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ABSTRACT

Self-driving or autonomous vehicle systems are being de-
signed over the world with increasing success in recent years.
In spite of many advances so far, it is unlikely that such
systems are going to ever achieve perfect accuracy under all
conditions. In particular, occasional failures are anticipated
when such vehicles encounter situations not observed before,
or conflicting information is available to the system from the
environment. Under such infrequent failure scenarios, the
research community has so far, considered two alternatives —
to return control to the driver in the vehicle, which has its
own challenges and limitations, or to attempt to safely “park”
the vehicle out of harm’s way. In this paper, we argue that a
viable third alternative exists — on failure of the self-driving
function in the vehicle, the system could return control to a
remote human driver located in response centers distributed
across the world. This remote human driver will augment
the self-driving system in vehicles, only when failures occur,
which may be due to bad weather, malfunction, contradiction
in sensory inputs, and other such conditions. Of course, a
remote driving extension is fraught with many challenges,
including the need for some Quality of Service guarantees,
both in latency and throughput, in connectivity between the
vehicles on the road and the response center, so that the
remote drivers can react efficiently to the road conditions. To
understand some of the challenges, we have set up real-time
streaming testbed and evaluate frame latency with different
parameter settings under today’s LTE and Wi-Fi networks.
While additional optimization techniques can be applied to
further reduce streaming latency, we recognize that signifi-
cant new design of the communication infrastructure is both
necessary and possible.
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1 INTRODUCTION

A self-driving vehicle is one that is capable of sensing its
environment and navigating itself without human input [23].
It uses a variety of techniques to sense its surroundings, such
as LIDAR, RADAR, odometry, and computer vision. It uses
these different sensor inputs to understand its environment,
recognize various road conditions, traffic lights, road signs,
lane boundaries, and track surrounding vehicles. The poten-
tial benefits of self-driving vehicles include increased safety,
increased mobility and lower costs. It is estimated that self-
driving vehicles can reduce 90% of the accidents and prevent
up to $190 billion in damages and health-costs annually [11].

Many commercial and academic endeavors are putting
significant resources for the development and tests of such
self-driving systems [3, 14, 22]. For example, Google started
its self-driving project in 2009, and has spent more than $1
billion in building and testing fully self-driving vehicles [12].
While legal and political challenges remain in its widespread
adoption, there are also some technical bottlenecks on the
way of developing completely reliable self-driving systems.

All self-driving systems make decisions based on the percep-
tion of the environment and predefined traffic rules. However,
there has been occasional failures of these systems when they
have encountered scenarios that were hitherto unseen. For
instance, based on the situation in a construction zone, hu-
man drivers would realize that it is permissible to cross over
a double yellow line by following the appropriately placed
cones (which otherwise is illegal to cross in the US), while a
self-driving vehicle may not be able to do so, and therefore be
unable to move forward. Similarly in poor weather conditions
or due to traffic light malfunctions, the cues from different
sensors may contradict each other leading to confusion in
decision making.
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In general, the road rules are complex and may conflict
with each other, i.e., the system has to understand when
to follow cones and ignore lane markers, and when to obey
a road worker and disobey traffic signs. We observe that
the real world situations are so diverse and unpredictable,
that there are always situations that cannot be matched
with predefined rules and may occasionally cause self-driving
system failures.

Hence, we propose to use specially designated remote hu-

man operators to augment self-driving system when it fails

to perceive or handle current situations. It is well established
that human drivers, especially experts, are capable of making
good judgement calls in face of contradictory or inadequate
inputs, that sometimes limit a learning system that has yet
to encounter a scenario before. While it is tempting to return
control (during the failure of the self-driving function) to a
local human driver situated in the vehicle, it is foreseeable a
future of driverless cabs carrying only underage or licenseless
passengers. Hence, we propose to engage remote human
drivers as a safety backup when the self-driving function fails.
We expect that remote drivers can multiplex and manage a
large group of vehicles making scalability feasible. To make
such a remote response center with human drivers practi-
cal, many challenges and new research questions arise. For
example, how the networking infrastructure and protocol
should be designed to accommodate such safety and latency
critical applications? Also, how the sensory data is processed
and sent to the remote center? It brings up many human
computer interaction and security issues as well.

