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Abstract—Sensing various driving behaviors, such as acceler-
ations, brakes, turns, and change lanes — is of great interest
to many applications, e.g., understanding drive quality, detecting
road conditions, and more. Many such applications rely on using
smartphone placed in a vehicle to collect such data for ease of
deployment and use. However, several driving analytics tech-
niques in the recent past, including our own, make simplifying
assumptions that the smartphone is stably fixed with certain
orientation and the car is driving on flat roads. Our deployment
experience reveals that existing approaches may cause orientation
misalignment and acceleration over/under estimation due to road
slopes and human interactions, which lead to significant sensing
errors for driving analytics applications.

In this paper, we present several innovative techniques to im-
prove the overall accuracy and usability of smartphone sensors.
First, we use machine learning techniques to detect smartphone’s
relative orientation changes caused by human interactions. Sec-
ond, we design a slope-aware alignment algorithm to improve
alignment accuracy. Third, we track the linear acceleration of the
vehicle to address acceleration over/under estimation problems.
Fourth, we evaluate the tradeoffs between GPS and inertial
sensors, and fuse inertial sensors with GPS to improve the overall
accuracy and usability. We develop a smartphone application
called XSense that adopts the novel techniques to improve the
overall accuracy on driving analytics. Our evaluation of XSense
is conducted through measurements of more than 2,000 trips
(more than 13,000 miles) from 16 drivers in the past three years,
and shows that XSense improves the 75-percentile accuracy by
5x comparing with well-tuned inertial sensors in traditional
approach.

I. INTRODUCTION

Smartphone-based sensing has opened up a whole gamut of
applications and services across many domains. In the world
of the transportation system, it is being increasingly used for
crowd-sourcing various forms of information, ranging from
road and traffic conditions to data on traffic light patterns,
and even interesting annotations by participants. One such
application is the ability to independently monitor driving
behavior — how well is one driving the vehicle, e.g., aggres-
sive driving actions, such as rough acceleration, hard brakes,
sharp turns, and more. The popularity of smartphones enable
innovative ways of monitoring such behaviors and actions. For
example, Cambridge Mobile Telematics [1] develops a smart-
phone app to capture driving behaviors and monitor driver
distractions. Similarly, the well-known ride-sharing company
Uber announced it will start tracking Uber drivers’ driving
behaviors with their smartphones and give them feedbacks that
are more detailed than the five-star rating customers leave for
each driver [2]. Another set of applications that can leverage
sensing of motion parameters is to understand road conditions,

to say, detect potholes [3] or to detect icy stretches during a
bad snow event.

A common technique to detect various vehicle parameters,
especially acceleration, braking, and turns — events which
happen in short timescales — is to use built-in inertial mea-
surement unit (IMU) sensors available in the mobile devices
[4], [5], [6]. The general approach taken by such systems
is to measure the three-dimensional acceleration using the
accelerometer and to measure the three-dimensional relative
rotation speed using a gyroscope, including various de-noising
techniques to make precise estimates. An important step in
such design is one of coordinate alignment where the system
needs to calculate the rotation matrix that translates the coor-
dinates of the smartphone to that of the vehicle.

However, we find that exsiting approaches may lead to sig-
nificant estimation errors (especially acceleration) if the smart-
phone is not tightly mounted, there are relative orientation
changes, and/or the vehicle is moving over road slopes. If the
mobile device is not tightly fixed in a mount, the device may
move occasionally within the mount and its orientation relative
to the vehicle may frequently change causing measurement
errors. Worse, if the device is occasionally held in a person’s
hand, the update process needs to be applied continuously
significantly exacerbating the challenge. Finally, even if the
device is perfectly fixed to a mount, there are potential errors
since the device itself might not be able to determine whether
the vehicle itself is on flat earth or is tilted due to the slope
of a road.

To understand and improve the performance of inertial
sensors, we develop several techniques to detect orientation
changes, model mounting stability, and improve coordinate
alignment accuracy. We model the orientation of the smart-
phone as a cluster of accelerometer data and use moving
variance to detect possible orientation changes. We use intra-
cluster variance (ICV) to model mounting stability of the
smartphone and use x-percentile of the variance as an in-
dicator of motion estimation accuracy. Our intuition is that
loose placement introduces more noises into sensor data and
leads to less accurate acceleration estimation. We also find
that existing coordinate alignment techniques produce less
accuracy when there are (even small) slopes due to the gravity
components sensed by accelerometer. We use an example trip
to show that slope may cause coordinate misalignment and
acceleration over/funder estimation. Therefore, we use IMU
sensors to tracked the slope gradients and subtract the gravity
components sensed by accelerometer.

