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Abstract. An L-space link is a link in S3 on which all sufficiently large integral surgeries are
L-spaces. We prove that for m,n relatively prime, the r-component cable link Krm,rn is an L-space

link if and only if K is an L-space knot and n/m ≥ 2g(K) − 1. We also compute HFL– and ĤFL
of an L-space cable link in terms of its Alexander polynomial. As an application, we confirm a

conjecture of Licata [Lic12] regarding the structure of ĤFL for (n, n) torus links.

1. Introduction

Heegaard Floer homology is a package of 3-manifold invariants defined by Ozsváth and Szabó
[OS04a, OS04b]. In its simplest form, it associates to a closed 3-manifold Y a graded vector space

ĤF(Y ). For a rational homology sphere Y , they show that

dim ĤF(Y ) ≥ |H1(Y ;Z)|.

If equality is achieved, then Y is called an L-space.
A knotK ⊂ S3 is an L-space knot if K admits a positive L-space surgery. Let S3

p/q(K) denote p/q

Dehn surgery along K. If K is an L-space knot, then S3
p/q(K) is an L-space for all p/q ≥ 2g(K)−1,

where g(K) denotes the Seifert genus of K [OS11, Corollary 1.4]. A link L ⊂ S3 is an L-space link
if all sufficiently large integral surgeries on L are L-spaces. In contrast to the knot case, if L admits
a positive L-space surgery, it does not necessarily follow that all sufficiently large surgeries are also
L-spaces; see [Liu14, Example 2.3].

For relatively prime integers m and n, let Km,n denote the (m,n) cable of K, where m denotes
the longitudinal winding. Without loss of generality, we will assume that m > 0. Work of Hedden
[Hed09] (“if” direction) and the second author [Hom11] (“only if” direction) completely classifies
L-space cable knots.

Theorem 1 ([Hed09, Hom11]). Let K be a knot in S3, m > 1 and gcd(m,n) = 1. The cable knot
Km,n is an L-space knot if and only if K is an L-space knot and n/m > 2g(K)− 1.

Remark 1.1. Note that when m = 1, we have that K1,n = K for all n.

We generalize this theorem to cable links with many components. Throughout the paper, we
assume that each component of a cable link is oriented in the same direction.

Theorem 2. Let K be a knot in S3 and gcd(m,n) = 1. The r-component cable link Krm,rn is an
L-space link if and only if K is an L-space knot and n/m ≥ 2g(K) − 1.

In [OS05], Ozsváth and Szabó show that if K is an L-space knot, then ĤFK(K) is completely
determined by ∆K(t), the Alexander polynomial of K. Consequently, the Alexander polynomials
of L-space knots are quite constrained (the non-zero coefficients are all ±1 and alternate in sign)
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and the rank of ĤFK(K) is at most one in each Alexander grading. In [Liu14, Theorem 1.15], Liu
generalizes this result to give bounds on the rank of HFL–(L) in each Alexander multi-grading and
on the coefficients of the multi-variable Alexander polynomial of an L-space link L in terms of the
number of components of L. For L-space cable links, we have the following stronger result.

Definition 1.2. Define the Z-valued functions h(k) and β(k) by the equations:

(1.1)
∑

k

h(k)tk =
t−1∆m,n(t)(t

mnr/2 − t−mnr/2)

(1− t−1)2(tmn/2 − t−mn/2)
, β(k) = h(k − 1)− h(k) − 1,

where ∆m,n(t) is the Alexander polynomial of the cable knot Km,n.

Throughout, we work with F = Z/2Z coefficients. The following theorem gives a complete

description of the homology groups ĤFL for cable links with n/m > 2g(K) − 1.

Theorem 3. Let Krm,rn be a cable link with n/m > 2g(K)− 1.

(a) If β(k) + β(k + 1) ≤ r − 2 then:

ĤFL(Krm,rn, k, . . . , k) ≃

β(k)⊕

i=0

(
r − 1

i

)
F−2h(k)−i ⊕

β(k+1)⊕

i=0

(
r − 1

i

)
F−2h(k)+2−r+i

(b) If β(k) + β(k + 1) ≥ r − 2 then:

ĤFL(Krm,rn, k, . . . , k) ≃

r−2−β(k+1)⊕

i=0

(
r − 1

i

)
F−2h(k)−i ⊕

r−2−β(k)⊕

i=0

(
r − 1

i

)
F−2h(k)+2−r+i

(c) If v has j coordinates equal to k − 1 and r − j coordinates equal to k for some k and
1 ≤ j ≤ r − 1, then:

ĤFL(Krm,rn, (k − 1)j , kr−j) ≃

(
r − 2

β(k)

)
F−2h(k)−β(k)−j .

(d) For all other Alexander gradings the groups ĤFL vanish.

We prove the parts of this theorem as separate Theorems 4.22, 4.24 and 4.25. We compute ĤFL
explicitly for several examples in Section 5. In particular, we use Theorem 3 to confirm a conjecture

of Joan Licata [Lic12, Conjecture 1] concerning ĤFL for (n, n) torus links.

Theorem 4. Suppose that 0 ≤ s ≤ n−1
2 . Then

ĤFL

(
T (n, n),

n− 1

2
− s, . . . ,

n− 1

2
− s

)
=

s⊕

i=0

(
n− 1

i

)
F(−s2−s−i) ⊕

s−1⊕

i=0

(
n− 1

i

)
F(−s2−s−n+2+i).

Combined with [Lic12, Theorem 2], this completes the description of ĤFL(T (n, n)).
The following theorem describes the homology groups HFL– for cable links with n/m > 2g(K)−1.

Theorem 5. Let K be an L-space knot and n/m > 2g(K) − 1. Consider an Alexander grading
v = (v1, . . . , vn). Suppose that among the coordinates vi exactly λ are equal to k and all other
coordinates are less than k. Let |v| = v1 + . . . + vn. Then the Heegaard-Floer homology group
HFL–(Krm,rn, v) can be described as follows:

(a) If β(k) < r − λ then HFL–(Krm,rn, v) = 0.
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(b) If β(k) ≥ r − λ then

HFL–(Krm,rn, v) ≃ (F(0) ⊕ F(−1))
r−λ ⊗

β(k)−r+λ⊕

i=0

(
λ− 1

i

)
F(−2h(v)−i),

where h(v) = h(k) + kr − |v|.

