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ABSTRACT

Increasingly, smart Network Interface Cards (sNICs) are being used

in data centers to offload networking functions (NFs) from host

processors thereby making these processors available for tenant ap-

plications. Modern sNICs have fully programmable, energy-efficient

multi-core processors on which many packet processing functions,

including a full-blown programmable switch, can run. However,

having multiple switch instances deployed across the host hyper-

visor and the attached sNICs makes controlling them difficult and

data plane operations more complex.

This paper proposes a generalized SDN-controlled NF offload

architecture called UNO. It can transparently offload dynamically

selected host processors’ packet processing functions to sNICs by

using multiple switches in the host while keeping the data center-

wide network control and management planes unmodified. UNO

exposes a single virtual control plane to the SDN controller and

hides dynamic NF offload behind a unified virtual management

plane. This enables UNO to make optimal use of host’s and sNIC’s

combined packet processing capabilities with local optimization

based on locally observed traffic patterns and resource consumption,

and without central controller involvement. Experimental results

based on a real UNO prototype in realistic scenarios show promising

results: it can save processing worth up to 8 CPU cores, reduce

power usage by up to 2x, and reduce the control plane overhead by

more than 50%.
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1 INTRODUCTION

Modern software defined networking (SDN)-based data centers

are architecturally “edge-based” [36, 41, 84], where a variety of

infrastructure components are housed at end-hosts (referred to as

hosts, henceforth). That is, in addition to tenant virtual machines

(VMs), data center providers run virtual instances of a variety of net-

work functions (NFs), (e.g., firewalls, NATs, load balancers, etc.) at

hosts. Each host also runs a software switch such as Open vSwitch

(OVS) [81] to handle network communications amongst the tenant

VMs, NFs, and any remote entities. Because it is crucial to ensure

data center compute is maximally used toward tenant applications,

data center providers often strive to minimize the compute resource

consumption of their infrastructure components, i.e., NFs and soft-

ware switches.

Unfortunately, this has become increasingly difficult in recent

years due to a confluence of key technology trends. First, the speed

of data center interconnects continues to increase [3], as a result

of which NFs must now process many more packets per second,

at significant compute cost. Second, as more and more VMs and

lightweight containers are provisioned on a host, the switching

load on software switches also increases so as to support a large

number of virtual ports [57]. Finally, as virtual networking at the

edge becomes more sophisticated, new types of packet processing

functions are being deployed [36, 60, 78, 80, 96], and this also trans-

lates into increasingly more CPU cycles to execute complex logic

for the same amount of traffic at the host. These factors are causing

increasingly large fraction of host processors to be dedicated to

packet processing operations in NFs and software switches, leaving

a smaller fraction of host CPU free for running tenant workloads.
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Smart Network Interface Cards (sNICs) are promising to offer

some respite from these challenges. These sNICs offer energy-

efficient processors [2, 12] that can be programmed to dynamically

offload custom-built packet processing functions from the host to

the sNIC, which offsets the increasing infrastructure component

cost at the edge.

However, leveraging sNICs effectively is challenging due to three

reasons. First, sNICs have limited total compute and memory capa-

bilities, so not all NFs and switching can be hosted on the sNICs.

Second, hosting switching entirely on the sNIC, while feasible, im-

poses high latency costs (for packets that traverse between NFs

deployed off the sNIC and on the host; see Fig. 2) and imposes

unnecessary bandwidth overhead due to multiple traversals across

the host PCI Express (PCIe) bus. Third, splitting switching and

the set of NFs across the host hypervisor and the sNIC leads to a

significant SDN management burden. The data center-wide SDN

controller must manage twice as many switches (two switches per

host – one each in the hypervisor and the sNIC) and also handle the

much more difficult task of managing potential migration of NFs

between the host and sNIC based on evolving traffic load patterns.

We elaborate on these issues in Section 2.3.

To address these challenges and make it easy to leverage sNICs

for switching and NFs in modern virtualized data centers, this

paper proposes UNO, a generalized SDN-controlled NF offload

architecture. UNO splits switching between the host software and

the sNIC. It includes an NF agent, which abstracts the existence

of the sNIC away from the SDN controller. UNO dynamically uses

sNIC resources to augment the host’s packet processing capabilities

by offloading subsets of switching and NFs to the sNIC. In particular,

UNO uses a novel linear programming formulation to determine the

optimal placement for an NF (at the host software or on the sNIC)

based on currently-observed traffic patterns and the load the NF’s

processing entails. UNO also includes OneSwitch, which translates

rules from the data center-wide SDN controller for NF traversal (i.e.,

the specific chain of NFs that traffic must go through, as dictated

by the tenant) into rules at the local host and sNIC switches. We

develop a novel rule translation algorithm to this end.

The offload decisions in UNO remain with the host to make it

timely, and also to improve efficiency and scalability compared to

making all decisions at the SDN controller. UNO also provides a

uniform single-switchmanagement interface for each host, whether

or not the host is equipped with an sNIC, which simplifies data

center-wide network management. UNO achieves all this without

requiring any changes to the data center’s centralized management

and control planes.

We have prototyped UNO and conduct detailed experiments to

show its efficacy. We find that UNO can potentially save processing

worth up to 8 host CPU cores in a SD-WAN setting [26], and can

reduce power by 2x. We study the corresponding costs in migrating

NFs, along with the dynamic internal state that NFs maintain across

the PCIe bus. We show that UNO can optimally leverage sNIC’s

full resource capacity in the presence of dynamic traffic changes by

via dynamic offloading. Compared to exposing the sNIC entirely

to the SDN controller, we demonstrate that UNO can reduce the

control plane overhead (e.g., number of flow rules maintained by

the controller) by more than 50% by concealing the dynamic offload

decisions.

In summary, the key contributions of our paper are as follows:

(i) We present a generalized SDN-controlled offload architecture for

dynamically making the best use of sNICs and host packet process-

ing capabilities, without requiring any changes to the management

and orchestration of the data center. (ii) We design and implement

a proof-of-concept system for this architecture. (iii) We provide a

rule translation algorithm that can map NF traversal rules from an

external controller and to the constituent host/sNIC switches so

that packet routing semantics are correctly enforced. (iv) We formu-

late and implement an NF placement algorithm that dynamically

selects the best location to place an NF so that the host, sNIC and

interconnection resources are utilized optimally. (v) We implement

an NF migration procedure that can relocate an NF, together with

its dynamic internal state, between the host and the sNIC at runtime

such that packet losses are eliminated and internal state remains

up-to-date even as it is being relocated.

2 BACKGROUND AND MOTIVATION

2.1 Network Function Virtualization

Network Function Virtualization (NFV) [54] is a key technology

trend that enables data center operators to realize various NFs (e.g.,

firewall, load balancer, IDS) as virtual appliances running on top of

commodity server hardware, replacing dedicated hardware appli-

ances. In a cloud environment where heterogeneous tenant applica-

tions co-exist with dynamically changing requirements, the role of

NFs is critical to ensure the cloud infrastructure’s performance/cost

scalability, resilience, security protection, fast innovation, etc. Op-

erating virtual NFs themselves requires the data center’s shared

infrastructure resources, and therefore NFs are created and man-

aged by the Infrastructure Manager (e.g., OpenStack [19]), under

the control of the centralized NFV orchestrator [18, 21]. Within

the Infrastructure Manager, the NF controller deploys NFs on end

servers, and the SDN controller programs the data center network

using SDN rules to steer traffic through deployed NFs as per NF

traversals – or “NF chaining” – specified, e.g., by tenants.

