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ABSTRACT

Physically unclonable functions (PUFs) have proved to be an effec-
tive measure for secure device authentication and key generation.
We propose a novel PUF design, named CAMPUF, based on com-
mercial off-the-shelf CMOS image sensors, which are ubiquitously
available in almost all mobile devices. The inherent process mis-
match between pixel sensors and readout circuits in an image sensor
manifests as unique fixed pattern noise (FPN) in the image. We ex-
ploit FPN caused by dark signal non-uniformity (DSNU) as the basis
for implementing the PUF. DSNU can be extracted only from dark
images that are not shared with others, and only the legitimate user
can obtain it with full control of the image sensor. Compared to
other FPN components that can be extracted from shared images,
DSNU facilitates more secure and usable device authentication.
We present an efficient and reliable key generation procedure for
use in wireless low-power devices. We implement CAMPUF on
Google Nexus 5X and Nexus 5 and evaluate the uniqueness and
robustness of the keys, as well as its security against counterfeiting.
We demonstrate that it discriminates legitimate and illegitimate
authentication attempts without confusion.
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1 INTRODUCTION

The past decade has witnessed a remarkable growth of services that
rely on or involve mobile and wearable devices. The increasingly
network-connected nature of these devices, coupled with more
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and more sensitive and confidential data placed online, has led
to an unprecedented level of security and privacy concerns. As a
promising measure to combat the security and privacy challenges,
physically unclonable functions (PUFs) have been proposed [6, 18]. A
PUF is a hardware component that exploits inherent manufacturing
process variations to generate random numbers that are unique,
unpredictable, and unreproducible. PUFs are a promising device
authentication method to augment security as part of multi-factor
user authentication.

Researchers have proposed a variety of PUF implementations
based on an arbiter chain [4, 9], a ring-oscillator [14, 17, 18], or mem-
ory [10, 13, 19]. Recently, CMOS image sensor-based PUFs [2, 7, 20]
have emerged as an attractive option since image sensors are read-
ily available in many mobile and wearable devices. The source of
randomness in the image sensor-based PUFs is the imperfection of
the pixel array and readout circuit manufacturing process, which
manifests as fixed pattern noise (FPN) in the image. The FPN ex-
tracted from an image is unique from sensor to sensor and can,
therefore, be used as the fingerprint of the sensors.

The two main components of FPN are photo-response non-
uniformity (PRNU) noise and dark signal non-uniformity (DSNU)
noise. PRNU is due to the responsivity variation between pixels and
is the dominant FPN in illuminated natural images. On the other
hand, DSNU is mainly caused by the variations of dark current
(current flowing in a photodiode even when there is no incident
illumination) and is dominant in dark images [3]. PRNU has been
heavily studied as the fingerprint of natural images because it sur-
vives lossy JPEG compression [1]. This survivability has been ex-
tensively exploited for various purposes, such as forgery detection
(i.e., identifying the modified part in the image) [11] and source
identification (i.e., identifying the camera model or individual de-
vice used to take the image) [12]. In contrast, DSNU has received
relatively less attention as a relevant fingerprint for these purposes
since it can be extracted only from dark frames (taken without
illumination), but not from illuminated natural images.

The survivability of PRNU, however, is a strong disadvantage
as the basis of a PUF. Social network services (SNSs) have been
used for sharing photos taken by mobile devices, typically in JPEG
format. Unfortunately, photo sharing is often made without proper
access control [5], and more and more photo sharing services sup-
port storing and sharing high-quality JPEG images, which can be
exploited by an adversary to extract the PRNU fingerprint. Using
only the high-frequency components of PRNU that are largely re-
moved by JPEG compression can alleviate this problem, but its
resistance against attacks using high-quality JPEG images is rather
limited [16]. In addition, to extract PRNU, the user has to find and
take pictures of a flat object (e.g., a plain wall), which may be in-
convenient or even impossible to do. This significantly reduces the
usability of the PRNU-based approaches.



