A Compiler for Cyber-Physical

Digital Microfluidic Biochips

Christopher Curtis
Department of Computer Science
and Engineering
University of California, Riverside
Riverside, CA 92521, USA

Abstract

Programmable microfluidic laboratories-on-a-chip (LoCs) offer
automation and miniaturization to the life sciences. This paper
updates the BioCoder language and introduces a fully static
(offline) compiler which can target Digital Microfluidic Biochips
(DMFBs), one type of programmable LoC. The language and
runtime leverage sensor integration to execute bio-assays which
feature online decision-making based on sensory data. The
compiler employs a hybrid intermediate representation (IR) that
interleaves fluidic operations with computation on sensor data.
The IR extends traditional notions of liveness and interference to
fluidic variables and operations to target the DMFB, which has
abundant spatial parallelism. The code generator converts the IR
into: (1) electrode activation sequences for each basic block in
the control flow graph; (2) a set of computations performed on
sensor data, which dynamically resolve control flow operations;
and (3) electrode activation sequences for control flow transfers.
The compiler is validated using a simulator which produces
animated videos of bioassay execution.

CcCs Concepts +Hardware—Microelectromechanical
systems

engineering— Compilers ¢ Applied

« Software and its
computing—Life and
medical sciences « Computer systems organization— Special
purpose systems

Keywords Digital Microfluidics, Domain-specific language
ACM Reference format:

Christopher Curtis, Daniel Grissom, and Philip Brisk. A
Compiler for Cyber-Physical Digital Microfluidic Biochips. In
Proceedings of 2018 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO’18). ACM, New York,
NY, USA, February 24-28, 2018 (CGO’18), 13 pages.
https://doi.org/10.1145/3168826

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
CGO’18, February 24-28, 2018, Vienna, Austria

© 2018 Copyright held by the owner/author(s).

978-1-4503-5617-6/18/02. . . $15.00

https:/doi.org/10.1145/3168826

Daniel Grissom
Department of Engineering and
Computer Science
Azusa Pacific University
Azusa, CA, 91702, USA

Philip Brisk
Department of Computer Science
and Engineering
University of California, Riverside
Riverside, CA, 92521 USA

1 Introduction

Microfluidics is the science of controlled liquid transport at
the microliter scale (and below). One application of microfluidics
is fully integrated laboratories-on-a-chip (LoCs), which
miniaturize laboratory functions previously carried out in wet
laboratories, and reduce the volume of costly biological samples
and reagents consumed during a chemical reaction; other
benefits include automation and reduced human error, as fluidic
actuation is often controlled by a computer interface, as opposed
to direct human manipulation within a larger laboratory setting.

Software-programmable LoCs (SP-LoCs), encompassing a
wide variety of technologies, have existed for more than 10 years
[1-8]. The earliest generation of SP-LoCs accepted commands
from a computer controller, but provided no direct feedback;
these SP-LoCs could execute assays (biochemical reactions) that
were arbitrarily complex in terms of the number of biochemical
steps that were performed, but otherwise lacked control flow
(i.e., dynamic decision-making).

SP-LoCs can provide online feedback to the computer
controller through integrated sensors [9-23] and/or online video
monitoring [24-29]; we refer to these SP-LoCs as being “cyber-
physical” because the online sensing creates a closed feedback
loop. Thus far, cyber-physical capabilities have primarily been
used for monitoring (e.g., precise positioning) [12, 15, 18, 23, 25-
29], and online error detection, and recovery [29-39].

Cyber-physical integration enables SPLoC programmability.
Without sensory feedback, a host PC controlling an SP-LoC can
issue commands, but cannot interpret their outcomes. With
sensory feedback capabilities, the host PC obtains the ability to
process sensory data in real-time and make decisions about
which commands to execute next. For all intents and purposes,
this is the difference between programming model with and
without control flow. In terms of compiler design, the former
permits specification of assays limited to one basic block: it may
be possible to extract parallelism among fluidic operations, but
once a schedule has been computed, the executed sequence of
fluidic operations is fully deterministic and is known statically.
In contrast, the dynamic decision-making facilitated by cyber-
physical integration is naturally encapsulated as a control flow
graph (CFG). This paper describes how to statically compile a
bioassay specified as a CFG, where fluidic operations and
computations on sensory data are interleaved.

CGO’18, February 2018, Vienna, Austria

1.1 SP-LoC Technology: Digital Microfluidics

A Digital Microfluidic Biochip (DMFB) is an SP-LoC
comprising a 2D array of electrodes [1, 40-47] (Fig. 1). A droplet
sits between a bottom substrate containing the array of control
electrodes and a top plate containing a single ground electrode.
Fig. 2. demonstrates droplet transport. On the far left, the droplet
is centered over control electrode 2 (CE2), but overlaps with
neighboring electrodes CE1 and CE3. As CE3 is activated, a
change to the electric field causes a phenomenon known as
electrowetting to stretch the droplet over the newly activated
electrode [1]. Deactivating CE2 allows the droplet to center on
the one remaining activated control electrode (CE3). DMFBs as
large as 16,800 electrodes have been reported [47].

The DMFB instruction set consists of five operations:
transport, split, merge, mix, and store (Fig. 3), as well as input
(dispense) and output (disposal, collect) operations (not shown).
Integration of sensors and actuators (e.g., heaters) extends the
instruction set, but only at locations on the chip where these
devices have been physically placed. From the perspective of
programmability and compiler design, the DMFB can be
understood as a dynamically reconfigurable spatial computing
device [50]; reconfiguration refers to the fact that different
(groups of) electrodes can perform different functions (e.g.,
mixing and storage) at different times during bioassay execution.

At the lowest level of abstraction, a DMFB is programmed
by generating a sequence of electrode activations. For example,
Fig. 4 shows a sequence that transports two droplets, originally
centered on electrodes #1 and #16, toward one another. This
sequence can be modeled as a linear synchronous finite state
machine, where the system remains in each state for a fixed
amount of time (e.g., 10ms), which, at a minimum, must be long
enough to transport the droplet from one electrode to its
neighbor. This is akin to programming a processor in binary.

The electrode actuation sequence for each operation shown
in Fig. 3 is deterministic once the electrode(s) that will perform
the operation is(are) known. Given a large bioassay, the job of
the compiler is to determine when and where each operation
occurs. From there, producing the electrode actuation sequence
is trivial, like the translation from assembly code to binary.

1.2 Motivating Example

Fig. 5 depicts an opiate detection immunoassay which is
organized as a hierarchical decision tree. The process begins
with broad spectrum immunoassays for the opiate and
benzodiazepam drug classes. A positive test branches into
specific immunoassays to differentiate morphine from heroin
and codeine and identify oxycodone [51] and fentanyl [52] with
a ciprofloxacin [53] immunoassay serving as a false positive
control. If cross-reactivity between drugs is observed, then one
can differentiate among them through their kinetic binding
parameters. We would like to specify this immunoassay using a
high-level language. Each individual test is a basic block, while
the internal control flow takes the form of a decision tree. The
positive or negative outcome of each test (sensory feedback,)
determines the next test (basic block) to execute. This paper
describes how to compile the decision tree, including the
acquisition and processing of sensory data, and how to statically
compile control flow transfers.

Christopher Curtis, Daniel Grissom, and Philip Brisk

Ground Electrode
Hydrophobic
Lay EL<Yk Droplet
Bottom
. L 7

late \ 1 /

Control Electrodes
Figure 1. (Left) A Digital Microfluidic Biochip (DMFB) is a 2D
array of electrodes [1]. (Right) A cross sectional of a DMFB
shows a bottom layer of control electrodes and a top layer
containing a ground electrode [48, Fig. 2(a),(b); 49, Fig. 1].

Ground Electrode

Ground Electrode Ground Electrode

Droplet Droplet Droplet

TIME >
Figure 2. A droplet is moved by activating (white) control
electrode 3 (CE3) and deactivating (black) CE2 [49, Fig. 2].

ENE | BN E;_.'I L] |

HUN L L] | |
Transporting @ | Storage

Figure 3. DMFB instruction set: transport, split, merge, mix, and
store. Each operation can be executed by an appropriate
electrode actuation sequence [48, Fig. 2(c); 49, Fig. 3].

— "
Sequence 1)

anaernsos | |[EKEE | - EEE BEED
1000000000000001 e CoNK . .)

C2: Activate Pins 5, 12 [[ofufeflfo]o]: U - G -
0000100000010000)

C3: Activate Pins 9, 11
Cycle 1 Cycle 2 Cycle 3

0000000010100000
State @ State
cee
@ :

N
Figure 4. Droplet transport via electrode actuation, similar to
machine language (0’s and 1’s) [48, Fig. 4].

Urine Sample

Broad spectrum
opiate panel

Splittin;
Suigiay

Negative opiate does not
preclude fentanyl (99%
likelihood) or oxycodone (88%
likelihood); run both assays

simultaneously

Heroin Codeine

immunoassay
If demographics
predict morphine,
heroin, and/or
codeine, triage
here first

Fentanyl

Morphine

Simultaneously
verify that
ciprofloxacin is
not registering as
a false positive

Ciprofloxacin

Anti-oxycodone
immunoassay

I+
(Oxycodone)
Figure 5. Motivating example: opiate-biased immunoassay
organized as a hierarchical decision tree. Feedback occurs at
decision points (+ and —), which represent different paths to
take if the outcome of each specific test is positive or negative.

Only 12% chance that
oxycodone is present; run

only if heroin negati
and ciprofloxacin negative

Each + or - symbol in Fig. 5 represents a sensor reading
which is compared against a control. This notation, which was
provided by a collaborator in biomedical engineering, can be
converted to conditional statements in a programming language.

A Compiler for Cyber-Physical Digital Microfluidic Biochips

Since the aforementioned immunoassays require an antigen
to be baked onto the top plate [54], the top plate must either be
replaced after each immunoassay is run, or a larger chip must be
used where all the enzymes are attached to a single top plate.
Replacing the top plate is straightforward and can be done by
hand, or autonomously with the help of a robotic arm; these
issues are beyond the scope of this paper.

1.3 Contribution

As a proof of concept, we extended BioCoder, a domain-
specific language for programmable biochemistry [48, 49, 55],
with control flow operations and specialized it to target DMFB
technology. We built a compiler for BioCoder, based on the
which targets a DMFB
simulator and execution engine that produces animated videos

principles outlined in this paper,
depicting real-time bioassay execution, including real-time
decisions based on sensory feedback [56]. This decouples our
exploration of fluidic compiler design principles from the
formidable challenges associated with obtaining working results
on a DMFB in a wet lab, which we leave open for future work.

