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Diagonal Component Expansion for Flow-Layer Placement
of Flow-Based Microfluidic Biochips

BRIAN CRITES, KAREN KONG, and PHILIP BRISK, University of California, Riverside

Continuous flow-based microfluidic devices have seen a huge increase in interest because of their ability to

automate and miniaturize biochemistry and biological processes, as well as their promise of creating a pro-

grammable platform for chemical and biological experimentation. The major hurdle in the adoption of these

types of devices is in the design, which is largely done by hand using tools such as AutoCAD or SolidWorks,

which require immense domain knowledge and are hard to scale. This paper investigates the problem of auto-

mated physical design for continuous flow-based microfluidic very large scale integration (mVLSI) biochips,

starting from a netlist specification of the flow layer. After an initial planar graph embedding, vertices in the

netlist are expanded into two-dimensional components, followed by fluid channel routing. A new heuris-

tic, DIagonal Component Expansion (DICE) is introduced for the component expansion step. Compared to

a baseline expansion method, DICE improves area utilization by a factor of 8.90x and reduces average fluid

routing channel length by 47.4%.
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1 INTRODUCTION

This paper studies the problem of automated physical design (placement and routing) for the flow
layers of microfluidic very large scale integration (mVLSI) chips. At present, both layers are man-
ually designed using software such as SolidWorks or AutoCAD. Manual design is tedious, error-
prone, and unlikely to scale as integration densities increase. mVLSI physical design is challenging
because components are heterogeneous in terms of size and dimensions and can be placed at any
location and with any orientation on the chip. This is distinct from semiconductor VLSI which fol-
lows standard design rules [12] and where standard cells have a uniform height and are placed in
rows; thus, established physical design techniques cannot easily be adapted for mVLSI technology.
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Fig. 1. Cross-section of a pressure-actuated microvalve fabricated using multilayer soft lithography [19].

Laboratories-on-a-chip (LoCs) based on continuous fluid flow microfluidics are widely used for a
variety of biochemical applications. Through automation and miniaturization, LoCs offer the ben-
efits of higher throughput, lower reagent usage, and reduced likelihood of human error compared
to traditional benchtop chemistry methods. Although LoCs are widely used for biological research
and are starting to gain traction in the diagnostics and biotechnology industries, they presently
lack a design science comparable to the rapidly maturing field of electronic design automation
(EDA).
Modern LoCs integrate hundreds or thousands of externally controllable microvalves [1, 5, 13,

19]. Figure 1 illustrates one representative microvalve technology based onmulti-layer soft lithog-

raphy [19]. Here, two layers of a flexible polymer substrate called polydimethylsiloxane (PDMS) are
mounted on top of a rigid substrate (e.g., a glass slide): The flow layer on the bottom manipulates
biological fluids of interest, while the control layer above provides actuation capabilities from an
external pressure source. The microvalve is formed where a control channel on one layer crosses
a flow channel on another layer. By default, all microvalves are open; pressurizing a control chan-
nel closes the microvalves that it drives. Larger components, such as pumps, mixers, switches,
multiplexers and demultiplexers, memories, etc. can be constructed as an interconnected network
of microvalves [13]. At present, successful multi-flow-layer mVLSI chips have not been demon-
strated, requiring that the placement and routing of all flow components and connections be done
on a single layer. Since inadvertent fluid mixing would invalidate any biological experiment, it is
necessary for the components and channels to not overlap or intersect, a concept in graph theory
known as graph planarity.

1.1 Motivating Example

Figure 2(a) shows an LoC that was designed manually and published in 2006 [20]. The approach
advocated here is to start with a language-based specification of the chip, e.g., using microfluidic

hardware design language (MHDL) [10], which is then compiled into a netlist, represented by a
graph. To produce the layout, the first step is to compute a planar embedding of the graph as shown
in Figure 2(b), which yields a planar layout with single points representing the components. For
this particular netlist, two components, a rotary mixer and a memory, are considerably larger than
I/Os and microvalves. Given this layout, expanding the vertices to represent the actual dimensions
of the components creates an illegal layout, as shown in Figure 2(c), due to multiple components
and fluid channels overlapping. To legalize this placement, many of the componentsmust bemoved
to new positions to accommodate the fully expanded mixer and memory, as shown in Figure 2(d),
while trying to maintain as much of the original planar embedding as possible. The final step is to
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Fig. 2. (a) A programmable mVLSI LoC laid out manually [20]; (b) planar embedding of a mVLSI netlist rep-

resentation of the LoC where no components or routes overlap or intersect, making it planar; (c) component

expansion after planar embedding yields an illegal mVLSI layout, where several microvalves and IO ports

overlap with the expanded memory and mixer components; (d) shifting the positions of expanded compo-

nents yields a legal mVLSI layout, which is larger but similar to the original planar embedding; and (e) the

legal mVLSI layout after routing and port recovery, with valid port-to-port connections.

identify the locations of I/O ports on the perimeters of the expanded components, and to route fluid
channels to the I/O ports, as opposed to the centroids of the components, as shown, in Figure 2(e).
This process produces a legal, although not necessarily optimal, flow layer design.