As a start, we conduct feasibility study on a real-time
streaming testbed and evaluate the impact of today’s network
latencies on streaming the vehicular environment through
audio-visual methods. We illustrate that In today’s LTE
networks, it is usually possible to accomplish a two-way
communication latency of around 100 milliseconds when
streaming frames of various resolutions by using standard
video compression algorithms [13], which is within the range
of tolerant latency for racing games in previous studies [15].
To keep the latency of communication between the remote
human drivers and the vehicles bounded, we anticipate that
multiple remote response centers be created — based on the
maximum end-to-end latency that can be accomplished in
such future network designs. Each remote response center
then is likely to only manage, control, and provide remote
driving augmentation to vehicles within some vicinity. It is
also possible that this function will be practical in denser
areas with many vehicles, where such system failures are more
likely to occur. In the rest of the paper, we explore various
issues in realizing these goals and discuss both opportunities
and challenges in this direction.

2 REMOTE CONTROL AS BACKUP

In this section, we illustrate how self-driving system works and
under what conditions it may fail, e.g., the computer system
cannot understand the semantic meanings of road/traffic

Local Traffic Only

Double Yellow Line

Figure 1: A fully self-driving system may fail to rec-
ognize the semantic meaning of “local traffic” and
crossing double yellow line is allowed.
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Figure 2: High-level architecture of self-driving sys-
tem with remote control.

conditions. We posit that remote control system and human
operator can augment self-driving systems in such conditions.

2.1 How Self-Driving System Works

A self-driving system consists of several modules that are
responsible for perception, localization, planning and control
[16]. A high-level architecture of self-driving system is illus-
trated in Fig. 2. Perception refers to the ability to collect
information and extract relevant knowledge from the envi-
ronment, such as where obstacles are located, detection of
road signs/marking, and categorizing data by their semantic
meanings. Localization refers to the ability to determine the
vehicle’s position with respect to the environment. Planning
refers to the process of making purposeful decisions in order
to achieve higher order goals, typically to bring the vehicle
from one location to another while avoiding obstacles and op-
timizing over designed heuristics. Finally, the control module
is used to execute the planned actions. Similar to human dri-
vers, self-driving vehicle follows predefined traffic rules, such
as drive within lane, do not cross double yellow line (except
left turns), stop at the red traffic light (except right turns
in certain cases) etc. The perception module identifies lane
boundaries and traffic lights, and the the planning module
makes decision based on predefined rules.
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Table 1: Possible Self-Driving System Failures

Possible Failures Examples

Perception failure at night and/or under
challenging weather conditions

Unreliable camera at night (even with headlight); 1 Low visibility due to fog; 2

Lane markers are covered by snow.

Confusing or malfunctioning traffic
lights/signs

Flashing yellow left turn light with sign instruction; 3 Malfunctioning traffic light
turns to both red and green. 4

Confusing detour due to misplaced cones
or complex instructions

Instruction requires extra knowledge (e.g., local traffic only); the detour arranged
by traffic barrels or cones is not clear (e.g., misplaced by road workers).

Complex and/or confusing parking Signs Unclear, confusing, and handwriting road signs; 5 Parking is allowed only under
certain dates and permits; Parking lots for particular vehicles, i.e., electronic or
small vehicles;

Collision or system/hardware failures Self-driving vehicle gets involved with collisions [22]; The LIDAR or other sensors
fail.

2.2 Where Self-Driving System May Fail

A self-driving system may fail under complex road/traffic
conditions caused by road constructions, traffic light mal-
functions, randomly placed traffic cones, customized traffic
signs, and many other conditions that can hardly imagine
(examples in Table 1). One of such examples is illustrated
in Fig. 1, the road is closed and only local traffic is allowed.
The self-driving system could fail to understand the seman-
tics of construction signs, i.e., the self-driving system cannot
understand what “local traffic” means. Also, the system may
fail to detour around the road construction zone, i.e., it has
to understand when the self-driving vehicle is authorized to
cross double yellow line or road boundaries. Also, the system
may fail to detour around the road construction zone, i.e., it
has to understand when the self-driving vehicle is authorized
to cross double yellow line or road boundaries. The detour
can also be arranged with traffic barrels which are placed by
road workers. Since there is no specific rules to place traffic
barrels, it is hard to find a general logic to learn where the
detour is. It also has to identify road workers who is instruct-
ing the vehicles going through the road work zone. To verify
a system with such capability, one has to navigate the system
to drive through various road construction zones. In this case,
a human operator can understand that the road is closed for
“through traffic”, and use external tools and knowledges to
decide if the original route belongs to “local traffic”. While
it is possible to use map update and algorithm to handle
this particular case, there are also other conditions that are
so complex that a computer system may fail to handle and
it takes years to realize various conditions and implement
corresponding solutions. Some of the possible failures are
summarized in Table 1.