(1) We
introduce a new syntax for BioCoder’s conditional operations,

This paper makes the following contributions:

which improves programmability and readability; (2) we define a
hybrid computational-fluidic intermediate representation (IR)
which is employed by our compiler; and (3) we describe the steps
that the back-end of our compiler performs to convert assays
into an executable format appropriate for execution on a DMFB.

/*
* restartExperimentDAG drains PCR mix and restarts
* refreshDAG holds replenish PCR Mix Instructions
* finishThermocycleDAG holds thermocycler instrs.
*/

//conditional expression for if
e = new BioExpression(WeightSensor,
OP_LT, MinVolumeTolerance);

//if branch
bioCond =

"if volume is to low,
bcg->
addNewCondition(e, restartExperimentDAG);
bioCond->addTransferDroplet (InitializationDAGOutputs,
restartExperimentDAGInputs);

restart experiment"

//else branch "Move to the else if branch”

bioCond = bcg->addNewCondition(NULL, elseIfDAG);

bioCond->addTransferDroplet(InitializationDAGOutputs,
elseIfDAGInputs);

//else if branch conditional
e = new BioExpression(WeightSensor,
OP_LT, VolumeTolerance);

//else if branch "if volume is low, replenish volume"

bioCond = bcg->addNewCondition(e,refreshDAG);

bioCond->addTransferDroplet(InitializationDAGOutputs,
refreshDAGInputs);

//true else branch "Finish the thermocycle”

bioCond = bcg->addNewCondition(NULL,

finishThermocycleDAG);

bioCond->addTransferDroplet(InitializationDAGOutputs,
finishThermocycleDAGInputs);

bioCoder.IF(WeightSensor,

bioCoder.ELSE_IF(WeightSensor,
VolumeTolerance);

CGO’18, February 2018, Vienna, Austria

2 BioCoder Language

BioCoder is a C/C++ library designed to eliminate
ambiguities that occur when biochemical experiments are
disseminated in peer-reviewed literature [55] BioCoder was
refactored to target microfluidic technologies, including DMFBs
[48, 49]. BioCoder sufficed as a proof-of-concept language, but
was far too awkward for practical use. For example, fluidic
operations, and control flow constructs were specified as
programmer-allocated data structures, as shown in Fig. 6, left.
This paper updates BioCoder’s syntax to introduce the
aforementioned statements as language features (Fig. 6, right).
The programmer no longer must explicitly allocate conditions
and conditional expressions and link them to their targets. The
updated syntax supports constant-bounded loops:

bioCoder.LOOP(const) ... bioCoder.ENDLOOP()
and loops controlled by conditions

bioCoder.WHILECcond) ... bioCoder.ENDWHILEQ)
Programmers can name sensors as variables and use the name in
computational expressions and as part of conditions, if desired.

3 Supported Operations

Fig. 7 summarizes the operations supported by the
BioCoder language (as specialized for DMFBs) and our compiler.
Many of these operations, such as mixing, sensing, and detection
are often timed (e.g., “detect for 30s”), and the length of the
operation is included explicitly as a constant-valued parameter.

LESS_THAN, MinVolumeTolerance);

/* Drain current PCR mix and restart experiment
Replaces restartExperimentDAG */

LESS_THAN,

/* Preheat new PCR Mix add it to current mix
Replaces refreshDAG */

bioCoder.ELSEQ);

/* Finish thermocycle instructions.
Replaces finishThermocycleDAG */

bioCoder.END_IF();

Figure 6. An if statement using the original (left) and new (above)
BioCoder syntax. In the new syntax, all instructions and fluids are
tracked implicitly within the scope of the if statement.

Droplet

Droplet Droplet Droplet Droplet Droplet Droplet

S5V RS

Droplet Droplet Droplet Droplet Droplet Droplet
Droplet Droplet Da ta Data ... Data Data/ Data
Constan(
@ Computatlo Data
Outpu
¥
Droplet Data Droplet Data Doia = = = Data Control Flow
Transfer

Figure 7. Operations supported by our hybrid computational-
fluidic intermediate representation. Dry operations exclusively
operate on data (represented by dashed arrows); all other
operations are wet and are performed on the DMFB.

CGO’18, February 2018, Vienna, Austria

Many assays operate on multiple timescales; for example,
splitting and merging typically execute on the millisecond
timescale, while mixing, sensing, and detection operations may
take tens of seconds to complete. Droplet transport and storage
operations, depicted earlier in Fig. 3, are not explicitly part of the
high-level bioassay specification; the compiler inserts them as
needed as part of the back-end optimization process.

Cyber-physical integration of sensors and actuators enables
computation to be performed concurrently with assay
operations, although at a much faster timescale. As shown in Fig.
8, assay operations are performed on the DMFB, while
computation can be offloaded to the host PC controller. In Fig. 7,
sensing operations form the link between assay operations and
computation. The input to a sensing operation is a droplet; its
output is the droplet (usually unmodified) and a scalar data
value, which is obtained from the sensor. The computational
portion of the assay specification is language-independent and
Turing-complete; BioCoder’s is based on C/C++ [48, 49, 55] and,
in principle, should be used primarily to process sensor data.

In a bioinformatics application, sensor data may be output
to the host PC for offline processing, effectively terminating the
portion of the bioassay running on the DMFB. Somewhat more
generally, we envision that the output of the data processing is
the online resolution of a conditional operation that affects
program control flow. This imposes the property that the only
operations reachable from a data edge are either (1)
computations; (2) conditions (noting that the T/F result may be
treated as subsequent data edges if desired), or (3) data output.

The sense and actuate operations depicted in Fig. 7 are
generic for the purpose of discussion. In actuality, appropriate
naming would be used, e.g., “Colorimetric Detection” or
“Heat/Cool;” moreover, DMFBs may integrate different types of
sensors and/or actuators, each of which will have its own name.
When new sensor and actuator technologies are introduced in
the future, it will be necessary to update the BioCoder language,
intermediate representation, and runtime execution engine to
accommodate them; thus, the system has been designed for
extensibility and is expected to continuously evolve over time as
new technological advances are introduced at the device-level.

Droplets cannot be replicated via copies due to
conservation of matter. A droplet copy operation d’ « d could
be used to rename a droplet from d to d’, but doing so would
effectively kill the original name d. If a second copy of droplet d
is needed, then either: (1) the program slice that computed d
must be replicated; or (2) the assay must be rewritten to compute
d with twice its volume, after which it can be split into d and d'.

4 Preliminaries

The front-end of our compiler converts a BioCoder assay
specification into a Control Flow Graph (CFG), which we denote
Gerg = (a,2,B,Ecpg): B is the set of basic blocks, a,z € B are
the unique entry and exit nodes, and Ecp; € BXB is the set of
directed control flow edges; every basic block b; € B exists on at
least one path from a to z in G¢pg. Each basic block b; can be
represented by a DAG Gjp, = (Vbi,Ebi); the subscript is dropped
for assays consisting of one basic block b without control flow.

Christopher Curtis, Daniel Grissom, and Philip Brisk

-

Cyber-physical
DMFB

<+ @
k PC Controller /

Figure 8. Cyber-physical integration provides a closed feedback
loop between the DMFB and a host PC controller. In our system,
a microcontroller interfaces directly with the DMFB [49, Fig. 4].

Micro-controller
Driver

v

Figure 9. The back-end of a DMFB compiler for a single basic
block must solve three interdependent NP-complete problems:
scheduling, placement, and routing [48, Fig. 3].

Consider an M XN DMFB, which is represented by a 2D
array of electrodes ¥ = {l/)i,jll <isM1<j< N}; where
each electrode is a Boolean);; — {0,1}, where 0/1 indicates
whether or not the electrode is activated. An electrode activation
sequence of length Tis represented the set £ = {W,|1 < k < T},
where W}, denotes the state of each electrode in the array at time
k.

The compiler produces an executable A, . = {AB,AECFG},
where Ag= {Zbill <i< |B|} is the set of activation sequences

for each basic block, and Ap = {E(bi,bj)l(bi: b]-) € ECFG} is the set
of sequences for each control flow edge (bl-, bj) € Ecpg: 24, 25,

{Z(a'bj)l(a, b]-) € ECFG}, and {E(bi’z)|(bi,z) € Ecpg} are empty.

As noted earlier, the compiler computes the time and
location of each assay operation on the array; generating the
electrode activation sequence from that information is
deterministic.

5 Compiling a Single Basic Block

We consider the degenerate case of compiling an assay that
consists of one basic block (represented as a DAG without
control flow), a problem that has been studied extensively by
others. In this case, the assay may produce sensory data output
for offline processing, but otherwise features no online sensory
data processing. Fig. 9 shows the three algorithmic stages of the
back-end. This assay dispenses two droplets, mixes them
(implicitly merging them), and outputs the resultant droplet.

The compiler must solve three interdependent NP-complete
problems, scheduling, placement, and droplet routing, in order to
produce the electrode activation sequence. The scheduler

A Compiler for Cyber-Physical Digital Microfluidic Biochips

computes the start/finish times for each operation [50, 57-62];
the placer determines the location on the DMFB at which each
scheduled operation will execute [63-66]; the router computes
paths for each droplet when transported between operations [67-
76], and introduces wash droplets to clean residue left behind
[77-79]. Techniques have also been proposed to solve several of
these problems in conjunction with one another [80-85].

Let v; € V), be an assay operation, with start and finish
times s(v;) and t(v;) respectively. The scheduler computes
s(v;) and t(v;), under the assumption that droplet routing times
are negligible [58, 67], using a conservative approximation of the
available spatial resources on the DMFB, while adhering to
fluidic dependence constraints, i.e., for edge (vi,vj) € E;, the
schedule must ensure that t(v;) < s(vj). Ift(v;) = S(vj), then
the droplet produced by v; is used immediately; otherwise, it
must be stored for all time steps between t(v;) and S(Uj). Our
scheduler explicitly inserts storage operations into the DAG,
ensuring that t(v;) = s(vj), for each DAG edge (v;, v}-) € Ep,

The placer determines an on-chip location q(v;) for each
assay operation v;; one unit of unused grid space is required
between concurrently placed operations, to prevent inadvertent
mixing of fluids. Reconfigurable operations (e.g., mix, store) can
be placed anywhere. Non-reconfigurable operations (sensing,
heating, I/0) must be placed on regions of the chip that feature
sensing and/or actuation devices capable of executing them.