We prove this theorem in Section 4.2. The structure of the homology for n/m = 2g(K)− 1 (which
is possible only if m = 1) is more subtle and is described in Theorem 4.26.

Finally, we describe HFL– as an F[U1, . . . , Ur]–module. We define a collection of F[U1, . . . , Ur]–
modules Mβ for 0 ≤ β ≤ r − 2, Mr−1,k for k ≥ 0 and Mr−1,∞. These modules can be defined
combinatorially and do not depend on a link.

Theorem 6. Let R = F[U1, . . . , Ur] and suppose that n/m > 2g(K) − 1. There exists a finite col-
lection of diagonal lattice points ai = (ai, . . . , ai) (determined by m,n and the Alexander polynomial
of K) such that HFL– admits the following direct sum decomposition:

HFL–(Krm,rn) =
⊕

i

R ·HFL–(Krm,rn,ai).

Furthermore, for β(ai) ≤ r − 2 one has R · HFL–(Krm,rn,ai) ≃ Mβ(ai), and for β(ai) = r − 1 one
has either R ·HFL–(Krm,rn,ai) ≃ Mr−1,k for some k or R · HFL–(Krm,rn,ai) ≃ Mr−1,∞.

We compute HFL– explicitly for several examples in Section 5.
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2. Dehn surgery and cable links

In this section, we prove Theorem 2. We begin with a result about Dehn surgery on cable links
(cf. [Hei74]).

Proposition 2.1. The manifold obtained by (mn, p2, . . . , pr)–surgery on the r-component link
Krm,rn is homeomorphic to S3

n/m(K)#L(m,n)#L(p2 −mn, 1)# . . .#L(pr −mn, 1).

Proof. Recall (see, for example, [Hed09, Section 2.4]) that mn-surgery on Km,n gives the manifold
S3
n/m(K)#L(m,n). Viewing Km,n as the image of Tm,n on ∂N(K), we have that the reducing

sphere is given by the annulus ∂N(K) \N(Tm,n) union two parallel copies of the meridional disk
of the surgery solid torus; we obtain a sphere since the surgery slope coincides with the surface
framing.

The link Krm,rn consists of r parallel copies of Km,n on ∂N(K). Label these r copies K1
m,n

through Kr
m,n. We perform mn-surgery on K1

m,n and consider the image K̃i
m,n of Ki

m,n, 2 ≤ i ≤ r,

in S3
n/m(K)#L(m,n). Each K̃i

m,n lies on ∂N(K) \ N(Tm,n) and thus on the reducing sphere. In

particular, each K̃i
m,n bounds a disk D2

i in S3
n/m(K)#L(m,n) such that the collection {D2

2, . . . ,D
2
r}

is disjoint. It follows that performing surgery on
⋃r

i=2 K̃
i
m,n yields r − 1 lens space summands. To

see which lens spaces we obtain, note that the mn-framed longitude on Ki
m,n ⊂ S3 coincides with

the 0-framed longitude on K̃i
m,n ⊂ S3

n/m(K)#L(m,n). Thus, pi-surgery on Ki
m,n corresponds to

(pi −mn)-surgery on K̃i
m,n, and the result follows. �
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Let us recall that the linking number between each two components of Krm,rn equals l := mn.
It is well-known that the cardinality of H1 of the manifold obtained by (p1, p2, . . . , pr)-surgery on
Krm,rn equals |det Λ(p1, . . . , pr)|, where

Λij =

{
pi, if i = j,

l, if i 6= j.

This cardinality can be computed using the following result.

Proposition 2.2. One has the following identity:

(2.1) detΛ(p1, . . . , pr) = (p1 − l) · · · (pr − l) + l

r∑

i=1

(p1 − l) · · · ̂(pi − l) · · · (pr − l).

Proof. One can easily check that detΛ(l, p2, . . . , pr) = l(p2 − l) · · · (pr − l). The expansion of the
determinant in the first row yields a recursion relation

det Λ(p1, . . . , pr) = det Λ(l, p2 . . . , pr) + (p1 − l) det Λ(p2, . . . , pr) =

= l(p2 − l) · · · (pr − l) + (p1 − l) det Λ(p2, . . . , pr).

Now (2.1) follows by induction in r. �

Corollary 2.3. If pi ≥ l for all i then detΛ(p1, . . . , pr) ≥ 0.

In order to prove Theorem 2, we will need the following:

Theorem 2.4 ([Liu14, Proposition 1.11]). A link L is an L–space link if and only if there exists
a surgery framing Λ(p1, . . . , pr), such that for all sublinks L′ ⊆ L, det(Λ(p1, . . . , pr)|L′) > 0 and
S3
Λ|L′

(L′) is an L–space.

We will also need the following proposition, which we prove in Subsection 2.1 below.

Proposition 2.5. Let K be an L-space knot and pi > 0, i = 1, . . . , r. If n < 2g(K) − 1, then the
manifold obtained by (p1, . . . , pr)-surgery on the r-component link Kr,rn is not an L-space.

Proof of Theorem 2. If Krm,rn is an L-space link, then by [Liu14, Lemma 1.10] all its components
are L-space knots. On the other hand, its components are isotopic to Km,n. Thus, if m > 1, then
by Theorem 1, K is an L-space knot and n/m > 2g(K)− 1. If m = 1, then K must be an L-space
knot and by Proposition 2.5, n ≥ 2g(K)− 1.