1https://www.youtube.com/watch?v=uYav3 7miIc
2https://www.youtube.com/watch?v=fc0yYJ8-Dyo
3https://www.youtube.com/watch?v=56UDZLlj2q8
4https://www.youtube.com/watch?v=femUe6bds0U
5https://www.youtube.com/watch?v=cZfj9yL3cWk&t=108s

2.3 Why Remote Control

Remote control systems can act as an economic and safe
backup of self-driving systems. One human operator can
manage multiple self-driving vehicles and take actions upon
request. It could also replace the human drivers prepared
to take over the control after system failures [22]. A high
level architecture is illustrated in Fig. 2. Suppose a road
lane is closed due to road work, a self-driving system can
simply detect that the current lane is blocked, while it may
fail to understand the semantic meansing of the road signs.
The remote human operator can take over the control if the
self-driving system fails. Every detour is different and a fully
self-driving system has to be trained and tested over millions
(or even more) of such cases before it can be claimed as
capable of fully self-driving. Remote control augmented self-
driving systems could be more reliably handle such situations.
Remote control will consume data for live streaming, but
we argue that remote control is used only when self-driving
system fails. In the example illustrated in Fig. 1, the live
streaming and remote control is used only when the vehicle is
taking the detour. It rises open questions such as how many
camera feeds and what are the video quality requirements in
this application scenario.

3 CHALLENGES AND ISSUES

The remote control system can be a safe backup of self-
driving systems, but there are also challenges that should be
addressed along the way. We discuss possible research issues
and directions in this section.

3.1 Network Infrastructure and Protocol

Design

To bound the latency between the remote human drivers and
the vehicles, we anticipate that network infrastructures and
communication protocol will be designed. In such a network,
multiple remote response centers are created and each pro-
vides remote driving augmentation to vehicles within some
vicinity based on network latency and bandwidth. The remote
response center should be selected and/or switched based on
the maximum end-to-end latency. In denser areas with many
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vehicles or during road constructions, this function will be
more practical as system failures are more likely to occur.
Given there are different wireless communication protocols,
it rises open questions about how to ensure QoS under dif-
ferent network protocols. For example, how to optimize the
transmission and ensure QoS under current LTE networks
[6]? how to design 5G networks to ensure low latency and
high bandwidth vehicle-related traffics [25]?

3.2 Perception Module Design

Similar to human drivers, self-driving vehicles make deci-
sions by matching the contextual information with corre-
sponding traffic rules. The self-driving system fails when the
road/traffic condition is unrecognizable or multiple conflict-
ing rules are derived. With remote control, the self-driving
system can classify the road conditions into binary condi-
tions: perceptible or not. To this end, the self-driving system
can cache the 3D map of the road, traffic signs/lights and
surrounding buildings [22], it can detect if it is perceptible
by comparing perceived 3D map with cached version. By
filtering out the moving objects, the two versions should be
fairly similar. If the perception module detects road blockage
or road signs that was not cached, then it tries to understand
the situation, and transfers the control to remote human
operator if it fails.

3.3 Real-Time Streaming

To provide sufficient information for the remote human oper-
ator to control the vehicle, the video streams and external
contexts, such as extra camera feeds from the vehicle itself
and other surrounding vehicles, should be sent to the server
in real time. The question is what kind of data and in what
format should be transmitted to the server? Suppose both
the self-driving system and the server cache the 3D map of
the surrounding infrastructures, only the differences can be
transmitted to the server and the server can reconstruct the
real-time conditions based on the differences. Also, optimiza-
tion techniques can be used to compress and reduce the data
volumes. The data size would be smaller if only the boundary
of the objects are transmitted.

