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Abstract—Microfluidic cell sorters have shown great potential
to revolutionize the current technique of enriching rare cells.
In the past decades, different microfluidic cell sorters have
been developed by researchers for separating circulating tumor
cells, T-cells, and other biological markers from blood samples.
However, it typically takes months or even years to design these
microfluidic cell sorters by hand. Thus, researchers tend to use
computer simulation (usually finite element analysis) to verify
their designs before fabrication and experimental testing. Despite
this, conducting precision finite element analysis of microfluidic
devices is computationally expensive and labor-intensive. To
address this issue, we recently presented a microfluidic simulation
method that can simulate the behavior of fluids and particles
in some typical microfluidic chips instantaneously. Our method
decomposes the chip into channels and intersections. The be-
havior of fluid in each channel is determined by leveraging
analogies with electronic circuits, and the behavior of fluid
and particles in each intersection is determined by querying a
database containing 92,934 pre-simulated channel intersections.
While this approach successfully predicts the behavior of complex
microfluidic chips in a fraction of the time required by existing
techniques, we nonetheless identified three major limitations with
this method: (1) the library of pre-simulated channel intersections
is unnecessarily large (only 2,072 of 92,934 were used); (2) the
library contains only cross-shaped intersections (and no other
intersection geometries); and (3) the range of fluid flow rates in
the library is limited to 0 to 2 cm/s. To address these deficiencies,
in this work we present an improved method for instantaneously
simulating the trajectories of particles in microfluidic chips.
Firstly, inspired by dynamic programming, our new method
optimizes the generation of pre-simulated intersection units and
avoids generating unnecessary simulations. Secondly, we con-
structed a cloud database (http://cloud.microfluidics.cc) to share
our pre-simulated results and to let users become contributors
and upload their simulation results into the cloud database
as a benefit to the whole microfluidic simulation community.
Lastly, we investigated the impact of different channel angles
and different fluid flow rates on predicting the trajectories of
particles. We found a wide range of device geometries and flow
rates over which our existing simulation results can be extended
without having to perform additional simulations. Our method
should accelerate the simulation of particles in microfluidic chips
and enable researchers to design new microfluidic cell sorter
chips more efficiently.

I. INTRODUCTION

Cell sorting has many important applications in both clin-
ics and biological research [2], [3]. Among different cell
sorting mechanisms, microfluidic cell sorting devices have
shown great potential in enriching rare biological markers
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Fig. 1. The comparison of our two methods to accelerate simulation of a

microfluidic chip for predicting particle trajectories. (A) Our original method
based on memoization [1]. (B) Our new method that was inspired by dynamic
programming and a cloud database.

like circulating tumor cells for cancer therapy [4] or T-cells
for immunotherapy [5]. In the past decades, researchers have
developed different microfluidic cell sorters based on inertial
effects [6], [7], [8], pinched flow fractionation [9], [10],
deterministic lateral displacement (DLD) [11], [12] and other
different principles [13], [14].

During the microfluidic device design process, many re-
searchers may wish to use computer simulations to verify their
ideas before fabrication and experimental testing. However,
there are two major barriers standing between device ideas
and lifelike simulations. First, simulations of microfluidic
devices are usually computationally expensive. For instance,
a workstation with 32 gigabytes of RAM and a 12-core ES
CPU was necessary to simulate the particle trajectories in
a small unit of a DLD device using finite element analysis
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(FEA) software (COMSOL Multiphysics) and MOPSA [15]
in order to reduce the computational time to an hour. Second,
FEA software has a steep learning curve. It can take months
of training for a student to learn how to create a successful
model of the simulation target and have a basic understanding
of the connection between mathematical equations behind the
FEA software and real-world physics. These barriers limit
the practical usefulness of existing software when simulating
microfluidic devices.

To address these issues, our previous work presented a
method to efficiently simulate the behavior of fluids and
particles in some typical microfluidic chips instantaneously (in
approximately one second) [1]. The acceleration is achieved
by two steps. Assume we have an “H”-shape microfluidic
chip shown in Fig. 1, and we want to simulate the particle
trajectories in this chip. First, we decompose the microfluidic
chip design into several unit intersections (a - i). Units a, c,
d, e, f, g, and i are simple channels; the boundary conditions
of these channels can be modeled using the electronic-fluidic
analogy and calculated by electronic circuit simulation soft-
ware such as SPICE [16], [17], [18]. Second, as shown in
Fig. 1A, we access a database that contains 5,321,944 pre-
simulated trajectories of 92,934 intersections. In low Reynolds
number situations, particle trajectories can be expanded from
the trajectories of units b and h throughout the whole chip
using streamline theory [19]; consequently, we only need to
query the database to retrieve pre-simulated results for units
b and h. Combining these two steps generates the predicted
particle trajectories throughout the device. Constructing the
database of pre-simulated intersections required approximately
one month of computing time. However, using the database,
the simulation of particle trajectories of a microfluidic chip
takes approximately one second on a standard laptop, without
any noticeable degradation in the accuracy of the simulation.