1.2 Contribution

This paper introduces a heuristic approach for component expansion which transforms a planar
graph embedding (e.g., Figure 2(b)) into a legal mVLSI layout (e.g., Figure 2(d)) by judiciously
shifting the location of vertices in the planar layout as each vertex is expanded into a component.
This heuristic is evaluated in the context of an algorithmic design flow first proposed by McDaniel
et al. [9]. The component expansion heuristic presented here improves mVLSI area utilization by a
factor of 8.90x and reduces average fluid routing channel length by 47.4% compared to McDaniel
et al.’s baseline.

2 PRELIMINARIES

2.1 mVLSI Netlist Representation

An mVLSI netlistM = (C,E) is a set of components C and the fluid channels E that connect them.
Typical mVSLI components include microvalves and input/output ports, as well as larger compo-
nents constructed hierarchically from multiple microvalves and channels (e.g., mixers, memories,
etc.). Each edge (ci , c j ) ∈ E represents a fluid channel that connects components ci and c j . This rep-
resentation treats intersection points where multiple channels converge as components (switches),
enabling a graph, rather than hypergraph-based, representation.
Component ci ∈ C is a tuple ci = (Pi ,xi ,yi , li ,wi ): Pi is the set of ports (locations on the perimeter

of ci to which fluid channels can connect), (xi ,yi ) is the coordinate of the upper left corner of ci
after placement, and li and wi are ci ’s length and width; non-rectangular components, such as
circular mixers, are approximated by rectangular bounding boxes. Each port pi, j ∈ Pi is located
at position (xi, j ,yi, j ) on the perimeter of ci . The dimensions of each component and locations of
each port on its perimeter are provided in a component library.
Fluid channel ei ∈ E is a tuple ei = (c j ,pj,k , cm ,pm,n , Si ), which indicates that ei connects adja-

cent components c j and cm through respective ports pj,k ∈ Pj and pm,n ∈ Pm ; Si is a sequence of
points representing a routing path from port pj,k to pm,n .

During the layout process, the placer determines the location (xi ,yi ) of each component ci ∈ C
while the router determines the path S j for each edge ej ∈ E; given placement information for each
component, the location of the ports on its perimeter can be derived deterministically.
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2.2 Planar Graphs and mVLSI Netlists

A graph can be viewed as a degenerate mVLSI netlist in which components are reduced to points,
i.e., their areas and ports are ignored. A graph is planar if it can be embedded in the plane, i.e., if
it can be drawn in such a manner that edges only cross at their endpoints. Embedding a planar
graph provides the (xi ,yi ) coordinates for each component ci and a routed path S j for each edge
ej . Every planar graph admits a straight line planar embedding which enforces the property that
each routed path S j degenerates to a single line segment.
Planarity and straight-line planarity readily extends to mVLSI netlists. In a legal mVLSI em-

bedding, placed components cannot overlap one another, routed fluid channels cannot intersect
placed components or one another, and each routed fluid channel must connect to appropriate
ports of its incident components.

2.3 Planar mVLSI Layout

This section summarizes a planar mVLSI embedding algorithm proposed by McDaniel et al. [9].

2.3.1 Planar Graph Embedding. The input is a mVLSI netlist M = (C,E), which is initially
treated as a graph in its degenerate form where components are points and ports are ignored.
Non-planar graphs are first planarized by introducing switches and additional control lines [18];
all of our benchmarks are planar (as are real-world mVLSI LoCs), so our implementation presently
omits this step. The next step is to compute a planar embedding of the graph; in principle, any
algorithm can be used. McDaniel et al. use the Chrobak-Payne planar embedding algorithm [2],
which has a publicly available implementation in the Boost Library1. This places each component
ci at location (xi ,yi ) in a two-dimensional grid.

2.3.2 Component Expansion. Components are sorted by their x-coordinates such that ci is to
the left of ci+1, and are processed from left-to-right. Each component c j , j > i is shifted right by
li to make room for ci ’s horizontal expansion. The process then repeats in the vertical direction,
with components shifted vertically by wi . This process updates the (xi ,yi ) coordinates of each
component and ensures that there is no overlap following placement.

2.3.3 Flow Channel Routing and Port Assignment. Simultaneous flow channel routing and port
assignment is modeled as a min-cost network flow problem [22]. The problem formulation ensures
that routed flow channels do not overlap or inadvertently intersect. Although we lack a formal
proof that routability is guaranteed, this algorithm successfully routed all of the benchmarks used
in our experiments. This process computes the routing path S j for each edge ej , including the choice
of ports on each end of the path. While some components require specific ports to be assigned
for functional reasons, many others can be connected using an arbitrary port, since they operate
the same irrespective of the direction of the fluid flow. This routing method supports specific
port pre-assignment by restricting the flow network to connect exclusively to a pre-assigned port;
this feature was not necessary for the benchmarks used in this paper, i.e., in our experiments, all
components allow the router to freely chose ports.