In this paper, to fundamentally address the security and usability
problems of the previous image sensor-based PUF, we propose
CAaMPUEF that uses DSNU as the basis, instead of PRNU. Since PRNU
is much stronger than DSNU in illuminated natural images [3], it
becomes fundamentally difficult for the adversary to extract the
DSNU fingerprint from publicly shared images. On the other hand,
since the legitimate user has full control of the image sensor to
obtain dark frames, the difficulty of obtaining DSNU becomes an
advantage for the security purpose.

In order to implement the DSNU-based PUF on commercial off-
the-shelf (COTS) image sensors, we need to address three central
challenges. First of all, the dark current has a heavy temperature
dependence. We need to extract the DSNU fingerprint that is inde-
pendent of ambient temperature. Second, since mobile and wearable
devices have limited energy budget, the computation and communi-
cation overheads for the fingerprint extraction need to be minimal.
Finally, the fingerprint should not be derivable even from high-
quality JPEG-compressed images.

CaMPUF is a novel image sensor-based PUF that addresses the
aforementioned challenges. To the best of our knowledge, this
is the first work to utilize DSNU as the basis of randomness for
implementing a PUF using COTS image sensors without a custom
readout circuit. The contributions of this paper are as follows:

e We propose CAMPUF, an image sensor PUF based on DSNU
obtained from dark frames, which provides better security and
usability. For the legitimate user, DSNU is easier to obtain than
PRNU without having to find a flat object. In contrast, for the
adversary, DSNU is more difficult to obtain than PRNU since
dark frames are shared online neither in raw nor in JPEG format.

e We present an efficient method to derive a unique and stable key
from only a small number of frames. It enables local key genera-
tion in low-power mobile devices without having to wirelessly
transfer large-size images to the authentication server.

o We implement CAMPUF on Google Nexus 5X with Sony IMX377
image sensors and Google Nexus 5 with Sony IMX179 image sen-
sors. Five identical sensors per model are used without any hard-
ware modification. We demonstrate that the proposed method
generates stable random keys that are clearly discriminative even
between the same models at various temperatures.

o We demonstrate that the adversary is not able to derive the
correct key from JPEG-compressed images even if the adversary
can obtain multiple high-quality images similar to a dark frame.

2 RELATED WORK

PUFs provide an authentication factor based on the randomness of
diverse physical properties that are unique and difficult to repro-
duce. Delay-based PUFs exploit the variability of gate delay, which
manifests as path delay in an arbiter chain [4, 9] or frequency in a
ring oscillator [14, 17, 18]. Memory-based PUFs take advantage of
the random cell-to-cell variations of the reset state or data retention
capability [10, 13, 19].

The stochastic consistency of random noise in digital images
has been utilized to detect forgeries [11] or to identify individ-
ual image sensor or model that took the image [12]. Recently, the
random noise has been exploited for implementing a PUF [2, 7].
However, these approaches require an additional circuit or modi-
fication of control sequence to bypass existing noise suppression
circuits, hence not applicable to image sensors in commodity smart-
phones. A recently presented PRNU-based PUF does not require
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Figure 1: (a) Architecture of a CMOS image sensor with the
Bayer pattern color filter. (b) Dark current (DC) variation be-
tween pixel sensors when there is no incoming light.

modification of COTS image sensors [20]. However, since PRNU
is caused by illumination, the user has to find a flat object with
no clear pattern, which may not always be available. Moreover, as
discussed in Section 1, PRNU survives JPEG compression and, thus,
is intrinsically more vulnerable to attacks using publicly shared
images. To the best of our knowledge, our work is the first to exploit
the DSNU of COTS image sensors for implementing a PUF.

