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ABSTRACT

Increasingly, smart Network Interface Cards (sNICs) are being used
in data centers to offload networking functions (NFs) from host
processors thereby making these processors available for tenant ap-
plications. Modern sNICs have fully programmable, energy-efficient
multi-core processors on which many packet processing functions,
including a full-blown programmable switch, can run. However,
having multiple switch instances deployed across the host hyper-
visor and the attached sNICs makes controlling them difficult and
data plane operations more complex.

This paper proposes a generalized SDN-controlled NF offload
architecture called UNO. It can transparently offload dynamically
selected host processors’ packet processing functions to sNICs by
using multiple switches in the host while keeping the data center-
wide network control and management planes unmodified. UNO
exposes a single virtual control plane to the SDN controller and
hides dynamic NF offload behind a unified virtual management
plane. This enables UNO to make optimal use of host’s and sNIC’s
combined packet processing capabilities with local optimization
based on locally observed traffic patterns and resource consumption,
and without central controller involvement. Experimental results
based on a real UNO prototype in realistic scenarios show promising
results: it can save processing worth up to 8 CPU cores, reduce
power usage by up to 2x, and reduce the control plane overhead by
more than 50%.
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1 INTRODUCTION

Modern software defined networking (SDN)-based data centers
are architecturally “edge-based” [36, 41, 84], where a variety of
infrastructure components are housed at end-hosts (referred to as
hosts, henceforth). That is, in addition to tenant virtual machines
(VMs), data center providers run virtual instances of a variety of net-
work functions (NFs), (e.g., firewalls, NATSs, load balancers, etc.) at
hosts. Each host also runs a software switch such as Open vSwitch
(OVS) [81] to handle network communications amongst the tenant
VMs, NFs, and any remote entities. Because it is crucial to ensure
data center compute is maximally used toward tenant applications,
data center providers often strive to minimize the compute resource
consumption of their infrastructure components, i.e., NFs and soft-
ware switches.

Unfortunately, this has become increasingly difficult in recent
years due to a confluence of key technology trends. First, the speed
of data center interconnects continues to increase [3], as a result
of which NFs must now process many more packets per second,
at significant compute cost. Second, as more and more VMs and
lightweight containers are provisioned on a host, the switching
load on software switches also increases so as to support a large
number of virtual ports [57]. Finally, as virtual networking at the
edge becomes more sophisticated, new types of packet processing
functions are being deployed [36, 60, 78, 80, 96], and this also trans-
lates into increasingly more CPU cycles to execute complex logic
for the same amount of traffic at the host. These factors are causing
increasingly large fraction of host processors to be dedicated to
packet processing operations in NFs and software switches, leaving
a smaller fraction of host CPU free for running tenant workloads.
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Smart Network Interface Cards (sNICs) are promising to offer
some respite from these challenges. These sNICs offer energy-
efficient processors [2, 12] that can be programmed to dynamically
offload custom-built packet processing functions from the host to
the sNIC, which offsets the increasing infrastructure component
cost at the edge.

However, leveraging sNICs effectively is challenging due to three
reasons. First, sNICs have limited total compute and memory capa-
bilities, so not all NFs and switching can be hosted on the sNICs.
Second, hosting switching entirely on the sNIC, while feasible, im-
poses high latency costs (for packets that traverse between NFs
deployed off the sNIC and on the host; see Fig. 2) and imposes
unnecessary bandwidth overhead due to multiple traversals across
the host PCI Express (PCle) bus. Third, splitting switching and
the set of NFs across the host hypervisor and the sNIC leads to a
significant SDN management burden. The data center-wide SDN
controller must manage twice as many switches (two switches per
host — one each in the hypervisor and the sNIC) and also handle the
much more difficult task of managing potential migration of NFs
between the host and sNIC based on evolving traffic load patterns.
We elaborate on these issues in Section 2.3.

To address these challenges and make it easy to leverage sNICs
for switching and NFs in modern virtualized data centers, this
paper proposes UNO, a generalized SDN-controlled NF offload
architecture. UNO splits switching between the host software and
the sNIC. It includes an NF agent, which abstracts the existence
of the sNIC away from the SDN controller. UNO dynamically uses
sNIC resources to augment the host’s packet processing capabilities
by offloading subsets of switching and NFs to the sNIC. In particular,
UNO uses a novel linear programming formulation to determine the
optimal placement for an NF (at the host software or on the sNIC)
based on currently-observed traffic patterns and the load the NF’s
processing entails. UNO also includes OneSwitch, which translates
rules from the data center-wide SDN controller for NF traversal (i.e.,
the specific chain of NFs that traffic must go through, as dictated
by the tenant) into rules at the local host and sNIC switches. We
develop a novel rule translation algorithm to this end.

The offload decisions in UNO remain with the host to make it
timely, and also to improve efficiency and scalability compared to
making all decisions at the SDN controller. UNO also provides a
uniform single-switch management interface for each host, whether
or not the host is equipped with an sNIC, which simplifies data
center-wide network management. UNO achieves all this without
requiring any changes to the data center’s centralized management
and control planes.

We have prototyped UNO and conduct detailed experiments to
show its efficacy. We find that UNO can potentially save processing
worth up to 8 host CPU cores in a SD-WAN setting [26], and can
reduce power by 2x. We study the corresponding costs in migrating
NFs, along with the dynamic internal state that NFs maintain across
the PClIe bus. We show that UNO can optimally leverage sNIC’s
full resource capacity in the presence of dynamic traffic changes by
via dynamic offloading. Compared to exposing the sNIC entirely
to the SDN controller, we demonstrate that UNO can reduce the
control plane overhead (e.g., number of flow rules maintained by
the controller) by more than 50% by concealing the dynamic offload
decisions.
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In summary, the key contributions of our paper are as follows:
(i) We present a generalized SDN-controlled offload architecture for
dynamically making the best use of sNICs and host packet process-
ing capabilities, without requiring any changes to the management
and orchestration of the data center. (ii) We design and implement
a proof-of-concept system for this architecture. (iii) We provide a
rule translation algorithm that can map NF traversal rules from an
external controller and to the constituent host/sNIC switches so
that packet routing semantics are correctly enforced. (iv) We formu-
late and implement an NF placement algorithm that dynamically
selects the best location to place an NF so that the host, sNIC and
interconnection resources are utilized optimally. (v) We implement
an NF migration procedure that can relocate an NF, together with
its dynamic internal state, between the host and the sNIC at runtime
such that packet losses are eliminated and internal state remains
up-to-date even as it is being relocated.

2 BACKGROUND AND MOTIVATION

2.1 Network Function Virtualization

Network Function Virtualization (NFV) [54] is a key technology
trend that enables data center operators to realize various NFs (e.g.,
firewall, load balancer, IDS) as virtual appliances running on top of
commodity server hardware, replacing dedicated hardware appli-
ances. In a cloud environment where heterogeneous tenant applica-
tions co-exist with dynamically changing requirements, the role of
NFs is critical to ensure the cloud infrastructure’s performance/cost
scalability, resilience, security protection, fast innovation, etc. Op-
erating virtual NFs themselves requires the data center’s shared
infrastructure resources, and therefore NFs are created and man-
aged by the Infrastructure Manager (e.g., OpenStack [19]), under
the control of the centralized NFV orchestrator [18, 21]. Within
the Infrastructure Manager, the NF controller deploys NFs on end
servers, and the SDN controller programs the data center network
using SDN rules to steer traffic through deployed NFs as per NF
traversals — or “NF chaining” - specified, e.g., by tenants.