The router inserts fluid transport operations, which are
encoded into the electrode activation sequence Ag= {Z,}.
Consider DAG edge (v;, vj) € E,: Ifq(v;) # q(vj), the router
computes a path from q(v;) to q(v;); otherwise no path is
needed. Droplets are routed concurrently and wash operations
may be interleaved with routing.

6 Compiling a CFG

Now, we consider the more general case of compiling an
assay that is specified as a CFG, rather than a single basic block.
A BioCoder programmer declares fluids as variables, which are
then defined and used, no different in principle than digital
variables in traditional software programming. Fluidic variable
lifetimes can span multiple basic blocks. A compiler can build
data structures and representations for fluidic variables, such as
Def-Use trees and SSA Form [86-88] with no modifications being
made to the canonical construction algorithms.

Fig. 10 shows a BioCoder specification of an assay that
executes the polymerase chain reaction (PCR), which amplifies
DNA, using a weight sensor to detect evaporation of the droplet
(not the DNA); when the droplet volume falls beneath a
threshold during the thermocycling procedure, a new droplet is
brought in to replenish the volume [89]. Fig. 11 shows the assay
converted to Static Single Information (SSI) Form [90-92].

6.1 Liveness Analysis for Fluids

Liveness analysis for fluidic variables is no different in
principle than liveness analysis as performed by a traditional
compiler [93]. We define LiveIn(b;) and LiveOut(b;) to be the
live-in and live-out sets computed for basic block b;. We assume
that a post-processing pass marks all uses that kill each variable.

CGO’18, February 2018, Vienna, Austria

6.2 Basic Block Scheduling

Next, we compute a schedule for each basic block. This is
essentially the same as the scheduling described in Section 5,
with the exception that the scheduler must account for liveness
information involving fluidic variables:

If fluidic variable f; € Liveln(b;), then the scheduler treats
the basic block entry point as a pseudo-definition. The scheduler
inserts storage operations for f; until it is used by an operation.
Subsequent operations that may use f; are scheduled normally.

If f; € LiveOut(b;), then the scheduler treats the basic
block exit point as a pseudo-use. It inserts storage operations for
fj following the last scheduled definition or use of f; to the end
of the schedule for b;.

The scheduler does not insert storage operations following
any use that kills f;.

It is simple to add these rules/constraints to existing single
basic block/DAG schedulers for DMFBs [50, 57-62].

6.3 Placement

6.3.1 Placement for a Single Program Point

We first consider the placement problem for a program
point p in basic block b. Let V, = {v € V},|p € L(v)} be the set of
operations live at p. Each operation in v; € V, uses a rectangular
m;Xn; subset of electrodes on the DMFB. The dimensions of an
operation that holds a droplet in-place (e.g., storage, sensing,
heating, etc.) depend on the droplet volume. The dimensions of
mixing operations can vary in size (e.g., 2X2, 2X3, etc.), based
on the observation that mixers with greater dimensions often
converge faster when sensing and/or imaging is used to detect
mixing completion [94] g Split operations are typically 1X3.

A unit-size droplet is slightly larger than one electrode; as
shown in Fig. 2, this is necessary to induce droplet transport. As
noted earlier, placed operations must maintain a separation of at
least one electrode-width (grid cell) between them to prevent
inadvertent merging [63]. Let M and N be the length and width
of the DMFB. A placement solution assigns a position q(v;) =
(x4, ¥;) to each operation v; € V,, representing the upper-left-
hand corner of its position; when placed, v; consumes a subset of
cells

Ci = {XL' WX tm;— 1}X{yl WY tng — 1} (1)

A legal placement solution satisfies the following constraints:

xi=21lLx;+m;—1<MVv; €Vp (2)
}/izl,yi+ni—1SN,VUiEVP (3)
xj>xi+mivxi>xj+mjv (4)

y}>yl+nlvyl>yj+n] VU{,UjEVP,iij

! Prior work on DMFB scheduling has accounted for mixers with varying mixing
times [61, 81-84]; on the other hand, these approaches have not been reconciled
with assay specifications in which mixing operations are timed (e.g., “Mix for 2s”).
These specifications are typically non-device specific, and it remains an open
question as to when it is acceptable to change the assumptions (e.g., 2s mixing for a
2x3 mixer, 3s mixing for a 2X2 mixer, etc.; it is beyond the scope of this work to
attempt to reconcile these issues here.

CGO’18, February 2018, Vienna, Austria

void PCRDropletReplenishement (int TotalThermo) {

int TotalThermo = 9;
BioSystem bioCoder;
Fluid *PCRMix = bioCoder.new_fluid("PCRMasterMix",
Volume(MICRO_LITER,1@));
Fluid *Template = bioCoder.new_fluid
("Template", Volume(MICRO_LITER,1@));
Container* tube = bioCoder.new_container
(STERILE_MICROFUGE_TUBE2ML);

bioCoder.measure_fluid(PCRMix, tube);
bioCoder.vortex(tube,Time(SECS,1));
bioCoder.measure_fluid(Template,tube);
bioCoder.vortex(tube, Time(SECS,1));
bioCoder.store_for(tube,95,Time(SECS,45));

bioCoder.LOOP(TotalThermo);
bioCoder.store_for(tube,95,Time(SECS,20));
bioCoder.weigh(tube, "weightSensor");
bioCoder.IF("weightSensor",LESS_THAN, 3.57);
bioCoder.measure_fluid(PCRMix, tube);
bioCoder.store_for(tube, 95, Time(SECS,45));
bioCoder.vortex(tube, Time(SECS,1));
bioCoder.END_IF();
bioCoder.store_for(tube,50,Time(SECS,30));
bioCoder.store_for(tube,68,Time(SECS,45));
bioCoder.END_LOOP();

bioCoder.store_for(tube,68,Time(MINS,5));
bioCoder.drain(tube, "PCR");
bioCoder.end_protocol();

}

Figure 10. BioCoder specification of a bioassay that features
user-specified control flow. When the droplet weight falls
beneath a threshold, a new droplet is dispensed to replenish the
volume [89]. The integer parameters in storage operations
represent temperatures, converting them to heating operations.

Constraints (2) and (3) ensure that each operation is placed fully
within the M XN confines of the DMFB. Constraint (4) ensures
appropriate spacing between modules, as illustrated by Fig.12(a).
Additional constraints may be added, for example, to ensure that
placed modules do not block I/O ports, that sensing operations
are placed on top of electrodes that feature sensors, etc. Fig.
12(b). depicts a placement violation and a legal placement.

IPﬂl 1

(%, vi) Placement Violation

xj > xp+my

Legal Placement

Interference Region

Safe to place

P>yt - "
YNt m operations

() (b)

Figure 12. (a) lllustration of placement Constraint (4). (b) the
difference between an illegal and a legal placement result.

Christopher Curtis, Daniel Grissom, and Philip Brisk

fo < Dispense PCR Mix
f, < Mix(f,, 1s)
f, «<— Dispense Template
fy «— Merge(f,, f,)
f, < Mix(f, 1s)
fs < Heat(f,, 95°, 45s)
ipe—0

l

o
iy — @lio, ip)
fe — olfs, 1)

— cond(i, < TotalThermo)

{fy, fs} — m(fy)
T 4
fy «<— Heat(f,, 95°, 45s)

{f10, do} «— Sense(fs)
cond(d,<3.57)

{f1, fro} — m(fyg)

It

f,3 < Dispense PCR Mix
f14 < Merge(fy,, f;3)

f,5 < Heat(f,,, 95°, 45s)
f16 < Mix(fys, 1s)

f17 < @lfie f12)
L f,g < Heat(f,,, 50°, 30s)

f,9 < Heat(f,q, 68°, 45s)
i—i+1

f,o «— Heat(f;, 68°, 5m)
Output f,,

Figure 11. The BioCoder program in Fig. 10 converted to Static
Single Information (SSI) Form [90-92].

6.3.2 Basic Block Placement

The placement technique described in the preceding section
can be easily extended to a scheduled DAG G, = (V}, Ep) for
basic block b. The start and finish times of all of the vertices in
V}, are sorted in non-decreasing order and processed. Each time
a new operation v; starts, the compiler invokes a greedy
heuristic [66, 95] to select a free location on the DMFB to place
v;. Each time an active operation v; finishes, the compiler
reclaims the space that was allocated to it. This approach steps
through each program point, as per the schedule of the basic
block, and ensures that Constraints (2)-(4) are satisfied.

6.3.3 CFG Placement

Placement for a CFG must account for interferences that
cross basic block boundaries; these interferences can only occur
for droplet live ranges, which have been converted to storage
operations by the scheduler. This necessitates the construction of
an interference graph G,y = (Vint, Eine), defined as follows.

Let Vj, be the set of scheduled operations in basic block b;
then Ve = UL .

For operation v € Vj,;, let L(v) denote the set of points
where v is live; then Ej,, = {(v;, vj) eV|Lw)n L(vj) # 0}

Placement for a CFG is similar to placement for a program
point, but with Constraint (5) replacing Constraint (4):

A Compiler for Cyber-Physical Digital Microfluidic Biochips

xi>xj+mjvxj>x,-+miv (5)
Vi > y] +TL]VyJ > Vi +ni V(Ui,'l]j) € EITLt

One approach to the algorithmic construction of a placer would
be to modify a Chaitin-Briggs style register allocator [96, 97] that
eschews spilling and coalescing. When a register allocator would
select a “color” for each vertex, a placer could instead call a
heuristic to place the corresponding operation.

6.3.4 Placement for a CFG with Live Range Splitting

Our approach to placement for a CFG sidesteps the
construction of an interference graph, instead relying on live-
range splitting. The basic premise, borrowed from Elementary
Form [98], is to split the live ranges of all variables that are live-
in to each basic block using @-functions, and to split the live
ranges of all variables that are live-out from each basic block
using m-functions, before basic block scheduling (Subsection 6.2).
Using this representation, a legal CFG placement can be obtained
by placing each basic block independently (Subsection 6.3.2).

6.4 Droplet Routing

Droplet routing is the final algorithmic step that must be
performed prior to producing a DMFB executable. Recall that a
DMFB executable has the form Ag, . = {AB,AECFG}, where Ag is
the set of activation sequences for each basic block, and Ay is the
set of activation sequences for each control flow edge.

6.4.1 Droplet Routing for Basic Blocks

Given a scheduled and placed basic block b;, a legal droplet
routing solution can be achieved using established algorithms
[67-76] (with or without washing [77-79]); the electrode
activation sequence Zj, is computed deterministically. Routing

all basic blocks yields Ag= {Zbill <i< |B|}

6.4.2 CFG Placement without Live Range Splitting

Ap will be empty if CFG placement is performed without
live range splitting, e.g., as described in Subsection 6.3.3. This is
because each operation will be placed at the same spatial
location on the DMFB at all program points in the CFG. Thus,
there is no need to transport any droplets in response to a
transfer of control. The case where live range splitting is
permitted is discussed next.