2.2 Network Interface Cards

Traditional NICs [9, 13] provide several pre-packaged functions

to offload routine packet processing to the NIC (e.g., checksum

computation, transmit/receive large segment offload, tunnel offload,

flow hashing and interrupt coalescence). They do not provide any

programmability to create a new packet processing function or to

chain the functions selectively on certain flows.

AdvancedNICs equippedwith special hardware (ASIC) are purpose-

built to offload pre-defined packet processing functions (e.g., OVS

fastpath [14, 17], packet and flow filtering [1]). These functions are

more advanced than what traditional NICs support. Some NICs can

also be enhanced with FPGAs for custom function development,

and can be used to offload host functions. Examples include offload-

ing distributed consensus protocols [45, 59, 69], memcached and

key-value stores [38, 70, 94], rate-limiting packet flows [83], cryp-

tography, quality of service and storage networking [49]. We refer

to these NICs as hardware acceleration NICs. They are application

specific, and offer none or hard-to-program customization [46] of

new functions. High-level programmable platforms like P4 [39]

support limited network functions. Also, existing hardware offers
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no systematic methodology for chaining multiple offload capabili-

ties, nor does it have the capability to implement complex network

functions, such as encryption or deep packet inspection.

In our context, smart NIC (sNIC) refers to a NIC equipped with

fully-programmable, system-on-chipmulti-core processor onwhich

a full-fledged operating system can execute any arbitrary packet

processing functions [2, 12, 17, 28]. With a much higher level of

flexibility and programmability, these sNICs can offload almost

any packet processing function [75, 88] from the host hypervisor,

thereby offsetting the increasing infrastructure components’ cost at

the edge. In addition, they utilize much more energy-efficient pro-

cessors (compared to x86 host processors), achieving higher energy

efficiency in packet processing [53]. In particular, for server-based

edge networking in virtualized data centers, where workloads can

change frequently, these sNICs if used carefully can lead to substan-

tial improvements in host CPU utilization and power consumption.

As such, they are increasingly being deployed in data centers to

address the deficiencies of traditional and hardware acceleration

NICs [4, 25, 29].

2.3 Motivation

Clearly, sNICs can offer wide flexibility in developing NFs for both

host and sNIC platforms, and running the NFs on either platform

on demand. However, there is no general framework to easily and

intelligently offload and/or service chain the functions across hosts

and sNICs. Programming frameworks through which application

developers can specify the scope of offload based on (smart) NIC’s

capabilities have been studied [35, 76, 93, 98]. These models may re-

quire rewriting NFs to conform to the prescribed API, and they may

not support tenant-specific customization and runtime dynamism

required in a data center. We provide this flexibility by leveraging

SDN control on sNICs to dynamically steer the traffic flow to a

network function (running on either platform).

In this context, a straightforward approach is to offload switching

entirely to the sNIC [17, 71] and steer all packet flow from there.

VMs and NFs running on the host then bypass the host hypervisor

(e.g., via SR-IOV) and connect to the offloaded switch directly [58].

Such full switching offload keeps the control plane unmodified, but

it introduces overhead in the data plane.

For example, when traffic flows across VM/NF instances within

the same host [58, 97], which is increasingly common due to service-

chained NFs, microservices-based applications [47], and zero trust

networking [30, 43, 67, 77], the intra-host flows must cross the

host PCIe bus multiple times back and forth between the hyper-

visor and the sNIC [86]. This restricts the local VM-to-VM and

VM-to-NF throughput as memory bandwidth is higher than PCIe

bandwidth [68], but equally importantly it negatively affects per-

packet latency.

To validate these points, we run the following illustrative experi-

ment using the setup shown in Fig. 1. In one case, we chain VM/NF

instances using the hypervisor switch (“no-offload”), while in the

other case, the entire switching is offloaded to the sNIC via SR-IOV

(“full-offload”). We compare these cases by measuring the through-

put and latency of the chain while varying the number of chained

NFs. Fig. 2(a) shows that in the no-offload case, the throughput

is not much affected by the number of chained NFs, while fully

PCIe bus

End Host
sNIC

NF NFNFVM

Hypervisor Switch

Hypervisor

Ingress 
Traffic

(a) No Offload. (b) Full offload.

PCIe bus

End Host

NF NFNFVM
Hypervisor

sNIC Switch
sNIC

Ingress 
Traffic

Figure 1: NF chaining experiment setup.
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Figure 2: No offload vs. full offload.

offloaded switching experiences significantly degraded throughput

with more chained NFs. The latter is due to the sNIC’s maximum

PCIe bandwidth limitation. For example, with two chained NFs,

throughput goes down to 6Gbps, due to 32Gbps maximum band-

width supported by PCIe Gen2 x8 NIC card. Note that with a longer

chain, not only the throughput of the chain, but also the aggre-

gate PCIe throughput degrades significantly below the maximum

PCIe bandwidth. With three chained NFs, for example, the aggre-

gate throughput is only 21Gbps (3Gbps×7). This implies that while

maximum supported PCIe bandwidth may be high, NICs may not

leverage all available bandwidth due to CPUs and PCIe bus con-

tention [87], which indicates that we should limit PCIe read/write.

Fig. 2(b) shows a similar performance gap between the two cases,

but in terms of latency. These results demonstrate that full switch

offload may not be desirable for both throughput and latency rea-

sons. Note that using kernel-bypass techniques can improve latency

of offload, but PCIe overheads remain. While faster PCIe buses may

reduce this contention, NF selection is still important given limited

sNIC processing capacity and the added latency of crossing the

PCIe bus multiple times for a single packet. Furthermore, faster line

rates may again increase pressure on I/O bus bandwidth.

Performance aside, fully offloaded switching relies on hardware

resources (SR-IOV virtual functions) to scale the number of ports.

This is intrinsically more restrictive than software ports, especially

considering emerging lightweight containers with ultra high de-

ployment density [8], and the high port density supported by mod-

ern software switches (e.g., 64K ports for OVS).

Strawman solution: The inefficiency in intra-host communi-

cation is best addressed by using the hypervisor switch only and

not offloading to sNICs. On the other hand, to flexibly use sNIC’s
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Figure 3: Host with UNO in an SDN-managed network. UNO

components, OneSwitch and NF agent, are shown in black.

capabilities, we need to extend SDN control to the sNIC. There-

fore, in addition to the hypervisor switch, we can operate an SDN-

controlled switch at the sNIC (referred to as an sNIC switch1), to

enable selective and flexible offload of NF packet processing and to

extend service chaining to the sNIC.

The hypervisor switch connects to all tenant VMs and NF in-

stances running on the hypervisor, while the sNIC switch connects

to offloaded NF instances. The two switches are logically intercon-

nected via a virtual port pair over the PCIe bus. Then, depending

on where NFs are deployed with respect to associated tenant appli-

cations, either switch can be used by the SDN controller to set up a

complete service chain.

