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Abstract—Microfluidic cell sorters have shown great potential
to revolutionize the current technique of enriching rare cells.
In the past decades, different microfluidic cell sorters have
been developed by researchers for separating circulating tumor
cells, T-cells, and other biological markers from blood samples.
However, it typically takes months or even years to design these
microfluidic cell sorters by hand. Thus, researchers tend to use
computer simulation (usually finite element analysis) to verify
their designs before fabrication and experimental testing. Despite
this, conducting precision finite element analysis of microfluidic
devices is computationally expensive and labor-intensive. To
address this issue, we recently presented a microfluidic simulation
method that can simulate the behavior of fluids and particles
in some typical microfluidic chips instantaneously. Our method
decomposes the chip into channels and intersections. The be-
havior of fluid in each channel is determined by leveraging
analogies with electronic circuits, and the behavior of fluid
and particles in each intersection is determined by querying a
database containing 92,934 pre-simulated channel intersections.
While this approach successfully predicts the behavior of complex
microfluidic chips in a fraction of the time required by existing
techniques, we nonetheless identified three major limitations with
this method: (1) the library of pre-simulated channel intersections
is unnecessarily large (only 2,072 of 92,934 were used); (2) the
library contains only cross-shaped intersections (and no other
intersection geometries); and (3) the range of fluid flow rates in
the library is limited to 0 to 2 cm/s. To address these deficiencies,
in this work we present an improved method for instantaneously
simulating the trajectories of particles in microfluidic chips.
Firstly, inspired by dynamic programming, our new method
optimizes the generation of pre-simulated intersection units and
avoids generating unnecessary simulations. Secondly, we con-
structed a cloud database (http://cloud.microfluidics.cc) to share
our pre-simulated results and to let users become contributors
and upload their simulation results into the cloud database
as a benefit to the whole microfluidic simulation community.
Lastly, we investigated the impact of different channel angles
and different fluid flow rates on predicting the trajectories of
particles. We found a wide range of device geometries and flow
rates over which our existing simulation results can be extended
without having to perform additional simulations. Our method
should accelerate the simulation of particles in microfluidic chips
and enable researchers to design new microfluidic cell sorter
chips more efficiently.

I. INTRODUCTION

Cell sorting has many important applications in both clin-

ics and biological research [2], [3]. Among different cell

sorting mechanisms, microfluidic cell sorting devices have

shown great potential in enriching rare biological markers
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Fig. 1. The comparison of our two methods to accelerate simulation of a
microfluidic chip for predicting particle trajectories. (A) Our original method
based on memoization [1]. (B) Our new method that was inspired by dynamic
programming and a cloud database.

like circulating tumor cells for cancer therapy [4] or T-cells

for immunotherapy [5]. In the past decades, researchers have

developed different microfluidic cell sorters based on inertial

effects [6], [7], [8], pinched flow fractionation [9], [10],

deterministic lateral displacement (DLD) [11], [12] and other

different principles [13], [14].

During the microfluidic device design process, many re-

searchers may wish to use computer simulations to verify their

ideas before fabrication and experimental testing. However,

there are two major barriers standing between device ideas

and lifelike simulations. First, simulations of microfluidic

devices are usually computationally expensive. For instance,

a workstation with 32 gigabytes of RAM and a 12-core E5

CPU was necessary to simulate the particle trajectories in

a small unit of a DLD device using finite element analysis



(FEA) software (COMSOL Multiphysics) and MOPSA [15]

in order to reduce the computational time to an hour. Second,

FEA software has a steep learning curve. It can take months

of training for a student to learn how to create a successful

model of the simulation target and have a basic understanding

of the connection between mathematical equations behind the

FEA software and real-world physics. These barriers limit

the practical usefulness of existing software when simulating

microfluidic devices.

To address these issues, our previous work presented a

method to efficiently simulate the behavior of fluids and

particles in some typical microfluidic chips instantaneously (in

approximately one second) [1]. The acceleration is achieved

by two steps. Assume we have an “H”-shape microfluidic

chip shown in Fig. 1, and we want to simulate the particle

trajectories in this chip. First, we decompose the microfluidic

chip design into several unit intersections (a - i). Units a, c,

d, e, f, g, and i are simple channels; the boundary conditions

of these channels can be modeled using the electronic-fluidic

analogy and calculated by electronic circuit simulation soft-

ware such as SPICE [16], [17], [18]. Second, as shown in

Fig. 1A, we access a database that contains 5,321,944 pre-

simulated trajectories of 92,934 intersections. In low Reynolds

number situations, particle trajectories can be expanded from

the trajectories of units b and h throughout the whole chip

using streamline theory [19]; consequently, we only need to

query the database to retrieve pre-simulated results for units

b and h. Combining these two steps generates the predicted

particle trajectories throughout the device. Constructing the

database of pre-simulated intersections required approximately

one month of computing time. However, using the database,

the simulation of particle trajectories of a microfluidic chip

takes approximately one second on a standard laptop, without

any noticeable degradation in the accuracy of the simulation.