Conversely, suppose that K is an L-space knot and n/m ≥ 2g(K) − 1, i.e., Km,n is an L-
space knot. Let us prove by induction on r that (p1, . . . , pr)-surgery on Krm,rn is an L-space if
pi > l for all i. For r = 1 it is clear. By Proposition 2.1, the link Krm,rn admits an L-space
surgery with parameters l, p2, . . . , pr. Let us apply Theorem 2.4. Indeed, by Corollary 2.3, one has
det(Λ(l, p2 . . . , pr)|L′) > 0 and by the induction assumption S3

Λ(l,p2...,pr)|L′
(L′) is an L–space for all

sublinks L′. By [Liu14, Lemma 2.5], (p1, . . . , pr)-surgery on Krm,rn is also an L-space for all p1 > l.
Therefore Krm,rn is an L-space link. �

2.1. Proof of Proposition 2.5. We will prove Proposition 2.5 using Lipshitz-Ozsváth-Thurston’s
bordered Floer homology [LOT08], specifically Hanselman-Watson’s [HW15] loop calculus. That
is, we will decompose the result of surgery on Kr,rn into two pieces, one that is surgery on a
torus link in the solid torus and the other the knot complement, and then apply a gluing result of
Hanselman-Watson to conclude that the result of this surgery along Kr,rn is not an L-space. The
following was described to us by Jonathan Hanselman.
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Let Y1 denote the Seifert fibered space obtained by performing (p1, . . . , pr)-surgery on the r-
component (r, 0)-torus link in the solid torus. Consider the bordered manifold (Y1, α1, β1), where
α1 is the fiber slope and β1 lies in the base orbifold; that is, α1 is the longitude and β1 the meridian of
the original solid torus. Let (Y2, α2, β2) be the n-framed complement of K; that is, Y2 = S3 \N(K),
α2 is an n-framed longitude, and β2 is a meridian. Let (Y1, α1, β1) ∪ (Y2, α2, β2) denote the result
of gluing Y1 to Y2 by identifying α1 with α2 and β1 with β2. Note that (Y1, α1, β1) ∪ (Y2, α2, β2) is
homeomorphic to (p1, . . . , pr)-surgery along Kr,rn. We identify the slope pαi + qβi on ∂Yi with the
(extended) rational number p

q ∈ Q ∪ {1
0}.

The following lemma gives a description of ĈFD(Y1, α1, β1) in terms of the standard notation
defined in [HW15, Section 3.2].

Lemma 2.6. The invariant ĈFD(Y1, α1, β1) can be written in standard notation as a product of
dki where

(1) ki ≤ 0 for all i,
(2) ki = 0 for at least one i,
(3) ki = −r for exactly one i.

Proof. The computation is similar to the example in [HW15, Section 6.5]. A plumbing tree Γ for
Y1 is given in Figure 1. We first consider the plumbing tree Γi in Figure 2(a). We will build Γ by
merging the Γi, i = 1, . . . , r.

p1 p2 pr

0

. . .

Γ =

Figure 1. The plumbing tree Γ.

We proceed as in [HW15, Section 6.5]. Start with a loop (d0) representing the tree Γ0 in Figure
2(b). We have that Γi = E(T pi(Γ0)) so by [HW15, Sections 3.3 and 6.3]:

ĈFD(Γi) = e(tpi((d0)))

= e((dpi))

= (d∗−pi)

∼ (d−1 d0 . . . d0︸ ︷︷ ︸
pi

).

pi 0
Γi =

(a)

0
Γ0 =

(b)

Figure 2. Left, the plumbing tree Γi. Right, the plumbing tree Γ0.
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We then have that Γ = M(Γ2,M(Γ2, . . . ,M(Γpr−1 ,Γpr))). By [HW15, Proposition 6.4], we have

that ĈFD(Γ) is a represented by a product of dki where ki ≤ 0 for all i and ki = 0 for at least one
i since each pi > 0. Moreover, d−r appears exactly once in the product, since we performed r − 1
merges. This completes the proof of the lemma. �

Lemma 2.7. The slope 1 is not a strict L-space slope on (Y1, α1, β1).

Proof. We will apply a positive Dehn twist to (Y1, α1, β1) to obtain (Y1, α1, β1 +α1). We will show
that 0 is not a strict L-space slope on (Y1, α1, β1 +α1), and hence 1 is not a strict L-space slope on
(Y1, α1, β1).

By [HW15, Proposition 6.1], we have that ĈFD(Y1, α1, β1 + α1) can be obtained by applying t

to a loop representative of ĈFD(Y1, α1, β1). Since t(dk) = dk+1, it follows from Lemma 2.6 that

ĈFD(Y1, α1, β1 + α1) can be written in standard notation as a product of dki with ki ≤ 1 for all i,
ki = 1 for at least one i, and ki = 1− r for exactly one i.

We claim that if a loop ℓ contains both positive and negative dk segments (i.e., both di, i > 0
and dj , j < 0), then in dual notation ℓ contains at least one a∗i or b∗j segment. Indeed, suppose by
contradiction that ℓ has no a∗i or b

∗
j . Then ℓ consists of only d∗i segments, i ∈ Z. It is straightforward

to see (for example, by considering the segments as drawn in [HW15, Figure 1]) that one cannot
obtain a loop containing both positive and negative dk segments from d∗i segments, i ∈ Z. This
completes the proof of the claim.

Furthermore, note that ĈFD(Y1, α1, β1 + α1) consists of simple loops (see Definition 4.19 of
[HW15]). Then by [HW15, Proposition 4.24], in dual notation ℓ has no a∗k or b∗k segments for
k < 0. It now follows from Proposition 4.18 of [HW15] that 0 is not a strict L-space slope for

ĈFD(Y1, α1, β1 + α1). Therefore, 1 is not a strict L-space slope on (Y1, α1, β1), as desired. �

Remark 2.8. Note that by Proposition 4.18 of [HW15], we have that 0 and ∞ are strict L-space
slopes on (Y1, α1, β1). Since 1 is not a strict L-space slope, it follows from Corollary 4.5 of [HW15]
that the interval of L-space slopes of (Y1, α1, β1) contains the interval [−∞, 0].

Remark 2.9. An alternative proof of Lemma 2.7 follows from [LS07, Theorem 1.1]. Indeed, by
setting ri = 1/pi and e0 = −1 in Figure 1 of [LS07], we see that M(−1; 1/p1, . . . , 1/pr) is not
an L-space, hence neither is M(1;−1/p1, . . . ,−1/pr), which is homeomorphic to filling (Y1, α1, β1)
along a curve of slope 1.

Lemma 2.10. Let K be an L-space knot. If n < 2g(K)− 1, then 1 is not a strict L-space slope on
the n-framed knot complement (Y2, α2, β2).