This architecture, however, introduces additional complexity in

the existing management/control planes as the data center con-

troller now must control more than one switch per host. With even

one sNIC per host, the number of switches, as well as the number of

flows rules for chaining, that the controller would need to manage

across the entire data center is doubled. Furthermore, the controller

would need to decide which switch – hypervisor or sNIC switch – to

connect NFs to and when to migrate NFs between the two switches

(if necessary), and provision the switches accordingly. Placement

is important to decide how to optimally use limited sNIC compute

and memory resources towards NFs while offering optimal benefits

at low cost. Migration is important because evolving traffic patterns

may impose different load on different NFs over time, and may also

impact the amount of data exchanged across pairs of NFs in a chain;

it may therefore be necessary to re-place NFs across the host and

the sNIC to re-optimize resource use, cost, and performance.

These activities require fine-grained resource monitoring and

controlling of individual hosts, as well asmaking placement/migration

decisions for the increasing number of NFs deployed data center

wide. Frequent execution of this can severely limit the scalability

of the management/control planes, while infrequent execution can

limit the performance of the data plane. Moreover, if all hosts are

not equipped with sNICs, or use different sNICs, the heterogene-

ity would bring in more management complexity into the control

plane.

1The sNIC switch can be software-based or hardware-based depending on sNIC’s
capability.

We therefore seek a design that preserves the benefit of flexible

NF placement across both the host and the sNIC, but minimizes the

complexity exposed to the data center controller.

3 UNO ARCHITECTURE

UNO is a framework that systematically and dynamically selects

the best combination of host and sNIC processing for NFs using

local state information and without requiring central controller

intervention. The goal of UNO is to selectively offload NFs to sNICs

(if available) without introducing any additional complexity in the

existing NF management and control planes.

3.1 Design Overview

UNO co-exists with a centralized NFV platform [18, 21] which de-

ploys and manages NF instances for tenants on end hosts. Fig. 3

shows how UNO (represented in a dotted box) fits within the exist-

ing NFV platform. Note that UNO continues to leverage a logically

central control plane spanning the entire infrastructure, reflecting

typical SDN architectures. The key difference is that UNO’s con-

trol plane is decomposed into per-host controllers in addition to a

logically central entity. We describe design details below and argue

that this way of structuring the control plane improves scalability

and efficiency. Note that the NFV orchestrator and infrastructure

manager (e.g., OpenStack) largely remain unchanged and agnostic

to our end-host architecture.

UNO is a framework running on virtualized platforms that con-

ceals the complexity of having multiple switches from a data center

wide SDN controller and NFV orchestrator. Across both a hyper-

visor switch on the host and one or more sNIC switches, UNO

manages (i) the placement of NFs and (ii) the enforcement of SDN

rules. The SDN controller and NFV orchestrator are presented with

the abstraction of a single virtual switch. Crucially, the details of

where data flows and where NFs execute is handled by UNO, which

reacts dynamically to traffic patterns, SDN rules, and the set of NFs

installed. Delegating these issues to individual hosts offers better

scalability than a single central controller. Hosts, where all the

packet processing and tenant applications are running, are better

suited to make optimal offload decisions based on local context (e.g.,

current host/sNIC resource utilization) than a remote controller.

UNO is split into two components in each end host: network

function agent and OneSwitch, which are used for the management

plane and the control plane, respectively. In the following, we de-

scribe them in more detail. UNO abstracts the sNIC away from the

controller, which in effect keeps the host’s interface to the controller

unmodified.

UNOmaintains virtualizedmanagement and control planeswithin

the host. The virtual management plane abstracts out where (e.g.,

hypervisor or sNIC) NF instances are deployed, while the virtual

control plane hides multiple switches on the host from the external

controller. As shown in Fig. 4, the virtual control plane intelligently

maps the hypervisor and sNIC switches into a single virtual data

plane which is exposed to the SDN controller for management.

When the controller adds a new NF instance or installs a flow rule

into the virtual data plane, the NF instance is deployed on either

switch by the local management plane decision, and the rule is
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Figure 4: Virtual management/control plane.

mapped appropriately to the switches by corresponding control

plane translation.

UNO addresses the following main challenges. First, when a

new NF is deployed, the virtual management plane must decide

on a placement for the function (hypervisor or sNIC) taking into

consideration constraints such as current resource availability at

the host and sNICs, the intra-host communication capacity, etc.,

while also minimizing host CPU usage. We develop an optimal

placement algorithm to address this (Section 3.2.1).

Once the NF placement decision is made, we need a rule mapper

that can translate the rules sent by the controller to an equivalent

set of local rules that can be instantiated at the local hypervisor

and sNIC switches. The rule translation must handle rules that

contain metadata (e.g., ports), and must carry the metadata across

the switches to maintain correctness across the virtual-physical

boundary. Our approach to address this issue is described in Sec-

tion 3.3.1; it builds on recent advances in control plane virtualiza-

tion [34, 40, 92].

To work in a dynamic environment, the allocated workload

at the host and the sNIC must be refined periodically, e.g., with

changes in traffic volume and compute load (e.g., when a new

VM/NF joins/leaves the host). We propose a novel approach for

runtime selection of candidate NFs to migrate between the hyper-

visor and the sNIC, followed by triggering necessary remapping

for associated switch ports and rules in the virtual control plane

(Section 3.2.2).

3.2 Network Function Agent

UNO’s Network Function agent (“NF agent”) makes the manage-

ment plane agnostic to where (at the hypervisor or sNIC) NF in-

stances are deployed. It is responsible for launching VM/NF in-

stances and configuring OneSwitch (e.g., creating ports) according

to management plane policies. On the host side, it incorprates

additional intelligence to decide (without the NFV orchestrator’s

involvement) whether to deploy NF instances, on a hypervisor or

sNIC (Section 3.2.1). Once the NF agent deploys an NF instance on

the hypervisor or at the sNIC, it creates a new physical port on the

corresponding host/sNIC switch, and connects the NF instance at

the port. Finally the NF agent maps the physical port to an exter-

nally visible virtual port maintained by OneSwitch (Section 3.3).

3.2.1 NF placement decision problem. The decision on where to

deploy an NF instance on a given host is driven by three criteria:

(1) the hypervisor’s/sNIC’s current resource utilization, (2) current

PCIe bandwidth utilization, and (3) sNIC’s available hardware accel-

eration capabilities. The goal of NF placement decision is to offload

as much NF processing workload to the sNIC as possible to free

up hypervisor resources. sNIC offload is particularly beneficial if

the offloaded NF can leverage hardware acceleration capabilities

on the sNIC, as that can significantly reduce general-purpose core

usage at the sNIC. The constraints for NF offload are: (1) aggregated

offloaded workload on sNIC cannot exceed the sNIC’s resource

capacity, and (2) cross traffic over PCIe bus cannot exceed PCIe

bandwidth limitation.

The NF placement problem is related to the classical s-t graph
cut problem [11] which finds the optimal partitioning C = (S,T )
of vertices in a graph, such that certain properties (e.g., total edge

weights on the cut) are minimized or maximized. In our problem,

each NF/VM instance (deployed or to be deployed) is modeled as

a vertex in a graph. sNIC’s Ethernet ports are also represented as

vertices. If there is direct traffic exchange between any two vertices,

an edge is added to the graph with average throughput of the traffic

as edge weight. We call this a placement graph. This maps the NF

placement decision into a graph cut problem that finds C = (H ,N ),
whereH is the set of NFs/VMs deployed in the host hypervisor, and

N is the set of NFs or Ethernet ports on the sNIC.