We conclude that the performance of inertial sensors are
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constrained due to road conditions or human interactions and
only well-tuned algorithm can produce higher accuracy than
GPS in low speed scenarios, while slope has limited impact
on steering motion estimation performance by gyroscope. In
addition, we found that, the 90-percentile accuracy of GPS
is under 0.5m/s?, which indicate a better accuracy than
accelerometer on average. In particular, we find that GPS is
more accurate in high speed scenarios and only well-tuned
inertial sensors can achieve comparable accuracy.

The second goal of this paper is to use the above observa-
tions to develop a combined system to conduct driving analyt-
ics, called XSense, a mobile application that achieve higher es-
timation accuracy due to slope awareness, and leverages GPS
to complement inertial sensors, when the latter lacks necessary
accuracy and is not available. More specifically, XSense is able
to select the current best estimation based on confidence value
from GPS and inertial sensors. By considering both inputs
from GPS and inertial sensors, XSense has the 75¢h percentile
error of 0.2m/s?, which is 5x better than well-tuned inertial
sensors in traditional approach.

We summarize our contributions as follows.

« We illustrate that the accuracy of smartphone built-in sensors
are very sensitive to road conditions and human interac-
tions when conducting driving analytics. Traditional slope-
unaware approach may caused misalignment and acceler-
ation over/under estimation, which may cause significant
sensing errors. We develop several techniques to identify
the usability and accuracy of inertial sensors and improve
their performance.

« We consider using commodity mobile device GPS receivers
to sense vehicle motion parameters, especially those related
to acceleration and brakes, and evaluate the performance by
more than 10,000 miles of driving data. We find that GPS
can be a good candidate to estimate such vehicle motions,
especially in medium and high speed scenarios (higher than
10m/s or 22mph).

« We develop XSense, an Android application component that
can selectively use GPS and inertial sensors for driving
analytics. We release it to 9 volunteers for six months.
Our evaluation shows that XSense can improve the overall
performance comparing with using either GPS or well-tuned
inertial sensors.

II. THE PROBLEMS

Smartphone inertial sensors are used for driving analytics.
The IMU accelerometer measures 3D acceleration changes
and can be used to detect accelerations and brakes. The IMU
gyroscope measures 3D angular change and can be used
to detect steering motions such as turns and lane changes.
Existing driving analytics approaches [4], [5], [6] assume
ideal scenarios, i.e., the car is moving on flat road and the
smartphone is stably mounted with fixed relative orientation
to the car.

In trying to relax such assumptions, we found that the
accuracy of inertial sensors, especially the accelerometer, are
sensitive to road conditions, orientation changes and mounting
stability (as a result of human interactions). We start with an
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Fig. 1: The accelerometer y-axis (along the car’s heading
direction) and OBD speed readings.
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example trip to illustrate the acceleration over/under estima-
tion problem due to slopes and the effects of gravitation. We
show that existing coordinate alignment method may cause
coordinate misalignment. Such problems cannot be easily fixed
due to the low accuracy of inertial sensors. We also discuss
unmanaged smartphone usage cases and the impacts on driving
analytics, i.e., relative orientation changes and the smartphone
is not stably mounted.

A. Sensitive to Road Conditions

1) Acceleration Over/Under Estimation: We collect an ex-
ample driving trip with various driving activities such as brakes
and accelerations using a LG Nexus 5. Before the trip, we park
the car in a flat parking lot and fix the smartphone with a frame
mounted between the driver seat and the passenger seat. The
coordinates of the phone are manually aligned (as precisely as
we can) with the car. We use a customized Android application
to record the sensor data and OBD speed data. The sensor and
OBD data traces of the trip are illustrated in Fig. 1. As can
be seen from the figure, the trip started on a flat road and
the speed was Om/s with acceleration Om/s2. At time 210s,
there is a stop as the OBD speed reading was Om/s while the
accelerometer reading is around 0.5m/s? indicating the car
is accelerating. It is an overestimated acceleration due to road
slope. This is because the y-axis of the accelerometer can sense
the gravity. The gravitational force may have an incremental
or decremental effect on the estimation of vehicle motion
parameters. For example, a misalignment of five degrees may
cause 0.85m/s? acceleration estimation error. For reference,
the Snapshot Program [7] records a hard brake if the decel-
eration is around 3m/s?. Therefore, we conclude that road
slopes and associated gravitational effect cause acceleration
over/under estimation.