2.2 Network Interface Cards

Traditional NICs [9, 13] provide several pre-packaged functions
to offload routine packet processing to the NIC (e.g., checksum
computation, transmit/receive large segment offload, tunnel offload,
flow hashing and interrupt coalescence). They do not provide any
programmability to create a new packet processing function or to
chain the functions selectively on certain flows.

Advanced NICs equipped with special hardware (ASIC) are purpose-
built to offload pre-defined packet processing functions (e.g., OVS
fastpath [14, 17], packet and flow filtering [1]). These functions are
more advanced than what traditional NICs support. Some NICs can
also be enhanced with FPGAs for custom function development,
and can be used to offload host functions. Examples include offload-
ing distributed consensus protocols [45, 59, 69], memcached and
key-value stores [38, 70, 94], rate-limiting packet flows [83], cryp-
tography, quality of service and storage networking [49]. We refer
to these NICs as hardware acceleration NICs. They are application
specific, and offer none or hard-to-program customization [46] of
new functions. High-level programmable platforms like P4 [39]
support limited network functions. Also, existing hardware offers
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no systematic methodology for chaining multiple offload capabili-
ties, nor does it have the capability to implement complex network
functions, such as encryption or deep packet inspection.

In our context, smart NIC (sNIC) refers to a NIC equipped with
fully-programmable, system-on-chip multi-core processor on which
a full-fledged operating system can execute any arbitrary packet
processing functions [2, 12, 17, 28]. With a much higher level of
flexibility and programmability, these sNICs can offload almost
any packet processing function [75, 88] from the host hypervisor,
thereby offsetting the increasing infrastructure components’ cost at
the edge. In addition, they utilize much more energy-efficient pro-
cessors (compared to x86 host processors), achieving higher energy
efficiency in packet processing [53]. In particular, for server-based
edge networking in virtualized data centers, where workloads can
change frequently, these sNICs if used carefully can lead to substan-
tial improvements in host CPU utilization and power consumption.
As such, they are increasingly being deployed in data centers to
address the deficiencies of traditional and hardware acceleration
NICs [4, 25, 29].

2.3 Motivation

Clearly, sNICs can offer wide flexibility in developing NFs for both
host and sNIC platforms, and running the NFs on either platform
on demand. However, there is no general framework to easily and
intelligently offload and/or service chain the functions across hosts
and sNICs. Programming frameworks through which application
developers can specify the scope of offload based on (smart) NIC’s
capabilities have been studied [35, 76, 93, 98]. These models may re-
quire rewriting NFs to conform to the prescribed API, and they may
not support tenant-specific customization and runtime dynamism
required in a data center. We provide this flexibility by leveraging
SDN control on sNICs to dynamically steer the traffic flow to a
network function (running on either platform).

In this context, a straightforward approach is to offload switching
entirely to the sNIC [17, 71] and steer all packet flow from there.
VMs and NFs running on the host then bypass the host hypervisor
(e.g., via SR-IOV) and connect to the offloaded switch directly [58].
Such full switching offload keeps the control plane unmodified, but
it introduces overhead in the data plane.

For example, when traffic flows across VM/NF instances within
the same host [58, 97], which is increasingly common due to service-
chained NFs, microservices-based applications [47], and zero trust
networking [30, 43, 67, 77], the intra-host flows must cross the
host PCle bus multiple times back and forth between the hyper-
visor and the sNIC [86]. This restricts the local VM-to-VM and
VM-to-NF throughput as memory bandwidth is higher than PCle
bandwidth [68], but equally importantly it negatively affects per-
packet latency.

To validate these points, we run the following illustrative experi-
ment using the setup shown in Fig. 1. In one case, we chain VM/NF
instances using the hypervisor switch (“no-offload”), while in the
other case, the entire switching is offloaded to the sNIC via SR-IOV
(“full-offload”). We compare these cases by measuring the through-
put and latency of the chain while varying the number of chained
NFs. Fig. 2(a) shows that in the no-offload case, the throughput
is not much affected by the number of chained NFs, while fully
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Figure 1: NF chaining experiment setup.
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Figure 2: No offload vs. full offload.

offloaded switching experiences significantly degraded throughput
with more chained NFs. The latter is due to the sSNIC’s maximum
PCle bandwidth limitation. For example, with two chained NFs,
throughput goes down to 6Gbps, due to 32Gbps maximum band-
width supported by PCIe Gen2 x8 NIC card. Note that with a longer
chain, not only the throughput of the chain, but also the aggre-
gate PCle throughput degrades significantly below the maximum
PClIe bandwidth. With three chained NFs, for example, the aggre-
gate throughput is only 21Gbps (3Gbpsx7). This implies that while
maximum supported PCle bandwidth may be high, NICs may not
leverage all available bandwidth due to CPUs and PCle bus con-
tention [87], which indicates that we should limit PCIe read/write.
Fig. 2(b) shows a similar performance gap between the two cases,
but in terms of latency. These results demonstrate that full switch
offload may not be desirable for both throughput and latency rea-
sons. Note that using kernel-bypass techniques can improve latency
of offload, but PCIe overheads remain. While faster PCle buses may
reduce this contention, NF selection is still important given limited
sNIC processing capacity and the added latency of crossing the
PCle bus multiple times for a single packet. Furthermore, faster line
rates may again increase pressure on I/O bus bandwidth.

Performance aside, fully offloaded switching relies on hardware
resources (SR-IOV virtual functions) to scale the number of ports.
This is intrinsically more restrictive than software ports, especially
considering emerging lightweight containers with ultra high de-
ployment density [8], and the high port density supported by mod-
ern software switches (e.g., 64K ports for OVS).

Strawman solution: The inefficiency in intra-host communi-
cation is best addressed by using the hypervisor switch only and
not offloading to sNICs. On the other hand, to flexibly use sNIC’s
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Figure 3: Host with UNO in an SDN-managed network. UNO
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capabilities, we need to extend SDN control to the sNIC. There-
fore, in addition to the hypervisor switch, we can operate an SDN-
controlled switch at the sNIC (referred to as an sNIC switch!), to
enable selective and flexible offload of NF packet processing and to
extend service chaining to the sNIC.

The hypervisor switch connects to all tenant VMs and NF in-
stances running on the hypervisor, while the sNIC switch connects
to offloaded NF instances. The two switches are logically intercon-
nected via a virtual port pair over the PCle bus. Then, depending
on where NFs are deployed with respect to associated tenant appli-
cations, either switch can be used by the SDN controller to set up a
complete service chain.