While our instantaneous simulation method successfully

predicts the behavior of complex microfluidic chips in a

fraction of the time required by existing techniques, we

nonetheless identified three limitations of our technique. These

limitations mainly concern the database of pre-simulated in-

tersections. First, the pre-simulated database only contains T-

or cross-shaped intersections with 90-degree channel turns;

this limits the range of intersection geometries that can be

simulated using our technique. Second, the database only

contains simulation results with fluid flow rates from 0 to 2

cm/s; it cannot currently be used to predict the behavior of flow

rates above 2 cm/s. Third, the time required to construct the

pre-simulated database is non-negligible, making it prohibitive

to expand its usage to more general chip designs.

In this work, we address these limitations of our previous

instantaneous simulation method. We began this work by

asking the question: what if we could have a platform to share

our pre-simulated database, and every user who simulates a

previously unseen intersection contributes the result of the

simulation to the database, increasing its utility for others?

By leveraging dynamic programming, a method for solving

a complex problem by decomposing it into a collection of

simpler subproblems [20], we present an online platform

which helps researchers take advantage of pre-simulated tra-

jectories in their own microfluidic particle simulation projects.

Researchers are able to use our platform through either an

application programming interface (API) or a graphical user

interface (http://cloud.microfluidics.cc). Sharing our simula-

tion database eliminates the need for researchers to construct

a brand new database for their own projects and is expected

to help researchers obtain reliable particle simulation results

instantly for their projects, even if they only need to simulate

a small number of microfluidic chips. Researchers are encour-

aged to upload their simulation results into our cloud database

to contribute to this project to help the microfluidic particle

simulation community. In theory, as our user base grows, the

database of pre-simulated results will grow along with it, and

the entire community of users will benefit from faster and

more accurate simulations.

To address the other limitations of our previous technique,

we also investigate how different channel angles (30◦ to

180◦) at intersections and how different flow rates (Reynolds

numbers from 0.1 to 100) affect particle trajectories in the

same channel. By sharing this cloud database and generating

intersection units on demand, we are confident that simulation

of particle trajectories in microfluidic devices will become

easier and more efficient in the near future.

II. CLOUD DATABASE DESIGN

This work was motivated by the inefficient use of our pre-

simulated intersections. In our previous work, we simulated

more than 10,000 random microfluidic chips (Fig. 3) using

our instantaneous simulation method [1]. In this work, we

studied how many of the intersection simulations were actually

used while simulating these 10,000 random chips. Table I is

the statistical analysis of the usage details of pre-generated

intersection units. Although we generated 92,934 intersections

with varied boundary conditions, 90,862 of the intersections

(97.8%) were never used. Of all generated intersection units,

18 intersection simulations were used more than 1000 times,

205 intersections were used more than 100 times, and 516

intersections were used more than 10 times. Since different

intersection units had dramatically different probabilities of

being used, it occurred to us that the intersection units should

be generated on demand with determinate boundary conditions

instead of randomly being generated.

We also introduce a new parameter, called error tolerance,

to indicate the relative difference between the flow velocity

boundary conditions specified by the user and the closest

match found in the cloud database. Adjusting the error tol-

erance allows the user to customize the accuracy required for

different applications. Error tolerance is defined in Equation

1.
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TABLE I
STATISTICAL ANALYSIS OF THE PRE-GENERATED INTERSECTION UNITS IN OUR PREVIOUS WORK [1]

Frequency of intersection unit usage 0 1 2 ∼ 4 5 ∼ 9 10 ∼ 99 100 ∼ 999 1000 ∼ ∞

Number of intersection units (total 92,934) 90,862 541 519 273 516 205 18

where VW0, VN0, VS0, VE0 indicate the average flow velocity

of WEST, NORTH, SOUTH and EAST of the intersection

units as requested by the user; and VW1, VN1, VS1, VE1

indicate the average flow velocity of WEST, NORTH, SOUTH

and EAST of the intersection units in the cloud database.