3 NOISE IN CMOS IMAGE SENSORS

Figure 1(a) shows the architecture of a CMOS image sensor. The
main component of the sensor is an array of pixel sensors that
measure the intensity of light, shown in Figure 1(b). Each pixel
sensor measures only a single color (red, green, or blue) filtered
by a color filter array. A photodiode in each pixel sensor converts
light into a pixel voltage signal, which, in turn, is amplified by a
programmable gain amplifier (PGA) then digitized by an analog-
digital converter (ADC).

An image captured by a sensor inevitably includes noise from
various sources. Some noise sources introduce temporal noise that
varies from frame to frame, even between two frames taken by
the same sensor. This includes shot noise, thermal noise, and ADC
quantization noise. Other noise sources introduce FPN that does not
vary among frames taken by the same sensor. The noise induced
by manufacturing process variations falls into this category. PRNU
and DSNU are the two major FPN components, as discussed in
Section 1.

Correlated double sampling (CDS) is an effective noise suppres-
sion technique that removes offset FPN factors by sampling twice,
before and after the integration of photocurrent, and subtracting
one from the other, but it does not reduce DSNU [3]. Mobile and
wearable devices cannot afford advanced DSNU suppression tech-
niques such as subtracting the dark frame of each individual sensor
or chilling the sensor using a Peltier cooler. As a result, DSNU
is most pronounced in dark images captured by low-cost image
sensors in mobile or wearable devices.

Figure 2 shows the distributions of the DSNU of a Sony IMX377
image sensor, which is the rear camera of Google Nexus 5X, at
25°C, 35°C, and 45°C. Temporal noise is removed by averaging 20
frames. As we can see in the figure, DSNU increases as temper-
ature increases. For noise reduction in natural images, the noise
values should be estimated by measuring or estimating the sensor
temperature. We address this temperature dependence problem by
using the relative order of the noise values, rather than the absolute
values, which is almost constant regardless of temperature [15].
That is, if pixel A is brighter than pixel B due to a higher dark
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Figure 2: Distributions of pixel values of the averaged dark
frames of a Sony IMX377 at different temperatures.

current at one temperature, pixel A is still brighter than pixel B at
other temperatures, while their absolute values may change. This
is an important attribute that enables robust key generation based
on DSNU regardless of ambient temperature variations.

4 DSNU-BASED PUF DESIGN

In this section, we propose the design of CAMPUF for device authen-
tication. Throughout this section, a device (D) is an untrusted entity
that requires authentication. It has an image sensor used as CAM-
PUF. An authenticator (A) is a trusted entity that authenticates D
based on its registered challenge-response pair (CRP). We assume
that D and A are connected through a secure wireless network.
Examples of D and A are a smartphone and an application server,
respectively.

4.1 DSNU Fingerprint Extraction

DSNU fingerprint extraction is to obtain the unique noise pattern
induced by the DSNU of D’s image sensor. This is the first step
required for both enrollment and authentication, which will be
discussed in Section 4.2. The DSNU fingerprint of a given sensor
is extracted from one or more raw dark frames captured by the
sensor. Taking dark frames can be easily done by covering the
image sensor completely with a light-blocking object (e.g., a thick
cloth or the user’s hand). A typical size of a raw image file is tens of
megabytes even if it is in grayscale, and, therefore, sending multiple
raw images to A and generating the fingerprint on the server is
not practical due to the long delay and large energy consumption.
Instead, the fingerprint extraction should be locally done by D, and
it should be as computationally light as possible.

Figure 3 illustrates the DSNU fingerprint extraction flow. The
fingerprint of an image sensor is extracted from N dark frames cap-
tured by the sensor, fi, . .., f, Np» of height H and width W (Step (D).

We first obtain the pixel-wise average frame f of the Ny frames to
remove temporal noise components (Step (2)). Next, noise residual n
is retrieved by subtracting its denoised frame DNF(f) from f, where
DNF is a denoising filter (e.g., Wiener filter), i.e., n = f — DNF(f)
(Step ®). We assume that DSNU is the only dominant noise in n,
and we do not model any other noise components including PRNU.