We use the following notations. NFs are indexed as {1, · · · ,k },
VMs as {k + 1, · · · ,m}, and sNIC’s Ethernet ports as {m + 1, · · · ,n}.
Let ti, j denote the weight of edge (i, j ), and E be a set of all edges

in the graph. A decision variable di, j is defined as di, j = 1 if i ∈ H ,

j ∈ N and (i, j ) ∈ E, 0 otherwise. Let pi = 1 if i ∈ H and 0 otherwise.

Since VMs are always deployed on the hypervisor, and Ethernet

ports are on the sNIC, we havepi = 1 if i ∈ {k+1, · · · ,m} andpi = 0

if i ∈ {m + 1, · · · ,n}. To better leverage the hardware acceleration,

pi = 1 if NF i can be accelerated by sNIC. T and D represent the

maximum bandwidth of the PCIe bus, and the sNIC’s maximum

resource capacity, respectively. Each NF i will consume hi and ni
units of resources when deployed on the host hypervisor and the

sNIC, respectively. As an NF’s resource requirement depends on the

traffic throughput it handles, we have hi = rhost
∑n
i=1 ti, j and ni =

rnic
∑n
i=1 ti, j , where rhost and rnic are NF-specific constants that

capture the relationship between the hypervisor’s/sNIC’s resource

requirement and traffic. If an NF instance i can leverage sNIC’s

hardware acceleration, its ni will be significantly lower than hi .
While we model the resource requirement as an one-dimensional

attribute, the formulation can be generalized for multiple resources

(e.g., CPU, memory). Based on these notations, we formulate the

NF placement decision problem as an integer linear programming

(ILP) shown in Algorithm 1.

Our objective is to minimize the total resource requirements on

the hypervisor, under the constraints that the traffic throughput

on the PCIe bus should not exceed T , and that the total resource

requirements on the sNIC are limited byD. If an edge (i ,j) is selected
in a cut, the vertices i and j must be in different partitions. While

this ILP is an NP-hard problem, for the problem instance sizes that

arise for our application, we can efficiently find the optimal solution

using off-the-shelf ILP solvers.
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Algorithm 1 NF Placement Decision ILP

minimize
∑k
i=1 pihi

subject to
∑

(i, j )∈E di, j ti, j≤ T ,∑k
j=1 (1 − pi )ni ≤ D,

di, j ≥ pi − pj , (i, j ) ∈ E
pi = 1, i ∈ {k + 1, · · · ,m}
pi = 1, i ∈ {1, · · · ,k },

i is accelerated by sNIC,

pi = 0, i ∈ {m + 1, · · · ,n}
pi ∈ {0, 1}, i ∈ {1, · · · ,k }
di, j ∈ {0, 1}, (i, j ) ∈ E
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Figure 5: Port/rule/NF mapping in UNO.

If there are k sNICs (k > 1) available on the host, the problem

becomes a k-way cut problem [15], which can be solved by resource

partitioning.

3.2.2 NF placement and migration. The NF agent maintains a

topology of NFs and VMs in the host and sNIC, as well as resource

requirements (hi and ni ) of each NF/VM i . When a new NF instance

needs to be deployed on the host, NF agent runs the placement

algorithm based on the current information. If the remaining re-

sources in the sNIC satisfy the new NF’s resource requirement, and

the PCIe bandwidth utilization is withinT after adding the new NF,

we deploy the new NF instance at the sNIC, otherwise at the host

hypervisor.

Periodically, NF agent re-runs the algorithm to check the opti-

mality of the placement decision. It initiates NF migration only if

the aggregate host resource utilization is far apart from the newly

computed solution. The NF state is migrated using the technique

presented in [52]. Associated control plane update is described in

Section 3.3.2. We are currently investigating an incremental s-t cut
problem which can identify the minimal set of migrations needed

to meet new inputs/demands. Frequent migration could occur if

traffic changes cause oscillations between two configurations. Stan-

dard techniques (akin to route dampening) [90] could be applied

to prevent frequent migrations; we have not implemented these in

our current prototype.

Fig. 5(a) illustrates a case where the NF agent deploys a ten-

ant VM and an IDS-type NF on the hypervisor. After connecting

them to the hypervisor switch, the NF agent creates port mappings

(V1:P1) and (V3:P5), and notifies the NFV orchestrator that ports

V1 and V3 are provisioned for the VM/IDS instances, hiding the
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Figure 6: Ambiguities in rule translation.

actual ports P1 and P5. Later, when the NF agent decides to mi-

grate an IDS instance to the sNIC due to changing traffic demand,

the NF agent triggers port re-mapping, such that the existing port

mapping (V3:P5) is updated to (V3:P6) (Fig. 5(b)). The management

plane remains unchanged before and after IDS migration as the IDS

remains logically connected to V3.

3.3 OneSwitch

OneSwitch hides the hypervisor and sNIC switches and their con-

trol interfaces from the data center-wide SDN control plane. It

constructs a single virtual data plane using the virtual ports created

by the NF agent, and exports this virtual data plane to the controller.

When a rule r is pushed to the virtual data plane by the controller,

OneSwitch translates r into a set of rules for the underlying physi-

cal data planes, such that r ’s packet processing logic is semantically

equivalent to that of the translated rules. We call the rules pushed

by the SDN controller virtual rules, and the rules installed on the

host/sNIC switches after rule translation physical rules.

3.3.1 Rule translation algorithm. We leverage the OpenFlow

standard [33] for match-action type rule specification. Let’s assume

that we have a set of k switches S = {s1, s2, · · · , sk } connected to

OneSwitch. For example, if there is one sNIC on a host, k = 2 (one

hypervisor switch and one sNIC switch). Given a virtual rule r , the
rule translation algorithm produces and installs a set of N physical

rules R = {r i
j
| i ∈ S ′, j = 1, 2, ...,N }, where S ′ ⊆ S and r i

j
is a

j-th physical rule installed on a switch i . A correct rule translation

implies that for any ingress traffic, the rule r and the rule set R
produce exactly the same egress traffic.

Port-map based rule translation: We first describe our basic

approach to translate a virtual rule into a set of physical rules by

using virtual-to-physical port mappings (port-map). We define an

ingress port as an input port specified in a virtual rule’s match

condition, and an egress port as an output port specified in a virtual

rule’s forward action. A virtual rule can have zero or one ingress

port and zero or more egress ports. We call the switch to which

an ingress port is mapped an ingress switch, and the switch to

which an egress port is mapped an egress switch. Since a virtual

rule’s ingress port and egress port can be mapped to two different

physical switches (hypervisor and sNIC), we proceed with rule

translation as follows: (1) If a virtual rule does not specify any

ingress port or egress port, we install the virtual rule directly into

all k switches in S ; (2) If a virtual rule only specifies an ingress

port, but not any egress port, we install the virtual rule into an

ingress switch. (3) If a virtual rule specifies both an ingress port

and egress port(s), then for each (ingress port, egress port) pair,
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we construct a routing path from an ingress switch to an egress

switch. We install a forwarding rule on the ingress switch and each

intermediate switch along the path. At the egress switch, we install

a forward rule with any other non-forward actions found in the

original virtual rule. (4) If a virtual rule only specifies egress port(s),

but not any ingress port (i.e., wild card in terms of input port), we

first convert the rule into a union of multiple rules with a specific

ingress port, and translate each such rule by following step (3).