This architecture, however, introduces additional complexity in
the existing management/control planes as the data center con-
troller now must control more than one switch per host. With even
one sNIC per host, the number of switches, as well as the number of
flows rules for chaining, that the controller would need to manage
across the entire data center is doubled. Furthermore, the controller
would need to decide which switch — hypervisor or sNIC switch - to
connect NFs to and when to migrate NFs between the two switches
(if necessary), and provision the switches accordingly. Placement
is important to decide how to optimally use limited sNIC compute
and memory resources towards NFs while offering optimal benefits
at low cost. Migration is important because evolving traffic patterns
may impose different load on different NFs over time, and may also
impact the amount of data exchanged across pairs of NFs in a chain;
it may therefore be necessary to re-place NFs across the host and
the sNIC to re-optimize resource use, cost, and performance.

These activities require fine-grained resource monitoring and
controlling of individual hosts, as well as making placement/migration
decisions for the increasing number of NFs deployed data center
wide. Frequent execution of this can severely limit the scalability
of the management/control planes, while infrequent execution can
limit the performance of the data plane. Moreover, if all hosts are
not equipped with sNICs, or use different sNICs, the heterogene-
ity would bring in more management complexity into the control
plane.

! The sNIC switch can be software-based or hardware-based depending on sNIC’s
capability.
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We therefore seek a design that preserves the benefit of flexible
NF placement across both the host and the sNIC, but minimizes the
complexity exposed to the data center controller.

3 UNO ARCHITECTURE

UNO is a framework that systematically and dynamically selects
the best combination of host and sNIC processing for NFs using
local state information and without requiring central controller
intervention. The goal of UNO is to selectively offload NFs to sNICs
(if available) without introducing any additional complexity in the
existing NF management and control planes.

3.1 Design Overview

UNO co-exists with a centralized NFV platform [18, 21] which de-
ploys and manages NF instances for tenants on end hosts. Fig. 3
shows how UNO (represented in a dotted box) fits within the exist-
ing NFV platform. Note that UNO continues to leverage a logically
central control plane spanning the entire infrastructure, reflecting
typical SDN architectures. The key difference is that UNO’s con-
trol plane is decomposed into per-host controllers in addition to a
logically central entity. We describe design details below and argue
that this way of structuring the control plane improves scalability
and efficiency. Note that the NFV orchestrator and infrastructure
manager (e.g., OpenStack) largely remain unchanged and agnostic
to our end-host architecture.

UNO is a framework running on virtualized platforms that con-
ceals the complexity of having multiple switches from a data center
wide SDN controller and NFV orchestrator. Across both a hyper-
visor switch on the host and one or more sNIC switches, UNO
manages (i) the placement of NFs and (ii) the enforcement of SDN
rules. The SDN controller and NFV orchestrator are presented with
the abstraction of a single virtual switch. Crucially, the details of
where data flows and where NFs execute is handled by UNO, which
reacts dynamically to traffic patterns, SDN rules, and the set of NFs
installed. Delegating these issues to individual hosts offers better
scalability than a single central controller. Hosts, where all the
packet processing and tenant applications are running, are better
suited to make optimal offload decisions based on local context (e.g.,
current host/sNIC resource utilization) than a remote controller.

UNO is split into two components in each end host: network
function agent and OneSwitch, which are used for the management
plane and the control plane, respectively. In the following, we de-
scribe them in more detail. UNO abstracts the sNIC away from the
controller, which in effect keeps the host’s interface to the controller
unmodified.

UNO maintains virtualized management and control planes within
the host. The virtual management plane abstracts out where (e.g.,
hypervisor or sNIC) NF instances are deployed, while the virtual
control plane hides multiple switches on the host from the external
controller. As shown in Fig. 4, the virtual control plane intelligently
maps the hypervisor and sNIC switches into a single virtual data
plane which is exposed to the SDN controller for management.
When the controller adds a new NF instance or installs a flow rule
into the virtual data plane, the NF instance is deployed on either
switch by the local management plane decision, and the rule is
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mapped appropriately to the switches by corresponding control
plane translation.

UNO addresses the following main challenges. First, when a
new NF is deployed, the virtual management plane must decide
on a placement for the function (hypervisor or sNIC) taking into
consideration constraints such as current resource availability at
the host and sNICs, the intra-host communication capacity, etc.,
while also minimizing host CPU usage. We develop an optimal
placement algorithm to address this (Section 3.2.1).

Once the NF placement decision is made, we need a rule mapper
that can translate the rules sent by the controller to an equivalent
set of local rules that can be instantiated at the local hypervisor
and sNIC switches. The rule translation must handle rules that
contain metadata (e.g., ports), and must carry the metadata across
the switches to maintain correctness across the virtual-physical
boundary. Our approach to address this issue is described in Sec-
tion 3.3.1; it builds on recent advances in control plane virtualiza-
tion [34, 40, 92].

To work in a dynamic environment, the allocated workload
at the host and the sNIC must be refined periodically, e.g., with
changes in traffic volume and compute load (e.g., when a new
VM/NF joins/leaves the host). We propose a novel approach for
runtime selection of candidate NFs to migrate between the hyper-
visor and the sNIC, followed by triggering necessary remapping
for associated switch ports and rules in the virtual control plane
(Section 3.2.2).

3.2 Network Function Agent

UNO’s Network Function agent (“NF agent”) makes the manage-
ment plane agnostic to where (at the hypervisor or sNIC) NF in-
stances are deployed. It is responsible for launching VM/NF in-
stances and configuring OneSwitch (e.g., creating ports) according
to management plane policies. On the host side, it incorprates
additional intelligence to decide (without the NFV orchestrator’s
involvement) whether to deploy NF instances, on a hypervisor or
sNIC (Section 3.2.1). Once the NF agent deploys an NF instance on
the hypervisor or at the sNIC, it creates a new physical port on the
corresponding host/sNIC switch, and connects the NF instance at
the port. Finally the NF agent maps the physical port to an exter-
nally visible virtual port maintained by OneSwitch (Section 3.3).
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3.2.1  NF placement decision problem. The decision on where to
deploy an NF instance on a given host is driven by three criteria:
(1) the hypervisor’s/sNIC’s current resource utilization, (2) current
PClIe bandwidth utilization, and (3) sNIC’s available hardware accel-
eration capabilities. The goal of NF placement decision is to offload
as much NF processing workload to the sNIC as possible to free
up hypervisor resources. sNIC offload is particularly beneficial if
the offloaded NF can leverage hardware acceleration capabilities
on the sNIC, as that can significantly reduce general-purpose core
usage at the sNIC. The constraints for NF offload are: (1) aggregated
offloaded workload on sNIC cannot exceed the sNIC’s resource
capacity, and (2) cross traffic over PCle bus cannot exceed PCle
bandwidth limitation.

The NF placement problem is related to the classical s-t graph
cut problem [11] which finds the optimal partitioning C = (S, T)
of vertices in a graph, such that certain properties (e.g., total edge
weights on the cut) are minimized or maximized. In our problem,
each NF/VM instance (deployed or to be deployed) is modeled as
a vertex in a graph. sNIC’s Ethernet ports are also represented as
vertices. If there is direct traffic exchange between any two vertices,
an edge is added to the graph with average throughput of the traffic
as edge weight. We call this a placement graph. This maps the NF
placement decision into a graph cut problem that finds C = (H, N),
where H is the set of NFs/VMs deployed in the host hypervisor, and
N is the set of NFs or Ethernet ports on the sNIC.