While DSNU is not pronounced in illuminated natural images,
the adversary might attempt to obtain the key from shared less-
illuminated images, such as dark night sky images or underex-
posed images (images with too little light). During JPEG compres-
sion, the high-frequency components of the image are largely dis-
carded when quantized in the discrete cosine transform (DCT)
domain. Therefore, to prevent the adversary from exploiting JPEG-
compressed images, the key should be generated based only on the
high-frequency noise components that cannot be extracted from

f1.

gl

¢ f
Nf () Pixel-wise
average
d

@ Capture multiple (® Subtract
dark frames denoised frame
ny¢ DCT(n)od DCT(n)

@pCT

)

& AN

€ 0|

5 255

sum) O =S EE
EmEn ==sEmnn
EEwn =E=mEnn
SEEm ==ssEmn

Figure 3: DSNU fingerprint extraction procedure.

JPEG-compressed images. We remove the low-frequency compo-
nents by applying a DCT-based high-pass filter to n, similarly to
[16, 20], in the opposite way the JPEG compression removes the
high-frequency components. The high-frequency noise component
nyy is obtained by zeroing out the low-frequency coefficients of n
in the DCT domain, i.e, npr = IDCT(DCT(n) o d), where DCT and
IDCT are the DCT and inverse-DCT functions, respectively, and o
is the Hadamard (entry-wise) product (Steps @-(®). The entries
of the high-pass filtering matrix d is defined as:

1 i>H-candj>W -,
di,j:{ ! (1

0 otherwise,

where c is a cutoff constant between 0 and 1.

The resultant ny is the high-frequency noise pattern of size
H x W, which is used as the DSNU fingerprint of D. Note that the
fingerprint extraction involves only simple signal processing that
is part of JPEG compression and decompression, such as denoising,
DCT, IDCT, etc.

4.2 Enrollment and Authentication

Device authentication consists of two phases: enrollment and au-
thentication. In the enrollment phase, the device D generates a short
version of its DSNU fingerprint and registers it to the authenticator
A. In the authentication phase, A sends a challenge c created from
the registered fingerprint, and D generates a response key r based
on c and its DSNU fingerprint. If r matches the reference key r,¢f.
A authenticates D. Figure 4 illustrates the overall procedure.

For enrollment, the locations of the bright and dark pixels of ny,¢
are registered to A. We first equally divide ny,y into Nj, blocks in
order to uniformly distribute the challenge pixels, where N, = L +
N, Lis the length of the key, and Ny, is a pixel defect compensation
margin (discussed in Section 4.3) (Step (D). We select the brightest
pixel from each block, and, among them, we keep only the brighter
half and discard the other half. Let idx; be the linear indices of
these Nj, /2 bright pixels (Step (2)). From the other Nj, /2 blocks that
their brightest pixels are discarded, we select the darkest pixel from
each block. Let idx 4 be the linear indices of these Ny, /2 dark pixels
(Step ®). Now idx;, and idx, are the indices of N, /2 brightest
pixels and N, /2 darkest pixels, respectively, that are block-wise
uniformly distributed on ny,¢. Figure 4 shows an example of this
process for L = 6, Ny, = 2, and Nj, = L + Ny, = 8. From the eight
blocks, four bright pixels are selected as idx;, = {1,13,22,27} and
four dark pixels are selected as idxy = {5, 9, 19,30}. The enrollment
is done by sending the indices to A (Step @). The reference key
Ty does not need to be registered because it can be inferred from
the two separate indices.
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Figure 4: Device authentication flow of CamMPUF. We as-
sume L = 6, Ny, = 2, and N, = 8 as an example.