Pitfalls and solutions: While the above port-map based rule

translation may seem straightforward, ambiguity can arise when

multiple virtual rules co-exist on the virtual data plane. In particular,

two possible sets of issues can arise due to “multi-ingress” and

“multi-egress” rule translations, which are illustrated respectively

in Fig. 6. Fig. 6(a) shows two virtual forwarding rules: (V1→V3)

and (V2→V4). The first rule (V1→V3) can be translated to two

physical rules (P1→P2) and (P3→P6). However, translation of the

second rule (V2→V4) leads to ambiguity on the sNIC switch, as

ingress traffic on P3 has two conflicting actions: forward to P5 and

forward to P6. A simple ingress port-based match condition cannot

disambiguate traffic destined to more than one egress ports. To

disambiguate this “multi-ingress” rule translation, we introduce

new actions to tag/untag traffic. That is, we apply a push-flow-id(f)

action at an ingress switch, use the flow-id f as a match condition

at an egress switch, and apply a pop-flow-id action before any other

action. More broadly, the flow-id f encodes the metadata-based

flow match conditions (e.g., ingress port, table-id, register value)

that cannot be carried across different switches. Tagging traffic with

flow-id allows such match conditions to be carried from an ingress

switch to an egress switch (if they are different). For simplicity,

we generate flow-id f from hash(match conditions) at an ingress

switch.

Fig. 6(b) shows the situation where traffic tagging/untagging

is not sufficient. Here, the virtual rule has match conditions (in-

port=V1, ipv4-src=10.0.0.1) and actions (mod-ipv4-src=1.1.1.1, out-

put=V2, output=V4). Since ingress port V1 and egress port V4 are

located in two different switches, we need to apply push-flow-id

action on the ingress switch before traffic exits the switch. How-

ever, the problem is that another egress port V2 is mapped to the

same switch as ingress port V1. Thus push-flow-id action should

not be applied when traffic is forwarded to V2, which is mapped

to P4. To address this “multi-egress” translation conflict, we apply

push-flow-id and forward actions in two stages through an extra

rule table designated X . The rule translation results of these two

scenarios are found in Table 1.

To the best of our knowledge, these are the only ambiguities.

The final rule translation algorithm can handle the aforementioned

ambiguities arising from multi-ingress/egress rules, but is omitted

due to the space limitations. The detailed algorithm can be found

in [42].

3.3.2 Port remapping and loss free NF migration. In UNO, the

NF migration must satisfy two requirements. It needs to be done

transparently without involving the SDN controller, and without

incurring packet loss during migration. Also, during migration it is

important to ensure all in-flight packets are processed, and updates

to NFs’ internal state due to such packets are correctly reflected at

the NF instance’s new location [52].

Virtual rule #1 (Fig. 6(a))

Switch Match conditions Actions

OneSwitch in-port=V1 output=V3

Translated physical rules

Hypervisor in-port=P1 push-flow-id=100, out-

put=P2

sNIC in-port=P3, flow-

id=100

pop-flow-id, output=P6

Virtual rule #2 (Fig. 6(b))

Switch Match conditions Actions

OneSwitch in-port=V1, ipv4-

src=10.0.0.1

mod-ipv4-src=1.1.1.1, out-

put=V2, output=V4

Translated physical rules

Hypervisor
table-id=0, in-port=P1,

ipv4-src=10.0.0.1

push-flow-id=200, out-

put=P2, goto-table=X

table-id=X, in-

port=P1, ipv4-

src=10.0.0.1

pop-flow-id, mod-ipv4-

src=1.1.1.1, output=P4

sNIC
table-id=0, in-port=P3,

flow-id=200, ipv4-

src=10.0.0.1

goto-table=X

table-id=X, in-

port=P3, flow-id=200,

ipv4-src=10.0.0.1

pop-flow-id, mod-ipv4-

src=1.1.1.1, output=P5

Table 1: Flow rule translations.

To maintain the transparency, we rely on port remapping. When

an NF instance is to be migrated between the host to the sNIC,

OneSwitch re-programs the hypervisor/sNIC switches accordingly.

Suppose we want to migrate an old NF at port X of switch i to a

new NF at port Y of switch j, when port X is mapped to a virtual

port U at OneSwitch. Let RU be a set of virtual rules whose match

conditions or actions are associated with port U. Once NF migration

is initiated, the NF agent first provisions port Y at switch j, and
connects a new NF at port Y.

The NF agent then migrates NF state from the old NF to the

new NF. The NF agent triggers OneSwitch to re-map the virtual

port U to port Y at switch j, re-translate RU based on the new port

mapping, and install translated rules but with higher priority than

the old rules. Finally, OneSwitch removes all old rules translated

from RU , installs the translated rules with the same priority as RU ,

and removes the higher priority ones. These steps ensures that no

packets will be dropped during the migration.

However, some packets may be in-flight or arrive after state

migration starts. In-flight packets are allowed to complete, but

newly arrived packets are buffered at the old NF until migration

completes, when they are transferred to the new NF.2 UNO reduces

the latency of buffering using techniques from OpenNF [52]. After

the NF state is migrated, buffered packets are processed both at the

old NF, for low latency, and at the new NF, to ensure its state is

correct. After processing at the new NF, though, the packets are

dropped so only one copy of the packet is sent to the next service

in the chain.

2Modern sNICs have sufficient memory to hold the transient packets. For example,
the experimental sNIC [28] used in our prototype comes with 8GB, which can buffer
up to 8 seconds of packets at line rate.
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3.4 Use Cases

Besides offloading NFs, UNO can be leveraged for several other

interesting offload scenarios as described below.

Flow rules offload: Flow rule offload is motivated by the in-

creasing number of fine-grained management policies employed in

data centers (e.g., for access control, rate limiting, monitoring, etc.)

and resulting CPU overhead [74]. One example of offloadable rules

is flow-counting monitoring rules because they are decoupled from

routing/forwarding rules which may be tied to tenant applications

running on the hypervisor [96]. With UNO, one can partition mon-

itoring rules into the hypervisor switch and sNIC switch, while

keeping a unified northbound control plane that combines flow

statistics from the hypervisor and sNIC switches. Furthermore,

sNICs like Mellanox TILE-Gx provide unique opportunities to par-

allelize flow rule processing on multi-cores via fully programmable

hardware-based packet classifiers, and maintain flow tables with a

large number of rules in memory [32].

Multi-table offload:Modern SDN switches like OVS support

pipelined packet processing via multiple flow tables. Multi-table

support enables modularized packet processing pipeline, by which

each flow table implements a logically separable function (e.g.,

filtering, tunneling, NAT, routing). This also helps avoid cross-

product rule explosion. However, a long packet processing pipeline

comes with the cost of increased per-packet table lookup operations.

While OVS addresses the issue with intelligent flow caching [81], a

long pipeline cannot be avoided with caching if the traffic profile

changes frequently. In this environment, some of the tables can be

offloaded to the sNIC switch if the inter-switch PCIe communication

can carry any metadata exchanged between split flow tables [33].

Table offloading will be particularly beneficial if there are heavy

hits by ingress flows on offloaded table(s) (e.g., ACL table). However,

it requires consistent flow rule updates across switches (a known

problem for SDNs in general [64]), and care that the offloaded flow

table fits in the sNIC’s memory.