We use the following notations. NFs are indexed as {1, - , k},
VMs as {k +1,--- ,m}, and sNIC’s Ethernet ports as {m + 1,--- ,n}.
Let t; ; denote the weight of edge (i, j), and E be a set of all edges
in the graph. A decision variable d; ; is defined as d; ; = 1if i € H,
j € Nand (i,j) € E, 0 otherwise. Let p; = 1if i € H and 0 otherwise.
Since VMs are always deployed on the hypervisor, and Ethernet
ports are on the sNIC, we have p; = 1ifi € {k+1,--- ,m}andp; =0
ifi e {m+1,---,n}. To better leverage the hardware acceleration,
pi = 1if NF i can be accelerated by sNIC. T and D represent the
maximum bandwidth of the PCle bus, and the sNIC’s maximum
resource capacity, respectively. Each NF i will consume h; and n;
units of resources when deployed on the host hypervisor and the
sNIC, respectively. As an NF’s resource requirement depends on the
traffic throughput it handles, we have h; = ry5; 2.1, ti,j and n;
Tnic Z:.’Zl ti,j, where 145, and ryjc are NF-specific constants that
capture the relationship between the hypervisor’s/sNIC’s resource
requirement and traffic. If an NF instance i can leverage sNIC’s
hardware acceleration, its n; will be significantly lower than h;.
While we model the resource requirement as an one-dimensional
attribute, the formulation can be generalized for multiple resources
(e.g., CPU, memory). Based on these notations, we formulate the
NF placement decision problem as an integer linear programming
(ILP) shown in Algorithm 1.

Our objective is to minimize the total resource requirements on
the hypervisor, under the constraints that the traffic throughput
on the PCle bus should not exceed T, and that the total resource
requirements on the sNIC are limited by D. If an edge (i.j) is selected
in a cut, the vertices i and j must be in different partitions. While
this ILP is an NP-hard problem, for the problem instance sizes that
arise for our application, we can efficiently find the optimal solution
using off-the-shelf ILP solvers.
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Algorithm 1 NF Placement Decision ILP

minimize Zi-c:l pihi
subjectto X jyeg di,jti,j< T,

ijl(l —Pi)ni < D,
di,j 2pi—pj, (i,j)€E
Di =1, ie{k+1,---,m}
pi =1, ief{l,---,k},
i is accelerated by sNIC,
pi =0, ie{fm+1,---,n}
pi e {0,1}, ief{l,---,k}
di,j € {0,1}, (i,j) € E
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Figure 5: Port/rule/NF mapping in UNO.

If there are k sNICs (k > 1) available on the host, the problem
becomes a k-way cut problem [15], which can be solved by resource
partitioning.

3.2.2  NF placement and migration. The NF agent maintains a
topology of NFs and VMs in the host and sNIC, as well as resource
requirements (h; and n;) of each NF/VM i. When a new NF instance
needs to be deployed on the host, NF agent runs the placement
algorithm based on the current information. If the remaining re-
sources in the sNIC satisfy the new NF’s resource requirement, and
the PCle bandwidth utilization is within T after adding the new NF,
we deploy the new NF instance at the sNIC, otherwise at the host
hypervisor.

Periodically, NF agent re-runs the algorithm to check the opti-
mality of the placement decision. It initiates NF migration only if
the aggregate host resource utilization is far apart from the newly
computed solution. The NF state is migrated using the technique
presented in [52]. Associated control plane update is described in
Section 3.3.2. We are currently investigating an incremental s-t cut
problem which can identify the minimal set of migrations needed
to meet new inputs/demands. Frequent migration could occur if
traffic changes cause oscillations between two configurations. Stan-
dard techniques (akin to route dampening) [90] could be applied
to prevent frequent migrations; we have not implemented these in
our current prototype.

Fig. 5(a) illustrates a case where the NF agent deploys a ten-
ant VM and an IDS-type NF on the hypervisor. After connecting
them to the hypervisor switch, the NF agent creates port mappings
(V1:P1) and (V3:P5), and notifies the NFV orchestrator that ports
V1 and V3 are provisioned for the VM/IDS instances, hiding the
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Figure 6: Ambiguities in rule translation.

actual ports P1 and P5. Later, when the NF agent decides to mi-
grate an IDS instance to the sNIC due to changing traffic demand,
the NF agent triggers port re-mapping, such that the existing port
mapping (V3:P5) is updated to (V3:P6) (Fig. 5(b)). The management
plane remains unchanged before and after IDS migration as the IDS
remains logically connected to V3.

3.3 OneSwitch

OneSwitch hides the hypervisor and sNIC switches and their con-
trol interfaces from the data center-wide SDN control plane. It
constructs a single virtual data plane using the virtual ports created
by the NF agent, and exports this virtual data plane to the controller.
When a rule r is pushed to the virtual data plane by the controller,
OneSwitch translates r into a set of rules for the underlying physi-
cal data planes, such that r’s packet processing logic is semantically
equivalent to that of the translated rules. We call the rules pushed
by the SDN controller virtual rules, and the rules installed on the
host/sNIC switches after rule translation physical rules.

3.3.1 Rule translation algorithm. We leverage the OpenFlow
standard [33] for match-action type rule specification. Let’s assume
that we have a set of k switches S = {s1, 3, -+, si} connected to
OneSwitch. For example, if there is one sNIC on a host, k = 2 (one
hypervisor switch and one sNIC switch). Given a virtual rule r, the
rule translation algorithm produces and installs a set of N physical
rules R = {r; |ieSj=1,2,..,N}, where S’ C S and rj’: is a
J-th physical rule installed on a switch i. A correct rule translation
implies that for any ingress traffic, the rule r and the rule set R
produce exactly the same egress traffic.

Port-map based rule translation: We first describe our basic
approach to translate a virtual rule into a set of physical rules by
using virtual-to-physical port mappings (port-map). We define an
ingress port as an input port specified in a virtual rule’s match
condition, and an egress port as an output port specified in a virtual
rule’s forward action. A virtual rule can have zero or one ingress
port and zero or more egress ports. We call the switch to which
an ingress port is mapped an ingress switch, and the switch to
which an egress port is mapped an egress switch. Since a virtual
rule’s ingress port and egress port can be mapped to two different
physical switches (hypervisor and sNIC), we proceed with rule
translation as follows: (1) If a virtual rule does not specify any
ingress port or egress port, we install the virtual rule directly into
all k switches in S; (2) If a virtual rule only specifies an ingress
port, but not any egress port, we install the virtual rule into an
ingress switch. (3) If a virtual rule specifies both an ingress port
and egress port(s), then for each (ingress port, egress port) pair,
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we construct a routing path from an ingress switch to an egress
switch. We install a forwarding rule on the ingress switch and each
intermediate switch along the path. At the egress switch, we install
a forward rule with any other non-forward actions found in the
original virtual rule. (4) If a virtual rule only specifies egress port(s),
but not any ingress port (i.e., wild card in terms of input port), we
first convert the rule into a union of multiple rules with a specific
ingress port, and translate each such rule by following step (3).