While our instantaneous simulation method successfully
predicts the behavior of complex microfluidic chips in a
fraction of the time required by existing techniques, we
nonetheless identified three limitations of our technique. These
limitations mainly concern the database of pre-simulated in-
tersections. First, the pre-simulated database only contains T-
or cross-shaped intersections with 90-degree channel turns;
this limits the range of intersection geometries that can be
simulated using our technique. Second, the database only
contains simulation results with fluid flow rates from 0 to 2
cm/s; it cannot currently be used to predict the behavior of flow
rates above 2 cm/s. Third, the time required to construct the
pre-simulated database is non-negligible, making it prohibitive
to expand its usage to more general chip designs.

In this work, we address these limitations of our previous
instantaneous simulation method. We began this work by
asking the question: what if we could have a platform to share
our pre-simulated database, and every user who simulates a
previously unseen intersection contributes the result of the
simulation to the database, increasing its utility for others?
By leveraging dynamic programming, a method for solving
a complex problem by decomposing it into a collection of
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simpler subproblems [20], we present an online platform
which helps researchers take advantage of pre-simulated tra-
jectories in their own microfluidic particle simulation projects.
Researchers are able to use our platform through either an
application programming interface (API) or a graphical user
interface (http://cloud.microfluidics.cc). Sharing our simula-
tion database eliminates the need for researchers to construct
a brand new database for their own projects and is expected
to help researchers obtain reliable particle simulation results
instantly for their projects, even if they only need to simulate
a small number of microfluidic chips. Researchers are encour-
aged to upload their simulation results into our cloud database
to contribute to this project to help the microfluidic particle
simulation community. In theory, as our user base grows, the
database of pre-simulated results will grow along with it, and
the entire community of users will benefit from faster and
more accurate simulations.

To address the other limitations of our previous technique,
we also investigate how different channel angles (30° to
180°) at intersections and how different flow rates (Reynolds
numbers from 0.1 to 100) affect particle trajectories in the
same channel. By sharing this cloud database and generating
intersection units on demand, we are confident that simulation
of particle trajectories in microfluidic devices will become
easier and more efficient in the near future.

II. CLOUD DATABASE DESIGN

This work was motivated by the inefficient use of our pre-
simulated intersections. In our previous work, we simulated
more than 10,000 random microfluidic chips (Fig. 3) using
our instantaneous simulation method [1]. In this work, we
studied how many of the intersection simulations were actually
used while simulating these 10,000 random chips. Table I is
the statistical analysis of the usage details of pre-generated
intersection units. Although we generated 92,934 intersections
with varied boundary conditions, 90,862 of the intersections
(97.8%) were never used. Of all generated intersection units,
18 intersection simulations were used more than 1000 times,
205 intersections were used more than 100 times, and 516
intersections were used more than 10 times. Since different
intersection units had dramatically different probabilities of
being used, it occurred to us that the intersection units should
be generated on demand with determinate boundary conditions
instead of randomly being generated.

We also introduce a new parameter, called error tolerance,
to indicate the relative difference between the flow velocity
boundary conditions specified by the user and the closest
match found in the cloud database. Adjusting the error tol-
erance allows the user to customize the accuracy required for
different applications. Error tolerance is defined in Equation
1.

Error Tolerance = ‘VWO — Vv + 'VNU — Vi1
Viwo Vo M
. Vso — Vs1 Veo — VE1
Vso VEo




TABLE I
STATISTICAL ANALYSIS OF THE PRE-GENERATED INTERSECTION UNITS IN OUR PREVIOUS WORK [1]

Frequency of intersection unit usage 0 1

2~ 4 10 ~ 99 100 ~ 999 1000 ~ oo

Number of intersection units (total 92,934) 90,862 541

519 516 205 18

where Vivo, Vo, Vso, VEo indicate the average flow velocity
of WEST, NORTH, SOUTH and EAST of the intersection
units as requested by the user; and Viyi, Vi, Vsi, Ve
indicate the average flow velocity of WEST, NORTH, SOUTH
and EAST of the intersection units in the cloud database.