Systematic hardware offload chaining: Data centers often

require traffic isolation through encapsulation (e.g., VxLAN, Gen-

eve, GRE) and heavy-duty security or compression operations (e.g.,

IPsec, de-duplication). These operations may be chained one after

another, e.g., VxLAN encapsulation followed by IPsec. While tun-

neling, crypto and compression operations are well supported in

software, they could impose high CPU overhead. Alternatively, one

can leverage hardware offloads available in commodity NICs (e.g.,

large packet aggregation or segmentation (LRO/LSO), tunneling

offload) or standalone hardware assist cards (e.g. Intel QAT [10])

which can accelerate crypto and compression operations over PCIe.

However, pipelining these offload operations presents new chal-

lenges, not only because simple chaining of hardware offloads leads

to multiple PCIe bus crossings/interrupts, but also because different

offloads may stand at odds with one another when they reside on

separate hardware. For example, a NIC’s VxLAN offload cannot be

used along with crypto hardware assistance as it does not work in

the request/response mode as crypto offload [24]. Also, segmenta-

tion on IPsec’s ESP packets is often not supported in hardware, ne-

cessitating software-based large packet segmentation before crypto

hardware assist. All these restrictions lead to under-utilization of

individual hardware offload capacities. Many sNICs are equipped

Figure 7: sNIC switch implementation for TILE-Gx.

with not only general-purpose cores but also integrated hardware

circuitry for crypto, compression operations and tunnel processing.

This makes them an ideal candidate for a unified, PCIe-efficient

hardware and software offload pipeline, fully programmable under

the control of UNO.

4 IMPLEMENTATION

We have prototyped the UNO architecture using Mellanox TILE-

Gx36 [28] as sNIC, which comes with 36 1.2 GHz CPU cores and

four 10GbE interfaces. In this section, we describe key aspects of

our implementation.

4.1 NF Agent and OneSwitch

TheNF agent exports APIs viawhich a centralizedNFV platform can

provision VM/NF instances and their port interfaces on a given host.

This northbound interface largely borrows from the OpenStack

Compute APIs [20]. Internally, the NF agent uses the CPLEX Python

solver [27] to compute optimal NF placements (Algorithm 1) from

the current NF trafficworkload (NF-level trafficmatrix). The current

workload is estimated by querying hypervisor/sNIC switches for

port/flow statistics.WhenNFmigration is needed, NF agent triggers

port remapping in OneSwitch via RESTful APIs and migrates NF

state as described in Section 3.2.2.

OneSwitch implementation is based on OpenVirteX (OVX) net-

work virtualization software [34], which can perform basic con-

trol plane translation for network slicing. The original OVX im-

plementation is unable to handle rule translations that involve

multi-ingress/egress rules illustrated earlier, and does not support

dynamic port/rule remapping for NF migration. We extend OVX to

incorporate the more general rule translation algorithm described

in Section 3.3.1, and dynamic migration support as described in

Section 3.2.2.

4.2 Hypervisor/sNIC Switches

In UNO architecture, hypervisor and sNIC switches are regular

SDN switches controlled by OneSwitch, and thus we base their

implementation on OVS. While the control plane interface of OVS

is sufficient for UNO, the unique deployment environment for hy-

pervisor/sNIC switches brings up the following challenges in their

data plane implementation: (C1) They should support efficient data

path spanning across PCIe bus and multiple process boundaries

between the switches and NFs; (C2) sNIC typically has less per-

core compute capacity than x86 host, and in order to support NF
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migration between two platforms, the per-port TX/RX processing

capacity of NF ports need to be reasonably matched between two

switches; (C3) sNIC switch should be able to leverage any hardware

acceleration available in sNIC.

To address (C1), we leverage kernel-bypass networking, i.e, poll-

mode, userspace OVS datapath for both switches, which can elimi-

nate interrupt overheads associated with PCIe bus crossings and

avoid memory copies while forwarding to userspace NFs. Currently

we dedicate cores to polling, but a future implementation could

reduce load by automatically switching to interrupts or coalesc-

ing multiple ports onto a single core, similar to how the Linux

NAPI framework switches between polling and interrupts. On

the x86 host side, we re-use the DPDK OVS datapath, but extend

it by adding a PCIe-type netdev port and its polling thread. On

TILE-Gx side, we implement a custom DPIF provider [6] plugged

into userspace OVS, and dedicated PCIe-type and NF-type netdev
ports. The custom DPIF implementation exploits TILE-Gx mPIPE’s

hardware-based packet classification and flow_hash computation

to accelerate data plane processing (C3). To transfer directly be-

tween TILE-Gx userspace OVS and x86 host user space OVS via

the PCIe-type port pair, we leverage mmap on x86 host side, which

maps the PCIe DMA buffer allocated by the host PCIe driver into

the host userspace, and use zero copy APIs on TILE-Gx side for

packet transfer between TILE-Gx memory and the PCIe link. The

port pair of two OVS instances is interconnected over PCIe bus via

four parallel PCIe packet queues. The resulting data plane design

allows line rate traffic to be forwarded from TILE-Gx’s Ethernet

ports all the way to x86 host userspace.

For scalable TX/RX rates for NF ports (C2), we support a config-

urable number of TX/RX queues for each NF-type port, which can

be determined during port provisioning. Each TX/RX queue is lock-

free multi-producer, multi-consumer FIFO queue implementation,

and carries packets stored in memory shared between the userspace

datapath and NF instances. The TILE-Gx userspace switch imple-

mentation is shown in Fig. 7.

To support rules generated by the UNO’s rule translation algo-

rithm, both switches need to handle per-packet flow-id metadata,

and perform flow-id based flow matching and push/pop-flow-id

actions.We re-purpose VLAN id to store flow-idmetadata, and lever-

age corresponding OpenFlow support (i.e., OXM_OF_VLAN_VID

match field and push/pop-VLAN actions). Note that the VLAN tag-

ging occurs transparently between the physical OVS andOneSwitch,

and is not visible outside the host.

4.3 Network Functions

The aforementioned challenges (C1), (C2) and (C3) are not unique

to switch data plane design, but also relevant to NF implementation.

For (C1), an NF leverages userspace poll-mode, shared memory

based port interface to exchange traffic with OVS. For multi-core

scalability (C2), multiple NF instances can run (one per core), each

with a dedicated TX/RX queue for the port. NF implementation also

incorporates NF-specific acceleration (e.g., for crypto and compres-

sion) using TILE-Gx’s built-in accelerator (C3).

For both x86 and TILE-Gx platforms, we implement two custom

NFs and modify one existing NF. For custom NFs, we implement

layer-7 firewall (L7FW) and IPsec security gateway (SECGW). L7FW

detects layer-7 application protocols (e.g., FaceBook, Skype) and

selectively blocks them using nDPI [16]. SECGW performs encryp-

tion and authentication on clear-text traffic in IPsec ESP tunnel

mode [65]. On TILE-Gx side, SECGW leverages MiCA acceleration

for IPsec processing. We also modify PRADS [22], a DPI-based

asset monitor, so that it can import/export its state for dynamic

migration.

The sNIC/hypervisor switches and NFs are developed and ex-

tended with C in 22K and 5K SLOC, respectively.

5 EVALUATION

We evaluate the UNO prototype on a server with 24 Intel Xeon

2.7GHz CPU cores and 128GB memory running Ubuntu 13.10 with

Linux kernel version 3.11, and use Mellanox TILE-Gx36 specified

in Section 4 as sNIC.