In dynamic programming, a large problem is decomposed

into a series of subproblems. When a subproblem is solved,

the solution is stored for future reuse. In our system, the

primary problem is to predict particle trajectories in microflu-

idic devices, and the subproblems are simulations of specific

particle trajectories in specific intersection units. The simulated

trajectories in each intersection unit are stored in a cloud

database for further use. By focusing on subproblems that

are actually useful in real-life simulations, as opposed to pre-

simulating a large population of randomly-generated intersec-

tions, this principle similar to dynamic programming reduces

the redundancy in our simulation database and accelerates the

simulation process.

Fig. 2 illustrates how we coupled our cloud database

with custom simulation projects using the idea of dynamic

programming. First, the user determines the flow velocity

in the intersections where they intend to simulate the par-

ticle trajectories. The details of this step have been de-

scribed in our previous work [1]. Second, our cloud platform

(http://cloud.microfluidics.cc) provides an API that helps users

find the best match in the cloud database of pre-simulated

intersection trajectories. The user sends a POST request to

http://cloud.microfluidics.cc/php/post.php containing the pa-

rameters defined in Listing 1 in JavaScript Object Notation

(JSON) format. The cloud platform processes the user request

and returns the result to the user, once again in JSON, as de-

fined in Listing 2. In many cases, the results will be suitable for

integration into the user’s simulation of a complete chip. How-

ever, in some cases the cloud platform may not find a suitable

match in the database of pre-simulated intersections. In these

cases, the user will be encouraged to simulate the trajectories

of particles locally and upload the simulation results into our

cloud database to better serve the community. To upload a

new simulation result, the user sends a JSON-formatted POST

request to http://cloud.microfluidics.cc/php/data post.php with

the parameters defined in Listing 3. After retrieving or sim-

ulating all the particle trajectories in all the intersections, the

user can combine and expand the trajectories of individual

intersection units into trajectories from the input to the output

of the chip [1].

Listing 1: Query the database

{
input1 : flow velocity of the WEST boundary of

the intersection,

Fig. 2. Flow chart depicting the process of using our cloud database to
simulate a user’s microfluidic chip design.

input2 : flow velocity of the NORTH boundary of

the intersection,

input3 : flow velocity of the SOUTH boundary of

the intersection,

input4 : flow velocity of the EAST boundary of

the intersection,

accuracy : Error tolerance,

dp : particle diameter,

}

Listing 2: Pre-simulated particle trajectories

{
"res_code" : 0 for failure & 1 for success,

"msg" : message,

"res" : [{
"id" : ID of the trajectory,

"start_position_x" : initial position of the

particle in x direction,



"start_position_y" : initial position of the

particle in y direction,

"end_position_x" : final position of the

particle in x direction,

"end_position_y" : final position of the

particle in y direction,

}]
}

Listing 3: Uploading the simulated trajectories

{
input1 : flow velocity of the WEST boundary of

the intersection,

input2 : flow velocity of the NORTH boundary of

the intersection,

input3 : flow velocity of the SOUTH boundary of

the intersection,

input4 : flow velocity of the EAST boundary of

the intersection,

dp : particle diameter,

length : The number of trajectories uploaded,

data0 : initial position of the particle in x

direction,

data1 : initial position of the particle in y

direction,

data2 : final position of the particle in x

direction,

data3 : final position of the particle in y

direction,

...

file : binary files describing the details of

trajectories if possible,

}

III. VALIDATING FAST SIMULATING OF PARTICLE

TRAJECTORIES IN RANDOM MICROFLUIDIC CHIPS
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Fig. 3. (A) The schematic of random microfluidic chips [21]. (B) Results
from using the principle of dynamic programming and our cloud database to
predict the paths of two 1 µm diameter particles traveling through a random
microfluidic chip.

To demonstrate our method and cloud platform on a more

complex chip design, we used the new method to predict the

trajectories of 1 µm diameter particles in 10,000 randomly-

generated microfluidic chips [21]. As shown in Fig. 3, these

random microfluidic chips each have two inlets and three

outlets. In our simulations, particles start in the center of each

inlet channel and end at one outlet.

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

Number of simulated random chips

N
u
m

b
e
r 

o
f 
in

te
rs

e
c
ti
o
n
s
 g

e
n
e
ra

te
d

1% Error tolerance

2% Error tolerance

3% Error tolerance

Fig. 4. Statistical analysis of the generated intersection units using the
principle of dynamic programming and cloud database method when simu-
lating 10,000 random microfluidic chips with 1%, 2% and 3% error tolerance
settings.

The cloud database was reset prior to each simulation.