2) Accumulated Gyroscope Errors: The gyroscope can be
used to track three-dimensional angular changes and is an
ideal input for slope estimation. However, it is known to suffer
accumulated errors [8]. We observe similar error accumulation
in our motivation experiment and the illustration figure can be
found in the extended version [9]. There are several reasons
why we see accumulated errors of gyroscope. The first one is
the constant drifts, where the gyroscope reading is not zero in
still due to limited hardware precision. As the angular changes
add up, the constant drifts accumulate correspondingly, which
leads to a rough linear function between accumulated error
and time. The second one is the vibration of the vehicle, which
accelerates the drifts of the gyroscope readings. Misalignment
(caused by either manual alignment in our experiment or
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the coordinate alignment algorithm) between the car and the
smartphone can also introduce accumulated errors. This is
because the x-axis of the gyroscope can also sense car’s
steering angular change like turns and lane changes when the
smartphone is misaligned with the car.

3) Coordinate Misalignment: Coordinate alignment is the
process to align the coordinates of the smartphone to those of
the car [5], [4], [6]. We find that slopes cause misalignment
if the coordinate alignment is conducted on slope. Coordinate
misalignment refers to the case when the aligned coordinates
of the smartphone is not perfectly aligned with the coordinates
of the car. Since the accelerometer can sense gravity, a mis-
alignment may also cause acceleration over/under estimation
problem. For example, the car is moving upslope while the
coordinate alignment algorithm assumes the car is moving
on flat road, which leads to the intersection angle # between
aligned coordinates of the smartphone and the coordinates of
the car. Such misalignment may cause acceleration over/under
estimation when the driver is driving on flat road.

B. Sensitive to Human Interactions

Human interactions may change the relative orientation
and mounting stability of the smartphone, which degrade the
usability and accuracy of inertial sensors.

The relative orientation change causes the sensor readings
are too noisy to be used. Suppose the smartphone is rotated
horizontally 180 degree, then the output of accleleromter is
completely reversed, i.e., the smartphone detects brake when
the car is accelerating. To eliminate such errors, the rotation
matrix should be re-estimated for accurate output. Coordinate
alignment is an expensive process and frequent coordinate
alignment may lead to gray periods where the inertial sensors
cannot used for driving analytics.

Mounting stability is also an important factor when conduct-
ing driving analytics by using inertial sensors. When the user
puts the smartphone in the pocket, the vibration of smartphone
may add extra noises. We advocate the use of a metric to
quantify mounting stability and understand the sensor accuracy
under various stability levels.

III. SENSING WITH INERTIAL SENSORS

IMU sensors are used in many driving analytics applications
[51, [4], [6]. However, existing work assume the car is moving
on flat roads and the smartphone is stably mounted in the
vehicle. Different from these work, we propose several novel
techniques to improve the accuracy and usability of inertial
sensors by detecting orientation change, modeling stability,
conducting slope-aware coordinate alignment and linear ac-
celeration estimation in a more practical manner. We design
a slope-aware solutions to conduct coordinate alignment and
track linear acceleration by removing the gravity component
dynamically from the aligned accelerometer readings. Second,
we use clustering techniques to detect relative orientation
changes. Third, we use moving variance to model the mount-
ing stability of the smartphone and evaluate sensing accruacy
based on mounting statiblity. The major steps are presented
in this section, interested readers may refer to [9] for more
illustration examples.

A. Slope-Aware Alignment

Fig. 2: Coordinate system difference between a smartphone
[z,y,2] and a car [¢/,y/, 2'].