3.4 HCI for Remote Control

Remote control is different from control within the vehicle
as it suffers various levels of latencies. The remote human
operator may see delayed views and the vehicle also receives
delayed control messages. There are many open questions
like what kind of control is required from the human operator
and what is the safe speed under current latency and remote
operator’s reaction time. The self-driving system can calculate
several possible detours or alternative plans, and the remote
human operator can pick the most appropriate one. In the
cases where the self-driving system cannot understand the
environment, a human operator can take over the full control
of the vehicle. Self-driving system can also assist remote
control. For example, while the vehicle is controlled by the
remote human operator, the collision avoidance module of

the self-driving system still works to ensure the vehicle will
not get involved with any accidents. The reaction time of
the remote operator, the latency of the networks and the
vehicular speed should also be well studied to ensure the
vehicle is at a safe speed.

3.5 Online Sharing and Learning

If one self-driving system fails, the scenario should be shared
and used to train the system so that the self-driving system
can better model or handle similar cases. It is also possible to
store the road information in the cloud and the self-driving
systems update with unusual conditions, e.g., lane closed for
road construction, so that the vehicles passing by this road
segments can be updated. Also, after the human operator
makes a decision, e.g., detour around the blocked lane, other
self-driving vehicles passing the same road segment should
be able to follow the same detour automatically through
online sharing and learning. In such cases, only one or few
self-driving vehicles need to be controlled by remote human
operators, and the rest self-driving vehicles can use updated
road information and recorded decisions to pass through
without further human inputs.

4 FEASIBILITY STUDY

In this section, we evaluate the feasibility of real-time video
streaming over today’s wireless networks used by vehicles,
i.e., LTE [17] and Wi-Fi [19]. We present a case study with
three levels of resolutions, while choosing the best resolution
and bitrate is an open question and further study is required.

4.1 Real Time Streaming

As illustrated in Fig. 3a, we use a customized Android app
to compress the raw video frames (in YUV420 format) and
send to remote server in real time. The video is compressed
by using video compression standard H.264 or MPEG-4 [13].
In H.264, there are two types of frames, I-frame and P-frame.
An I-frame, or Intra-coded picture, is a complete image. P-
frame (Predicted picture) hold only the part that changes
between frames. In other non-real time applications, it can
also use both previous and forward frames to generate B-
frame (Bidirectional predicted picture) to better compress
the frame.

We borrow video parameter settings from popular VoIP
applications, i.e., Skype [26] and Google Hangout [24]. In
our setup, we conduct case study with three resolutions
of 320x240, 640x480 and 1280x960, with bitrate 0.5Mbps,
1Mbps and 4Mbps, respectively. We use UDP to send the
compressed frames with a frame rate of 10 over LTE and
Wi-Fi networks. The I-frame interval is 1 second, i.e., there
is one I-frame every 10 frames. The compression ratio ranges
from 5% to 15% for different frames. The server decompresses
the video frame by using GStreamer pipeline [5] and sends
back the timestamp associated with the frame. The Android
app records the two-way latency and frame sizes into sqlite
database.
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Figure 3: Latency measurement of real-time streaming in Wi-Fi and LTE networks. Frame loss rate is from
0.5% to 2% in different networks and resolutions (and bitrates) settings.

4.2 Video Frame Latency

We measure the two-way latency of the compressed video
frames in both LTE and Wi-Fi networks. The measurements
in Wi-Fi network is used to compare with LTE for proto-
col overhead. The road experiments are conducted in LTE
networks. In both networks, we use the same remote UDP
server with a global IP address. For the measurements in LTE
networks, we fix the Android phone (Nexus 5X) in vehicle
mount holder to record front views. We drive the vehicle for
three 5min trips to record two-way frame latency, frame size
and loss rate of different resolutions. For the measurements
in Wi-Fi network, we use the Android phone to stream a pre-
recorded video through a single 802.11n Wi-Fi access point.
The server is 3 miles away from the streaming location. The
two-way latency in both networks is shown in Fig. 3b. The
median latency in LTE and Wi-Fi networks are around 100ms
and 50ms, respectively. One reason for higher latency in LTE
networks is the protocol overhead. Since we use only one
Wi-Fi access point, the overhead of handoff is excluded. With
carefully designed handoff and scheduling algorithm [19], we
believe Wi-Fi is a good candidate for vehicle connectivity in
urban area.