3 DIAGONAL COMPONENT EXPANSION (DICE)

This section introduces DIagonal Component Expansion (DICE), which works far better in practice
than the original component expansion algorithm outlined in Section 2.3.2. As it’s name suggests,
DICE tends to place components on a diagonal axis from the upper left corner of the chip to the

1http://www.boost.org.
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Fig. 3. (a) After diagonal expansion, line segment l0 connects the upper-left corner of the leftmost component

to the lower-right corner of the rightmost component; line segments l1 and l2, parallel to l0, constrain the

chip width; (b) the mVLSI chip is defined as a diagonal rectangle along the diagonal axis parallel to l0; (c) the

chip area expands (blue) after routing; (d) the chip is rotated so that it’s length is parallel to the x-axis; (e)

an mVLSI mold containing multiple copies of the chip layout.

lower right corner, yielding a compact, yet routable, layout. After a brief overview, we provide a
detailed description of the DICE heuristic.

3.1 Overview

Figure 3 depicts the DICE process. Given a placed mVLSI chip with components expanded diago-
nally, let dl0 be the diagonal line segment from the top left component’s upper left corner to the
bottom right component’s bottom right corner, as shown in Figure 3(a). The length of dl0 is the
length of the placed (but not yet routed) mVLSI chip along the diagonal axis. The next step is to
calculate upper and lower bound lines, dl1 and dl2, which are parallel to dl0, and of equal length, as
shown in Figure 3(b). This can be done quickly by iterating through the lower-left and upper-right
corners of each component. Ignoring routing, the width of the resulting chip is the perpendicular
distance between dl1 and dl2.
The last step is to route the fluid channels, trying to constrain them to the rectangular form factor

along the diagonal axis. As shown in Figure 3(c), routing may increase the length and width; in
the worst case, the expansion is proportional to |E |, the number of fluid channels and the spacing
between them. The result remains rectangular. As shown in Figure 3(d), it is possible to rotate the
chip layout to lie along the horizontal axis. This is allowable because mVLSI layout tools impose no
constraints on the size, position, or rotational orientation of components. It is possible to “draw”
the chip with either orientation in SolidWorks or AutoCAD.
Figure 3(e) depicts a mold containing multiple copies of the chip layout; this one can fabricate 8

copies of the same chip. Reducing the chip area increases the number of chips per mold; although
a detailed description of mVLSI fabrication is beyond the scope of this paper, it suffices to note
that the fabrication process itself lacks economies of scale.

3.2 Component Selection via Circular Propagation

DICE selects components one-by-one for expansion, expanding each point into a two-dimensional
component. Components are processed inCircular Propagation order, as shown in Figure 4. The ori-
gin, (0, 0), is the upper left corner. Components are expanded in non-decreasing order of their dis-
tance from the origin. Equidistant components lie on a circle centered at the origin; as a tiebreaker,
equidistant components are processed in increasing order of their y-coordinates.

3.3 Diagonal Expansion

Diagonal Expansion (pseudo code in Figure 1) tries to minimize the necessary increase in chip area
due to component expansion.
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Fig. 4. Component selection by circular propagation. Components are selected in increasing order of sub-

script.

Let c j denote the component selected for expansion. DICE calculates a shift factor in the x- and
y-directions for each component ci in the regions inside, above, or to the left of c j ’s expanded two-
dimensional area. The shift factor in the x-direction, δx = x j + lj − xi , is the distance between ci ’s
x-coordinate and c j ’s right edge (Figure 5(a)); the shift factor in they-direction, δy = yj +w j − yi , is
the distance between ci ’sy-coordinate and c j ’s bottom edge (Figure 5(b)). DICE takes themaximum
calculated δx and δy as the shift factors in the x and y directions, ∆x and ∆y (Figure 5(c)). The last
step is to reposition components to remove overlap. Each remaining component in ck ∈ C,k > j is
shifted to the right by ∆x and downwards by ∆y (Figure 5(d)). If routability is a concern, a constant
∆buf can be added to ∆x and ∆y to add extra buffer space to assist the fluid channel router. The

ALGORITHM 1: Diagonal Expansion Algorithm

Input: C := set of components in the system, ∆buf := minimum component spacing

Output: All ci ∈ C placed with no overlap

for ci ∈ C do
C ← C \ {c j }

∆x ← 0, ∆y ← 0

ci .expand_component ()

for ci ∈ C do

if ci .inside_le f t_or_above (c j ) then
δx ← xi + li − x j
δy ← yi +wi − yj
if δx > ∆x then

∆x ← δx
end

if δy > ∆y then
∆y ← δy

end

end

end

for ci ∈ C do
xi ← xi + ∆x + ∆buf
yi ← yi + ∆y + ∆buf

end

end
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Fig. 5. DICE example: (a)-(c) Computation of ∆x and ∆y ; (d) each non-expanded point is shifted accordingly.

new coordinate for component ci is (xi + ∆x + ∆buf ,yi + ∆y + ∆buf ). These shifts will spread the
components along the device diagonal, leaving the majority of the component’s ports unblocked
by other components and free for use in routing.