For authentication, the relative brightness of the registered pixels
is compared. First, A randomly selects L/2 entries from idx; and
idxg, respectively. Let the respective subsets be idx; and idx}.
Then the challenge ¢ = (c;) is the sorted sequence of idxz U idx;,
which is the linear indices of L/2 bright pixels and L/2 dark pixels.
For example, in Figure 4, L/2 = 3 entries are selected as idxz =
{1,13,27} and idxz = {5, 19,30}, and, thus, ¢ = (1, 5, 13, 19, 27, 30).
Note that c is sorted by index, not by brightness. The corresponding
reference key 1y, = (rief) is (Step ®):

i {1 ¢i € idx; (i.e. ci-th pixel is bright), @
ref ci € idxfi (i.e., ci-th pixel is dark).

In the example, 1,..¢ = 101010. Upon receiving ¢ from A, the device
D retrieves L pixel noise values from np as m = (npy[ci]). Let

my, be the median of m. Then the response of D is r = (r) that is
defined as (Step (©)):

i {1 m; > myy, (i.e., cj-th pixel is in the brighter half), 3)
r =

0 m; < myy (i.e., cj-th pixel is in the darker half).

In the example, r = 101010, which matches r;. . The adversary’s
np has bright and dark pixels at different locations, and so the
generated r will not match.

Finally, D is authenticated if HD(r, 1) < HD;p, where HD is
the hamming distance (HD) function as the similarity metric, and
HD,}, is a threshold to discriminate legitimate r from illegitimate
r. The threshold is set higher than the maximum intra-sensor HD
(between the same image sensor) but lower than the minimum
inter-sensor HD (between two different sensors). Note that the
overhead of the enrollment is finding the maximum and minimum
pixel values from Nj, blocks, and the overhead of the authentication
is partitioning L pixels into bright half and dark half, which are all
computationally lightweight (linear complexity). Also, since idxy,
idx4, and c are very short, the communication overhead is minimal.

4.3 Sensor Aging and Defect Compensation

As an image sensor ages, defective pixels, such as dead pixels (stuck
at the minimum value) and hot pixels (stuck at the maximum value),
may appear. Since defective pixels increase over time, a bright
pixel (indexed by idx;) may become a dead pixel, and, similarly, a
dark pixel (indexed by idx;) may become a hot pixel, which will
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Figure 5: Experimental setup: (a) Smartphones and image

sensors. (b) Constant temperature chamber used for temper-
ature control.

result in a higher HD during authentication. In order to compensate
defective pixels, we select Ny, more pixels than necessary in the
enrollment phase and exclude pixels from idx; and idx; as they
become defective. We determine a pixel indexed by c¢; is defective
if ri of # r! in multiple successful authentication attempts in a row.

If idx;, or idx; becomes shorter than L/2, D has to enroll again.
However, the growth of defects is very slow, typically less than
few pixels a year in moderately used sensors [8]. Therefore, re-
enrollment will not be necessary for several years with a small Ny,
even if all defects occur in the selected pixels. In practice, the defects
will randomly occur across millions of pixels, and re-enrollment
will not happen in the practical lifetime of the sensor.

4.4 Multiple Challenge-Response Pairs

CaMPUF is a weak PUF that can generate a limited number of
CRPs. While the proposed enrollment procedure generates only a
single CRP per sensor, it can be easily extended to generate more
CRPs, which is helpful when one of the CRPs is compromised and
should be replaced. To generate M CRPs, instead of selecting only
one brightest pixel or one darkest pixel per block, we select M/2
unclustered brightest pixels and M/2 unclustered darkest pixels
per block, which will produce a longer idx; and idx4. For example,
to generate 100 CRPs from a 12-megapixel sensor, we select 50
brightest pixels and 50 dark pixels per block, which are about 0.2%
of the entire pixels when L = 256. Selecting more pixels will slightly
increase the possibility of bit-flips since the margin between the
bright pixels and dark pixels becomes narrower, but modern image
sensors have enough number of pixels for generating multiple CPSs
without a significant reliability issue. In this paper, we focus on the
single-CRP implementation.