Pitfalls and solutions: While the above port-map based rule
translation may seem straightforward, ambiguity can arise when
multiple virtual rules co-exist on the virtual data plane. In particular,
two possible sets of issues can arise due to “multi-ingress” and
“multi-egress” rule translations, which are illustrated respectively
in Fig. 6. Fig. 6(a) shows two virtual forwarding rules: (V1—V3)
and (V2—V4). The first rule (V1—V3) can be translated to two
physical rules (P1—P2) and (P3—P6). However, translation of the
second rule (V2—V4) leads to ambiguity on the sNIC switch, as
ingress traffic on P3 has two conflicting actions: forward to P5 and
forward to P6. A simple ingress port-based match condition cannot
disambiguate traffic destined to more than one egress ports. To
disambiguate this “multi-ingress” rule translation, we introduce
new actions to tag/untag traffic. That is, we apply a push-flow-id(f)
action at an ingress switch, use the flow-id f as a match condition
at an egress switch, and apply a pop-flow-id action before any other
action. More broadly, the flow-id f encodes the metadata-based
flow match conditions (e.g., ingress port, table-id, register value)
that cannot be carried across different switches. Tagging traffic with
flow-id allows such match conditions to be carried from an ingress
switch to an egress switch (if they are different). For simplicity,
we generate flow-id f from hash(match conditions) at an ingress
switch.

Fig. 6(b) shows the situation where traffic tagging/untagging
is not sufficient. Here, the virtual rule has match conditions (in-
port=V1, ipv4-src=10.0.0.1) and actions (mod-ipv4-src=1.1.1.1, out-
put=V2, output=V4). Since ingress port V1 and egress port V4 are
located in two different switches, we need to apply push-flow-id
action on the ingress switch before traffic exits the switch. How-
ever, the problem is that another egress port V2 is mapped to the
same switch as ingress port V1. Thus push-flow-id action should
not be applied when traffic is forwarded to V2, which is mapped
to P4. To address this “multi-egress” translation conflict, we apply
push-flow-id and forward actions in two stages through an extra
rule table designated X. The rule translation results of these two
scenarios are found in Table 1.

To the best of our knowledge, these are the only ambiguities.
The final rule translation algorithm can handle the aforementioned
ambiguities arising from multi-ingress/egress rules, but is omitted
due to the space limitations. The detailed algorithm can be found
in [42].

3.3.2  Port remapping and loss free NF migration. In UNO, the
NF migration must satisfy two requirements. It needs to be done
transparently without involving the SDN controller, and without
incurring packet loss during migration. Also, during migration it is
important to ensure all in-flight packets are processed, and updates
to NFs’ internal state due to such packets are correctly reflected at
the NF instance’s new location [52].
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Virtual rule #1 (Fig. 6(a))
Switch Match conditions Actions
OneSwitch in-port=V1 output=V3
Translated physical rules
Hypervisor in-port=P1 push-flow-id=100,  out-
put=P2
sNIC in-port=P3, flow- | pop-flow-id, output=P6
1d=100
Virtual rule #2 (Fig. 6(b))
Switch Match conditions Actions
OneSwitch in-port=V1, ipv4- | mod-ipv4-src=1.1.1.1, out-
src=10.0.0.1 put=V2, output=vV4
Translated physical rules
Hypervisor table-id=0, in-port=P1, | push-flow-id=200, out-
ipv4-src=10.0.0.1 put=P2, goto-table=X
table-id=X, in- | pop-flow-id, = mod-ipv4-
port=P1, ipv4- | src=1.1.1.1, output=P4
src=10.0.0.1
table-id=0, in-port=P3, | goto-table=X
SNIC flow-1d=200, ipv4-
src=10.0.0.1
table-id=X, in- | pop-flow-id, = mod-ipv4-
port=P3, flow-id=200, | src=1.1.1.1, output=P5
ipv4-src=10.0.0.1

Table 1: Flow rule translations.

To maintain the transparency, we rely on port remapping. When
an NF instance is to be migrated between the host to the sNIC,
OneSwitch re-programs the hypervisor/sNIC switches accordingly.
Suppose we want to migrate an old NF at port X of switch i to a
new NF at port Y of switch j, when port X is mapped to a virtual
port U at OneSwitch. Let Ry be a set of virtual rules whose match
conditions or actions are associated with port U. Once NF migration
is initiated, the NF agent first provisions port Y at switch j, and
connects a new NF at port Y.

The NF agent then migrates NF state from the old NF to the
new NF. The NF agent triggers OneSwitch to re-map the virtual
port U to port Y at switch j, re-translate Ry based on the new port
mapping, and install translated rules but with higher priority than
the old rules. Finally, OneSwitch removes all old rules translated
from Ry, installs the translated rules with the same priority as Ry,
and removes the higher priority ones. These steps ensures that no
packets will be dropped during the migration.

However, some packets may be in-flight or arrive after state
migration starts. In-flight packets are allowed to complete, but
newly arrived packets are buffered at the old NF until migration
completes, when they are transferred to the new NF.2 UNO reduces
the latency of buffering using techniques from OpenNF [52]. After
the NF state is migrated, buffered packets are processed both at the
old NF, for low latency, and at the new NF, to ensure its state is
correct. After processing at the new NF, though, the packets are
dropped so only one copy of the packet is sent to the next service
in the chain.

2Modern sNICs have sufficient memory to hold the transient packets. For example,
the experimental sNIC [28] used in our prototype comes with 8GB, which can buffer
up to 8 seconds of packets at line rate.
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3.4 Use Cases

Besides offloading NFs, UNO can be leveraged for several other
interesting offload scenarios as described below.

Flow rules offload: Flow rule offload is motivated by the in-
creasing number of fine-grained management policies employed in
data centers (e.g., for access control, rate limiting, monitoring, etc.)
and resulting CPU overhead [74]. One example of offloadable rules
is flow-counting monitoring rules because they are decoupled from
routing/forwarding rules which may be tied to tenant applications
running on the hypervisor [96]. With UNO, one can partition mon-
itoring rules into the hypervisor switch and sNIC switch, while
keeping a unified northbound control plane that combines flow
statistics from the hypervisor and sNIC switches. Furthermore,
sNICs like Mellanox TILE-Gx provide unique opportunities to par-
allelize flow rule processing on multi-cores via fully programmable
hardware-based packet classifiers, and maintain flow tables with a
large number of rules in memory [32].

Multi-table offload: Modern SDN switches like OVS support
pipelined packet processing via multiple flow tables. Multi-table
support enables modularized packet processing pipeline, by which
each flow table implements a logically separable function (e.g.,
filtering, tunneling, NAT, routing). This also helps avoid cross-
product rule explosion. However, a long packet processing pipeline
comes with the cost of increased per-packet table lookup operations.
While OVS addresses the issue with intelligent flow caching [81], a
long pipeline cannot be avoided with caching if the traffic profile
changes frequently. In this environment, some of the tables can be
offloaded to the sNIC switch if the inter-switch PCle communication
can carry any metadata exchanged between split flow tables [33].
Table offloading will be particularly beneficial if there are heavy
hits by ingress flows on offloaded table(s) (e.g., ACL table). However,
it requires consistent flow rule updates across switches (a known
problem for SDNs in general [64]), and care that the offloaded flow
table fits in the sNIC’s memory.