3.4 Diagonally-Constrained Channel Routing

Figure 6(a) shows a legal fluid channel routing solution following DICE; only the routes that cross
the boundary of the diagonal envelope from Figure 3(b) are shown. These routes are minimum
length under the assumption that only horizontal and vertical directions may be used; however,
they unnecessarily extend the chip area.
Diagonally-constrained routing re-routes the fluid routing channels that cross l1 and l2. As shown

in Figure 6(b), the new routes run parallel to l1 and l2 while obeying spacing rules. If diagonal routes
are not allowed, these routes can be approximated using a zig-zag pattern. The expansion in chip
area depends on the number of re-routed channels, channel width, and foundry-imposed spacing
rules between channels.
Since the mVLSI layout is planar, no edges that cross the diagonal chip boundaries overlap,

and each crossing edge crosses twice. It suffices to order the crossing edges by the positions of
their crossing points along the chip boundary; they can be routed optimally using the Left Edge
Algorithm [6]. From there, the resulting mVLSI chip can be cut and rotated as shown in Figure 3(c)
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Fig. 6. An mVLSI netlist laid out using DICE with (a) unconstrained routing; and (b) diagonally constrained

routing. Only routes that cross the diagonal boundaries are depicted.

and 3(d). The high degree of routability provided by diagonal expansion, coupled with its ability
to re-route channels along the diagonal axis, reduces the space needed to fully place and route a
chip. This tends to improve area utilization and decreases reduce flow channel route length.
However, it is possible for a placement to be generated that cannot yield a valid channel rout-

ing; either while routing the flow layer, or when routing the control layer. When either the flow or
control layer fails to route then the current partial route is removed, the constraints used to gen-
erate the original placement are relaxed, and the netlist is re-placed. This process can then repeat
as necessary until the flow and control layers are validly routed.

4 BASELINE HEURISTICS

This section introduces two alternative methods for component expansion which we use as base-
lines for comparison with DICE in the following section. When expanding a component, each of
these methods attempts to identify a single expansion factor that can be applied to all not-yet-
expanded points in the netlist. The methods produce inferior results, but are described here for
completeness.

4.1 Shift Expansion

Let ci be the component currently being expanded, and assume that C contains only those com-
ponents that have not yet be expanded. The basic premise is to shift the position of component
c j ∈ C by an amount that is proportional to the distance between c j and ci in thex- andy-directions,
which moves the component c j out of the expansion area of ci with a smaller shifting factor than
in [9]. To do this, shift expansion computes shift factors dx and dy which are applied to each com-
ponent c j , shifting it to position (x j + |x j − xi | × dx ,yj + |yj − yi | × dy ); the shift may include an
additional term, ∆buf , to add additional spacing if routability is a concern.
The position of component ci is represented by coordinate (xi ,yi ) at its upper left corner; the

length and width of ci after expansion are li andwi respectively. To compute dx and dy (Figure 7(a)
and 7(b) respectively) the algorithm selects three not-yet-expanded components, cf , cд , and ch ,
which are the points lying closest to ci in the respective regions above, inside, and to the left of
ci ’s expanded component. The algorithm scales length li and width wi by the differences in the
x- and y- coordinates between ci and the three selected points, yielding terms dx,f , dx,д , and dx,h
in the x-direction, and dy,f , dy,д , and dy,h in the y-direction; dx and dy are then selected as the
respective maximum values between the two sets of three terms and the components are sifted by
the same factor x- and y− directions (Figure 7(c)).
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Fig. 7. Shifted Expansion example: (a)-(b) Computation of dx and dy ; (c) each non-expanded point is shifted

based on dx , dy and its distance from the expanding component.

4.2 Scaled Expansion

The Scaled Expansion expands upon Shifted Expansion and tries to find the smallest global scale
factor that can remove component overlap from the initial placement. The algorithm checks each
possible integer scale factor in the x- and y-dimensions until a valid placement (including any
buffer spacing) is found.
Scaled expansion begins with integer scale factors of 2 in the x- and y-dimensions. For com-

ponent ci ∈ C , the algorithm multiplies xi by the x-dimension scaling factor, scalex and yi by the
y-dimension scaling factor, scaley . The algorithm then determines if any two components overlap.
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If so, the algorithm reverts each component ci back to its initial location, (xi ,yi ). If a valid place-
ment is not found in either the x- or y-dimension, the algorithm increments the scaling factor(s)
and repeats the process until no overlap occurs.

5 MVLSI PLACEMENT METRICS

Although mVLSI technology and its underlying physical design processes share many princi-
ple similarities with semiconductor VLSI, there are also important differences which cannot and
should not be ignored. Prior work has mistakenly evaluated the quality of mVLSI layouts using
semiconductor metrics such as area and wirelength (fluid channel length) as proxies for good
quality layouts. Although we report these metrics in the next section for the purpose of enabling
direct comparison with prior work, we do so with reservations. Without considering the larger
context, these metrics are fundamentally flawed, as they do not account for the factors that influ-
ence performance (bioassay execution time) or the differences between semiconductor and mVLSI
fabrication processes, economies of scale, etc. In short, they are not nearly as important as prior
papers that have emphasized optimization and (near-)optimality claim them to be.