6.4.3 Droplet Routing for CFG Edges

Consider a CFG edge (bi, bj)A Assume that there exists a
fluid f such that f € LiveOut(b;) and f € Liveln(b;). After
inserting @- and m-functions and scheduling b; and b;, assume
that f has been renamed to f; at the end of b; and is stored in
operation v, and that f has been renamed to f; at the beginning
of bj and is stored in operation v;. After placement, if q(vy) =
q(vy), there is nothing to do, as v, /v; are already in the correct
positions. On the other hand, if q(v;) # q(v;), then a droplet
routing procedure must be invoked to transport the droplet from
q(vy) to q(v;); multiple droplets may need to be transported
concurrently. The corresponding electrode activation sequence
Z(bi,bj) is computed deterministically. Processing all CFG edges

yields Ag = {5(y,.5,)] (b, by) € Ecra -

Fig. 13 shows a few examples, taken from a fragment of the
CFG shown in Fig. 11. Fig. 13(a) shows the CFG fragment. Fig.
13(b) illustrates CFG edge (b, b,), which includes a copy
operation f;;, < fio via the m-function at the end of b;. At the

CGO’18, February 2018, Vienna, Austria

end of by, fiois placed on an (optical) detector to perform a
sensing operation. Since f € Liveln(bj), the scheduler inserts a
storage operation for f;,; since storage is reconfigurable, this
operation could be placed anywhere. We assume that the placer
chose to place the storage operation on the sensor, eliminating
the need for droplet transport. In this case, it suffices to rename
fio to f141 in-place (Z(b1,b2) = ¢).At the beginning of b,, a new
droplet, f;3 is dispensed; f;3 is merged with f;;, producing a
new droplet fi, which is heated. Fig. 13(b) depicts the
subsequent droplet transport operations after renaming.

Fig. 13(c) illustrates CFG edge (b, b3). A m-function at the
end of by includes a copy operation f;, < fio; the @-function at
the start of b; performs a subsequent copy f17 « fi,; it suffices
to implement a single copy operation f;; < f;,. At the end of b,
fio is placed on a detector, while the first use of f;; in by is a
heating operation, which necessitates placement on a heater. The
droplet router computes a path to transport the droplet from the
sensor to the heater; the resulting activation sequence is Z(p, j.)-

Fig. 13(d) illustrates CFG edge (b,, b3), which includes a
copy operation f;; < fis via the @-function at the start of bs.
The last use of fi¢ in b, is a mixing operation, while the first use
of fi7 in bz is a heating operation. In this case, the mixing
operation is not placed by the heater, so the droplet router is
once again called to compute a path, and the resulting activation
sequence is Z(, p,)-

6.4.4 Critical Edge Splitting (or not)

In a traditional software compiler, CFG edges do not
contain instructions, by definition. If an instruction needs to be
placed on a CFG edge, then the edge must be split, with a basic
block inserted, as is the case in the transformation out of SSA
Form [93-97]. In contrast, our DMFB executable definition allows
the association of electrode activation sequences with CFG
edges. This is permissible because the DMFB operates under
computer control, in essence, necessitating a runtime interpreter.
Since an activation sequence and its association with a basic
block or CFG edge is part of a data structure that the interpreter
will process, including control flow transfers, it is non-
problematic to associate electrode activation sequences with
control flow edges, despite the fact that this is not possible in a
more traditional setting.

As a potential optimization, consider a CFG edge (bi, bj),
critical edge splitting can be avoided if b; is the sole successor of
b;, and/or b; is the sole predecessor of b;. In either case, it may
be beneficial to move the droplet transport operations associated
with Z(bi,bj) into X, or X as appropriate: these transport
operations could be carried out concurrently with other droplets
being routed. To get the best solution, it may be necessary to
recompute the routing solutions for b; and b; to include the
additional droplets. Doing so has the potential to reduce droplet
transport latency, although we do not explore this option here.

6.5 Discussion

The preceding subsections intentionally described the stages of
the compiler in a manner that was not tied to any specific
algorithms for scheduling, placement, or routing. This decision
was made because numerous papers have been published already
that describe algorithms that could be integrated into our
compiler with minimal modification. The objective of this work
is to outline the software architecture of the compiler, not to
determine which optimization algorithms yield the best results.

CGO’18, February 2018, Vienna, Austria

Christopher Curtis, Daniel Grissom, and Philip Brisk

N N N
fo «— Heat(f,, 95°, 45s) b
{flo' d0}<—5ense(f9) 1 FTFFFFETFPIPIP™] PTFPFFFTIFFIPIM™ TR r r FETF PP =]
cond(d,<3.57) . Iy - L -
F 1]] L
~ | by} by 1 @ b2
{f11, F1o} e 7(f1) 3 ls ls =T
| J |6
l T r r 7
3 3 3 5)=NGY 3 R
f,3 < Dispense PCR Mix b - Y** a @:g a RIE
f14 < Merge(fy, ;) 2 i > i 1 i A
f,s «— Heat(f,,, 95°, 45s) i 2 ’ ’ iz
fi6 < Mix(fs, 1s) I Renam ; .
l I in-plac

2 2‘3‘455

=

3 ‘s ‘m ‘n 2

[

f17 — olfie 12 b
3

f,g < Heat(f,,, 50°, 30s)

f,o < Heat(f,g, 68°, 45s)

ie—i+1

e
5]
R P ER P
g
2
g
I
3
3
I
3
]

bs | @ b3

N\

F 1 1(f7) 2R

X a2

LEGEND]

I B B B B
!
|l

AEEN T]
1

12]]

() Heating Element ©), Detection Element

() (b)

Then, merge and heat Rename and transport

Rename and transport

(© (d)

Figure 13. (a) A fragment of the SSI Form CFG taken from Fig. 11. The droplet transport operations inserted for the following CFG

edges: (b) (by, by), (c) (by,b3), and (d) (b, b3).

6.6 Technological Constraints

Unlike a CPU, a DMFB does not contain a fluidic memory
hierarchy or any form of off-chip storage. In principle, this may
change as liquid handling robots emerge, but for now, we
assume that the status quo will persist. Unlike a register allocator
for a traditional compiler, this constraint means that a DMFB
compiler cannot spill excess fluid off-chip. DMFB compilation
may fail, especially at the scheduling stage [58, 59, 66], if demand
for spatial resources exceeds on-chip capacity.

These constraints have also influenced our design of the
BioCoder language. For example, we do not support function
calls because we cannot push fluids that are live across the call
onto a non-existent stack; or arrays, which provide the
abstraction of (near-)infinite storage, whereas realistic DMFBs
are limited to tens of drops on-chip. Attempts to address these
issues are left open for future work.

7 Simulation Results

7.1 Compiler and Simulator

The BioCoder compiler described in this paper was built as
a set of extensions to an open source and publicly available
research infrastructure for programmable microfluidics, released
by the University of California, Riverside [58, 98]. The core of
the infrastructure is a framework for the evaluation of DMFB
scheduling, placement, and routing algorithms, built using
common data structures and interfaces. The framework includes
a cycle-accurate DMFB simulator that can estimate the execution
time of a bioassay. The simulator includes a visualizer that
produces an image for each cycle of execution (1 cycle = 10ms);
images can then be stitched together to produce animated videos
of the DMFB under simulation. The current framework release
compiles one basic block, specified as a DAG, at a time.

For testing and debugging purposes, the simulator’s
execution engine can produce a trace that lists the CFG nodes
that were executed, in-order, along with the evaluation of each
conditional statement. This way, if something goes wrong, the
user can determine precisely which conditions led to the
problem, which can help with error diagnosis. For example, an
incorrect result could occur because of a faulty sensor or a
contaminated sample, among other possible causes.

We modified the compiler and simulator extensively to
produce the results reported in this paper. First, we built a front-
end parser for the BioCoder Language, which produces an
abstract syntax tree (AST). We then convert the AST to a CFG,
representing each basic block as DAG. We then compile the
CFG, as described in Section 6 of this paper, yielding electrode
activation sequences for each basic block and CFG edge, which
are then passed to the simulator. We extended the simulator’s
execution engine to produce videos for CFGs, in addition to
DAGs. The simulator also reports total bioassay execution time.

The simulator’s execution engine generates pseudo-random
numbers as a proxy for sensor readings: the maximum and
minimum value for each sensor is specified as part of the
configuration file; we do not assume any statistical distribution
of sensor values beyond whatever inherent bias may exist in the
pseudo-random number generator.

7.2 Methodology

We compiled each benchmark using the heuristics outlined
in a previous paper by Grissom and Brisk [66]. These heuristics
tend to be fast and greedy, with the added benefit that placement
and routing are guaranteed to be successful as long as a legal
schedule can be found. As noted earlier, the compiler has been
designed to be compatible with any scheduler, placement, and
routing heuristic; prior work has already engaged in extensive
comparisons among heuristics for these problems [50, 57-85].

A Compiler for Cyber-Physical Digital Microfluidic Biochips

For each benchmark, we simulated a 15x19 DMFB with
four integrated sensors, two integrated heaters, and fourteen I/O
reservoirs placed on the perimeter of the chip (five on the left
side, five on top, four on the right side). These resources are
sufficient to execute all of the benchmark assays, described next.
We assume a 10ms cycle time [70], the time required to transport
a droplet from one electrode to its neighbor. We assume that
droplets can move horizontally/vertically, but not diagonally.

7.3 Benchmarks and Results

Benchmarking microfluidic technologies is challenging
because public repositories of readily usable, relevant, and
executable benchmarks simply do not exist. Researchers in the
life sciences typically summarize assays in the Materials and
Methods sections of peer-reviewed literature, but often do so at a
coarse granularity, under the assumption that experts
understand and can infer the details, which are learned through
training and apprenticeship, further complicating matters.

We performed a thorough literature survey on the design
and use of digital microfluidics in the life sciences. In addition to
the hierarchical opiate detection immunoassay [51-53] shown in
Fig. 5, we obtained two feedback-driven assays that were shown
by others to be compatible with cyber-physical DMFB
technology. The first is a probabilistic implementation of the
polymerase chain reaction (PCR) which terminates early when it
senses that a droplet has insufficient initial product to amplify
[99]; the second, which was shown in Figs. 10 and 11, is a PCR
implementation that performs droplet replenishment to
periodically replace fluid volumes lost due to evaporation [89].
We also report results for three assays which do not feature
online feedback: image probe synthesis, neurotransmitter
sensing, and (vanilla) PCR [3]. The simulator produced animated
videos of the simulated execution of the seven bioassays. Source
code of the assays and animated videos are online as ACM
Digital Library supplementary material.