Proof. Since K is an L-space knot, we have that S3
K(p/q) is an L-space exactly when p/q ≥

2g(K) − 1. Since α2 is an n-framed longitude, it follows that the interval of strict L-space slopes
on (Y2, α2, β2) is (0,

1
2g(K)−1−n ), that is, the reciprocal of the interval (2g(K) − 1− n,∞). �

Proof of Proposition 2.5. The result now follows from [HW15, Theorem 1.3] combined with Lem-
mas 2.7 and 2.10; the slope 1 is not a strict L-space slope on either (Y1, α1, β1) or (Y2, α2, β2), and
so the resulting manifold (Y1, α1, β1)∪ (Y2, α2, β2), which is (p1, . . . , pr)-surgery on Kr,rn, is not an
L-space. �

Remark 2.11. One can use similar methods to provide an alternate proof that Kr,rn is an L-space
link if K is an L-space knot and n ≥ 2g(K) − 1. Indeed, if K is an L-space knot, then the
interval of strict L-space slopes on the n-framed knot complement (Y2, α2, β2) is (0, 1

2g(K)−1−n) if

n ≤ 2g(K) − 1 and (0,∞] ∪ [−∞, 1
2g(K)−1−n) if n > 2g(K) − 1. Hence if n ≥ 2g(K) − 1, then the
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interval of strict L-space slopes on (Y2, α2, β2) contains the interval (0,∞). By Remark 2.8, we have
that the interval of strict L-space slopes on (Y1, α1, β1) contains [−∞, 0]. Therefore, by [HW15,
Theorem 1.4], if n ≥ 2g(K) = 1, then the result of positive surgery (i.e., each surgery coefficient is
positive) on Kr,rn is an L-space.

3. A spectral sequence for L-space links

In this section we review some material from [GN15]. Given u, v ∈ Zr, we write u � v if ui ≤ vi
for all i, and u ≺ v if u � v and u 6= v. Recall that we work with F = Z/2Z coefficients.

Definition 3.1. Given a r-component oriented link L, we define an affine lattice over Zr:

H(L) =
r⊕

i=1

Hi(L), Hi(L) = Z+
1

2
lk(Li, L− Li).

Let us recall that the Heegaard-Floer complex for a r-component link L is naturally filtered by
the subcomplexes A−

L (L; v) of F[U1, . . . , Ur]-modules for v ∈ H(L). Such a subcomplex is spanned
by the generators in the Heegaard-Floer complex of Alexander filtration less than or equal to v in
the natural partial order on H(L). The group HFL–(L, v) can be defined as the homology of the
associated graded complex:

(3.1) HFL–(L, v) = H∗

(
A−(L; v)/

∑

u≺v

A−(L;u)

)
.

One can forget a component Lr in L and consider the (r − 1)-component link L− Lr. There is
a natural forgetful map πr : H(L) → H(L− Lr) defined by the equation:

πr(v1, . . . , vr) = (v1 − lk(L1, Lr)/2, . . . , vr−1 − lk(Lr−1, Lr)/2) .

Similarly, one can define a map πL′ : H(L) → H(L′) for every sublink L′ ⊂ L. Furthermore,
for large vr ≫ 0 the subcomplexes A−(L; v) stabilize, and by [OS08, Proposition 7.1] one has
a natural homotopy equivalence A−(L; v) ∼ A−(L − Lr;πr(v)). More generally, for a sublink
L′ = Li1 ∪ . . . ∪ Lir′ one gets

(3.2) A−(L′;πL′(v)) ∼ A−(L; v), if vi ≫ 0 for i /∈ {i1 . . . , ir′}.

We will use the “inversion theorem” of [GN15], expressing the h-function of a link in terms
of the Alexander polynomials of its sublinks, or, equivalently, the Euler characteristics of their
Heegaard-Floer homology. Define χL,v := χ(HFL–(L, v)). Then by [OS08]

χL(t1, . . . , tr) :=
∑

v∈H(L)

χL,vt
v1
1 · · · tvrr =

{
(t1 · · · tr)

1/2∆(t1, . . . , tr), if r > 1

∆(t)/(1 − t−1), if r = 1,

where ∆(t1, . . . , tr) denotes the symmetrized Alexander polynomial.

Remark 3.2. We choose the factor (t1 · · · tr)
1/2 to match more established conventions on the grad-

ings for the hat-version of link Floer homology. For example, the Alexander polynomial of the Hopf

link equals 1, and one can check [OS08] that ĤFL is supported in Alexander degrees (±1
2 ,±

1
2 ). Since

the maximal Alexander degrees in ĤFL and HFL– coincide, one gets χT (2,2)(t1, t2) = t
1/2
1 t

1/2
2 .

The following “large surgery theorem” underlines the importance of A−(L; v).
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Theorem 3.3 ([MO10]). The homology of A−(L; v) is isomorphic to the Heegaard-Floer homology
of a large surgery on L with spinc-structure specified by v. In particular, if L is an L-space link,
then H∗(A

−(L, v)) ≃ F[U ] for all v and all Ui are homotopic to each other on the subcomplex
A−(L; v).

One can show that for L-space links the inclusion hv : A−(L, v) →֒ A−(S3) is injective on

homology, so it is multiplication by UhL(v). Therefore the generator of H∗(A
−(L, v)) ≃ F[U ] has

homological degree −2hL(v). The function hL(v) will be called the h–function for an L–space link
L. In [GN15] it was called an “HFL-weight function”.

Furthermore, if L is an L-space link, then for large N ∈ H(L) one has

χ
(
A−(L;N)/A−(L, v)

)
= hL(v).

Hence, by (3.1) and the inclusion-exclusion formula one can write:

(3.3) χL,v =
∑

B⊂{1,...,r}

(−1)|B|−1hL(v − eB),

where eB denotes the characteristic vector of the subset B ⊂ {1, . . . , r}. Furthermore, by (3.2) for
a sublink L′ = Li1 ∪ . . . ∪ Lir′ one gets

(3.4) hL′(πL′(v)) = hL(v), if vi ≫ 0 for i /∈ {i1 . . . , ir′}.