In dynamic programming, a large problem is decomposed
into a series of subproblems. When a subproblem is solved,
the solution is stored for future reuse. In our system, the
primary problem is to predict particle trajectories in microflu-
idic devices, and the subproblems are simulations of specific
particle trajectories in specific intersection units. The simulated
trajectories in each intersection unit are stored in a cloud
database for further use. By focusing on subproblems that
are actually useful in real-life simulations, as opposed to pre-
simulating a large population of randomly-generated intersec-
tions, this principle similar to dynamic programming reduces
the redundancy in our simulation database and accelerates the
simulation process.

Fig. 2 illustrates how we coupled our cloud database
with custom simulation projects using the idea of dynamic
programming. First, the user determines the flow velocity
in the intersections where they intend to simulate the par-
ticle trajectories. The details of this step have been de-
scribed in our previous work [1]. Second, our cloud platform
(http://cloud.microfluidics.cc) provides an API that helps users
find the best match in the cloud database of pre-simulated
intersection trajectories. The user sends a POST request to
http://cloud.microfluidics.cc/php/post.php containing the pa-
rameters defined in Listing 1 in JavaScript Object Notation
(JSON) format. The cloud platform processes the user request
and returns the result to the user, once again in JSON, as de-
fined in Listing 2. In many cases, the results will be suitable for
integration into the user’s simulation of a complete chip. How-
ever, in some cases the cloud platform may not find a suitable
match in the database of pre-simulated intersections. In these
cases, the user will be encouraged to simulate the trajectories
of particles locally and upload the simulation results into our
cloud database to better serve the community. To upload a
new simulation result, the user sends a JSON-formatted POST
request to http://cloud.microfluidics.cc/php/data_post.php with
the parameters defined in Listing 3. After retrieving or sim-
ulating all the particle trajectories in all the intersections, the
user can combine and expand the trajectories of individual
intersection units into trajectories from the input to the output
of the chip [1].

Listing 1: Query the database

inputl flow velocity of the WEST boundary of
the intersection,
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Fig. 2. Flow chart depicting the process of using our cloud database to
simulate a user’s microfluidic chip design.

input?2 flow velocity of the NORTH boundary of
the intersection,

input3 flow velocity of the SOUTH boundary of
the intersection,

input4 flow velocity of the EAST boundary of
the intersection,

accuracy : Error tolerance,
dp : particle diameter,
}
Listing 2: Pre-simulated particle trajectories
{
"res_code" 0 for failure & 1 for success,
"msg" : message,
"res" : [{
"id" ID of the trajectory,

"start_position_x" initial position of the
particle in x direction,



"start_position_y" initial position of the
particle in y direction,
"end_position_x" final position of the
particle in x direction,
"end_position_y" final position of the
particle in y direction,
}H

}
Listing 3: Uploading the simulated trajectories
{
inputl flow velocity of the WEST boundary of
the intersection,
input2 flow velocity of the NORTH boundary of
the intersection,
input3 flow velocity of the SOUTH boundary of
the intersection,
input4 flow velocity of the EAST boundary of
the intersection,
dp : particle diameter,
length The number of trajectories uploaded,
data0 initial position of the particle in x
direction,
datal initial position of the particle in y
direction,
data? final position of the particle in x
direction,
data3 final position of the particle in y
direction,
file : binary files describing the details of
trajectories if possible,
}
III. VALIDATING FAST SIMULATING OF PARTICLE
TRAJECTORIES IN RANDOM MICROFLUIDIC CHIPS
A 10,000 random chip designs B One random chip design
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Fig. 3. (A) The schematic of random microfluidic chips [21]. (B) Results

from using the principle of dynamic programming and our cloud database to
predict the paths of two 1 pm diameter particles traveling through a random
microfluidic chip.

To demonstrate our method and cloud platform on a more
complex chip design, we used the new method to predict the
trajectories of 1 pum diameter particles in 10,000 randomly-
generated microfluidic chips [21]. As shown in Fig. 3, these
random microfluidic chips each have two inlets and three
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outlets. In our simulations, particles start in the center of each
inlet channel and end at one outlet.
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Fig. 4. Statistical analysis of the generated intersection units using the

principle of dynamic programming and cloud database method when simu-
lating 10,000 random microfluidic chips with 1%, 2% and 3% error tolerance
settings.