Systematic hardware offload chaining: Data centers often
require traffic isolation through encapsulation (e.g., VxLAN, Gen-
eve, GRE) and heavy-duty security or compression operations (e.g.,
IPsec, de-duplication). These operations may be chained one after
another, e.g., VXLAN encapsulation followed by IPsec. While tun-
neling, crypto and compression operations are well supported in
software, they could impose high CPU overhead. Alternatively, one
can leverage hardware offloads available in commodity NICs (e.g.,
large packet aggregation or segmentation (LRO/LSO), tunneling
offload) or standalone hardware assist cards (e.g. Intel QAT [10])
which can accelerate crypto and compression operations over PCle.

However, pipelining these offload operations presents new chal-
lenges, not only because simple chaining of hardware offloads leads
to multiple PCle bus crossings/interrupts, but also because different
offloads may stand at odds with one another when they reside on
separate hardware. For example, a NIC’s VXLAN offload cannot be
used along with crypto hardware assistance as it does not work in
the request/response mode as crypto offload [24]. Also, segmenta-
tion on IPsec’s ESP packets is often not supported in hardware, ne-
cessitating software-based large packet segmentation before crypto
hardware assist. All these restrictions lead to under-utilization of
individual hardware offload capacities. Many sNICs are equipped
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Figure 7: sNIC switch implementation for TILE-Gx.

with not only general-purpose cores but also integrated hardware
circuitry for crypto, compression operations and tunnel processing.
This makes them an ideal candidate for a unified, PCle-efficient
hardware and software offload pipeline, fully programmable under
the control of UNO.

4 IMPLEMENTATION

We have prototyped the UNO architecture using Mellanox TILE-
Gx36 [28] as sNIC, which comes with 36 1.2 GHz CPU cores and
four 10GbE interfaces. In this section, we describe key aspects of
our implementation.

4.1 NF Agent and OneSwitch

The NF agent exports APIs via which a centralized NFV platform can
provision VM/NF instances and their port interfaces on a given host.
This northbound interface largely borrows from the OpenStack
Compute APIs [20]. Internally, the NF agent uses the CPLEX Python
solver [27] to compute optimal NF placements (Algorithm 1) from
the current NF traffic workload (NF-level traffic matrix). The current
workload is estimated by querying hypervisor/sNIC switches for
port/flow statistics. When NF migration is needed, NF agent triggers
port remapping in OneSwitch via RESTful APIs and migrates NF
state as described in Section 3.2.2.

OneSwitch implementation is based on OpenVirteX (OVX) net-
work virtualization software [34], which can perform basic con-
trol plane translation for network slicing. The original OVX im-
plementation is unable to handle rule translations that involve
multi-ingress/egress rules illustrated earlier, and does not support
dynamic port/rule remapping for NF migration. We extend OVX to
incorporate the more general rule translation algorithm described
in Section 3.3.1, and dynamic migration support as described in
Section 3.2.2.

4.2 Hypervisor/sNIC Switches

In UNO architecture, hypervisor and sNIC switches are regular
SDN switches controlled by OneSwitch, and thus we base their
implementation on OVS. While the control plane interface of OVS
is sufficient for UNO, the unique deployment environment for hy-
pervisor/sNIC switches brings up the following challenges in their
data plane implementation: (C1) They should support efficient data
path spanning across PCle bus and multiple process boundaries
between the switches and NFs; (C2) sNIC typically has less per-
core compute capacity than x86 host, and in order to support NF
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migration between two platforms, the per-port TX/RX processing
capacity of NF ports need to be reasonably matched between two
switches; (C3) sNIC switch should be able to leverage any hardware
acceleration available in sNIC.

To address (C1), we leverage kernel-bypass networking, i.e, poll-
mode, userspace OVS datapath for both switches, which can elimi-
nate interrupt overheads associated with PCIe bus crossings and
avoid memory copies while forwarding to userspace NFs. Currently
we dedicate cores to polling, but a future implementation could
reduce load by automatically switching to interrupts or coalesc-
ing multiple ports onto a single core, similar to how the Linux
NAPI framework switches between polling and interrupts. On
the x86 host side, we re-use the DPDK OVS datapath, but extend
it by adding a PCle-type netdev port and its polling thread. On
TILE-Gx side, we implement a custom DPIF provider [6] plugged
into userspace OVS, and dedicated PCle-type and NF-type netdev
ports. The custom DPIF implementation exploits TILE-Gx mPIPE’s
hardware-based packet classification and flow_hash computation
to accelerate data plane processing (C3). To transfer directly be-
tween TILE-Gx userspace OVS and x86 host user space OVS via
the PCle-type port pair, we leverage mmap on x86 host side, which
maps the PCIe DMA buffer allocated by the host PCIe driver into
the host userspace, and use zero copy APIs on TILE-Gx side for
packet transfer between TILE-Gx memory and the PCle link. The
port pair of two OVS instances is interconnected over PCle bus via
four parallel PCIe packet queues. The resulting data plane design
allows line rate traffic to be forwarded from TILE-Gx’s Ethernet
ports all the way to x86 host userspace.

For scalable TX/RX rates for NF ports (C2), we support a config-
urable number of TX/RX queues for each NF-type port, which can
be determined during port provisioning. Each TX/RX queue is lock-
free multi-producer, multi-consumer FIFO queue implementation,
and carries packets stored in memory shared between the userspace
datapath and NF instances. The TILE-Gx userspace switch imple-
mentation is shown in Fig. 7.

To support rules generated by the UNO’s rule translation algo-
rithm, both switches need to handle per-packet flow-id metadata,
and perform flow-id based flow matching and push/pop-flow-id
actions. We re-purpose VLAN id to store flow-id metadata, and lever-
age corresponding OpenFlow support (i.e., OXM_OF_VLAN_VID
match field and push/pop-VLAN actions). Note that the VLAN tag-
ging occurs transparently between the physical OVS and OneSwitch,
and is not visible outside the host.

4.3 Network Functions

The aforementioned challenges (C1), (C2) and (C3) are not unique
to switch data plane design, but also relevant to NF implementation.
For (C1), an NF leverages userspace poll-mode, shared memory
based port interface to exchange traffic with OVS. For multi-core
scalability (C2), multiple NF instances can run (one per core), each
with a dedicated TX/RX queue for the port. NF implementation also
incorporates NF-specific acceleration (e.g., for crypto and compres-
sion) using TILE-Gx’s built-in accelerator (C3).

For both x86 and TILE-Gx platforms, we implement two custom
NFs and modify one existing NF. For custom NFs, we implement
layer-7 firewall (L7FW) and IPsec security gateway (SECGW). L7FW
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detects layer-7 application protocols (e.g., FaceBook, Skype) and
selectively blocks them using nDPI [16]. SECGW performs encryp-
tion and authentication on clear-text traffic in IPsec ESP tunnel
mode [65]. On TILE-Gx side, SECGW leverages MiCA acceleration
for IPsec processing. We also modify PRADS [22], a DPI-based
asset monitor, so that it can import/export its state for dynamic
migration.

The sNIC/hypervisor switches and NFs are developed and ex-
tended with C in 22K and 5K SLOC, respectively.

5 EVALUATION

We evaluate the UNO prototype on a server with 24 Intel Xeon
2.7GHz CPU cores and 128GB memory running Ubuntu 13.10 with
Linux kernel version 3.11, and use Mellanox TILE-Gx36 specified
in Section 4 as sNIC.