For r = 1 equation (3.3) has the form χL,v = h(v − 1) − h(v), so h(v) can be easily reconstructed
from the Alexander polynomial: hL(v) =

∑
u≥v+1 χL,v. For r > 1, one can also show that equation

(3.3) (together with the boundary conditions (3.4)) has a unique solution, which is given by the
following theorem:

Theorem 3.4 ([GN15]). The h-function of an L-space link is determined by the Alexander poly-
nomials of its sublinks as following:

(3.5) hL(v1, . . . , vr) =
∑

L′⊆L

(−1)r
′−1

∑

u�πL′(v+1)

χL′,u,

where the sublink L′ has r′ components and 1 = (1, . . . , 1).

Given an L-space link, we construct a spectral sequence whose E2 page can be computed from
the multi-variable Alexander polynomial by an explicit combinatorial procedure, and whose E∞

page coincides with the group HFL–. The complex (3.1) is quasi-isomorphic to the iterated cone:

K(v) =
⊕

B⊂{1,...,r}

A−(L, v − eB),

where the differential consists of two parts: the first acts in each summand and the second acts
by inclusion maps between summands. There is a spectral sequence naturally associated to this
construction. Its E1 term equals

E1(v) =
⊕

B⊂{1...,r}

H∗(A
−(L, v − eB)) =

⊕

B⊂{1...,r}

F[U ]〈z(v − eB)〉,

where z(u) is the generator of H∗(A
−(L, u)) of degree −2hL(u). The next differential ∂1 is induced

by inclusions and reads as:

(3.6) ∂1(z(v − eB)) =
∑

i∈B

Uh(v−eB)−h(v−eB−i)z(v − eB + ei).

We obtain the following result.
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Theorem 3.5 ([GN15]). Let L be an L-space link with r components and let hL(v) be the cor-
responding h-function. Then there is a spectral sequence with E2(v) = H∗(E1, ∂1) and E∞ ≃
HFL–(L, v).

Remark 3.6. Let us write more precisely the bigrading on the E2 page. The E1 page is naturally
bigraded as follows: a generator Umz(v − eB) has cube degree |B| and its homological degree in
A−(L, v − eB) equals −2m− 2h(v − eB). In short, we will write

bideg (Umz(v − eB)) = (|B|,−2m− 2h(v − eB)).

The homological degree of the same generator in E1(v) equals the sum of these two degrees. The
differential ∂1 has bidegree (−1, 0), and, more generally, the differential ∂k in the spectral sequence
has bidegree (−k, k − 1).

In the next section we will compute the E2 page for cable L-space links and show that E2 = E∞.
Let us discuss the action of the operators Ui on the E2 page. Recall that Ui maps A−(L, v) to
A−(L, v − ei), and in homology one has:

(3.7) Uiz(v) = U1−h(v−ei)+h(v)z(v − ei).

Since Ui commutes with the inclusions of various A−, we get the following result.

Proposition 3.7. Equation (3.7) defines a chain map from K(v) to K(v− ei) commuting with the
differential ∂1, so we have a well-defined combinatorial map

Ui : H∗(E1(v), ∂1) → H∗(E1(v − ei), ∂1).

If E2 = E∞ then one obtains Ui : HFL
–(L, v) → HFL–(L, v − ei).

Furthermore, by the definition of ĤFL [OS08, Section 4] one gets:

ĤFL(L, v) = H∗

(
A−(L, v)/

[
r∑

i=1

A−(v − ei)⊕
r∑

i=1

UiA
−(v + ei)

])
.

This implies the following result:

Proposition 3.8. There is a spectral sequence with E1 page

Ê1 =
⊕

B⊂{1,...,r}

HFL–(L, v + eB)

and converging to Ê∞ = ĤFL(L, v). The differential ∂̂1 is given by the action of Ui induced by
(3.7).

4. Heegaard-Floer homology for cable links

4.1. The Alexander polynomial and h–function. The Alexander polynomial of cable knots
and links is given by the following well-known formula:

(4.1) ∆Krm,rn(t1, . . . , tr) = ∆K(tm1 · · · tmr ) ·∆T (rm,rn)(t1, . . . , tr),

where T (rm, rn) denotes the (rm, rn) torus link. Throughout, let t = t1 · · · tr and l = mn.

Lemma 4.1. The generating functions for the Euler characteristics of HFL– for Krm,rn and Km,n

are related by the following equation:

(4.2) χKrm,rn(t1, . . . , tr) = χKm,n(t) · (t
l/2 − t−l/2)r−1.
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Proof. The statement follows from the identity (4.1) and the expression for the Alexander polyno-
mials of torus links:

χT (rm,rn)(t1, . . . , tr) =
(tmn/2 − t−mn/2)r

(tm/2 − t−m/2)(tn/2 − t−n/2)
.

�

Remark 4.2. The Alexander polynomial is determined up to a sign. By (4.2), the multivariable
Alexander polynomial of a cable link is supported on the diagonal, so one can fix the sign by
requiring its top coefficient to be positive.

From now on we will assume that K is an L-space knot and n/m ≥ 2g(K) − 1, so Krm,rn is
an L-space link for all r. To simplify notation, we define hrm,rn(v) = hKrm,rn(v) and χrm,rn(v) =
χKrm,rn,v. Let c = l(r − 1)/2.

Theorem 4.3. Suppose that v1 ≤ v2 ≤ . . . ≤ vr. Then the following equation holds:

(4.3) hrm,rn(v1, . . . , vr) = hm,n(v1 − c) + hm,n(v2 − c+ l) + . . .+ hm,n(vr − c+ (r − 1)l).

Proof. We will use Theorem 3.4 to compute h(v). Let L′ be a sublink of Krm,rn with r′ components,
i.e., L′ = Kr′m,r′n. By (4.2), one has

χKr′m,r′n
(t1, . . . , tr′) = χKm,n(t) · t

l(r′−1)/2
r′−1∑

j=0

(−1)j
(
r′ − 1

j

)
t−lj,

hence χL′,u does not vanish only if u = (s, . . . , s), and

χL′,s,...,s =

r′−1∑

j=0

(−1)j
(
r′ − 1

j

)
χm,n(s− l(r′ − 1)/2 + lj).

Therefore

∑

u�πL′(v+1)

χL′,u =
∑

s>max(πL′ (v))

r′−1∑

j=0

(−1)j
(
r′ − 1

j

)
χm,n(s− l(r′ − 1)/2 + lj)

=

r′−1∑

j=0

(−1)j
(
r′ − 1

j

)
hm,n(max(πL′(v)) − l(r′ − 1)/2 + lj).