Table 1 summarizes these assays along with the execution
times reported by the simulator. Execution times for a given
assay will vary, depending on sensor readings (in real-life),
which we simulate with random number generation. For
example, we see almost a 4x difference in runtime for the
hierarchical opiate detection immunoassay, depending on
whether or not the result is positive or negative; similarly, we
observe a faster runtime when probabilistic PCR terminates
early, failing to amplify DNA. We report only one data point for
PCR with droplet replenishment; in practice, the runtime
depends on environmental conditions that affect the evaporation
rate: faster evaporation increases the replenishment rate, which
adds overhead to the assay. The execution times of the three
assays that do not feature control flow are presented as-is.

PCR, Probabilistic PCR, and PCR w/droplet replenishment
assays come from three distinct sources. The setup and runtimes
reported here are based on data from the papers that introduced
them. PCR and Probabalistic PCR take ~11 minutes to execute,
while PCR w/droplet replenishment takes around 40 minutes.
These differences are due to variations in experiment design: the
number of thermocycles and the time spent at each temperature.

These results validate the correctness of the compiler and
simulator. Our objective was never to evaluate the performance
of the various optimization algorithms that are presently built
into the compiler. We also do not have any evidence that these
assays were particularly challenging to compile, or that they
stressed the optimization algorithms; they were chosen because
they have been validated in wet laboratory settings by others.

CGO’18, February 2018, Vienna, Austria

Table 1. Benchmark assays and simulated execution times.
(P/N: positive/negative Opiate detection outcome)
(F/EE: full/early-exit Probabilistic PCR outcome)

Benchmark Source Simulated
Exec. Time
Opiate detection | [51-53] P 405m 30s
immunoassay N 101m 48s
[99] F 11m 19s
Probabilistic PCR EE 7m 21s
[89] 40m 44s
PCR w/droplet replenishment
Image probe synthesis [3] 8m 45s
Neurotransmitter sensing [3] 05m 59s
PCR [3] 11m 43s

Providing a programming language and compiler for DMFB
technology will lower barriers to entry for practitioners, and will
ease the process of designing and validating assays of
increasingly complexity, which one day may present a greater
challenge to the compiler and its optimization algorithms.

8 Related Work

Many of the languages that have been developed for
programmable biochemistry address the $28 billion
reproducibility crisis in the life sciences [100]. A widely accepted
standardized language with unambiguous syntax could evolve
into a de facto standard for dissemination of laboratory
procedures. We are hopeful that (1) domain specific
programming languages, including but not limited to BioCoder,
will improve accessibility to LoC technology among
practitioners and lower barriers to entry; and as a side effect, (2)
standardize dissemination of LoC-compatible assays, which
aligns with the objectives of BioCoder’s original development
team [55]. For now, there is a wide, arguably insurmountable,
chasm between the public sharing of source code in the domain
of computing, and standard practices in the biological sciences.

BioCoder is another entry into a much larger domain,
although its unique emphasis on DMFB execution distinguish it
from prior efforts. Dissemination of laboratory procedures can
complement peer-reviewed scientific manuscripts; however, this
approach will not make sense if it becomes an extra writing
burden on already-overworked scientists. The advantage of a
language like BioCoder is that the unambiguous specification
also automates the execution of the laboratory procedure.

8.1 Languages for Laboratory Automation

Aquarium [101] is a language for the specification and
composition of laboratory workflows using a standard inventory,
combining formal and informal statements with photographs.
The researcher devises protocols, which are combined to form
processes, which are parallelized and scheduled on the available
laboratory equipment. BioCoder could integrate with Aquarium.
Aquarium’s inventory would need to be expanded to include a
programmable LoC such as a DMFB, and BioCoder assays could
be included as Aquarium processes. Aquarium could then
schedule assays on the DMFB in the lab and instruct the
technicians which assay to perform on each device.

Cloud-based laboratory automation allows scientists to
remotely execute biological experiments in a robot-run
laboratory over the Internet. The experiments are described
using DSLs that are tailored to the laboratory.

CGO’18, February 2018, Vienna, Austria

Two companies operating in this space are Transcriptic and
Synthace, whose languages Autoprotocol [102] and Antha [103]
are based on Python and Go. In principle, these languages could
be extended to encompass programmable LoCs such as DMFBs
as laboratory components; however, they still need to interact
with another language such as BioCoder to execute the assay.

8.2 Device-Specific Languages for SP-LoCs

Programming languages have been designed for specific SP-
LoCs which have specialized instruction set architectures (ISAs).
BioStream [104], for example, targeted an SP-LoC based on
integrated microvalve technology [2], which coupled a fluidic
mixer to a fluidic memory. This SP-LoC was performed assays,
which dilute one (or more) samples of fluid down to a user-
specific concentration. The BioStream language was expressive,
but lacked extensibility; to the best of our knowledge, its
specification and compiler were never formally released.

Aquacore is an SP-LoC that features a set of fluidic
components connected to a centralized bus, and is programmed
in an assembly language called the Aquacore Instruction Set
(AIS) [3]. AIS instructions activate and deactivate components,
and control fluid transfers. Like BioCoder, AIS is highly tied to
the device architecture; however, it provides a much lower level
of abstraction, as the programmer needs to know precisely how
many components exist in the chip in order to program it. In the
context of DMFBs, BioCoder’s compiler abstracts these low-level
details away. It is feasible to create a new variant of BioCoder
that targets AquaCore instead of DMFBs and to write a compiler
whose back-end emits AIS code, rather than a DMFB executable.

Several other SP-LoCs have been designed and evaluated [4-
6, 8], also based on microvalve technologies, but lack high-level
language support or a workable software stack. These devices
are effectively programmed at the binary level of abstraction:
each valve is turned on/off over time, similar to the electrode
activation sequences of a DMFB. These devices are controlled in
wet laboratories using LabView. Much like AquaCore, it is more
than feasible to create a new version of BioCoder and its
compiler that is specialized to these targets.

8.3 BioCoder Interpreter

This paper builds on an earlier version of the BioCoder
software infrastructure, which was interpreted, rather than
compiled [48, 49]. A rudimentary front-end compiler compiled
the BioCoder specification to a CFG, and then passed the CFG to
the interpreter. As depicted in Fig. 14, the interpreter just-in-
time (JIT)-compiles each basic block on-the-fly prior and then
executes it immediately; resolving the condition at the end of the
basic block determines the next one to execute.

The foremost limitation of this approach is that the assay is
paused during each call to the JIT compiler, which forces it to
execute low-overhead scheduling, placement, and routing
heuristics, which produce relatively poor solution qualities.
Moving compilation offline enables the usage of more aggressive
and longer running optimization methods that yield higher
solution quality. Examples from prior literature include
metaheuristics such as simulated annealing [63, 80], evolutionary
algorithms [57, 58, 81, 82], tabu search [83, 84] integer linear
programming [50, 58, 62, 64], and SAT/SMT formulations [74-76,
85], which have already been compared to greedy heuristics. Our
objective is not to re-evaluate these methods in the context of
our compiler, but to demonstrate the feasibility of static
compilation for cyber-physical DMFBs.

Christopher Curtis, Daniel Grissom, and Philip Brisk

Specify Protocol

|

Build Control Flow Graph (CFG)]

JIT-compile and Execute CFG Node (DAG)

DA @ & Y77 AT
¥ Lok ey 25U o,
i @ Py 7 7 YT T 7

N L R’ 4 o227
¥Scheduling D}Iacemen’l> v | Routing_ &~
< "t
V1

()|

Process Sensory Feedback]

Select the next CFG Node to Run

to %ms'rm 5 Done

Figure 14. Dynamic interpretation scheme with an integrated
JIT-compiler targeting a cyber-physical DMFB [49, Fig. 5].

8.4 Optimization for Cyber-physical DMFBs

Software for cyber-physical DMFBs has emphasized online
error detection and recovery for scheduled, placed, and routed
DAGs [27, 29-39]. Prior work has shown that soft error detection
can be integrated into the high-level assay specification using
BioCoder [48]. In contrast, hard errors render portions of the
device unusable and require (1) re-execution of any program
slices that produced droplets that were lost due to the error; and
(2) dynamic re-compilation of the new slices, and any remaining
unexecuted portion of the assay, to avoid the unusable portions
of the device [27, 32, 33, 35, 36]. In the future, these techniques
could be generalized from DAGs (basic blocks) to CFGs and
integrated into the BioCoder runtime execution engine.

9 Conclusion and Future Work

This paper introduced an updated version of the BioCoder
language, specialized for DMFBs, and established the feasibility
of compiling programs that feature control flow operations. The
next step in this research is to connect the compiler and
execution engine to a real-world device, a conceptually
straightforward, but technically challenging, engineering task.
As noted in Section 8.4, a real-world platform will likely require
online error detection and recovery schemes that are cognizant
of the CFG, rather than the basic block, execution model.

Another important task is to promote the technology
among life science practitioners. This may lead to refinements to
the BioCoder syntax, or perhaps a replacement language. More
importantly, we hope that expanding the user base will lead to
new applications which are larger and more complex in scope
than the assays that were used for evaluation here; they could
drive the development of more extensive back-end optimization.

Future work will explore language design issues, such as a
fluidic type system and supporting functions, arrays, and
threads; it is unclear how to support these abstractions, given the
relatively small fluid capacity of a DMFB compared modern
computing systems. Longer-term, we hope to integrate BioCoder
into a larger cloud laboratory system, which can couple a DMFB
(or other fluidic LoC) to a refrigerated storage system, managed
by liquid handling robots, i.e., an off-chip fluid storage hierarchy.

Acknowledgments

This work was partially supported by NSF Awards #1351115,
#1536026, #1545097, #1640757, and #1740052.