5.1 Benefit of Offloading

We evaluate the benefit of sNIC offload to show that using sNICs
can help improve CPU utilization, system energy, and I/O bus uti-
lization.

Packet switching offload: In this experiment, we demonstrate
the benefit of packet switching offload in terms of host CPU usage.
We set up a UNO server with Mellanox TILE-Gx as the sNIC, and
two interconnected OVS datapaths deployed on x86 hypervisor and
sNIC. We inject traffic at the TILE-Gx’s Ethernet port from another
server. We consider three scenarios using 64K filtering rules: (1)
all 64K rules installed in the hypervisor OVS (“HOST”), (2) half
of the rules offloaded to TILE-Gx OVS (“HALF”), (3) all the rules
offloaded to TILE-Gx OVS (“sNIC”). In Fig. 8, we report the CPU
usage of hypervisor OVS per minute. We can see that the x86 CPU
usage is the highest when all the rules are installed in the x86 host,
halved by offloading half of the flows to TILE-Gx, and lowest when
all the rules are offloaded to TILE-Gx. The number of TILE-Gx
CPU cores allocated for sNIC OVS is 12, meaning that there are 24
cores available for other processing. This experiment shows that
offloading packet switching to sNIC can effectively release host
CPU resources.

Network function offload: In the next set of experiments, we
demonstrate the benefit of sNIC for offloading NFs. For this we use
two custom NFs we develop: (i) layer-7 firewall (L7FW) (ii) IPsec
security gateway (SECGW). In sNIC-side implementation, L7FW
runs on sNIC’s general-purpose cores, while SECGW is further ac-
celerated with sNIC’s built-in crypto engine (TILE-Gx MiCA [32]).
In x86 host-side implementation, L7FW is purely software imple-
mentation, while SECGW exploits either x86’s extended instruction
set (Intel AES-NI [7]) or a standalone crypto acceleration card (Intel
QAT [10]). Depending on where it is deployed, an NF is connected
to either the hypervisor OVS or sNIC OVS.

Energy efficiency: Figs. 11(a) and (b) show the power consump-
tion of L2FW and SECGW, respectively, when they are deployed
on either x86 host or sNIC. Traffic is injected from another server,
forwarded via sNIC to x86 host, and consumed within the x86 host.
The reported power consumption on y-axis is the increase in the
overall server’s power usage (measured with a wattmeter [31])
when the injected traffic increases from zero to the amount shown
on x-axis. Due to the difference in single-core processing capability
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Figure 11: Energy efficiency of sNIC.

between x86 and sNIC, we allocate one core for a host-side NF, and
four cores for an sNIC-side NF. The main observations from Fig. 11
are as follows. sNIC’s general purpose cores significantly outper-
form the x86 host’s in terms of energy efficiency (e.g., by a factor
of 2-3 for L7ZFW). Even when dedicated hardware acceleration is
available for an NF for either platform (AES-NI/QAT on x86 host or
MiCA on sNIC), sNIC’s network function processing still consumes
less energy than that of the x86 host (e.g., by a factor of 1.5-2 for
SECGW).

PClIe bus utilization: In Fig. 9, we compare the server’s PCle
bus utilization (measured with Processor Counter Monitor [23]) in
several SECGW deployment scenarios: (i) sNIC, (ii) x86 host with
AES-NI, (iii) x86 host with QAT acceleration. Clear-text UDP pack-
ets of 1280 byte size are generated within the x86 host, processed
by SECGW, and sent out to the wire as IPsec packets. Compared
to sNIC and x86/AES-NI deployment, the PCle bandwidth usage
with x86/QAT deployment is more than doubled. That is because
each packet incurs an additional request/response transaction with
QAT across PCle [24]. sNIC deployment is more PCIe bandwidth-
efficient than x86/AES-NI deployment because the latter case needs
to sustain additional PCle bandwidth overhead of egress IPsec pack-
ets (with IP tunnel header, ESP, padding, etc.). We expect that this
benefit of sNIC deployment will become more pronounced with
smaller packets.

Host CPU savings: To demonstrate the host CPU saving in re-
alistic scenarios, we deploy a software-defined WAN (SD-WAN)
use case [26] on our testbed server, where encrypted packets are
injected to SECGW, and SECGW decrypts and forwards packets
to L7FW NFs. In one case, we realize a vanilla implementation
(userspace, poll-mode) of SD-WAN on the x86 host without sNIC,
while in the other case, we deploy the SD-WAN in a UNO setup with
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the number of x86 CPU cores are saved and can be used for tenant
applications by offloading to TILE-Gx CPUs. Note also that UNO
enables SECGW to be offloaded from TILE-Gx CPUs to the built-in
crypto engine. This allows SD-WAN offload to achieve significant
host CPU reduction even with a small number of TILE-Gx CPU
cores with limited compute capacity. We are currently investigating
why bandwidth tops out at 4Gbps for the sNIC and believe it is
related to the Tilera OVS implementation.

5.2 Cost of NF Migration

If traffic demand is higher than 4Gbps, an NF migration is required,
i.e., either SECGW or L7FW will need to be migrated to the x86
host. In this section, we evaluate the cost of such NF migration. For
this we run an experiment with PRADS [52], where the NF agent
performs loss-free migration of PRADS from the x86 host to the
sNIC while the NF is processing traffic. During migration, the old
NF on x86 host serializes its per-flow states and transfers them to
the NF agent, which then transfers the states to the new NF on
sNIC, where the states are deserialized.

Fig. 13 shows how the migration time scales with the number of
flows affected. Serialization and deserialization occur concurrently;
migration refers to the remaining time overhead. As expected, the
NF migration overhead increases with the number of flows because
the state size increases. Note that the flow state size does not linearly
increase with the number of flows. In this experiment, the flow state
size is 1.4MB for 750 flows, and 1.6MB for 1000 flows. Deserialization
on sNIC takes longer than serialization on x86 host due to the lower
single-core performance of sNIC. The trend becomes the opposite
when migrating from sNIC to x86 host. We also measure per-packet
latency during the NF migration period when ingress packets are
temporarily buffered and forwarded by the NF agent. We find that
average per-packet latency increases by 40-50ms during migration,
compared to migration-free condition. The current NF migration
scheme can be improved with possible alternatives. For example,
we can leverage serialization-free, memory-mapped state transfer



UNO: Unifying Host and Smart NIC Offload for Flexible Packet Processing

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

-
]
@2 e @5t (0550
[T} 1 [\ Y T\ - - = =~
a ypervzor OVS
) -
Z| | o \,I | l \ .I L!SRIOVE [ sNIC OVS ] ol ( SNIC OVS )
S| snicovs || =2 2
[} v —T w @
5 ]
2l | ~ | | | | |
&
(a) Standalone host. (b) Switch offload. (c) UNO (full NF offload). (d) UNO (partial NF offload).
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between old and new NFs over PCle [66], where NF agent simply
signals the state transfer. Another possibility is to decouple NF
states from NFs [61], and move them to a separate in-memory
storage shared between the x86 host and the sNIC, which also
obviates expensive serialization. We leave further improvement on
NF migration for future work.