Furthermore, if L′ = Li1 ∪ . . . ∪ Lir′ then πL′(v) = (vi1 − l(r − r′)/2, . . . , vir′ − l(r − r′)/2), so

max(πL′(v)) = max(vi1 , . . . , vi′r )− l(r − r′)/2 = max(vL′)− l(r − r′)/2.

This means that (3.5) can be rewritten as follows:

hrm,rn(v1, . . . , vr) =
∑

L′,j

(−1)r
′−1+j

(
r′ − 1

j

)
hm,n(max(vL′)− l(r − 1)/2 + lj)

=
∑

i,j

hm,n(vi − l(r − 1)/2 + lj)
∑

L′:vi=max(vL′ )

(−1)r
′−1+j

(
r′ − 1

j

)
.

One can check that the inner sum vanishes unless j = i− 1 (recall that v1 ≤ v2 ≤ . . . ≤ vr), so one
gets

hrm,rn(v1, . . . , vr) =
∑

i

hm,n(vi − l(r − 1)/2 + l(i− 1)).
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�

Lemma 4.4. The following identity holds:

hrm,rn(−v1, . . . ,−vr) = hrm,rn(v1, . . . , vr) + (v1 + . . .+ vr).

Proof. Suppose that v1 ≤ v2 ≤ . . . ≤ vr. Then −v1 ≥ −v2 ≥ . . . ≥ −vr. Therefore

hrm,rn(−v1, . . . ,−vr) =

r∑

i=1

hm,n(−vi − l(r − 1)/2 + l(r − i))

=

r∑

i=1

hm,n(−vi + l(r − 1)/2− l(i− 1)).

It is known (e.g., [HLZ13]) that for all x,

hm,n(−x) = hm,n(x) + x,

hence

hm,n(−vi + l(r − 1)/2 − l(i− 1)) = hm,n(vi − l(r − 1)/2 + l(i− 1)) + (vi − l(r − 1)/2 + l(i− 1)).

Finally,
∑r

i=1(−l(r − 1)/2 + l(i− 1)) = 0. �

Lemma 4.5. One has hrm,rn(k, k . . . , k) = h(k), where h(k) is defined by (1.1).

Proof. Indeed, by (4.3) we have

hrm,rn(k, . . . , k) = hm,n(k − l(r − 1)/2) + hm,n(k − l(r − 1)/2 + l) + . . .+ hm,n(k + l(r − 1)/2),

so
∑

k

hrm,rn(k, . . . , k)t
k = (t−l(r−1)/2 + . . .+ tl(r−1)/2)

∑

k

hm,n(k)t
k =

(tlr/2 − t−lr/2)

(tl/2 − t−l/2)
·
t−1∆m,n(t)

(1− t−1)2
.

�

For the rest of this section we will assume that n/m > 2g(K) − 1.

Lemma 4.6. If v ≤ g(Km,n)− l, then HFK–(Km,n, v) ≃ F.

Proof. By [Hed09, Theorem 1.10], Km,n is an L-space knot and hence by [OS05]

g(Km,n) = τ(Km,n), g(K) = τ(K).

By [Shi85], we have:

g(Km,n) = mg(K) +
(m− 1)(n− 1)

2
,

so for n/m > 2g(K) − 1 we have

2g(Km,n) = 2mg(K) +mn−m− n+ 1 < mn+ 1,

hence l = mn ≥ 2g(Km,n). On the other hand, it is well-known that for v ≤ −g(Km,n) one has
HFK–(Km,n, v)) ≃ F. �

We will use the function β defined by (1.1).

Lemma 4.7. If β(k) = −1 then HFK–(Km,n, k − c) = 0. Otherwise

(4.4) β(k) = max{j : 0 ≤ j ≤ r − 1, HFK–(Km,n, k − c+ lj) ≃ F}.
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Proof. By (1.1) and Lemma 4.5 we have

β(k)+1 = hrm,rn(k−1, . . . , k−1)−hrm,rn(k, . . . , k) =

r−1∑

j=0

(hm,n(k − 1− c+ lj)− hm,n(k − c+ lj)) .

Note that hm,n(k − 1 − c + lj) − hm,n(k − c + lj) = dimHFK–(Km,n, k − c + lj) ∈ {0, 1}. If
HFK–(Km,n, k−c+ lj) ≃ F then k−c+ lj ≤ g(Km,n), so by Lemma 4.6 HFK–(Km,n, k−c+ lj′) ≃ F
for all j′ < j. Therefore, if HFK–(Km,n, k − c) = 0 then β(k) = −1, otherwise

HFK–(Km,n, k − c+ lj) =

{
F if j ≤ β(k),

0 if j > β(k).

�

Suppose that v1 = . . . = vλ1 = u1, vλ1+1 = . . . = vλ1+λ2 = u2, . . . , vλ1+...+λs−1+1 = . . . = vr = us
where u1 < u2 < . . . < us and λ1 + . . .+ λs = r. We will abbreviate this as v = (uλ1

1 , . . . , uλs
s ).

Lemma 4.8. Suppose that β(us) < r − λs. Then for any subset B ⊂ {1, . . . , r − 1} one has
hrm,rn(v − eB) = hrm,rn(v − eB − er).

Proof. To apply (4.3), one needs to reorder the components of the vectors v − eB and v − eB − er.
Note that in both cases the last (largest) λs components are equal either to us or to us − 1,
and the corresponding contributions to hrm,rn are equal to hm,n(us − c + l(r − λs) + lj) or to
hm,n(us − c+ l(r − λs) + lj − 1), respectively (j = 0, . . . , λs − 1). On the other hand, by (4.4) one
has

HFK–(Km,n, us − c+ l(r − λs) + lj) = 0

and so

hm,n(us − c+ l(r − λs) + lj − 1) = hm,n(us − c+ l(r − λs) + lj).

�

Lemma 4.9. If β(us) ≥ r − λs then hrm,rn(v) = h(us) + rus − |v|.