A Compiler for Cyber-Physical Digital Microfluidic Biochips

References

[1] M. Pollack, A. Shenderov, and R. Fair. 2002. Electrowetting-based actuation of
droplets for integrated microfluidics. Lab-on-a-Chip 2, 2 (May, 2002), 96-101.
DOIL http://dx.doi.org/10.1039/B110474H

[2] J.P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen. 2006.
Digital microfluidics using soft lithography. Lab-on-a-Chip 6, 1, (Jan. 2006),
96-104. DOL http://dx.doi.org/10.1039/B510127A

[3] A.M. Amin, M. Thottethodi, T. N. Vijaykumar, S. Wereley, and S. C.
Jacobson. 2007. Aquacore: A programmable architecture for microfluidics. In
Proceedings of the 34" International Symposium on Computer Architecture
(ISCA’07). 254-265. DOI http://dx.doi.org/10.1145/1250662.1250694

[4] E.C.Jensen, B. P. Bhat, and R. A. Mathies. 2010. A digital microfluidic
platform for the automation of quantitative biomolecular assays. Lab-on-a-
Chip 10, 6 (Mar. 2010), 685-691. DOI: http://dx.doi.org/10.1039/b920124f

[5] L. M.Fidalgo and S. J. Maerkl. 2011. A software-programmable microfluidic
device for automated biology. Lab-on-a-Chip 11, 9 (May, 2011), 1612-1619,
DOI: http://dx.doi.org/10.1039/COLC00537A

[6] K. Leung, H. Zahn, T. Leaver, K. M. Konwar, N. W. Hanson, A. P. Page, C-C.
Lo, P. S. Chain, S. J. Hallam, and C. L. Hansen. 2012. A programmable
droplet-based microfluidic device applied to multiparameter analysis of
single microbes and microbial communities. Proceedings of the National
Academies of Sciences of the United States of America 109, 20 (May 2012). 7665-
7670. DOL: http://dx.doi.org/10.1073/pnas.1106752109

[7] A.M. Amin, R. Thakur, S. Madren, H. S. Chuang, M. Thottethodi, T. N.
Vijaykumar, S. T. Wereley, and S. C. Jacobson. 2013. Software-programmable
continuous-flow multi-purpose lab-on-a-chip. Microfluidics and Nanofluidics
15, 5 (Nov. 2013), 657-659. DOL http://dx.doi.org/10.1007/s10404-013-1180-2

[8] G. Linshiz, E. Jensen, N. Stawski, C. Bi, N. Elsbree, H. Jiao, J. Kim, R. Mathies,
J. D. Keasling, and N. J. Hillson. 2016. End-to-end automated microfluidic
platform for synthetic biology: from design to functional analysis. Journal of
Biological Engineering 10 (Feb. 2016), Article #3. DOIL:
https://dx.doi.org/10.1186/s13036-016-0024-5

[9] H.Ren, R.B. Fair, and M. G. Pollack. 2004. Automated on-chip droplet
dispensing with volume control by eletrowetting actuation and capacitance
metering. Sensors and Actuators B: Chemical 98, 2-3 (Mar. 2004). 319-327. DOI:
http://dx.doi.org/10.1016/j.snb.2003.09.030

[10] V. Srinivasan, V. K. Pamula, and R. B. Fair. Droplet-based microfluidic lab-on-
a-chip for glucose detection. Analytica Chimica Acta 507, 1 (Apr. 2004) 145-
150. DOL http://dx.doi.org/10.1016/j.aca.2003.12.030

[11] J. Gong and C-]. Kim. 2008. All-electronic droplet generation on-chip with
real-time feedback control for EWOD digital microfluidics. Lab-on-a-Chip 8, 6
(June 2008). 898-906. DOL: http://dx.doi.org/10.1039/b717417a

[12] S.C.C. Shih, R. Fobel, P. Kumar, and A. R. Wheeler. 2011. A feedback
control system for high-fidelity digital microfluidics. Lab-on-a-Chip 11, 3
(Feb. 2011). 535-540. DOI: http://dx.doi.org/10.1039/c01c00223b

[13] S. Sadeghi, H. Ding, G. J. Shah, S. Chen, P. Y. Keng, C-J. Kim, and R. M. van
Dam. 2012. On chip droplet characterization: a practical, high-sensitivity
measurement of droplet impedance in digital microfluidics. Analytical
Chemistry 84, 4 (Jan. 2012). 1915-1923. DOL:
http://dx.doi.org/10.1021/ac202715f

[14] M.]. Schertzer, R. Ben Mrad, and P. E. Sullivan. 2012. Automated detection of
particle concentration and chemical reactions in EWOD devices. Sensors and
Actuators B: Chemical 164, 1 (Mar. 2012). 1-6. DOL:
http://dx.doi.org/10.1016/j.snb.2012.01.027

[15] M. Murran and H. Najjaran. 2012. Capacitance-based droplet position
estimator for digital microfluidic devices. Lab-on-a-Chip 12, 11 (Mar. 2012).
2053-2059. DOI: http://dx.doi.org/10.1039/C2LC21241B

[16] L.Luan, M. W. Royal, R. Evans, R. B. Fair, and N. M. Jokerst. 2012. Chip scale
optical microresonator sensors integrated with embedded thin film
photodetectors on electrowetting digital microfluidics platforms. IEEE Sensors
Journal 12, 6 (June 2012). 1794-1800. DOI:
http://dx.doi.org/10.1109/JSEN.2011.2179027

[17] T.Lederer, S. Clara, B. Jakoby, and W. Hilber. 2012. Integration of impedance
spectroscopy sensors in a digital microfluidic platform. Microsystem
Technologies 18, 7-8 (Aug. 2012). 1163-1180. DOIL:
http://dx.doi.org/10.1007/s00542-012-1464-6

[18] B. Bhattacharjee and H. Najjaran. 2012. Droplet sensing by measuring the
capacitance between coplanar electrodes in a digital microfluidic system.
Lab-on-a-Chip 12, 21 (Nov. 2012). 4416-4423. DOI:
http://dx.doi.org/10.1039/c2lc40647k

[19] J. Gao, X. Liu, T. Chen, P. I. Mak, Y. Du, M. L. Vai, B. Lin, and R. P. Martins.
2013. An intelligent digital microfluidic system with fuzzy-enhanced
feedback for multi-droplet manipulation. Lab-on-a-Chip 13, 3 (Feb. 2013). 443-
451. DOI: http://dx.doi.org/10.1039/c2lc41156¢

[20] S.C. Shih, I. Barbulovic-Nad, X. Yang, R. Fobel, and A. R. Wheeler. 2013.
Digital microfluidics with impedance sensing for integrated cell culture and
analysis. Biosensors and Bioelectronics 42, (Apr. 2013). 314-320. DOI:
http://dx.doi.org/10.1016/j.bios.2012.10.035

[21]

[22]

[23]

[24

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

CGO’18, February 2018, Vienna, Austria

M. W. Royal, N. M. Jokerst, and R. B. Fair. 2013. Droplet-based sensing:
optical microresonator sensors embedded in digital electrowetting
microfluidics systems. IEEE Sensors Journal 13, 12 (Dec. 2013). 4733-4742.
DOIL: http://dx.doi.org/10.1109/JSEN.2013.2273828

Y. Li, H. Li, and R. Baker. 2014. Volume and concentration identification by
using an electrowetting on dielectric device. In Proceedings of the IEEE Dallas
Circuits and Systems Conference (DCAS’14). 1-4. DOI:
http://dx.doi.org/10.1109/DCAS.2014.6965350

Y. Li, H. Li, and R. J. Baker. 2015. A low-cost and high-resolution droplet
position detector for an intelligent electrowetting on dielectric device.
Journal of Laboratory Automation 20, 6 (Jan. 2015). 663-669. DOI:
http://dx.doi.org/10.1177/2211068214566940

Y. Shin and J. Lee. 2010. Machine vision for digital microfluidics. Review of
Scientific Instruments 81, 1 (Jan. 2010). 014302. DOIL:
http://dx.doi.org/10.1063/1.3274673

A. S. Basu. 2013. Droplet morphometry and velocimetry (dmv): a video
processing software for time-resolved, label-free tracking of droplet
parameters,” Lab-on-a-Chip 13, 10 (May 2013). 1892-1901. DOI:
http://dx.doi.org/10.1039/c31c50074h

R. Fobel, C. Fobel, and A. R. Wheeler. 2013. Dropbot: An open source digital
microfluidic control system with precise control of electrostatic driving force
and instantaneous drop velocity measurement. Applied Physics Letters 102, 19
(May 2013). 193513. DOL: http://dx.doi.org/10.1063/1.4807118

K. Hu, B. Hsu, A. Madison, K. Chakrabarty, and R. B. Fair. 2013. Fault
detection, real-time error recovery, and experimental demonstration for
digital microfluidic biochips. In Proceedings of Design Automation and Test in
Europe (DATE’13). 559-564. DOI: http://dx.doi.org/10.7873/DATE.2013.124

P. Q. N. Vo, M. C. Husser, F. Ahmadi, H. Sinha, and S. C. C. Shih. 2017.
Image-based feedback and analysis system for digital microfluidics. Lab-on-a-
Chip 17, 20, (Sep. 2017), 3437-3446. DOI: http://dx.doi.org/10.1039/c71c00826k
Z.Li, K. Y-T. Lai, J. McCrone, P-H. Yu, K. Chakrabarty, M. Pajic, T-Y. Ho, and
C-Y. Lee. 2017. Efficient and adaptive error recovery in a micro-electrode-dot-
array digital microfluidic biochip. IEEE TCAD (July 2017). Preprint. DOI:
http://dx.doi.org/10.1109/TCAD.2017.2729347

Y. Zhao, T. Xu, and K. Chakrabarty. 2010. Integrated control-path design and
error recovery in the synthesis of digital microfluidic lab-on-a-chip. ACM
JETC 6, 3 (Aug. 2010). Article #11. DOI:
http://dx.doi.org/10.1145/1777401.1777404

M. Alistar, P. Pop, and J. Madsen. 2012. Online synthesis for error recovery in
digital microfluidic biochips with operation variability. In Proceedings on the
2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
(DTIP’12).