5.3 Effect of NF Placement

The previous results showed that while offloading functions can
save energy and reduce x86 host utilization, some traffic patterns
can actually worsen throughput and latency. This motivates the
need for good decisions on where to place network functions. In
the next experiment, we evaluate UNO’s ability to make good NF
placement decisions. The algorithm runs as part of the NF Agent,
and executes efficiently on an commodity x86-based servers (e.g.,
0.06 second with 100 nodes and 1 second with 500 nodes). First,
we measure the capability of sNIC’s CPU cores vs. x86 CPU cores
using the ratio n; / h; on a set of NFs, i.e., DPI, L7FW and SECGW;
this ration is provided as input to the ILP framework to make the
NF decisions. We find that the ratios for DPI, L7FW and SECGW
are 2, 4, and 0.75, respectively.
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NF/VM instances as shown in Fig. 15, and set the number of VM and
NF instances in the graph to 9 and 18, respectively, following typical
VM workload-to-server ratios in public cloud data centers [56]. We
set the total sNIC resource capacity D to 36 to reflect the sNIC’s
total core count, and vary the maximum PCle throughput T. We set
the resource requirements h; and n; of NF instances based on the
coarse-grained resource profiling results earlier which indicated
that a DPI function requires 5 cores on the x86 host and 10 cores on
sNIC to process 9Gbps of incoming traffic. Figs. 16(a) and (b) shows
how UNO trades off between x86 host core usage, sNIC core usage,
and PCle bandwidth usage. We can see that when the maximum
PClIe bandwidth is small (10Gbps), it is the bottleneck and UNO
puts the NFs to the x86 host using more CPU cores. When the
maximum PCle bandwidth increases, UNO offloads more NFs to
the sNIC, thus decreasing host CPU utilization while increasing
sNIC CPU utilization. This trend holds on until sNIC’s full capacity
is reached, when the maximum PCle bandwidth exceeds 80Gbps.
This experiment demonstrates that the UNO’s placement algorithm
effectively leverages available PCle bandwidth and sNIC’s compute
capacity to offload as much NF workload as possible.

Network latency: UNO seeks to minimize host CPU utilization,
but the optimal placement can negatively affect latency. To illustrate
this, we set up a NF chain of two SECGWs and one L7FW, as shown
in Fig. 12 and measure the round trip latency between APP1 and
APP2 as shown in Fig. 14. The two SECGWs act as IPsec tunnel
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Figure 16: Simulation-based DPI NF placements.

endpoints between APP1 and APP2. Fig. 12(a) is the deployment of
the chain on a standalone x86 host with a regular NIC. In Fig. 12(b),
only the packet switching is offloaded to sNIC, with all NFs running
on the x86 host. For traffic demand of 1Gbps, UNO will offload all
network functions (UNO Full) as shown in Fig 12(c). This results in
zero host CPU usage, but high latency, i.e.,79ms, compared to either
standalone host, or switch offload, because the weaker sNIC CPU
runs much slower than the x86 CPU for the L7FW function. When
the traffic demand is 4Gbps or higher, UNO uses the configuration
(UNO-Partial) as shown in Fig 12(d), which uses more host CPUs to
handle the increased workload. This has the beneficial side effect
of reducing the latency to 0.2ms. This experiment reveals that the
UNO’s current placement algorithm does not always improve the
latency because its objective is to minimize x86 host resource usage.
We plan to consider jointly optimizing secondary objectives (latency
and throughput) along with CPU resources in future work.

5.4 Flow Rule Translation

UNO’s local control plane translation can provide the potential
scalability benefit for the external SDN controller, as UNO can hide
local sNIC(s) from the SDN controller, relieving the controller of its
responsibility for managing sNIC switches. To demonstrate this ben-
efit, we set up a UNO testbed consisting of a Floodlight controller [5],
OneSwitch, one hypervisor switch and two sNIC switches. Then
we synthetically generate 3,024 virtual rules by randomly choosing
one or more match conditions and actions from OpenFlow 1.3, and
count the total number of physical rules translated from them. We
randomly sample 200 virtual rules, and manually verify the correct-
ness of their translation. In total, 6,810 physical rules are installed
on three physical switches. Were these three switches fully exposed
to Floodlight without UNO, a similar number of such rules would
need to be processed directly by Floodlight, which is a factor of 2.3
increase compared to virtual rules. Conversely, it means that UNO
can reduce the controller overhead by that much by distributing
sNIC control on to individual end hosts.

6 RELATED WORK

To improve end host networking performance, several different ap-
proaches are proposed; purely software solutions [57, 85], SR-IOV
based switch offload [37, 79], and hybrid solutions which com-
bine software functions and hardware NICs for performance [86]
or flexibility [55]. However, none of these considers full hard-
ware programmability for NF offload. FPGA-based NF accelera-
tion approaches [46, 50] propose a flexible and high-performance
hardware-accelerated data plane, but the flexibility comes in the
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form of FPGA’s configurability, not flow-level programmability like
UNO. HyperFlow [95] constructs a single logical controller from
multiple controllers, which is similar to UNO, but its goal is to
provide a scalable control plane.

UNO’s multi-switch model requires flow rule translation. There
have been several research efforts on SDN flow rule construction,
transformation and distribution for realizing higher level network
policies. Due to the rule space capacity limits on switches, [73,
74, 99] distribute flow rule tables across the network to enforce
endpoint policies such as access control or load balancing, but
may change traffic routing paths. [62, 63] strive to optimize rule
space utilization by mapping flow rules to dispersed switches while
maintaining both endpoint and routing polices. OVX [34] uses
flow rule translation to implement network virtualization. While
UNO’s flow rule translation shares similarity with some of them on
maintaining a per node single virtual switch abstraction and thus
hiding complexities from SDN controllers, its goal is to optimize
the local resource use by leveraging NF placement/migration and
sNIC offload capacities.

There is a large body of work that addresses NF placement and
migration in a data center environment [48, 51, 52, 76, 82, 89, 91].
The common goal of them is to place-and-chain new NF instances
and relocate-and-rechain existing NF instances across multiple
hosts. UNO is concerned with NF placement and relocation within
a single host (augmented with sNIC). While [60, 72] also empower
a host resident OVS to handle NFs within a host, they focus on
extending the reach of Openflow rather than intelligent offload as
performed by UNO. In principle our approach is similar to prior
work on offloading computational tasks from a mobile phone to
the infrastructure in a mobile environment [44]. We differ in our
objectives (minimizing host CPU resources), the offloading target,
and the workloads offloaded.

7 CONCLUSION

In this paper, we presented the design, implementation and evalua-
tion of an SDN-controlled NF offload architecture called UNO. UNO
can transparently leverage the smart NIC’s programmable compute
capabilities to accelerate the NF data plane, and without introducing
additional complexity in the data center’s centralized management
and control planes. UNO’s transparent offload is achieved by two
per-host components: the NF agent which intelligently chooses a
subset of NFs to offload to the sNIC, and OneSwitch which abstracts
out the offloaded NF data planes from the data center’s control plane.
Together, these two components hide the complexity prevalent in
local traffic pattern-based dynamic NF offload decisions and the
intricacies of NF migration (e.g., internal state management) from
the data center controller. The evaluation results demonstrate the
feasibility and the substantial benefits of UNO.
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