The cloud database was reset prior to each simulation.
Each simulation was performed three times with different
error tolerance settings (1%, 2% and 3%); the simulation
results are summarized in Fig. 4. The three error tolerance
settings generated 7,519, 3,351 and 2,102 new intersection
units respectively. In each case, as the number of simulated
random microfluidic chips increased, new intersection units
were generated rapidly at first. After generating a certain
number of intersection units, the generation rate decreased,
indicating greater reuse of existing pre-simulated intersec-
tion units over time. Increasing the error tolerance decreases
the number of new intersection units generated during the
simulation process, which is consistent with our prediction.
Compared with the intersection units generated in our previous
work (Table I), every intersection unit generated by our new
method was used at least once. Furthermore, even for the
most-stringent 1% error tolerance case, only 7,519 intersection
units were generated instead of 92,934. The computational
time required to generate the database was therefore reduced
by 91.9%, 96.4% and 97.7% with 1%, 2% and 3% error
tolerance, respectively, when compared to our previous work.
Additionally, users may benefit from the ability to specify
their own expectations about error tolerance, which is handled
seamlessly by the querying mechanism that we have integrated
into our cloud database.

IV. REMOVING LIMITATIONS ON THE DEVICE
GEOMETRIES THAT CAN BE SIMULATED

As noted earlier, our pre-simulated intersection database
only contains simulations for channel intersections with (1)
90° turns and (2) fluid flow rates between 0 and 2 cm/s, so
the database could only be used for microfluidic chips that



adhere to these constraints. In this work, we have successfully
removed these limitations. We accomplished this by building
FEA models of microfluidic channels that have one inlet, two
outlets, and internal angles of 30°, 60°, 90°, 120°, 150° and
180°. We then simulated flow through each intersection using
inlet flow rates that resulted in four different values for the
Reynolds number: 0.1, 1, 10, and 100. We solved the fluid
velocity field of the chip using the Laminar Flow physics
module in COMSOL Multiphysics and a stationary solver;
the simulation used the “Extremely Fine” mesh setting. We
used the Particle Tracing for Fluid Flow physics module to
predict particle trajectories across the entire chip. We added
a “Drag Force” boundary condition to the entire chip, and
a particle “Inlet” boundary condition with initial position
“Uniform Distribution” and we added a 1.0 pum particle
diameter to all inlets in the Laminar Flow module. We assigned
“Outlet” boundary conditions to the outlets in the Laminar
Flow module; the remaining boundaries were walls (“freeze”
boundary condition). We set the number of particles per release
to 20.

Fig. 5 shows the simulation results. The relative end position
of 20 particles are near-identical at Reynolds numbers of 0.1,
1 and 10, across all six different intersection angles (except
the case of Re = 10 and angle = 30°). The average relative
differences are 1.3%, 2.2% and 5.2% when Re is equal to
0.1, 1 and 10, respectively. At a Reynolds number of 100, the
angle of intersection begins to impact the particle trajectories,
and the particles exit the intersections at substantially different
locations in the six different angles. When channel angles
equal 30° and 180°, the increase of Re has greater impact
on the trajectories of particles. In the 30° and 180° cases, the
simulations predict that the middle particles tend to become
stuck in the intersections when Re equals 10 and 100.

These results show that even though our cloud database has
limited pre-simulated intersection units, users are nonetheless
able to convert the pre-simulated results into new simulation
results (for Reynolds numbers less than 10, and channel angles
between 60° and 180°) and obtain reliable simulation results
without actually performing new finite element analyses. This
significantly increases the range of microfluidic device ge-
ometries and flow rates that can be instantaneously simulated
using our method. However, there are still some intersection
geometries and flow rates that cannot be simulated using
our improved method. In these cases, our cloud database
can ultimately allow users to upload their own simulation
results containing currently-unsupported angles and flow rates,
thereby further extending the range of devices that can be
simulated instantaneously.

V. CONCLUSIONS

In this work, we constructed a cloud database and ap-
plied the principle of dynamic programming to accelerate
the simulation of particle trajectories in microfluidic devices.
Compared to our previous method, the efficiency of our new
method arises from three key innovations: 1. Only simulate
the intersection units which will be used at least once; 2.
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Utilize a cloud database that will help the microfluidics
community accelerate predicting the path of particles in their
own projects; 3. Enable users of our platform to submit their
own simulation results to expand our pre-simulated database.
The original limitations of our method (only supporting cross-
shape intersections and a limited range of fluid flow rates) were
investigated as well. Our simulation results show that these
limitations can be negligible at low Reynolds number, which
is one of the natural properties of microfluidics. This method
reduces the barriers to simulating particle trajectories in mi-
crofluidic chips and should ultimately enable researchers to
design new microfluidic cell sorting devices more efficiently.
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