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ABSTRACT

Physically unclonable functions (PUFs) have proved to be an e�ec-
tive measure for secure device authentication and key generation.
We propose a novel PUF design, named C��PUF, based on com-
mercial o�-the-shelf CMOS image sensors, which are ubiquitously
available in almost all mobile devices. The inherent process mis-
match between pixel sensors and readout circuits in an image sensor
manifests as unique �xed pattern noise (FPN) in the image. We ex-
ploit FPN caused by dark signal non-uniformity (DSNU) as the basis
for implementing the PUF. DSNU can be extracted only from dark
images that are not shared with others, and only the legitimate user
can obtain it with full control of the image sensor. Compared to
other FPN components that can be extracted from shared images,
DSNU facilitates more secure and usable device authentication.
We present an e�cient and reliable key generation procedure for
use in wireless low-power devices. We implement C��PUF on
Google Nexus 5X and Nexus 5 and evaluate the uniqueness and
robustness of the keys, as well as its security against counterfeiting.
We demonstrate that it discriminates legitimate and illegitimate
authentication attempts without confusion.
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1 INTRODUCTION

The past decade has witnessed a remarkable growth of services that
rely on or involve mobile and wearable devices. The increasingly
network-connected nature of these devices, coupled with more
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and more sensitive and con�dential data placed online, has led
to an unprecedented level of security and privacy concerns. As a
promising measure to combat the security and privacy challenges,
physically unclonable functions (PUFs) have been proposed [6, 18]. A
PUF is a hardware component that exploits inherent manufacturing
process variations to generate random numbers that are unique,
unpredictable, and unreproducible. PUFs are a promising device
authentication method to augment security as part of multi-factor
user authentication.

Researchers have proposed a variety of PUF implementations
based on an arbiter chain [4, 9], a ring-oscillator [14, 17, 18], or mem-
ory [10, 13, 19]. Recently, CMOS image sensor-based PUFs [2, 7, 20]
have emerged as an attractive option since image sensors are read-
ily available in many mobile and wearable devices. The source of
randomness in the image sensor-based PUFs is the imperfection of
the pixel array and readout circuit manufacturing process, which
manifests as �xed pattern noise (FPN) in the image. The FPN ex-
tracted from an image is unique from sensor to sensor and can,
therefore, be used as the �ngerprint of the sensors.

The two main components of FPN are photo-response non-
uniformity (PRNU) noise and dark signal non-uniformity (DSNU)
noise. PRNU is due to the responsivity variation between pixels and
is the dominant FPN in illuminated natural images. On the other
hand, DSNU is mainly caused by the variations of dark current
(current �owing in a photodiode even when there is no incident
illumination) and is dominant in dark images [3]. PRNU has been
heavily studied as the �ngerprint of natural images because it sur-
vives lossy JPEG compression [1]. This survivability has been ex-
tensively exploited for various purposes, such as forgery detection
(i.e., identifying the modi�ed part in the image) [11] and source
identi�cation (i.e., identifying the camera model or individual de-
vice used to take the image) [12]. In contrast, DSNU has received
relatively less attention as a relevant �ngerprint for these purposes
since it can be extracted only from dark frames (taken without
illumination), but not from illuminated natural images.

The survivability of PRNU, however, is a strong disadvantage
as the basis of a PUF. Social network services (SNSs) have been
used for sharing photos taken by mobile devices, typically in JPEG
format. Unfortunately, photo sharing is often made without proper
access control [5], and more and more photo sharing services sup-
port storing and sharing high-quality JPEG images, which can be
exploited by an adversary to extract the PRNU �ngerprint. Using
only the high-frequency components of PRNU that are largely re-
moved by JPEG compression can alleviate this problem, but its
resistance against attacks using high-quality JPEG images is rather
limited [16]. In addition, to extract PRNU, the user has to �nd and
take pictures of a �at object (e.g., a plain wall), which may be in-
convenient or even impossible to do. This signi�cantly reduces the
usability of the PRNU-based approaches.



In this paper, to fundamentally address the security and usability
problems of the previous image sensor-based PUF, we propose
C��PUF that uses DSNU as the basis, instead of PRNU. Since PRNU
is much stronger than DSNU in illuminated natural images [3], it
becomes fundamentally di�cult for the adversary to extract the
DSNU �ngerprint from publicly shared images. On the other hand,
since the legitimate user has full control of the image sensor to
obtain dark frames, the di�culty of obtaining DSNU becomes an
advantage for the security purpose.