Proof. Since β(us) ≥ r − λs, we have HFK–(Km,n, us − c+ l(r − λs)) ≃ F, so

us − c+ l(r − λs) ≤ g(Km,n).

For i ≤ r − λs we get

vi − c+ l(i− 1) < us − c+ l(i− 1) ≤ us − c+ l(r − λs)− l ≤ g(Km,n)− l,

so by Lemma 4.6, HFK–(Km,n, w) ≃ F for all w ∈ [vi − c+ l(i− 1), us − c+ l(i− 1)], and

hm,n(vi − c+ l(i− 1)) = hm,n(us − c+ l(i− 1)) + (us − vi).

Now the statement follows from Lemma 4.3. �

Lemma 4.10. Suppose that β(us) ≥ r − λs. Then for any subsets B′ ⊂ {1, . . . , r − λs} and
B′′ ⊂ {r − λs + 1, . . . , r} one has

hrm,rn(v − eB′ − eB′′) = hrm,rn(v) + |B′|+min(|B′′|, β(us)− r + λs + 1).
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Proof. Since HFK–(Km,n, us − c+ l(r − λs)) ≃ F, we have us − c+ l(r − λs) ≤ g(Km,n), so for all
i ≤ r − λs one has vi − c + l(i − 1) < us − c + l(r − λs) − l ≤ g(Km,n) − l, and by Lemma 4.6
HFK–(Km,n, vi − c + l(i − 1)) ≃ F, and hm,n(vi − 1 − c + l(i − 1)) = hm,n(vi − c + l(i − 1)) + 1.
Therefore hrm,rn(v − eB′ − eB′′) = |B′|+ hrm,rn(v − eB′′). Finally,

hrm,rn(v − eB′′)− hrm,rn(v) =

|B′′|∑

j=0

(hm,n(us − 1− c+ l(r − λs) + lj)− hm,n(us − c+ l(r − λs) + lj)

= min(|B′′|, β(us)− r + λs + 1).

�

4.2. Spectral sequence for HFL–.

Definition 4.11. Let Er denote the exterior algebra over F with variables z1, . . . , zr. Let us define
the cube differential on Er by the equation

∂(zα1 ∧ . . . ∧ zαk
) =

k∑

j=1

zα1 ∧ . . . ∧ ẑαj
∧ . . . ∧ zαk

,

and the b-truncated differential on Er[U ] by the equation

∂(b)(zα1 ∧ . . . ∧ zαk
) =

{
U∂(zα1 ∧ . . . ∧ zαk

), if k ≤ b

∂(zα1 ∧ . . . ∧ zαk
), if k > b.

More invariantly, one can define the weight of a monomial zα = zα1 ∧ . . . ∧ zαk
as w(zα) =

min(|α|, b), and the b-truncated differential is given by the equation:

(4.5) ∂(b)(zα) =
∑

i∈α

Uw(α)−w(α−αi)zα−αi
.

Indeed, w(α) − w(α− αi) = 1 for |α| ≤ b and w(α) − w(α − αi) = 0 for |α| > b.

Definition 4.12. Let Ered
r ⊂ Er be the subalgebra of Er generated by the differences zi − zj for all

i 6= j.

Lemma 4.13. The kernel of the cube differential ∂ on Er coincides with Ered
r .

Proof. It is clear that ∂(zi − zj) = 0, and Leibniz rule implies vanishing of ∂ on Ered
r . Let us prove

that Ker ∂ ⊂ Ered
r . Since (Er, ∂) is acyclic, it is sufficient to prove that the image of every monomial

zα1 ∧ · · · ∧ zαk
is contained in Er. Indeed, one can check that

∂(zα1 ∧ · · · ∧ zαk
) = (zα2 − zα1) ∧ · · · ∧ (zαk

− zαk−1
).

�

Lemma 4.14. The homology of ∂(b) is given by the following equation:

dimHk(Er[U ], ∂(b)) =

{(r−1
k

)
, if k < b

0, if k ≥ b.

Proof. Since ∂ is acyclic, one immediately gets Hk(Er[U ], ∂(b)) = 0 for k ≥ b. For k < b, the
homology is supported at the zeroth power of U and one has Hk(Er[U ]) ≃ Ker(∂|∧k(z1,...,zr)). The
dimension of the latter kernel equals

dimKer(∂|∧k(z1,...,zr)) = dim∧k(z1 − z2, . . . , z1 − zr) =

(
r − 1

k

)
.
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�

Proof of Theorem 5. Let us compute HFL–(Krm,rn, v) using the spectral sequence constructed in
Theorem 3.5. By Lemma 4.8, in case (a) it is easy to see that the complex (E1, ∂1) is contractible
in the direction of er and E2 = H∗(E1, ∂1) = 0.

In case (b) by Lemma 4.10 and (4.5) one can write E1 = Er−λs
[U ]⊗F[U ] Eλs

[U ], a tensor product

of chain complexes of F[U ]–modules, and ∂1 acts as U∂ on the first factor and as ∂(β+1) on the
second one. This implies

(4.6) E2 = H∗(E1, ∂1) ≃ Er−λs
⊗F H∗

(
Eλs

[U ], ∂(β+1)
)
.

Indeed, U acts trivially on H∗

(
Eλs

[U ], ∂(β+1)
)
, so one can take the homology of ∂(β+1) first and

then observe that U∂ vanishes on

Er−λs
[U ]⊗F[U ] H∗

(
Eλs

[U ], ∂(β+1)
)
≃ Er−λs

⊗F H∗

(
Eλs

[U ], ∂(β+1)
)
.

By Lemma 4.14, the E2 page (4.6) agrees with the statement of the theorem, hence we need to
prove that the spectral sequence collapses.

Indeed, the E1 page is bigraded by the homological degree and |B| (see Remark 3.6). By Lemma
4.14 any surviving homology class on the E2 page of cube degree x has bidegree (x,−2hrm,rn(v)−
2x), so all bidegrees on the E2 page belong to the same line of slope (−2). Therefore all higher
differentials must vanish.

Finally, a simple formula for hrm,rn(v) in case (b) follows from Lemma 4.9. �

4.3. Action of Ui. One can use Proposition 3.7 to compute the action of Ui on HFL– for cable
links. Recall that R = F[U1 . . . , Ur]. Throughout this section we assume n/m > 2g(K) − 1. We
start with a simple algebraic statement.