As illustrated in Fig. 2, we use [z, y, | to represent the three
dimensions of a smartphone and use [z’,v’, 2'] to represent
the three dimensions of a car. Coordinate alignment is the

rocess that trains the rotation matrix R = [, 7, k], where 1,
j and k are three unit coordinate vectors, so that [z', 7', 2] =

[I'l y'l 'z] X [%131 '1"]'

oL

Fig. 3: Since the actual acceleration of the car and the com-
ponent of gravitational force (along the slope) are unknown,
the direction of force is uncertain when conducting vertical
alignment.

Step 1: Stop Points Extraction.

Identifying stop points are useful to conduct an initial
alignment. We use a sliding window to track the deviation
of the accelerometer readings for this purpose. The deviation
is expected to be small when the car is stopped, i.e., in front of
stop sign of red traffic light. But different cars have different
vibrations, which affect the readings of the accelerometer. To
identify a threshold for the deviation, we extract the stop
points according to the speed information collected from the
OBD port. We record the start time s; and end time e; that
any speed reading in between is zero. To eliminate possible
asynchronization and drifted value after passing low-pass filter,
we remove the points of the first 500ms and the last 500ms,
ie., the data points within [s; + 500, e; — 500]. This process
helps us to set the threshold to detect stops. We only use OBD
as a training input, our method can be used on any smartphone
and vehicle settings without OBD inputs.

Step 2: Horizontal Alignment.

Road slope affects the accuracy of coordinate alignment
in each step. During horizontal alignment, a slope-aware
alignment method can be much more effective than a slope-
unaware approach. Slope-unaware solutions assume all the
data points pass the origin point and try to fit all the data points
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for a single fit curve, while slope-aware solution treats each
road segment as different inputs (deviating from the origin
point due to slopes) and combine to improve the accuracy. To
train the rotation matrix, we need to select the segments that
the car is moving straight, and estimate the angle between the
heading direction and the smartphone’s horizontal coordinates
[4]. To derive the rotation matrix from discrete sensor data
points, we need to fit the curve and find the direction unit
vector. Different from traditional approaches, we train the
horizontal unit vector for each segment and combine each
training results gradually with different weights. Each segment
is selected based on the number of data points that indicate
the car is moving. The intuition is that more data points could
be more statistical significant.

Step 3: Slope-Aware Alignment.

Estimating road slope at alignment time is challenging.
In horizontal alignment, we can fit a curve as the moving
direction of the car (or the direction of force) is fixed and not
much interfered by gravity. In vertical alignment, however,
the direction of force is changing. As illustrated in Fig. 3, the
direction of force changes as the change of the acceleration
of the car. There are two parameters are unknown, the slope
gradient and the vehicle acceleration. The vehicle acceleration
varies at each data point, which varies the direction of force
and makes it is very challenging to estimate the parameters.
We use one heuristic searching algorithm to search for best
alignment angle. The algorithm relies on the property that the
z' — axis of the car should be constant over the same slope.
Firstly, we assume the horizontal alignment is complete and we
convert a 3D alignment problem into a 2D alignment problem.
The two dimensions are y —axis and z —axis, as illustrated in
Fig. 3. By iterating over all the possible angles, we calculate
deviation of the z’ — axis and locate the one with the least
deviation. The pseudo code of the search algorithm can be
found in the extended version [9].

Step 4: Linear Acceleration Estimation.

After coordinate alignment is complete, we can track the
acceleration of a car by using the accelerometer’s y-axis. We
illustrate the acceleration values from aligned accelerometer
in an example trip illustrated in Fig. 4. As the figure shows,
comparing with the accelerations by OBD, the accelerations
by the accelerometer of the first 90s are underestimated and
the following 60s are overestimated. This is because the car
is moving mainly downslope and then mainly upslope. The
deviated estimations may cause false positives/negatives on
capturing driving behaviors such as brakes and accelerations.

We apply the same rotation matrix to the gyroscope data and
illustrate the gyroscope x-axis data in Fig. 4. After removing
the constant drifts, it shows clear trends that the car is
moving downslope and then upslope. Given the similar trends
illustrated in two plots, we can estimate the slope gradient
and deduct the gravitational force components. We use similar
calibration techniques proposed in [8]. We identify the road
segments and stop points where accelerometer can provide
more accurate slope gradients to calibrate gyroscope.