5.1 Area

In semiconductor VLSI, chip area correlates directly to cost (number of chips per wafer) and indi-
rectly to performance (reducing area may, in some cases, reduce the lengths of the longest wires
routed on-chip). One cannot understand the relationship between mVLSI area and cost without
first understanding the fabrication process. The key takeways from the discussion which follows is
that only dramatic reductions in mVLSI chip area will increase the number of chips per wafer, and,
as we will discuss in the next section, mVLSI chip area has practically no impact on performance.
Each layer of an mVLSI chip is fabricated separately, and layers are only bonded together late

in the fabrication process. The key objective of mVLSI fabrication is to imprint a pattern (flow and
control channels) in each layer. This is done by creating a mold through a lithographic process,
which sits atop a standard silicon wafer, typically 150mm or 200mm in diameter. Liquid poly-
dimethylsiloxane (PDMS) is poured on top of the mold, after which it is spun (for consistency),
degassed (to remove air bubbles), and baked (to solidify). The solidified PDMS is then removed
from the mold, and the corresponding layer of each chip can be cut out, e.g., with an xacto knife
(or an automatic cutter). For a multi-layer chip, the flow and control layers must then be aligned
under a microscope and placed on a glass slide; then they are baked for bonding. Once the bonded
chip is cooled, it is aligned, once again under a microscope, to punch I/O holes. Prior to use, the
chip must be tested to ensure that it is defect-free.
This fabrication process lacks the economies of scale that are present in semiconductor man-

ufacturing. In an academic setting, the most labor-intensive steps are alignment, hole punching,
and testing, which are often performed by PhD students or postdocs. If a fixed number of chips
(say 100) need to be fabricated and tested to produce statistically robust results for a publishable
paper, then the cost driver is not the number of chips per wafer but the manual labor involved.
Thus, area minimization (within reason) is far less important than producing a functionally cor-
rect layout. These issues have also hampered industrial adoption of mVLSI technology; industrial
preference is strongly biased toward passive devices (no valving) using fabrication processes such
as injection molding or glass etching. The purpose of this statement is not to disparage academic
efforts on mVLSI design automation; it is simply to place the work in its appropriate context.
The number of mVLSI chips per mold depends on wafer size (mold size) and chip size. For large

and complex mVLSI chips, the number of chips per mold may be relatively small (e.g., 10 or less);
these are, of course, the most challenging chips to lay out algorithmically. For a given chip design,
a significant reduction in area through more effective physical design could, in principle, free up
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Fig. 8. Two intersecting edges resulting from a non-planar routing solution (a) can be planarized by inserting

a vertex (b), which corresponds to a 4-valve mVLSI switch at the channel intersection point (c).

enough space to add another chip to the mold; on the other hand, incremental reductions in area
that do not increase the number of chips per mold will simply reallocate area from the device to
the extra PDMS that is cut away and discarded. As placement algorithms become increasingly
effective, incremental improvements in the 1−2% range (which would certainly be valuable in
semiconductor VLSI) are likely to have minimal impact, outside of rare corner cases. Thus, it is fair
to question the utility and practicality of long-running and optimal and near-optimal algorithms
such as those based on Integer Linear Programming [18] or SAT solving [4].

5.2 Routing Channel Length

In semiconductor VLSI, channel length can directly affect clock frequency, power dissipation and
signal integrity; these are non-issues in mVLSI. mVLSI chips are not aggressively clocked; they
do not consume power directly, as fluid is driven by external pressure sources, which are typi-
cally plentiful in biological laboratories; and fluid transport integrity issues are minimized due to
pumping (this issue is much more challenging and prevalent for passive device designs, which is
beyond the scope of this paper).
Reducing fluid channel length can reduce fluid transport times; however, in microfluidics, bioas-

say execution time is typically dominated by biological phenomena (e.g., culturing cells), and in
any given scenario, the biological phenomena may or may not be dominant when considering the
entire end-to-end workflow of the laboratory. Thus, the performance motive to shave a few sec-
onds from a process that may take hours or days is questionable at best. Any claim that reducing
fluid channel length is integral to mVLSI chip performance is spurious.
There is, however, one benefit that can be accrued by reducing fluid channel lengths. The key

issue is that fluid is transferred in continuous flows, not discrete packets. Thus, reducing fluid
channel lengths can reduce the total volume of fluid required to perform a bioassay. This can lead
to tangible cost savings when dealing with limited sample volumes and expensive reagents.