Each simulation was performed three times with different

error tolerance settings (1%, 2% and 3%); the simulation

results are summarized in Fig. 4. The three error tolerance

settings generated 7,519, 3,351 and 2,102 new intersection

units respectively. In each case, as the number of simulated

random microfluidic chips increased, new intersection units

were generated rapidly at first. After generating a certain

number of intersection units, the generation rate decreased,

indicating greater reuse of existing pre-simulated intersec-

tion units over time. Increasing the error tolerance decreases

the number of new intersection units generated during the

simulation process, which is consistent with our prediction.

Compared with the intersection units generated in our previous

work (Table I), every intersection unit generated by our new

method was used at least once. Furthermore, even for the

most-stringent 1% error tolerance case, only 7,519 intersection

units were generated instead of 92,934. The computational

time required to generate the database was therefore reduced

by 91.9%, 96.4% and 97.7% with 1%, 2% and 3% error

tolerance, respectively, when compared to our previous work.

Additionally, users may benefit from the ability to specify

their own expectations about error tolerance, which is handled

seamlessly by the querying mechanism that we have integrated

into our cloud database.

IV. REMOVING LIMITATIONS ON THE DEVICE

GEOMETRIES THAT CAN BE SIMULATED

As noted earlier, our pre-simulated intersection database

only contains simulations for channel intersections with (1)

90◦ turns and (2) fluid flow rates between 0 and 2 cm/s, so

the database could only be used for microfluidic chips that



adhere to these constraints. In this work, we have successfully

removed these limitations. We accomplished this by building

FEA models of microfluidic channels that have one inlet, two

outlets, and internal angles of 30◦, 60◦, 90◦, 120◦, 150◦ and

180◦. We then simulated flow through each intersection using

inlet flow rates that resulted in four different values for the

Reynolds number: 0.1, 1, 10, and 100. We solved the fluid

velocity field of the chip using the Laminar Flow physics

module in COMSOL Multiphysics and a stationary solver;

the simulation used the “Extremely Fine” mesh setting. We

used the Particle Tracing for Fluid Flow physics module to

predict particle trajectories across the entire chip. We added

a “Drag Force” boundary condition to the entire chip, and

a particle “Inlet” boundary condition with initial position

“Uniform Distribution” and we added a 1.0 µm particle

diameter to all inlets in the Laminar Flow module. We assigned

“Outlet” boundary conditions to the outlets in the Laminar

Flow module; the remaining boundaries were walls (“freeze”

boundary condition). We set the number of particles per release

to 20.

Fig. 5 shows the simulation results. The relative end position

of 20 particles are near-identical at Reynolds numbers of 0.1,

1 and 10, across all six different intersection angles (except

the case of Re = 10 and angle = 30◦). The average relative

differences are 1.3%, 2.2% and 5.2% when Re is equal to

0.1, 1 and 10, respectively. At a Reynolds number of 100, the

angle of intersection begins to impact the particle trajectories,

and the particles exit the intersections at substantially different

locations in the six different angles. When channel angles

equal 30◦ and 180◦, the increase of Re has greater impact

on the trajectories of particles. In the 30◦ and 180◦ cases, the

simulations predict that the middle particles tend to become

stuck in the intersections when Re equals 10 and 100.

These results show that even though our cloud database has

limited pre-simulated intersection units, users are nonetheless

able to convert the pre-simulated results into new simulation

results (for Reynolds numbers less than 10, and channel angles

between 60◦ and 180◦) and obtain reliable simulation results

without actually performing new finite element analyses. This

significantly increases the range of microfluidic device ge-

ometries and flow rates that can be instantaneously simulated

using our method. However, there are still some intersection

geometries and flow rates that cannot be simulated using

our improved method. In these cases, our cloud database

can ultimately allow users to upload their own simulation

results containing currently-unsupported angles and flow rates,

thereby further extending the range of devices that can be

simulated instantaneously.

V. CONCLUSIONS

In this work, we constructed a cloud database and ap-

plied the principle of dynamic programming to accelerate

the simulation of particle trajectories in microfluidic devices.

Compared to our previous method, the efficiency of our new

method arises from three key innovations: 1. Only simulate

the intersection units which will be used at least once; 2.

Utilize a cloud database that will help the microfluidics

community accelerate predicting the path of particles in their

own projects; 3. Enable users of our platform to submit their

own simulation results to expand our pre-simulated database.

The original limitations of our method (only supporting cross-

shape intersections and a limited range of fluid flow rates) were

investigated as well. Our simulation results show that these

limitations can be negligible at low Reynolds number, which

is one of the natural properties of microfluidics. This method

reduces the barriers to simulating particle trajectories in mi-

crofluidic chips and should ultimately enable researchers to

design new microfluidic cell sorting devices more efficiently.
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