B. Detecting Relative Orientation Change

Using inertial sensors to estimate vehicle motions is also
vulnerable to smartphone relative orientation changes. Rela-
tive orientation refers to the relative orientation between the
smartphone and the car. When the smartphone is fixed in the
car and the car is moving upslope or making turns, the relative
orientation of the smartphone does not change as there is no
relative movement between the smartphone and the car. The
relative orientation is usually changed by the smartphone user,
e.g., moving the smartphone from pocket to the car mount for
navigation.

Moving Variance (MV). To timely detect orientation
change, we look at the accelerometer data change in a moving
window. The moving window contains m data samples, and
we use the variance of the moving window to detect orientation
changes. The intuition behind is that the changes of sensed
gravity components is much more significant than those of
caused by vehicle’s movements. The variance can be calcu-
lated as Var(z) = E[(X — p)?], where X is the euclidean
distance to the “moving cluster” center and p is the average
distance. There are cases that the movement is too small to
be detected by MV. For example, a small horizontal rotation
of the smartphone will not change the variance. We use the
stability model to estimate such small changes. We will show
in the later section that such looseness make the acceleration
estimation inaccurate.

C. Estimating Mounting Stability

Another factor affects the accuracy of vehicle motion
sensing is the mounting stability of the smartphone. The
stability of the smartphone depends on how the smartphone is
fixed/placed/held in the car. A good case scenario is the user
placing the smartphone on a stable car mount holder. A bad
case scenario is the user or passenger playing motion games
such as car racing which requires rotating the smartphone.
The derived sensor readings of the car are over noisy due to
shaking and/or rotating of the smartphone.

We model one fixed relative orientation as a cluster of sensor
readings. We use intra-cluster variance (ICV) to estimate
the stability of the smartphone. A stable mounting of the
smartphone is expected to produce a smaller variance than
unstable holding by hands. Since ICV is correlated with the
cluster size, we use the ICV of the subclusters to represent
the ICV of the whole cluster. We define one subcluster as
any continous n points of the whole cluster. We use ICV to
evaluate the mounting stability of the tablets from dataset #1.
We firstly remove all the trips that there is orientation change
detected.

IV. THE PROMISE OF GPS IN DRIVING ANALYTICS

GPS is the most ubiquitous localization system and gen-
erally provides absolute coordinates. The usability of GPS
in driving analytics has not been well discussed by the
communities due to its high energy cost and coarse-grained
measurements. Our measurements indicate GPS is a good
candidate especially when IMU sensor is not available to
use or less accurate. We find that GPS has high accuracy in
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Fig. 4: Slope-Aware coordinate alignment and linear acceleration estimation. The figures are about acceleration over/under
estimation caused by slopes (left), using gyroscope to estimate road slopes (middle), comparing estimated linear acceleration

with groundtruth acceleration (right).
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Fig. 5: Acceleration estimation errors of GPS in urban and
highway environments. The estimation is more accurate in
higher speed (> 10m/s) than lower speed (< 10m/s).

estimating speed and accelerations, especially in medium and
high speed scenarios (e.g., > 10m/s). Given the simplicity of
acceleration estimation and high accuracy of GPS, we believe
inertial sensors can be augmented by GPS in vehicle speed
and acceleration estimation applications. Please refer to [9] for
the background about how GPS works and a more complete
evaluation.

A. Acceleration Estimation

The acceleration is comparatively evaluated by GPS points
and OBD speed data. The CDF of estimation error is shown
in Fig. 5. Each curve stands for the acceleration estimation
error no more than that speed, ie., 10m/s refers to any
speeds not higher than 10m /s and 20m /s refers to any speeds
between 10m/s and 20m/s. The estimation errors of GPS
in low speed are caused by GPS location estimation errors,
which could be caused by either the weak GPS satellite signal
or strong thermo-noise floor. Additionally, the errors could
also be caused by the building and vehicle blockage. The
acceleration estimation when the vehicular speed is higher than
20m/s is highly accurate. This result indicates that GPS is
more accurate in high speed scenarios.

B. GPS Availability

GPS signal is not always available, especially in indoor
environments. If the smartphone is inside the car, there are
chances that the smartphone GPS receiver is not able to
detect satellite signals. Also, if the car is passing through
underground tunnel or high buildings, GPS signal might be too
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Fig. 6: GPS availability in urban and highway environments.

weak to be received. We compare GPS and OBD data point
by point, and record the accumulated distance of trip fragment
without GPS points. The missing GPS of each trip is illustrated
in Fig. 6. There are a couple of trips that are entirely missing,
while we are not sure if it is caused by software bugs or
blocked signals. The GPS is available most of the time, while
there are cases that the GPS is missing at the start and/or end
of the trip.