5.3 Fluid Channel Intersections

Microfluidic chips are typically I/O limited, including both fluid and control. For example, the Stan-
ford Microfluidic Foundry limits the number of I/Os to 35 as a design rule2. This has implications
for layout constraints on mVLSI chips.
mVLSI chips are planar by definition. A non-planar layout can be planarized by inserting a

switch at each point where two channels cross one another [18] (Figure 8); each switch requires
four valves with two independent controls; a set of switches may share controls if they do not

2http://web.stanford.edu/group/foundry/Basic%20Design%20Rules.html.
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operationally interfere with one another. The insertion of switches may negatively impact
performance, as fluid flowing through switches must be serialized, and the switches must be
decontaminated by rinsing after each fluid transfer. Thus, it is generally preferable to mini-
mize the number of switches that must be inserted during layout, even within the scope of
foundry-imposed design rules.
Our experimental evaluation considers planar netlists exclusively3. In our opinion, any layout

method that inserts switches should be considered inferior to one that does not, before considering
any other optimization criteria other than functional correctness.

6 EXPERIMENTAL RESULTS

DICE was implemented in C++ using the algorithmic framework summarized in Section 2.3. The
framework employs a unitless grid, which decouples the layout and design rule checking processes
from the manufacturing resolution of any one specific mVLSI technology [12]. From the layout,
we can easily count the number of switches inserted (if applicable), measure area (and/or area
utilization) and (gridless/normalized) fluid channel length, and convert the resulting layout to a
technology-specific grid. From there, we can lay out one or more instances of an mVLSI chip (or a
heterogeneous set of chips) on a silicon wafer/mold of a known size.

6.1 Experimental Comparison

We compare six different mVLSI layout algorithms, including two variants of DICE. We briefly
summarize these methods here.

• Simulated Annealing (SA) refers to the simulated annealing algorithm proposed by Mc-
Daniel et al. [11], which uses Hadlock’s Algorithm for channel routing. SA cannot guarantee
a planar layout for planar netlists; all other methods included here provide this guarantee.

• Baseline Expansion (BaseEx) refers to the component expansion method proposed by
McDaniel et al. [9] (summarized in Section 2.3.2).

• Shift Expansion (ShiftEx) replaces BaseEx’s component expansion step with Shift Ex-
pansion (Section 4.1).

• Scaled Expansion (ScaleEx) replaces BaseEx’s component expansion step with Scaled
Expansion (Section 4.2).

• DICE-Unconstrained (DICE-U) replaces BaseEx’s component expansion step with DICE
(Section 3.4), implemented with unconstrained fluid channel routing (Figure 6(a)).

• DICE, implemented with diagonally-constrained fluid channel (Figure 6(b)).

6.2 Benchmarks

We obtained netlists for four real-world planar mVLSI chips that have been designed, fabricated,
and evaluated, as well as five netlists obtained by synthesizing synthetic benchmarks.
The real-world netlists are as follows:

• AquaFlex-3b & AquaFlex-5a: proprietary mVLSI LoC netlists provided by Microfluidic
Innovations, LLC.

• HIV1: a multi-layer PDMS chip that performs a bead-based HIV1 p24 sandwich immunoas-
say [7].

• MGG: a molecular gradients generator that can generate five concentration levels of a two-
sample mixture [15].

3We are unaware of any prior work on mVLSI synthesis or physical design that has evaluated non-planar netlists. In fact,

[18], which introduced a planarization method, nevertheless only evaluated planar netlists.
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Table 1. Benchmark Scale and Number of Intersections

Algorithm #
C
om

po
ne
nt
s

#
C
on
ne
ct
io
ns

SA
[1
1]

B
as
eE
X
[9
]

Sh
if
tE
x

Sc
al
eE
x

D
IC
E-
U

D
IC
E

AquaFlex-3b 14 13 25 0 0 0 0 0

AquaFlex-5a 17 16 36 0 0 0 0 0

HIV1 [11] 13 12 21 0 0 0 0 0

MGG [9] 30 38 167 0 0 0 0 0

Synthetic 1 21 21 52 0 0 0 0 0

Synthetic 2 12 11 13 0 0 0 0 0

Synthetic 3 34 33 142 0 0 0 0 0

Synthetic 4 34 33 136 0 0 0 0 0

Synthetic 5 45 45 207 0 0 0 0 0

The five synthetic benchmarks were generated by compiling a set of publicly available DAG
specifications4 through an established mVLSI architectural synthesis flow [10, 14].

Experiments were run using a buffer of 5 grid spaces for each component. Legal planar mVLSI
embeddings were obtained for all component expansion algorithms.

6.3 Results and Analysis

For each component expansion heuristic and benchmark, we report the number of channel inter-
sections (Table 1), the area utilization (Figure 9(a): the ratio of component area to total chip area
expressed as a percentage) and the average routing channel length (Figure 9(c)). Computation time
of the framework is dominated by the routing and port assignment phase (Section 2.3); varying
the component expansion heuristic made a negligible impact.