5 EXPERIMENTAL VALIDATION

We implement CAMPUF on COTS image sensors to evaluate its
performance as a device authentication method and demonstrate
its robustness against attacks using publicly shared images.

5.1 Experimental Setup

We implement CAMPUF on two Android smartphones, Google
Nexus 5X and Google Nexus 5. The image sensors used in these
smartphones are Sony IMX377 (12-megapixel) and Sony IMX179
(8-megapixel), respectively. Five identical sensors (numbered #1
through #5) per each sensor model are used, as shown in Figure 5(a).
We developed an application using the Camera2 API to obtain raw
and JPEG images. When taking raw images, the ISO sensitivity is
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Figure 7: Uniqueness and robustness evaluation: (a) Intra-
and inter-sensor HDs for varying number of averaged
frames (Ny). (b) Intra-sensor HDs for varying enrollment
and authentication temperatures.

set to the maximum and the shutter speed is set to the slowest speed
to maximize the strength of DSNU. The lens is covered with a thick
black cloth. A constant temperature chamber, shown in Figure 5(b),
is used to change and control ambient temperature. The key length
L is 256 in all experiments.

5.2 Uniqueness and Robustness of Keys

We first evaluate DSNU-based keys in terms of uniqueness (i.e., high
spatial randomness) and robustness (i.e., low temporal randomness
and low temperature dependence).

Figure 6 shows three (out of five) pairs of challenges ¢ and ref-
erence keys Tref of three IMX377 sensors at room temperature.
The number of averaged frames Ny is set to 10. Taking 10 frames
takes less than a few seconds and, as we will show in this section,
produces very stable keys. Each challenge map shows the locations
of 128 bright pixels (in red circles) and 128 dark pixels (in blue
squares) on an H X W frame. Each corresponding reference key
is represented as a 16X16 bitmap, where red and blue dots denote
bit 1’s and bit 0’s, respectively. Both the challenges and reference
keys do not show any visually noticeable patterns. Note that, since
c is the linear pixel indices, not the block indices, the locations of
the blocks in the challenge map are not directly mapped to the key
bitmap. The average inter-sensor HD between all pairs among five
IMX377 is 0.505, and the minimum and the maximum are 0.477
and 0.531, respectively. The average, minimum, and maximum HD
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between all pairs of the five IMX179 are 0.521, 0.477, and 0.570, re-
spectively. The inter-sensor HDs close to 0.5 suggest that CAMPUF
generates a unique key for each sensor.

Figure 7(a) shows the distributions of intra- and inter-sensor HD
for different numbers of averaged frames Nf. For each sensor, the
reference key r,.s is generated with Ny = 10 and the responses r
are generated with 1 < Ny < 5. The margin between the intra- and
inter-sensor HD becomes wider as Ny increases because temporal
noise is suppressed more effectively. Averaging more than five
frames (Ny > 5) does not improve the margin further. The margin
is wide enough that no overlap between the intra- and inter-sensor
HD is observed even for Ny = 1. The result shows that CAMPUF
does not suffer from temporal noise and requires only a few frames
for fast authentication.

Finally, we show that the DSNU-based keys are also robust
against the change of ambient temperature. Figure 7(b) shows the
intra-sensor HD for IMX377 sensor #1 when the enrollment and
authentication take place at different temperatures. We captured
20 frames each at 25°C, 35°C, and 45°C. Three challenges are gen-
erated with Ny = 10, and 10 responses are generated with Ny = 2.
The intra-sensor HD is highest when it enrolls at 45°C and is au-
thenticated at 25°C, but the HD is still under 0.1, which is clearly
discriminated from inter-sensor HD near 0.5. This result confirms
that CAMPUF is robust against the change of ambient temperature.

5.3 Authentication Evaluation

In order to verify CAMPUF as a device authentication method, we
demonstrate that it successfully identifies individual sensors of the
same model. Five IMX377 and five IMX179 sensors are used, and
they are compared only within the same model because discriminat-
ing different models are more obvious. For each sensor, 50 frames
are obtained at room temperature. Among them, 10 frames are used
for generating the challenge ¢ with Ny = 10, and the rest 40 frames
are used to generate 20 responses r with Ny = 2.