In order to implement the DSNU-based PUF on commercial o�-
the-shelf (COTS) image sensors, we need to address three central
challenges. First of all, the dark current has a heavy temperature
dependence. We need to extract the DSNU �ngerprint that is inde-
pendent of ambient temperature. Second, since mobile and wearable
devices have limited energy budget, the computation and communi-
cation overheads for the �ngerprint extraction need to be minimal.
Finally, the �ngerprint should not be derivable even from high-
quality JPEG-compressed images.

C��PUF is a novel image sensor-based PUF that addresses the
aforementioned challenges. To the best of our knowledge, this
is the �rst work to utilize DSNU as the basis of randomness for
implementing a PUF using COTS image sensors without a custom
readout circuit. The contributions of this paper are as follows:
• We propose C��PUF, an image sensor PUF based on DSNU
obtained from dark frames, which provides better security and
usability. For the legitimate user, DSNU is easier to obtain than
PRNU without having to �nd a �at object. In contrast, for the
adversary, DSNU is more di�cult to obtain than PRNU since
dark frames are shared online neither in raw nor in JPEG format.

• We present an e�cient method to derive a unique and stable key
from only a small number of frames. It enables local key genera-
tion in low-power mobile devices without having to wirelessly
transfer large-size images to the authentication server.

• We implement C��PUF on Google Nexus 5X with Sony IMX377
image sensors and Google Nexus 5 with Sony IMX179 image sen-
sors. Five identical sensors per model are used without any hard-
ware modi�cation. We demonstrate that the proposed method
generates stable random keys that are clearly discriminative even
between the same models at various temperatures.

• We demonstrate that the adversary is not able to derive the
correct key from JPEG-compressed images even if the adversary
can obtain multiple high-quality images similar to a dark frame.

2 RELATED WORK

PUFs provide an authentication factor based on the randomness of
diverse physical properties that are unique and di�cult to repro-
duce. Delay-based PUFs exploit the variability of gate delay, which
manifests as path delay in an arbiter chain [4, 9] or frequency in a
ring oscillator [14, 17, 18]. Memory-based PUFs take advantage of
the random cell-to-cell variations of the reset state or data retention
capability [10, 13, 19].

The stochastic consistency of random noise in digital images
has been utilized to detect forgeries [11] or to identify individ-
ual image sensor or model that took the image [12]. Recently, the
random noise has been exploited for implementing a PUF [2, 7].
However, these approaches require an additional circuit or modi-
�cation of control sequence to bypass existing noise suppression
circuits, hence not applicable to image sensors in commodity smart-
phones. A recently presented PRNU-based PUF does not require
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Figure 1: (a) Architecture of a CMOS image sensor with the
Bayer pattern color �lter. (b) Dark current (DC) variation be-
tween pixel sensors when there is no incoming light.

modi�cation of COTS image sensors [20]. However, since PRNU
is caused by illumination, the user has to �nd a �at object with
no clear pattern, which may not always be available. Moreover, as
discussed in Section 1, PRNU survives JPEG compression and, thus,
is intrinsically more vulnerable to attacks using publicly shared
images. To the best of our knowledge, our work is the �rst to exploit
the DSNU of COTS image sensors for implementing a PUF.

3 NOISE IN CMOS IMAGE SENSORS

Figure 1(a) shows the architecture of a CMOS image sensor. The
main component of the sensor is an array of pixel sensors that
measure the intensity of light, shown in Figure 1(b). Each pixel
sensor measures only a single color (red, green, or blue) �ltered
by a color �lter array. A photodiode in each pixel sensor converts
light into a pixel voltage signal, which, in turn, is ampli�ed by a
programmable gain ampli�er (PGA) then digitized by an analog-
digital converter (ADC).

An image captured by a sensor inevitably includes noise from
various sources. Some noise sources introduce temporal noise that
varies from frame to frame, even between two frames taken by
the same sensor. This includes shot noise, thermal noise, and ADC
quantization noise. Other noise sources introduce FPN that does not
vary among frames taken by the same sensor. The noise induced
by manufacturing process variations falls into this category. PRNU
and DSNU are the two major FPN components, as discussed in
Section 1.