6.3.1 Channel Intersections. As was stated in Section 5.3, channel intersections necessitate the
introduction switches, which in turn, require additional control lines; these, in turn, increase chip
area, and may lead to a design rule violation of the number of switches in the netlist exceeds
found-specific limits.
Table 1 reports the number of fluid routing channel intersections for each of the layout heuris-

tics that we evaluated. The heuristics based on planar placement with component expansion, as
expected, did not introduce any new intersections, given that the input netlists were planar; SA,
in contrast, introduced numerous unnecessary channel intersections to all netlists. Consequently,
few, if any, of the netlists produced by SA could be fabricated at Stanford, which limits the number
of I/O hole punches to 35; the total number of punches would be the sum of the netlist’s initial flu-
idic I/O and control requirement, plus two additional control lines per intersection. These results
demonstrate the need to properly account for planar embedding during layout.

6.3.2 Area Utilization. Figure 9(a) reports the area utilization (i.e., the percentage of total chip
area dedicated to components and channels). DICE achieved the highest area utilization for each
benchmark, and the gap between DICE’s result and the best result of the remaining heuristics was

4https://sites.google.com/site/mlsibiochips/home.
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Fig. 9. Results reporting (a) total device are utilization, (b) the number of estimated devices that could be

fabricated on a 100mm wafter, (c) the average length of a fluid routing channel, and (d) the runtimes of each

algorithm on each benchmark.

significant in all cases. On average, DICE improves area utilization by a factor of 8.90x compared
to BaseEx and 2.64x compared to ScaleEx. SA does not peform particular well in this comparison,
except for the Synthetic-5 benchmark, where it achieves the second highest area utilization;
however, this result is built on top of 207 channel intersections (necessitating 414 control lines),
which cannot be fabricated.
Figure 6 illustrates the reason that DICE improves area utilization compared to DICE-U. DICE-U

performs routing on a square chip with a relatively long and densely packed (in terms of compo-
nents) diagonal; it finds minimum-Manhattan distance fluid channel routes, which mostly follow
simple X-Y and Y-X routing patterns with one bend. In contrast, DICE’s diagonally constrained
routing tends to reduce overall chip area. ScaleEx, in contrast, tends to generate chips with shorter
diagonals than DICE-U, leading to smaller rectangular area and higher area utilization; however,
this inhibits the effectiveness of diagonally-constrained routing. These observations explain why
DICE achieves the highest area utilization reported in Figure 6.

6.3.3 Devices PerWafer. Figure 9(b) reports the number of mVLSI flow layer devices that can be
fabricated on a mold cast on a 100mm-diameter silicon wafer using the different layout algorithms.
DICE achieves the highest number of devices per wafer for all benchmarks, with a significant gap
between the second-best performer in each case. These results correlate more or less directly with
the area utilization results shown in Figure 9(a).

6.3.4 Average Fluid Routing Channel Length. For all benchmarks in Figure 9(c), either ScaleEx
or DICE achieve the shortest average fluid routing channel length, and in most cases, the disparity
between the two is quite small. These results indicate that the initial planar embedding solution is
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quite effective in terms of limiting the fluid channel length, and ScaleEx retains those benefits by
maintaining the same relative position of components. DICE, in contrast, repositions components
in a manner that primarily improves chip area while retaining the channel length benefits of the
planar embedding. On average, DICE improves average fluid routing channel length by 47.4%
compared to BaseEx and 9.62% compared to ScaleEx.

6.3.5 Runtime. Figure 9(d) reports the runtimes of the planar layout algorithms. The runtime
of SA, it should be noted, depends on parameter configurations, and is thus variable. We used the
same SA parameter settings as in Ref. [11], which coincidentally had SA running approximately
as fast as the planar embedding methods that we evaluated here. It is also worth noting that SA
uses a router based on Hadlock’s Algorithm, as opposed to the network flow-based router used by
the planar embedding heuristics [22]. Better results, in principle, could be obtained by letting SA
run longer; that said, it seems unlikely that SA would achieve planar layouts within a reasonable
runtime.
The remaining placers typically complete in milliseconds; the router dominates the total run-

time. For a given benchmark, variations in runtime among the different layout heuristics is deter-
mined primarily on how quickly the router can obtain a valid solution. Future work may attempt
to reduce the runtime by exploring more efficient routing algorithms.

6.4 Case Study: AquaFlex-3b

As a case study, Figure 10 shows the flow layers of the AquaFlex-3b benchmark using all six place-
ment and routing heuristics. SA (Figure 10(a)) yields a non-planar layout with por area utilization;
in principle, adjusting the parameters to provide a longer runtime could yield better results, how-
ever, it is unlikely to guarantee a planar layout that could be fabricated.
BaseEx (Figure 10(b)) achieves a planar layout, which can be fabricated, but with poor area uti-

lization. Each time BaseEx expands a new component, it shifts the positions of all components that
have not yet been expanded by the expansion amount in the horizontal and vertical directions. For
example, consider two points on a common vertical axis that would not overlap if expanded.When
the first point is expanded, the second will be shifted in both directions, arguably unnecessarily.
This ensures that any horizontal or vertical line cutting through the design will intersect at most
one component. Although BaseEx preserves planarity, it does so at the expense of area utilization.
ShiftEx (Figure 10(c)) and ScaleEx (Figure 10(d)) generate similar layouts, with the latter achiev-