V. DESIGN AND IMPLEMENTATION

We present the design and implementation of XSense in this
section. The illustraction of the workflow and the QR code for
a link to download the xsense.apk package are provided in the
extended version [9].

A. Design of XSense

1) Workflow: XSense uses several modules to evaluate
sensor performance and estimate vehicle motion paramters.
The inputs of XSense are accelerometer, gyroscope and GPS.
In each module, it uses different sensors as input. The cor-
responding sensor icon is placed along with the module if
it requires that sensor as input. Our method uses the ac-
celerometer extensively as it provides a baseline by measuring
the absolute acceleration while the gyroscope measures only
relative angular speed. The first module is to detect relative
orientation changes. If an orientation change is detected,
XSense will restart the rotation matrix training process until
the relative orientation of the phone is fixed. The second
module is called stability monitoring module, which is used to
monitor the mounting stability of the smartphone. The stability
of the smartphone is quantified by a threshold, which depends
on the accuracy of GPS and that of the accelerometer. If the
accuracy of the accelerometer is higher than that of GPS, we
think the smartphone is mounted stably. In other case, we use
GPS to estimate acceleration. The third one is slope-aware
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coordinate alignment module, which aligns the coordinates
from the smartphone to those of the car and estimates the
gradients of the training road segment. Both horizontal and
vertical alignment are conducted in this module. The last one
is the linear acceleration estimation module, which is used
to estimate the slope gradients along the way. XSense may
selective use GPS or accelerometer to estimate accelerations
based on the accuracy of each method.

GPS is used to detect accelerations and brakes when the
IMU sensors are not available or not ready to be used. IMU
sensor is not available when the user frequently changes the
relative orientation of the smartphone or does not mount the
smartphone stably. For example, if the user is holding the
smartphone to play game or send text message, the IMU
sensor readings are too noisy to use. Even the user mounts
the smartphone in a fixed place, it takes tens of seconds to
minutes to collect enough data for training the rotation matrix.
During the training process, the IMU sensors are not ready to
be used.

B. Implementation

We implement XSense as a software module in Java and
import it to an Android application we wrote. To make our
test easier, we develop an offline trace replay engine. The
replay engine sorts the sensor data based on timestamps, and
feeds them into an event listener function in chronological
order. We use an abstraction called Trace to represent the
sensor data, GPS data and OBD parameters. It is similar to
SensorEvent used by Android API [10] and provides additional
flexibility to store OBD and GPS data. The event listener
function process each Trace according to corresponding sensor
type. The trace replay engine makes it easier to import
XSense to the Android application. The Android application
is aiming to monitor and record daily driving trips. The app
is implemented by less than 4,000 lines of Java code, but
supports a variety of functionalities such as trip recording, real
time display, trip management, trip display on Google map,
user management and access control, online/offline uploading,
data synchronization with remote server etc. XSense serves as
a module that provide a more accurate estimation on vehicle
motions, e.g., hard brakes. For this submission, we highlight
XSense module and remove some functionalities such as trip
upload, user management etc.

VI. EVALUATION

We present the dataset and accuracy evaluation of XSense
in this section. More complete evaluation such as the steering
angular velocity estimation and training time of rotation matrix
can be found in [9].

A. Dataset

We use three datasets in our study. There are totally more
than 13,000 miles of driving data collected in both controlled
and uncontrolled environments over the past three years. We
will make our dateset available to public after this work has
been published.

Dataset #1. We deploy Xoom tablets installed with our
app on 10 different cars. The tablets collect the vehicular
speed data from the On-board diagnostics (OBD) port and
various sensor data (including GPS and inertial sensors). Each
tablet is placed in the back pocket of the passenger seat. The
invovled cars are from different models and the stability of the
tablet placement is different, which provides the opportunity
to study the effects of mounting stability on motion estimation
accuracy.