Y. Luo, K. Chakrabarty, and T-Y. Ho. 2013. Error recovery in cyberphysical
digital microfluidic biochips. IEEE TCAD 32, 1 (Jan. 2013). 59-72. DOIL:
http://dx.doi.org/10.1109/TCAD.2012.2211104

Y. Luo, K. Chakrabarty, and T-Y. Ho. 2013. Real-time error recovery in
cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE
TCAD 32, 12 (Dec. 2013). 1839-1852. DOIL:
http://dx.doi.org/10.1109/TCAD.2013.2277980

Y-L. Hsieh, T-Y. Ho, and Krishnendu Chakrabarty. 2014. Biochip synthesis
and dynamic error recovery for sample preparation using digital
microfluidics. IEEE TCAD 33, 2 (Feb. 2014). 183-196. DOI:
http://dx.doi.org/10.1109/TCAD.2013.2284010

M. Ibrahim and K. Chakrabarty. 2015. Error recovery in digital microfluidics
for personalized medicine. In Proceedings of Design Automation and Test in
Europe (DATE’15). 247-252. DOI: http://dx.doi.org/10.7873/DATE.2015.1126
C. Jaress, P. Brisk, and D. T. Grissom. 2015. Rapid online fault recovery for
cyber-physical digital microfluidic biochips. In Proceedings of the IEEE VLSI
Test Symposium (VIS’15). 1-6. DOI:
http://dx.doi.org/10.1109/VTS.2015.7116246

M. Alistar and P. Pop. 2015. Synthesis of biochemical applications on digital
microfluidic biochips with operation execution time variability. Integration:
The VLSI Journal 51, (Sep. 2015) 158-168. DOI:
http://dx.doi.org/10.1016/j.v1si.2015.02.004

S. Poddar, S. Ghoshal, K. Chakrabarty, and B. B. Bhattacharya. 2016. Error-
correcting sample preparation with cyberphysical digital microfluidic lab-on-
chip. ACM TODAES 22, 1 (July 2016), Article #2. DOIL:
http://dx.doi.org/10.1145/2898999

M. Ibrahim, K. Chakrabarty, and K. Scott. 2017. Synthesis of cyberphysical
digital-microfluidic biochips for real-time quantitative analysis. [EEE TCAD
36, 5 (May, 2017). 733-746. DOL: http://dx.doi.org/10.1109/TCAD.2016.2600626
H. Moon, S. K. Cho, R. L. Garrell, and C-J. Kim. 2002. Low voltage
electrowetting-on-dielectric. Journal of Applied Physics 92, 7 (Sep. 2002). DOI:
http://dx.doi.org/10.1063/1.1504171

J. Gong and C-J. Kim. 2008. Direct-referencing two-dimensional array digital
microfluidics using multilayer printed circuit board. Journal of
Microelectromechanical Systems 17, 2 (Apr. 2008). 257-264. DOI:
http://dx.doi.org/10.1109/JMEMS.2007.912698

CGO’18, February 2018, Vienna, Austria

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

G. Wang, D. Teng, and S-K. Fan. 2011. Digital microfluidic operations on
micro-electrode dot array architecture. IET Nanobiotechnology 5, 4 (Dec.
2011). 152-160. DOL http://dx.doi.org/10.1049/iet-nbt.2011.0018

J. H. Noh, J. Noh, E. Kreit, J. Heikenfeld, and P. D. Rack. 2012. Toward active-
matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed
oxide thin film transistors. Lab-on-a-Chip 2, 2 (Jan. 2012). 353-360. DOIL:
http://dx.doi.org/10.1039/c1lc20851a

B. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown, J. R. Hector, Y.
Kubota, and H. Morgan. 2012. Programmable large area digital microfluidic
array with integrated droplet sensing for bioassays. Lab-on-a-Chip 12, 18
(Sep. 2012). 3305-3313. DOI: http://dx.doi.org/10.1039/c2lc40273d

G. Wang, D. Teng, Y-T. Lai, Y-W. Lu, Y. Ho, and C-Y. Lee. 2014. Field-
programmable lab-on-a-chip based on microelectrode dot array architecture.
IET Nanobiotechnology 8, 3 (Sep. 2014). 163-171. DOI:
http://dx.doi.org/10.1049/iet-nbt.2012.0043

A. Banerjee, J. H. Noh, Y. Liu, P. D. Rack, and L. Papautsky. 2015.
Programmable electrowetting with channels and droplets. Micromachines 6, 2
(Jan. 2015). 172-185. DOL: http://dx.doi.org/10.3390/mi6020172

S. Kalsi, M. Valiadi, M. N. Tsaloglou, L. Parry-Jones, A. Jacobs, R. Watson, C.
Turner, R. Amos, B. Hadwen, J. Buse, C. Brown, M. Sutton, and H. Morgan.
2015. apid and sensitive detection of antibiotic resistance on a programmable
digital microfluidic platform. Lab-on-a-Chip 5, 14 (Jul. 2015). 3065-3075. DOI:
http://dx.doi.org/10.1039/c51c00462d

D. Grissom, C. Curtis, and P. Brisk. 2014. Interpreting assays with control
flow on digital microfluidic biochips. ACM JETC 10, 3 (Apr. 2014). Article #24.
DOIL: http://dx.doi.org/10.1145/2567669

C. Curtis and P. Brisk. 2015. Simulation of feedback-driven pcr assays on a 2d
electrowetting array using a domain-specific high-level biological
programming language. Microelectronic Engineering 148 (Dec. 2015). 110-116.
DOIL: http://dx.doi.org/10.1016/j.mee.2015.10.007

J. Ding, K. Chakrabarty, and R. B. Fair. 2001. Scheduling of microfluidic
operations for reconfigurable two-dimensional electrowetting arrays. IEEE
TCAD 20, 12 (Dec. 2001). 1463-1468. DOL http://dx.doi.org/10.1109/43.969439
R. C. Backer, J. R. Monforte, and A. Poklis. 2005. Evaluation of the DRI
oxycodone immunoassay for the detection of oxycodone in urine. Journal of
Analytical Toxicology 29, 7 (Oct. 2005). 675-677.

C. L. Mao, K. D. Zientek, P. T. Colahan, M. Y. Kuo, C. H. Liu, K. M. Lee, and
C. C. Chou. 2006. Development of an enzyme linked immunosorbent assay
for fentanyl and applications of fentanyl antibody-coated nanoparticles for
sample preparation. Journal of Pharmaceutical and Biomedical Analysis 41, 4
(June 2006). 1332-1341. DOL: http://dx.doi.org/10.1016/].jpba.2006.03.009

Y. Jiang, X. Huang, K. Hu, W. Yu, X. Yang, and L. Lv. 2011. Production and
characterization of monoclonal antibodies against small hapten-ciprofloxacin.
African Journal of Biotechnology 10, 65 (2011). 14342-14347. DOI:
http://dx.doi.org/10.5897/AJB11.1546

E. Miller, A. H. C. Ng, U. Uddayasankar, and A. Wheeler. 2011. A digital
microfluidic approach to heterogeneous immunoassays. Analytical and
Bioanalytical Chemistry 339, 1 (Jan. 2011). 337-345. DOIL:
http://dx.doi.org/10.1007/s00216-010-4368-2

V. Ananthanarayanan and W. Thies. 2010. Biocoder: A programming
language for standardizing and automating biology protocols. Journal of
Biological Engineering 4 (Nov. 2010). Article #13. DOI:
http://dx.doi.org/10.1186/1754-1611-4-13

D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman, O.
Kenneth, J. McDaniel, N. Liao, and P. Brisk. 2015. An open-source compiler
and pcb synthesis tool for digital microfluidic biochips. Integration: the VLSI
Journal 51 (Sep. 2015). 169-193. DOL:
http://dx.doi.org/10.1016/j.v1si.2015.01.004

A. J. Ricketts, K. M. Irick, N. Vijaykrishnan, and M. J. Irwin. 2006. Priority
scheduling in digital microfluidics-based biochips. In Proceedings of Design,
Automation and Test in Europe (DATE’06). 329-334. DOL:
http://dx.doi.org/10.1109/DATE.2006.244178

F. Su and K. Chakrabarty. 2008. High-level synthesis of digital microfluidic
biochips. ACM JETC 3, 4 (Jan. 2008). Article #1. DOI:
http://dx.doi.org/10.1145/1324177.1324178

D. Grissom and P. Brisk. 2012. Path scheduling on digital microfluidic
biochips. In Proceedings of the Design Automation Conference (DAC’12). 26-35.
DOI: http://dx.doi.org/10.1145/2228360.2228367

K. O’'Neal, D. Grissom, and P. Brisk. 2012. Force-directed list scheduling for
digital microfluidic biochips. in Proceedings of the 20" IEEE/IFIP International
Conference on VLSI and System-on-Chip (VLSI-SoC’12). 7-11. DOIL:
http://dx.doi.org/10.1109/VLSI-SoC.2012.7332068

C. Liu, K. Liu, and J. Huang. 2013. Latency-optimization synthesis with
module selection for digital microfluidic biochips. In Proceedings of the IEEE
International SOC Conference (SOCC’13). 159-164. DOL:
http://dx.doi.org/10.1109/SOCC.2013.6749681

A. Yadav, T. A. Dinh, D. Kitagawa, and S. Yamashita. 2016. ILP-based
synthesis for sample preparation applications on digital microfluidic
biochips. In Proceedings of the 29" International Conference on VLSI Design
(VLSID’16). DOL: http://dx.doi.org/10.1109/VLSID.2016.41

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Christopher Curtis, Daniel Grissom, and Philip Brisk

F. Su and K. Chakrabarty. 2006. Module placement for fault-tolerant
microfluidics-based biochips. ACM TODAES 11, 3 (July 2006). 682-710. DOI:
http://dx.doi.org/10.1145/1142980.1142987

C. Liao and S. Hu. 2011. Multiscale variation-aware techniques for high-
performance digital microfluidic lab-on-a-chip component placement. IEEE
Transactions on Nanobioscience 10, 1 (Mar. 2011). 51-58. DOI:
http://dx.doi.org/10.1109/TNB.2011.2129596

Y. Chen, C. Hsu, L. Tsai, T. Huang, and T. Ho. 2013. A reliability-oriented
placement algorithm for reconfigurable digital microfluidic biochips using 3-
d deferred decision making technique. IEEE TCAD 32, 8 (Aug. 2013). 1151~
1162. DOI: http://dx.doi.org/10.1109/TCAD.2013.2249558

D. Grissom and P. Brisk. 2014. Fast online synthesis of digital microfluidic
biochips. IEEE TCAD 33, 3 (Mar. 2014). 356-369. DOI:
http://dx.doi.org/10.1109/TCAD.2013.2290582

F. Su, W. L. Hwang, and K. Chakrabarty. 2006. Droplet routing in the
synthesis of digital microfluidic biochips. in Proceedings of Design,
Automation and Test in Europe (DATE’06). 323-328. DOL:
http://dx.doi.org/10.1109/DATE.2006.244177

K. Bohringer. 2006. Modeling and controlling parallel tasks in droplet-based
microfluidic systems. IEEE TCAD 25, 2 (Feb. 2006). 334-344. DOIL:
http://dx.doi.org/10.1109/TCAD.2005.855958

M. Cho and D. Z. Pan. 2008. A high-performance droplet routing algorithm
for digital microfluidic biochips. IEEE TCAD 27, 10 (Oct. 2008). 1714-1724.
DOI: http://dx.doi.org/10.1109/TCAD.2008.2003282