ing slightly better area utilization. The key to the improvement is to scale the length of the hori-
zontal and vertical shifts by the distance of the component being expanded to its nearest neighbors,
which yields shorter shift distances than BaseEx. ShiftEx retains a slight advantage over ScaleEx
because it computes a shift distance independently for each not-yet-expanded component, while
ScaleEx computes one scale factor that is applied to shift all not-yet-expanded components.
DICE-U (Figure 10(e)) achieves a tighter layout by shifting components in a manner that tends

to lay them out along a diagonal axis. Although components are clustered along the diagonal,
the length of the diagonal and total chip area is larger than the results produced by ShiftEx and
ScaleEx, and may result in long fluid routing channels whose length is equal to the Manhattan Dis-
tance between their incidental components. DICE (Figure 10(f)), which allows for diagonal routing
parallel the diagonal axis, eliminates these inefficiencies, once the chip is cut out and rotated.

7 RELATEDWORK

Prior work on mVLSI physical design falls into two categories: (1) layout of planar netlists, the
focus of this paper; and (2) techniques to simultaneously planarize non-planar netlists while em-
bedding them into the flow layer.
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Fig. 10. A comparison of the layouts of AquaFlex-3b using (a) SA, (b) BaseEx, (c) ShiftEx, (d) ScaleEx, (e)

DICE-U, and (f) DICE.

7.1 Planar mVLSI Netlist Embedding

The heuristics and experiments reported in this paper were conducted using an algorithm frame-
work introduced by McDaniel et al. [9]. This framework consistently produces planar mVLSI em-
beddings without inserting additional switches, and our experiments confirm this observation.
The compenent expansion heuristics introduced in this paper improve area utilization, average
fluid channel length, and the number of devices per wafer.
Yao et al. [23] start with a planar graph embedding, improve it using simulated annealing, ex-

pand vertices into components, and use an A* router to route flow channels. Their framework
admits non-planar flow channel crossings and does not perform port assignment either during or
before routing.
Columba [18] models mVLSI physical design as an Integer Linear Program (ILP), which provides

optimal solutions but may have scalability problems with large netlists. Columba co-optimizes the
design of the flow and control layers of an mVLSI chip, which our algorithm does not. In the
event that control layer layout fails after the flow layout is produced, we can re-generate the flow
layers with relaxed placement constraints, as mentioned in Section 3.4, which will provide more
flexibility to the control layer router. We believe that high runtimes associated with ILP solvers
will limit scalability as netlist sizes increase. A more recent approach based on SAT solving, which
generates only the flow layer, appears to suffer from similar scalability concerns [4].
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7.2 Non-Planar mVLSI Netlist Embedding

Non-planar netlists can be planarized by placing multi-valve switches at intersection points be-
tween two crossing flow channels; however, this requires extra control lines, whose number is
limited by modern design rules, such as those imposed by the Stanford Microfluidics Foundry.
This limits the ability of physical design tools to synthesize non-planar netlists of arbitrary com-
plexity. Non-planar mVLSI netlist synthesis may consider multiple objectives including minimiz-
ing the number of flow channel crossing, minimizing area, and minimizing flow channel length.
Researchers have proposed placers using simulated annealing [11, 14, 21] and iterated cluster ex-
pansion (ICE) [17]. Non-planar routing algorithms may reduce fluid routing channel length, but
do not limit the number of channel crossings [8]. These approaches are unlikely to yield workable
mVLSI chips that can be fabricated, and should not be used to lay out planar mVLSI netlists.
The problem of simultaneous mVLSI planarization and layout with minimal switch insertion is

identical to the problem of graph embedding while minimizing the number of edge crossings; the
reduction inserts switches at each cross-point, as opposed to allowing a non-planar embedding.
The decision problem of determining whether a graph can be embedded with at most K edge
crossings is NP-complete [3]. The graph drawing community has studied this problem in great
detail (e.g., see Ch. 2 of Ref. [16]); should non-planar mVLSI netlists become prevalent (e.g., due
to widespread adoption of mVLSI architecture synthesis tools [10, 14], none of which guarantee
planar netlists), then these algorithms represent a good starting point for future work on non-
planar mVLSI layout.

8 CONCLUSION AND FUTURE WORK

This paper has investigated several techniques to convert a planar graph layout into a legal mVLSI
netlist layout through the process of component expansion. Among the techniques considered, we
have discovered that diagonal expansionworks the best when coupledwith diagonally constrained
routing. That being said, two important issues remain open.
First, the experiments reported here use one specific planar embedding algorithm [2] provided

by the Boost Library; further experimentation is needed to evaluate the quality of these component
expansion techniques when used in conjunction with other planar graph embedding algorithms.
Second, since planar graph embedding algorithms are based on the premise that vertices have no
area, it may be possible to discover more effective direct placement techniques that do not start
with an initial graph embedding. We plan to investigate both of these issues in the future.
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