algorithm introduced in [13]. This algorithm

uses a backpressure (BP)-based scheme for forwarding and a

stable caching algorithm, both based on VIP (Virtual Interest

Packet) queue states [13]. In the VIP algorithm discussed

in [13], multiple Interest Packets requesting the same Data

Packet are aggregated. Since we do not consider Interest

Packet aggregation in this paper, we compare MinDelay with

a version of VIP without Interest aggregation, labeled BP. We

consider the VIP algorithm (or BP) to be the direct competitor

with MinDelay, since to the best of our knowledge, it is the

only other scheme that explicitly jointly optimizes forwarding

and caching to reduce congestion-dependent costs in general

multi-hop networks.

The other two approaches implemented here are based on

the LFU cache eviction policy. We note that for stationary

input request processes, the performance of LFU is typically

much better than those of LRU and FIFO. In the first approach,

denoted by LFUM-PI, multipath request forwarding is based

on the scheme proposed in [8]. Here, the forwarding decision

is made as follows: an Interest Packet requesting a given

object is forwarded on an outgoing interface with a probability

inversely proportional to the number of Pending Interest (PI)

Packets for that object on that outgoing interface. In the second

LFU-based approach implemented here, denoted by LFUM-

RTT and described in [10], an Interest Packet requesting an

object is forwarded on an outgoing interface with a probability

inversely proportional to the exponentially weighted moving

average of the RTT recorded for that object on that outgoing

interface.

We tested the MinDelay forwarding and caching algo-

rithm against the described approaches on several well-known

topologies depicted in Fig. 1. In the following, we explain the

simulation scenarios and results in detail.

The simulator emulates all the ICN functionalities, including

content-based loop-free routing and the corresponding pop-

ulation of the FIBs. Each simulation generates requests for

1000 seconds and terminates when all the requested packets

are fulfilled. For the MinDelay implementation, we update the

marginal forwarding costs given in (18) at the beginning of

each update interval (with a length between 2-5 seconds), and

cache the results in a sorted array for future use. Hence, the

forwarding decision given in (20) takes O(1) operations.

For the caching strategy in MinDelay, the forwarder regu-

larly updates the cache score of the currently-cached contents

using (21) at the beginning of the update intervals and keeps

a sorted list of the cached content objects using a hash

table and a priority queue. When a new Data Packet arrives,

the forwarder computes its cache score, and compares the

score with the lowest cache score among the currently-cached

content objects. If the score of the incoming Data Packet

is higher than the current lowest cache score, the forwarder

replaces the corresponding cached object with the incoming

one. Otherwise, the cached contents remain the same.

In all topologies shown in Figure 1, the number of content

objects is 5000. Each requester requests a content object ac-

cording to a Zipf distribution with power exponent α = 0.75,

by generating an Interest Packet each of size 1.25 KBytes.

All content objects are assumed to have the same size and

can be packaged into Data Packets of size 500 KBytes. The

link capacity of all the topologies, except in Abilene topology

illustrated in Fig. 1a, is 50 Mbps.

We first consider the Abilene topology [8] depicted in

Figure 1a. There are three servers, at nodes 1, 5, and 8, each

serving 1/3 of the content objects. That is, object k is served
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(a) Abilene Topology.
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(b) GEANT topology.
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(c) DTelekom topology.
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(d) Tree topology.
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(e) Ladder topology.
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(f) Fat Tree topology.

Fig. 2: Total network delay (sec) vs. request arrival rate (requests/node/sec).

gantly yields feasible routing variables and integer caching

variables at each iteration, and can be implemented in a

distributed manner with low complexity and overhead.

Simulation results show that while the VIP algorithm per-

forms well in high request arrival rate regions, MinDelay has

significantly better delay performance when the network is

operating well within its stability region. Thus, the MinDelay

and VIP algorithms complement each other in delivering

superior delay performance across the entire range of request

arrival rates.
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