Dataset #2. We also collect some data in more controlled
environments, where we know what is happening and the
groundtruth data are recorded. First, we collect the data when
the smartphone is placed in various scenarios, i.e., holding by
hand, fixed by car mount holder, placed in cup holder etc.
These data are used to understand various orientations and the
relation between mounting stability and motion estimation ac-
curacy. Second, we collect some data when randomly changing
the orientation of the smartphone, i.e., move the smartphone
from pocket and fix it on car mount holder. These data are used
to evaluate the accuracy of our orientation change detection
module. Third, we collect some data from two devices, where
one device is manually aligned with the car (as best as we
can), and the other is fixed in car mount holder or held in
passenger’s hand. These data are used in two cases. One trip is
used to understand acceleration overestimation problem caused
by gravitational force. Another 10 trips are used to estimate
the vehicle steering motions, where the gyroscope readings of
manually aligned device is used as groundtruth data.

Dataset #3. We release the beta version of the Android
app to 9 volunteers. The trip recording module is written as an
Android Service, so it is running in the background while the
user may use the smartphone for navigation, game or any other
activities. These data are used to understand how different
users are placing their smartphones while driving or sitting in
the car.

B. Road Slope Statistics
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Fig. 7: Histogram of slope gradients. The acceleration estima-
tion error is proportional to gsinf, where 0 is the road slope
angle.

As we discussed above, the slopes introduce linear accel-
eration estimation errors. An important question is how many
road segments are sloping and how many of them are actually
level. Some cities, e.g., San Diego and Los Angeles, are full
of hills, and most roads are sloping roads. Surprisingly, in
a plain area in US (Madison area) where we collect data,
there are also full of slopes. To obtain the road gradient,
we use the Google elevation dataset [11]. For each GPS data
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Fig. 8: Comparing acceleration estimation accuracy among
various methods.

point, we queried the elevation from the dataset. and calculated
the gradient by the elevation difference and distance. We
eliminated the close consecutive GPS data points that less than
5 meters in distance and removed the data points where the
speed is less than 10mph. As we can see from the histogram
in Fig. 7, more than half of the roads are not flat. Those
sloping roads, even as small as two degrees, may introduce
accumulated errors on coordinate alignment and further slope
estimation, i.e., 0.34m/ s2. The aggregated error may cause
significant linear acceleration estimation error and introduce
false positives/negatives on brake/acceleration monitoring.

C. Improved Overall Accuracy

We use dataset #1 to evaluate the accuracy of XSense
and other methods. The other three methods are using Ac-
celerometer with Traditional Coordinate Alignment (TCA)
[5], [4], [6], Slope-Aware coordinate alignment with linear
acceleration estimation, and GPS. In this evaluation, we only
use the tight group data where the tablet is stably fixed in the
car. Therefore, the results generated by sensors are the best
cases can be achieved for sensor-based motion estimations.
We compare the acceleration difference between each method
and the groudtruth (calculated by OBD speed). The results are
shown in Fig. 8. The estimation made by well-tuned sensor co-
ordinate alignment and linear acceleration estimation (Slope-
Aware curve) shows similar 80% accuracy with GPS. The gap
between Slope-Aware and Accelerometer are caused by road
slopes, where slope-unaware solution will over/under-estimate
acceleration due to gravitational force. The accuracy gain of
XSense is from the acceleration estimation compensation by
sensors when the GPS speed is low.

D. Orientation Change Detection

We evaluate the orientation change module by using dataset
#2 in this section.

Detection Rate. The performance of inertial sensors in
vehicle motion sensing applications highly depends on the
fixed relative orientation between the smartphone and the car.
Therefore, detecting orientation change is very important in
such applications. We evaluate the orientation change detection
methods in two settings, tight setting and loose setting. In tight
setting, the smartphone is mounted in various orientations on
the car mount holder, or mounted by car cup holder. In loose
setting, the smartphone is put in pocket, placed in passenger

seat, or holding by passenger’s hand. For each orientation, we
record the groundtruth by a customized app. We use more than
10 trips and record 98 orientation changes in tight setting and
82 orientation changes in loose setting. The detection rate is
presented in Table I. The Moving Variance method can detect
most of the orientation changes expect when there is small
horizontal orientation change. But such orientation change
will increase the Intra-Cluster Variance so that the stability
detection module can identify the polluted sensor output.