5.1 Benefit of Offloading

We evaluate the benefit of sNIC offload to show that using sNICs

can help improve CPU utilization, system energy, and I/O bus uti-

lization.

Packet switching offload: In this experiment, we demonstrate

the benefit of packet switching offload in terms of host CPU usage.

We set up a UNO server with Mellanox TILE-Gx as the sNIC, and

two interconnected OVS datapaths deployed on x86 hypervisor and

sNIC. We inject traffic at the TILE-Gx’s Ethernet port from another

server. We consider three scenarios using 64K filtering rules: (1)

all 64K rules installed in the hypervisor OVS (“HOST”), (2) half

of the rules offloaded to TILE-Gx OVS (“HALF”), (3) all the rules

offloaded to TILE-Gx OVS (“sNIC”). In Fig. 8, we report the CPU

usage of hypervisor OVS per minute. We can see that the x86 CPU

usage is the highest when all the rules are installed in the x86 host,

halved by offloading half of the flows to TILE-Gx, and lowest when

all the rules are offloaded to TILE-Gx. The number of TILE-Gx

CPU cores allocated for sNIC OVS is 12, meaning that there are 24

cores available for other processing. This experiment shows that

offloading packet switching to sNIC can effectively release host

CPU resources.

Network function offload: In the next set of experiments, we

demonstrate the benefit of sNIC for offloading NFs. For this we use

two custom NFs we develop: (i) layer-7 firewall (L7FW) (ii) IPsec

security gateway (SECGW). In sNIC-side implementation, L7FW

runs on sNIC’s general-purpose cores, while SECGW is further ac-

celerated with sNIC’s built-in crypto engine (TILE-Gx MiCA [32]).

In x86 host-side implementation, L7FW is purely software imple-

mentation, while SECGW exploits either x86’s extended instruction

set (Intel AES-NI [7]) or a standalone crypto acceleration card (Intel

QAT [10]). Depending on where it is deployed, an NF is connected

to either the hypervisor OVS or sNIC OVS.

Energy efficiency: Figs. 11(a) and (b) show the power consump-

tion of L2FW and SECGW, respectively, when they are deployed

on either x86 host or sNIC. Traffic is injected from another server,

forwarded via sNIC to x86 host, and consumed within the x86 host.

The reported power consumption on y-axis is the increase in the

overall server’s power usage (measured with a wattmeter [31])

when the injected traffic increases from zero to the amount shown

on x-axis. Due to the difference in single-core processing capability
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Figure 11: Energy efficiency of sNIC.

between x86 and sNIC, we allocate one core for a host-side NF, and

four cores for an sNIC-side NF. The main observations from Fig. 11

are as follows. sNIC’s general purpose cores significantly outper-

form the x86 host’s in terms of energy efficiency (e.g., by a factor

of 2–3 for L7FW). Even when dedicated hardware acceleration is

available for an NF for either platform (AES-NI/QAT on x86 host or

MiCA on sNIC), sNIC’s network function processing still consumes

less energy than that of the x86 host (e.g., by a factor of 1.5–2 for

SECGW).

PCIe bus utilization: In Fig. 9, we compare the server’s PCIe

bus utilization (measured with Processor Counter Monitor [23]) in

several SECGW deployment scenarios: (i) sNIC, (ii) x86 host with

AES-NI, (iii) x86 host with QAT acceleration. Clear-text UDP pack-

ets of 1280 byte size are generated within the x86 host, processed

by SECGW, and sent out to the wire as IPsec packets. Compared

to sNIC and x86/AES-NI deployment, the PCIe bandwidth usage

with x86/QAT deployment is more than doubled. That is because

each packet incurs an additional request/response transaction with

QAT across PCIe [24]. sNIC deployment is more PCIe bandwidth-

efficient than x86/AES-NI deployment because the latter case needs

to sustain additional PCIe bandwidth overhead of egress IPsec pack-

ets (with IP tunnel header, ESP, padding, etc.). We expect that this

benefit of sNIC deployment will become more pronounced with

smaller packets.

Host CPU savings: To demonstrate the host CPU saving in re-

alistic scenarios, we deploy a software-defined WAN (SD-WAN)

use case [26] on our testbed server, where encrypted packets are

injected to SECGW, and SECGW decrypts and forwards packets

to L7FW NFs. In one case, we realize a vanilla implementation

(userspace, poll-mode) of SD-WAN on the x86 host without sNIC,

while in the other case, we deploy the SD-WAN in a UNO setup with

sNIC. In both cases, the deployed SECGW and L7FW NFs are scaled

up with traffic by adding more x86 CPU cores or TILE-Gx CPU

cores. Fig. 10 plots the number of x86 CPU cores or TILE-Gx CPU

cores required to support 10K UDP flows of a particular throughput.

For example, to support 4Gbps throughput, we need to allocate 8

TILE-Gx CPU cores in UNO deployment, or 6 x86 CPU cores in x86

host deployment. If UNO is adopted for the SD-WAN application,

the number of x86 CPU cores are saved and can be used for tenant

applications by offloading to TILE-Gx CPUs. Note also that UNO

enables SECGW to be offloaded from TILE-Gx CPUs to the built-in

crypto engine. This allows SD-WAN offload to achieve significant

host CPU reduction even with a small number of TILE-Gx CPU

cores with limited compute capacity. We are currently investigating

why bandwidth tops out at 4Gbps for the sNIC and believe it is

related to the Tilera OVS implementation.

5.2 Cost of NF Migration

If traffic demand is higher than 4Gbps, an NF migration is required,

i.e., either SECGW or L7FW will need to be migrated to the x86

host. In this section, we evaluate the cost of such NF migration. For

this we run an experiment with PRADS [52], where the NF agent

performs loss-free migration of PRADS from the x86 host to the

sNIC while the NF is processing traffic. During migration, the old

NF on x86 host serializes its per-flow states and transfers them to

the NF agent, which then transfers the states to the new NF on

sNIC, where the states are deserialized.

Fig. 13 shows how the migration time scales with the number of

flows affected. Serialization and deserialization occur concurrently;

migration refers to the remaining time overhead. As expected, the

NF migration overhead increases with the number of flows because

the state size increases. Note that the flow state size does not linearly

increase with the number of flows. In this experiment, the flow state

size is 1.4MB for 750 flows, and 1.6MB for 1000 flows. Deserialization

on sNIC takes longer than serialization on x86 host due to the lower

single-core performance of sNIC. The trend becomes the opposite

when migrating from sNIC to x86 host. We also measure per-packet

latency during the NF migration period when ingress packets are

temporarily buffered and forwarded by the NF agent. We find that

average per-packet latency increases by 40–50ms during migration,

compared to migration-free condition. The current NF migration

scheme can be improved with possible alternatives. For example,

we can leverage serialization-free, memory-mapped state transfer
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between old and new NFs over PCIe [66], where NF agent simply

signals the state transfer. Another possibility is to decouple NF

states from NFs [61], and move them to a separate in-memory

storage shared between the x86 host and the sNIC, which also

obviates expensive serialization. We leave further improvement on

NF migration for future work.