Correlated double sampling (CDS) is an e�ective noise suppres-
sion technique that removes o�set FPN factors by sampling twice,
before and after the integration of photocurrent, and subtracting
one from the other, but it does not reduce DSNU [3]. Mobile and
wearable devices cannot a�ord advanced DSNU suppression tech-
niques such as subtracting the dark frame of each individual sensor
or chilling the sensor using a Peltier cooler. As a result, DSNU
is most pronounced in dark images captured by low-cost image
sensors in mobile or wearable devices.

Figure 2 shows the distributions of the DSNU of a Sony IMX377
image sensor, which is the rear camera of Google Nexus 5X, at
25°C, 35°C, and 45°C. Temporal noise is removed by averaging 20
frames. As we can see in the �gure, DSNU increases as temper-
ature increases. For noise reduction in natural images, the noise
values should be estimated by measuring or estimating the sensor
temperature. We address this temperature dependence problem by
using the relative order of the noise values, rather than the absolute
values, which is almost constant regardless of temperature [15].
That is, if pixel A is brighter than pixel B due to a higher dark
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Figure 9: Average inter-sensor HD between reference key
and �ve JPEG-derived keys for various scenes and JPEG
quality factors (QF).

represents the average HD between rr ef and r of 25 pairs in the

sensor-to-sensor comparison. The diagonal cells of the matrix show
the intra-sensor HDs, while the upper and lower triangular matrices
show the inter-sensor HDs. It is also clear from the matrix that
C��PUF can identify the legitimate sensors from others. Figure 8(b)
shows the same experimental results obtained from IMX179. The
margin between the intra- and inter-sensor HDs is 0.461.

5.4 Attack Using Shared Images

As discussed in Section 1, the most probable vulnerabilities of C���
PUF is counterfeiting using publicly shared images captured by
the victim’s smartphone. The adversary may attempt to install mal-
ware to capture a raw image, but we assume the smartphone itself
is protected by other means. Fortunately, C��PUF is inherently
safe mainly for two reasons. First, DSNU is not extractable from
illuminated natural images because PRNU becomes the dominant
noise under illumination. C��PUF extracts a key from dark frames
that are hardly, if not never, shared on SNS. Second, as described
in Section 4.1, only the high-frequency components of DSNU are
used for key generation, which are largely discarded during JPEG
compression. This is a second measure of defense to prevent the
adversary from extracting the key from underexposed �at images.
Unless a dark frame is shared in raw format, the key remains safe.

To verify the security against counterfeiting, we assume an ad-
versary who can obtain multiple natural images and �at images
taken by the victim. We captured multiple very similar images of a
classroom, desktop objects, the dark night sky, and a white plain
wall using IMX377 sensor #1, as shown in Figure 9. The ISO sensi-
tivity and the shutter speed are set automatically by the application,
and the JPEG quality factor is set to 95, 85, and 75. We obtained 50
images for each scene per quality factor. We �rst convert the im-
ages to grayscale. Then, unlike the �ngerprint extraction described
in Section 4.1, we subtract the denoised image before averaging
because the o�set of each image is di�erent. The noise residuals
are calculated for each image and averaged pixel-wise. We generate
�ve keys by averaging 10 noise residuals per key.

Figure 9 shows the average inter-sensor HDs between the ref-
erence key (generated from raw reference frames) and the �ve
illegitimate responses generated from the JPEG images. The results
show that the JPEG-derived keys are not signi�cantly a�ected by
the image contents nor the quality factor. The HDs are all between

0.46 and 0.54 regardless of the quality factor and are signi�cantly
greater than the maximum intra-sensor HD shown in Section 5.2.
The key generated from the high-quality night sky images is the
closest match, but its HD is still as high as 0.466. As a result, the
adversary’s device will not be authenticated even if a key derived
from JPEG images captured by the legitimate sensor is submitted.

6 CONCLUSIONS

We presented C��PUF, a CMOS image sensor-based PUF that ex-
ploits the spatial randomness of DSNU noise, which has unique ad-
vantages over previous PRNU-based approaches. A low-complexity
authentication method with minimal computation and communica-
tion overheads is proposed for use in low-power mobile devices. We
implementedC��PUF using real smartphones and demonstrated its
robustness against temporal and environmental variations. We also
demonstrated that it is secure against counterfeiting using publicly
shared images, even if the adversary can obtain a large number of
similar high-quality �at images. In our experiments, C��PUF was
able to reject all illegitimate keys generated from a di�erent sensor
or from JPEG images. C��PUF will be a promising mobile device
authentication technique that is immediately applicable since it
works with any commercially available CMOS sensors in mobile
devices with only simple implementation in software.
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