TABLE [: Orientation Change Detection Accuracy

[ Method | Tight | Loose |
MV 96.9% | 87.8%
MV + ICV | 100% | 96.3%

E. Comparison Between GPS and IMU Sensors

Error (mi’sz)

eoeo =me
ohbhrow=RO

5 10 15 20 25 30 35
Speed (m/s)
Fig. 9: GPS acceleration estimation errors under various

speeds.

TABLE II: Median ICV and Acceleration Estimation Accuracy

[ ICV Median | Median Error | 70th — % | 90th — % |

0.05 0.15m/s? | 0.18m/s? | 0.31m/s?
0.21 0.21m/s? 0.38m/s? | 0.95m/s?
0.87 0.45m/s? | 0.78m/s? | 1.56m/s?

To select between IMU sensor and GPS as input for accel-
eration estimation, we compare the accuracy based on current
speed and mounting stability. To estimate the accuracy of GPS,
we use one pipeline to process GPS stream data and track
the speeds. Each GPS point is associated with a confidence
value. The confidence value is the Sth percentile estimation
accuracy under given speed. The percentile accuracy under
various speeds is illustrated in Fig. 9. To estimate the accuracy
of IMU sensors, we use ICV to track the mounting stability
of the smartphone. We use the median ICV as an indicator of
the mounting stability. The corresponding percentile errors of
different ICV are illustrated in Table IL

VII. RELATED WORK

In this section, we summarize the most relevant work in the
field of IMU sensing and GPS tracking. More discussion can
be found in the extended version [9].

309



2017 IEEE Vehicular Networking Conference (VNC)

A. Driving Analytics with IMU Sensors

The smartphone built-in sensors enable lots of vehicular
applications that sense vehicle movements and capture driving
behaviors [5], [4]. [6], [2]. [12]. [5] uses an accelerometer
to estimate vehicular speed. [4] captures turns to determine
driver phone use by comparing centrifugal force with a
reference point. [6] develops a middleware that can detect
and differentiate various vehicle maneuvers, including lane
changes, turns, and driving on curvy roads, by using non-
vision sensors. The steering events are captured by the z-axis
of the gyroscope. [13], [14] use inertial sensors to detect the
driving quality of the driver. They identify driving events like
lanechanging and acceleration/deceleration and rate the driver
according to the frequency and suddenness of these events.
Existing work assume the car is moving on flat road and the
smartphone is stably mounted within the car. In relaxing such
assumptions, we use slope-aware coordinate alignment and
linear acceleration components to enhance the performance
of these techniques. XSense also combines the inputs from
both GPS and inertial sensors to achieve higher accuracy.

B. GPS-based Localization and Tracking

The most recent work about GPS relative localizations are
[15],[16], [17]. [15] conducts relative localization and tracking
among a network of GPS receivers by sharing the raw satellite
observations and using carrier phases combined with double
differentials to improve the accuracy of localization. [16] is
a continuous work of [15] that eliminates the requirement
of manual baseline initialization. [17] uses multiple GPS
receivers on the drone as a failsafe mechanism for IMU
failures. These techniques utilize multiple GPS receivers and
cannot be used in single smartphone vehicular applications.
[18] uses extra steerable, high-gain directional antenna as the
front-end of GPS receiver to achieve direct GPS-based indoor
localization. Different from these work, we use only single
commodity smartphone GPS receiver to estimate vehicle mo-
tions. Improvement on the accuracy of GPS can improve the
overall accuracy of XSense, since we use selectively use GPS
and IMU sensor. We focus on single commercial smartphones
where such techiniques are not yet available to use and will
explore the possibility to integrate differential techniques in
the future.

VIII. CONCLUSIONS

Smartphones are commonly used for driving analytics ap-
plications. Traditional approaches assume experimental cases
where the smartphone is stably mounted with fixed relative
orientation and the vehicle is travelling on flat roads. By
using an example experiment, we show that even perfectly
aligned accelerometer suffers acceleration overestimation or
underestimation, which is caused by gravitational force, mis-
alignment and slope estimation error. Moreover, the accuracy

of IMU sensors are sensitive to human interactions as well. For
example, frequent relative orientation change and less stable
mounting may cause significant estimation errors. We present
several innovative techniques to remedy such defects. We
show through our experiments and analysis that compared to

current state of the art techniques, our method improves the 75-
percentile accuracy by 5x comparing with well-tuned inertial
sensors in traditional approach.
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