5.3 Effect of NF Placement

The previous results showed that while offloading functions can

save energy and reduce x86 host utilization, some traffic patterns

can actually worsen throughput and latency. This motivates the

need for good decisions on where to place network functions. In

the next experiment, we evaluate UNO’s ability to make good NF

placement decisions. The algorithm runs as part of the NF Agent,

and executes efficiently on an commodity x86-based servers (e.g.,

0.06 second with 100 nodes and 1 second with 500 nodes). First,

we measure the capability of sNIC’s CPU cores vs. x86 CPU cores

using the ratio ni / hi on a set of NFs, i.e., DPI, L7FW and SECGW;

this ration is provided as input to the ILP framework to make the

NF decisions. We find that the ratios for DPI, L7FW and SECGW

are 2, 4, and 0.75, respectively.

VMVMVM NFNF

NF

Port

NFNF

NFNF

NF

Traffic

VM

NF

NF

Figure 15: Placement graph as defined in Section 3.2.1: The

dotted line rectangle part is repeated 7 times along the dot-

ted line.

Placement decision: In this simulation, we invoke UNO’s place-

ment algorithm directly to evaluate its decisions. We use one NF

type—DPI for easy demonstration—and the placement graph of

NF/VM instances as shown in Fig. 15, and set the number of VM and

NF instances in the graph to 9 and 18, respectively, following typical

VM workload-to-server ratios in public cloud data centers [56]. We

set the total sNIC resource capacity D to 36 to reflect the sNIC’s

total core count, and vary the maximum PCIe throughputT . We set

the resource requirements hi and ni of NF instances based on the

coarse-grained resource profiling results earlier which indicated

that a DPI function requires 5 cores on the x86 host and 10 cores on

sNIC to process 9Gbps of incoming traffic. Figs. 16(a) and (b) shows

how UNO trades off between x86 host core usage, sNIC core usage,

and PCIe bandwidth usage. We can see that when the maximum

PCIe bandwidth is small (10Gbps), it is the bottleneck and UNO

puts the NFs to the x86 host using more CPU cores. When the

maximum PCIe bandwidth increases, UNO offloads more NFs to

the sNIC, thus decreasing host CPU utilization while increasing

sNIC CPU utilization. This trend holds on until sNIC’s full capacity

is reached, when the maximum PCIe bandwidth exceeds 80Gbps.

This experiment demonstrates that the UNO’s placement algorithm

effectively leverages available PCIe bandwidth and sNIC’s compute

capacity to offload as much NF workload as possible.

Network latency: UNO seeks to minimize host CPU utilization,

but the optimal placement can negatively affect latency. To illustrate

this, we set up a NF chain of two SECGWs and one L7FW, as shown

in Fig. 12 and measure the round trip latency between APP1 and

APP2 as shown in Fig. 14. The two SECGWs act as IPsec tunnel
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endpoints between APP1 and APP2. Fig. 12(a) is the deployment of

the chain on a standalone x86 host with a regular NIC. In Fig. 12(b),

only the packet switching is offloaded to sNIC, with all NFs running

on the x86 host. For traffic demand of 1Gbps, UNO will offload all

network functions (UNO Full) as shown in Fig 12(c). This results in

zero host CPU usage, but high latency, i.e.,79ms, compared to either

standalone host, or switch offload, because the weaker sNIC CPU

runs much slower than the x86 CPU for the L7FW function. When

the traffic demand is 4Gbps or higher, UNO uses the configuration

(UNO-Partial) as shown in Fig 12(d), which uses more host CPUs to

handle the increased workload. This has the beneficial side effect

of reducing the latency to 0.2ms. This experiment reveals that the

UNO’s current placement algorithm does not always improve the

latency because its objective is to minimize x86 host resource usage.

We plan to consider jointly optimizing secondary objectives (latency

and throughput) along with CPU resources in future work.

5.4 Flow Rule Translation

UNO’s local control plane translation can provide the potential

scalability benefit for the external SDN controller, as UNO can hide

local sNIC(s) from the SDN controller, relieving the controller of its

responsibility for managing sNIC switches. To demonstrate this ben-

efit, we set up a UNO testbed consisting of a Floodlight controller [5],

OneSwitch, one hypervisor switch and two sNIC switches. Then

we synthetically generate 3,024 virtual rules by randomly choosing

one or more match conditions and actions from OpenFlow 1.3, and

count the total number of physical rules translated from them. We

randomly sample 200 virtual rules, and manually verify the correct-

ness of their translation. In total, 6,810 physical rules are installed

on three physical switches. Were these three switches fully exposed

to Floodlight without UNO, a similar number of such rules would

need to be processed directly by Floodlight, which is a factor of 2.3

increase compared to virtual rules. Conversely, it means that UNO

can reduce the controller overhead by that much by distributing

sNIC control on to individual end hosts.

6 RELATEDWORK

To improve end host networking performance, several different ap-

proaches are proposed; purely software solutions [57, 85], SR-IOV

based switch offload [37, 79], and hybrid solutions which com-

bine software functions and hardware NICs for performance [86]

or flexibility [55]. However, none of these considers full hard-

ware programmability for NF offload. FPGA-based NF accelera-

tion approaches [46, 50] propose a flexible and high-performance

hardware-accelerated data plane, but the flexibility comes in the

form of FPGA’s configurability, not flow-level programmability like

UNO. HyperFlow [95] constructs a single logical controller from

multiple controllers, which is similar to UNO, but its goal is to

provide a scalable control plane.

UNO’s multi-switch model requires flow rule translation. There

have been several research efforts on SDN flow rule construction,

transformation and distribution for realizing higher level network

policies. Due to the rule space capacity limits on switches, [73,

74, 99] distribute flow rule tables across the network to enforce

endpoint policies such as access control or load balancing, but

may change traffic routing paths. [62, 63] strive to optimize rule

space utilization by mapping flow rules to dispersed switches while

maintaining both endpoint and routing polices. OVX [34] uses

flow rule translation to implement network virtualization. While

UNO’s flow rule translation shares similarity with some of them on

maintaining a per node single virtual switch abstraction and thus

hiding complexities from SDN controllers, its goal is to optimize

the local resource use by leveraging NF placement/migration and

sNIC offload capacities.

There is a large body of work that addresses NF placement and

migration in a data center environment [48, 51, 52, 76, 82, 89, 91].

The common goal of them is to place-and-chain new NF instances

and relocate-and-rechain existing NF instances across multiple

hosts. UNO is concerned with NF placement and relocation within

a single host (augmented with sNIC). While [60, 72] also empower

a host resident OVS to handle NFs within a host, they focus on

extending the reach of Openflow rather than intelligent offload as

performed by UNO. In principle our approach is similar to prior

work on offloading computational tasks from a mobile phone to

the infrastructure in a mobile environment [44]. We differ in our

objectives (minimizing host CPU resources), the offloading target,

and the workloads offloaded.

7 CONCLUSION

In this paper, we presented the design, implementation and evalua-

tion of an SDN-controlled NF offload architecture called UNO. UNO

can transparently leverage the smart NIC’s programmable compute

capabilities to accelerate the NF data plane, and without introducing

additional complexity in the data center’s centralized management

and control planes. UNO’s transparent offload is achieved by two

per-host components: the NF agent which intelligently chooses a

subset of NFs to offload to the sNIC, and OneSwitch which abstracts

out the offloaded NF data planes from the data center’s control plane.

Together, these two components hide the complexity prevalent in

local traffic pattern-based dynamic NF offload decisions and the

intricacies of NF migration (e.g., internal state management) from

the data center controller. The evaluation results demonstrate the

feasibility and the substantial benefits of UNO.
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