Figure 8(a) shows the distributions of the intra- and inter-sensor
HDs among five IMX377. The intra-sensor HDs and the inter-sensor
HDs are clearly discriminated from each other by a wide HD margin
of 0.438. Figure 8(a) also shows the HD matrix, where each cell
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represents the average HD between r,.¢ and r of 25 pairs in the
sensor-to-sensor comparison. The diagonal cells of the matrix show
the intra-sensor HDs, while the upper and lower triangular matrices
show the inter-sensor HDs. It is also clear from the matrix that
CaMPUF can identify the legitimate sensors from others. Figure 8(b)
shows the same experimental results obtained from IMX179. The
margin between the intra- and inter-sensor HDs is 0.461.

5.4 Attack Using Shared Images

As discussed in Section 1, the most probable vulnerabilities of Cam-
PUF is counterfeiting using publicly shared images captured by
the victim’s smartphone. The adversary may attempt to install mal-
ware to capture a raw image, but we assume the smartphone itself
is protected by other means. Fortunately, CAMPUF is inherently
safe mainly for two reasons. First, DSNU is not extractable from
illuminated natural images because PRNU becomes the dominant
noise under illumination. CAMPUF extracts a key from dark frames
that are hardly, if not never, shared on SNS. Second, as described
in Section 4.1, only the high-frequency components of DSNU are
used for key generation, which are largely discarded during JPEG
compression. This is a second measure of defense to prevent the
adversary from extracting the key from underexposed flat images.
Unless a dark frame is shared in raw format, the key remains safe.

To verify the security against counterfeiting, we assume an ad-
versary who can obtain multiple natural images and flat images
taken by the victim. We captured multiple very similar images of a
classroom, desktop objects, the dark night sky, and a white plain
wall using IMX377 sensor #1, as shown in Figure 9. The ISO sensi-
tivity and the shutter speed are set automatically by the application,
and the JPEG quality factor is set to 95, 85, and 75. We obtained 50
images for each scene per quality factor. We first convert the im-
ages to grayscale. Then, unlike the fingerprint extraction described
in Section 4.1, we subtract the denoised image before averaging
because the offset of each image is different. The noise residuals
are calculated for each image and averaged pixel-wise. We generate
five keys by averaging 10 noise residuals per key.

Figure 9 shows the average inter-sensor HDs between the ref-
erence key (generated from raw reference frames) and the five
illegitimate responses generated from the JPEG images. The results
show that the JPEG-derived keys are not significantly affected by
the image contents nor the quality factor. The HDs are all between

0.46 and 0.54 regardless of the quality factor and are significantly
greater than the maximum intra-sensor HD shown in Section 5.2.
The key generated from the high-quality night sky images is the
closest match, but its HD is still as high as 0.466. As a result, the
adversary’s device will not be authenticated even if a key derived
from JPEG images captured by the legitimate sensor is submitted.

6 CONCLUSIONS

We presented CAMPUF, a CMOS image sensor-based PUF that ex-
ploits the spatial randomness of DSNU noise, which has unique ad-
vantages over previous PRNU-based approaches. A low-complexity
authentication method with minimal computation and communica-
tion overheads is proposed for use in low-power mobile devices. We
implemented CAMPUF using real smartphones and demonstrated its
robustness against temporal and environmental variations. We also
demonstrated that it is secure against counterfeiting using publicly
shared images, even if the adversary can obtain a large number of
similar high-quality flat images. In our experiments, CAMPUF was
able to reject all illegitimate keys generated from a different sensor
or from JPEG images. CAMPUF will be a promising mobile device
authentication technique that is immediately applicable since it
works with any commercially available CMOS sensors in mobile
devices with only simple implementation in software.
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