4.3 Frame Size and Optimization

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 2 4 8 16  64 256

C
D

F

I-frame Size (KB)

320p

640p

1280p

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 2 4 8 16  64 256

C
D

F

P-frame Size (KB)

320p

640p

1280p

Figure 4: The size compressed frames, with compres-
sion ratio 5%-20% of original YUV420 format.

The frame size distributions of I-frames and P-frames
are illustrated in Fig. 4. The median size of I-frames is 2-4
times larger than that of P-frames. This is because the video
encoder fails to predict the next frame and the difference

between actual frame and predicted frame is much higher
than expected. We observe that large frame size may cause
long tail latency, as illustrated in Fig. 3c. Some optimization
techniques can be used to further reduce the size of the
frames. The I-frame interval can be adjusted according to
vehicle dynamics. At high speed or during turns, the I-frame
interval can be increased as the it is hard to predict next
frame in such cases. When the vehicle is waiting at red light,
the frame rate or resolution can be reduced since the human
operator cannot drive the vehicle anyway. Further, a 3D map
of road and infrastructures can be built and cached at both
the self-driving system and the server, only the differences
(i.e., dynamic objects such as vehicles and pedestrians) are
transmitted to the server. Such optimizations can reduce the
peak size of the frames to potentially avoid long tail latency.

5 RELATED WORK

5.1 Self-Driving Systems

Corporations like Waymo, Mercedes-Benz and AutoX are
trying to develop fully self-driving vehicles [3, 14, 22]. Waymo
uses LIDAR as the primary input for object detection [22].
AutoX proposes camera-first self-driving solution to reduce
the cost to build a self-driving vehicle [3]. [4] presents a
sensory-fusion perception framework that combines LIDAR
point cloud and RGB images as input and predicts oriented
3D bounding boxes. [9] describes the architecture and imple-
mentation of an autonomous vehicle designed to navigate us-
ing locally perceived information in preference to potentially
inaccurate or incomplete map data. [7] presents networked
self-driving vehicles to coordinate and form an edge comput-
ing platform. We believe remote control system can act the
safe backup for such self-driving systems.

5.2 Low Latency Networks

Reducing network latency is an active area of research. [18]
investigates the causes of latency inflation in the Internet
and proposes a grand challenge for the networking research
community: a speed-of-light Internet. [1, 25] propose vari-
ous architectures and techniques for high capacity and low
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latency 5th generation mobile networks. [20] discusses the
requirements of system design for real-time streaming. [19]
presents a Wi-Fi based roadside hotspot network to oper-
ate at vehicular speeds with meter-sized picocells. [8] uses
speculation to predict future frames to reduce latency for
mobile cloud gaming. [10] measures the performance of Skype
over today’s LTE networks and illustrate the inefficiencies of
Skype protocols. [6] develops a passive measurement tool to
study the inefficiency in today’s LTE networks. [2] presents
the features to improve quality of service in LTE networks.
[21] presents the inefficiencies of current VoLTE architec-
tures. All these work can inspire the design of remote control
systems for self-driving vehicles.

6 DISCUSSION

6.1 Multiple Camera Feeds

We evaluate only single camera feed, while it is necessary to
stream multiple camera feeds from both the vehilce itself and
surrounding vehicles. Streaming multiple camera feeds will
increase the data volume and further optimization techniques
are required.

6.2 Video Resolution, Bitrate and Quality

In this paper, we present a case study with three levels of
resolutions, while choosing the best resolution and bitrate
for this application is still an open question. Different video
bitrates provide different video qualities for various resolu-
tions. The question is what is the minimum requirements
and parameter settings to provide enough quality for remote
operator to be fully aware of the surrounding situations. We
expect that a live streaming protocol should adjust video
bitrate according to network bandwidth and provide the
best-effort video quality.

7 CONCLUSION

We propose to use remote control when the self-driving sys-
tem fails to understand the environment or cannot match the
road information with predefined traffic rules. It raises many
open questions to design a remote control system and infras-
tructure. We present case studies in this work and advocate
further research into the challenging issues for augmenting
self-driving with remote control.
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