P. Yuh, C. Yang, and Y. Chang. 2008. BioRoute: A network-flowbased routing
algorithm for the synthesis of digital microfluidic biochips. IEEE TCAD 27, 11
(Nov. 2008). 1928-1941. DOL http://dx.doi.org/10.1109/TCAD.2008.2006140
T. Huang and T. Ho. 2009. A fast routability- and performancedriven droplet
routing algorithm for digital microfluidic biochips. In Proceedings of the 27" h
International Conference on Computer Design (ICCD’09). 445-450. DOIL:
http://dx.doi.org/10.1109/ICCD.2009.5413119

P. Roy, H. Rahaman, and P. Dasgupta. 2010. A novel droplet routin§
algorithm for digital microfluidic biochips. In Proceedings of the 20" ACM
Great Lakes Symposium on VLSI (GLSVLSI’09). 441-446. DOI:
http://dx.doi.org/10.1145/1785481.1785583

P. Roy, H. Rahaman, and P. Dasgupta. 2012. Two-level clustering-based
techniques for intelligent droplet routing in digital microfluidic biochips.
Integration: The VLSI Journal 45, 3 (June, 2012). 316-330. DOL:
http://dx.doi.org/10.1016/j.v1si.2011.11.006

0. Keszocze, R. Wille, and R. Drechsler. 2014. Exact routing for digital
microfluidic biochips with temporary blockages. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’14).
405-410. DOL: http://dx.doi.org/10.1109/ICCAD.2014.7001383

0. Keszocze, R. Wille, K. Chakrabarty, and R. Drechsler. 2015. A general and
exact routing methodology for digital microfluidic biochips. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’15). 874-881. DOLI: http://dx.doi.org/10.1109/ICCAD.2015.7372663

O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, and R. Drechsler.
2017. Exact routing for micro-electrode-dot-array digital microfluidic
biochips. In Proceedings of the 22" Asia and South Pacific Design Automation
Conference (ASP-DAC’17). DOIL:
http://dx.doi.org/10.1109/ASPDAC.2017.7858407

T. Huang, C. Lin, and T. Ho. 2010. A contamination aware droplet routing
algorithm for the synthesis of digital microfluidic biochips. IEEE TCAD 29, 11
(Nov. 2010). 1682-1695. DOL http://dx.doi.org/10.1109/TCAD.2010.2062770
Y. Zhao and K. Chakrabarty. 2012. Cross-contamination avoidance for
droplet routing in digital microfluidic biochips. IEEE TCAD 31, 6 (June 2012).
817-830. http://dx.doi.org/10.1109/TCAD.2012.2183369

H. Yao, Q. Wang, Y. Shen, T. Ho, and Y. Cai. 2016. Integrated functional and
washing routing optimization for cross-contamination removal in digital
microfluidic biochips. IEEE TCAD 35, 8 (Aug. 2016). 1283-1296. DOI:
http://dx.doi.org/10.1109/TCAD.2015.2504397

P. Yuh, C. Yang, and Y. Chang. 2007. Placement of defect-tolerant digital
microfluidic biochips using the t-tree formulation. ACM JETC 3, 3 (Nov.
2007). Article #13. DOI: http://dx.doi.org/10.1145/1295231.1295234

T. Xu and K. Chakrabarty. 2008. Integrated droplet routing and defect
tolerance in the synthesis of digital microfluidic biochips. ACM JETC 4, 3
(Aug. 2008). Article #11. DOL http://dx.doi.org/10.1145/1389089.1389091

T. Xu, K. Chakrabarty, and F. Su. Defect-aware high-level synthesis and
module placement for microfluidic biochips. IEEE TBioCAS 2, 1 (Mar. 2008).
50-62. DOL: http://dx.doi.org/10.1109/TBCAS.2008.918283

E. Maftei, P. Pop, and J. Madsen. 2010. Tabu search-based synthesis of digital
microfluidic biochips with dynamically reconfigurable non-rectangular
devices. Design Automation for Embedded Systems 14, 3 (Sep. 2010). 287-307.
DOL: http://dx.doi.org/10.1007/s10617-010-9059-x

E. Maftei, P. Pop, and J. Madsen. 2013. Module-based synthesis of digital
microfluidic biochips with droplet-aware operation execution. ACM JETC9, 1
(Feb. 2013). Article #2. DOL: http://dx.doi.org/10.1145/2422094.2422096

[85]

[86]

[87]

[88]

[89]

[90]
[o1]

[92]

[93]

[94]

[95]

[96]

[97]

R. Wille, O. Keszocze, R. Drechsler, T. Boehnisch, A. Kroker. 2015. Scalable
one-pass synthesis for digital microfluidic biochips. IEEE Design & Test 32, 6
(Dec. 2015). 41-50. DOI: http://dx.doi.org/10.1109/MDAT.2015.2455344

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1991.
Efficiently computing static single assignment form and the control
dependence graph. ACM TOPLAS 13, 4 (Oct. 1991). 451-490. DOI:
http://dx.doi.org/10.1145/115372.115320

J-D. Choi, R. Cytron, J. Ferrante. 1991. Automatic construction of sparse data
flow evaluation graphs. In Proceedings of the International Conference on
Principles of Programming Languages (POPL’91). 55-66. DOI:
http://dx.doi.org/10.1145/99583.99594

P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. 1998. Practical
improvements to the construction and destruction of static single assignment
form. Software: Practice & Experience 28, 8 (July 1998). 859-881. DOI:
http://dx.doi.org/http://dx.doi.org/10.1002/(SICI)1097-
024X(19980710)28:8<859::AID-SPE188>3.0.CO;2-8

M. Jebrail, R. Renzi, A. Sinha, J. Van De Vreugde, C. Gondhalekar, C. Ambriz,
R. Meagher, and S. Branda. 2015. A solvent replenishment solution for
managing evaporation of biochemical reactions in air-matrix digital
microfluidics devices. Lab-on-a-Chip 15, 1 (Jan. 2015). 151-158. DOIL:
http://dx.doi.org/10.1039/c41c00703d

C. S. Ananian. 1999. The Static Single Information Form. M.S. Thesis.
Massachusetts Institute of Technology, Cambridge, MA, USA.

J. Singer. 2005. Static Program Analysis based on Virtual Register Renaming.
Ph.D. Thesis. University of Cambridge, UK.

B. Boissinot, P. Brisk, A. Darte, and F. Rastello. 2012. SSI properties revisited.
ACM TECS 118, 1 (June 2012). Article #21. DOI:
http://dx.doi.org/10.1145/2180887.2180898

K. D. Cooper and L. Torczon. 2004. Engineering a Compiler. Morgan
Kaufmann 2004, ISBN 1-55860-699-8

P. Paik, V. K. Pamula, and R. B. Fair. 2003. Rapid droplet mixers for digital
microfluidic systems. Lab-on-a-Chip 3, 4 (Sep. 2003). 253-259. DOIL:
http://dx.doi.org/10.1039/b307628h

K. Bazargan, R. Kastner, and M. Sarrafzadeh. 2000. Fast template placement
for reconfigurable computing systems. IEEE Design & Test of Computers 17, 1
(Jan-Mar.2000). 68-83. DOL: http://dx.doi.org/10.1109/54.825678

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P.
W. Markstein. 1981. Register allocation via coloring. Computer Languages 6, 1
(Jan. 1981). 47-57. DOL: http://dx.doi.org/10.1016/0096-0551(81)90048-5

P. Briggs, K. D. Cooper, and L. Torczon. 1994. Improvements to graph
coloring register allocation. ACM TOPLAS 16, 3 (May, 1994). 428-455. DOI:
http://dx.doi.org/10.1145/177492.177575

[98]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

F. M. Q. Pereira and J. Palsberg. 2008. Register allocation by puzzle solving. In
Proceedings of the 29" SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’08). 216-226. DOI:
http://dx.doi.org/10.1145/1375581.1375609

V. C. Sreedhar, R. D-C. Ju, D. M. Gillies, and V. Santhanam. 1999. Translating
out of static single assignment form. In Proceedings of the Static Analysis
Symposium (SAS’99). 194-210. DOI: http://dx.doi.org/10.1007/3-540-48294-
6_13

Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg, and S. W.
Reeves. 2002. Fast copy coalescing and live-range identification. In
Proceedings of the 26th SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'02). 25-32. DOIL:
http://dx.doi.org/10.1145/543552.512534

F. Rastello, F. de Ferriére, and C. Guillon. 2004. Optimizing translation out of
SSA using renaming constraints. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO’04). 265-278. DOI:
http://dx.doi.org/10.1109/CGO.2004.1281680

B. Boissinot, A. Darte, F. Rastello, B. D. de Dinechin, and C. Guillon. 2009.
Revisiting out-of-SSA translation for correctness, code quality and efficiency.
In Proceedings of the International Symposium on Code Generation and
Optimization (CGO’09). 114-125. DOI: http://dx.doi.org/10.1109/CG0.2009.19
F. M. Q. Pereira and J. Palsberg. 2009. SSA elimination after register
allocation. In Proceedings of Compiler Construction (CC’09). 158-173. DOIL:
https://dx.doi.org/10.1007/978-3-642-00722-4_12

UC Riverside Digital Microfluidic Biochip Static Synthesis Simulator. URL:
http://microfluidics.cs.ucr.edu/dmfb_static_simulator/overview.html

Y. Luo, B.B. Bhattacharya, T-Y. Ho, and K. Chakrabarty. Design and
optimization of a cyberphysical digital-microfluidic biochip for the
polymerase chain reaction. IEEE TCAD 34, 1 (Jan. 2015). 29-42. DOI:
http://dx.doi.org/10.1109/TCAD.2014.2363396

[100] L. Freedman, I. Cockburn, and T. Simcoe. 2015. The economics of

reproducibility in preclinical research. PLoS Biology 13, 6 (June 2015).
€1002165. DOI: http://dx.doi.org/10.1371/journal.pbio.1002165

[101] K. Eric. Aquarium, your protocols will be assimilated.

http://klavinslab.org/aquarium.html Accessed: 2011-11-13.

[102] Autoprotocol: an open standard for life science experimental design and

automation. URL: http://autoprotocol.org

[103] Antha. URL: https://docs.antha.com
[104] W. Thies, J. P. Urbanski, T. Thorsen, and S. Amarasinghe. Abstraction layers

for scalable microfluidic biocomputing. Natural Computing 7, 2 (June 2008).
255-275. DOL http://dx.doi.org/10.1007/s11047-006-9032-6