Proposition 4.15. Let C be an F-algebra. Given a finite collection of elements cα ∈ C and vectors

v(α) ∈ Zr, consider the ideal I ⊂ C ⊗F R generated by cα ⊗ U
v
(α)
1

1 · · ·Uv
(α)
r

r . Then the following
statements hold:

(a) The quotient (C ⊗F R)/I can be equipped with a Zr–grading, with Ui of grading (−ei) and
C of grading 0.

(b) The subspace of (C ⊗F R)/I with grading v is isomorphic to

[(C ⊗F R)/I] (v) ≃ C/
(
cα : v(α) � −v

)
.

Proof. Straightforward. �

Definition 4.16. We define Ar = Er ⊗F R and Ared
r = Ered

r ⊗F R. Let I ′
β denote the ideal in Ar

generated by the monomials (zi1 ∧ · · · ∧ zis) ⊗ Uis+1 · · ·Uiβ+1
for all s ≤ β + 1 and all tuples of

pairwise distinct i1, . . . , iβ+1. Let Iβ := I ′
β ∩ Ared

r be the corresponding ideal in Ared
r .

The algebras Ar and Ared
r are naturally Zr+1–graded: the generators zi have Alexander grading

0 and homological grading (−1), the generators Ui have Alexander grading (−ei) and homological
grading (−2).

Definition 4.17. We defineH(k) :=
⊕

max(v)≤k HFL
–(Krm,rn, v). Since Ui decreases the Alexander

grading, H(k) is naturally an R–module.

The following theorem clarifies the algebraic structure of Theorem 5.
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Theorem 4.18. The following graded R–modules are isomorphic:

H(k)/H(k − 1) ≃ Ared
r /Iβ(k)[−2h(k)]{k, . . . , k},

where [·] and {·} denote the shifts of the homological grading and the Alexander grading, respectively.

Proof. By definition, H(k)/H(k − 1) is supported on the set of Alexander gradings v such that
max(v) = k. The monomial U1 · · ·Ur belongs to the ideal Iβ(k), so Ared

r /Iβ(k) is supported on the
set of Alexander gradings u with max(u) = 0.

Suppose that exactly λ components of v are equal to k. Without loss of generality we can
assume v1, . . . , vr−λ < k and vr−λ+1 = . . . = vr = k. It follows from Lemma 4.13 and the proof of
Theorem 5 that HFL–(Krm,rn, v) is isomorphic to the quotient of Ered

r by the ideal generated by
degree β − r + λ+ 1 monomials in (zi − zj) for i, j > r − λ.

Consider the subspace of Ar/I
′
β of Alexander grading (v1−k, . . . , vr−k). By Proposition 4.15 it is

isomorphic to a quotient of Er modulo the following relations. For each subset B ⊂ {1, . . . , r−λ} and
each degree β+1−|B| monomial m′ in variables zi for i /∈ B there is a relation m′⊗

∏
b∈B Ub ∈ I ′

β.
All these relations can be multiplied by an appropriate monomial in R to have Alexander grading
(v1 − k, . . . , vr − k).

Note that such m′ should contain at most r − λ− |B| factors with indices in {1, . . . , r − λ} \B,
hence it contains at least β − r + λ + 1 factors with indices in {r − λ + 1, . . . , r}. Therefore[
Ar/I

′
β

]
(v1 − k, . . . , vr − k) is naturally isomorphic to the quotient of Er by the ideal generated by

degree β − r + λ+ 1 monomials in zi for i > r − λ.
We conclude that

[
Ared

r /Iβ(k)
]
(v1 − k, . . . , vr − k) is isomorphic to HFL–(Krm,rn, v). The action

of Ui on H(k) is described by Proposition 3.7. One can check that it commutes with the above
isomorphisms for different v, so we get the isomorphism of R–modules. �

We illustrate the above theorem with the following example (cf. Example 5.8).

Example 4.19. Let us describe the subspaces of Ared
3 /I1 with various Alexander gradings. The ideal

I1 equals:

I1 = ((z1 − z2)(z2 − z3), (z1 − z2)U3, (z1 − z3)U2, (z2 − z3)U1, U1U2, U1U3, U2U3) ⊂ Ared
3 .

In the Alexander grading (0, 0, 0) one gets
[
Ared

3 /I1
]
(0, 0, 0) ≃ Ered

3 /((z1 − z2)(z2 − z3)) = 〈1, z1 − z2, z2 − z3〉,

in the Alexander grading (k, 0, 0) (for k > 0) one gets two relations

Uk
1 (z1 − z2)(z2 − z3), U

k−1
1 (z2 − z3) ∈ I1.

Since the latter implies the former, we get
[
Ared

3 /I1
]
(k, 0, 0) ≃ Ered

3 /(z2 − z3) = 〈1, z1 − z2〉.

The map U1 :
[
Ared

3 /I1
]
(0, 0, 0) →

[
Ared

3 /I1
]
(1, 0, 0) is a natural projection

Ered
3 /((z1 − z2)(z2 − z3)) → Ered

3 /(z2 − z3),

while the map U1 :
[
Ared

3 /I1
]
(k, 0, 0) →

[
Ared

3 /I1
]
(k + 1, 0, 0) is an isomorphism for k > 0.

The gradings (0, k, 0) and (0, 0, k) can be treated similarly. Furthermore, UiUj ∈ I1 for i 6= j, so

all other graded subspaces of Ared
3 /I1 vanish.

Since the multiplication by Ui preserves the ideal Iβ, we get the following useful result.
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Corollary 4.20. If max(v) = max(v − ei), then the map

Ui : HFL
–(Krm,rn, v) → HFL–(Krm,rn, v − ei)

is surjective.

Lemma 4.21. Suppose that max(v) = k and max(v − ei) = k − 1, and the homology group
HFL–(Krm,rn, v) does not vanish. Then β(k) = r − 1, β(k − 1) ≥ r − 2 and the map

Ui : HFL
–(Krm,rn, v) → HFL–(Krm,rn, v − ei)

is surjective.

Proof. Since max(v) = k and max(v−ei) = k−1, the multiplicity of k in v equals 1, so by Theorem
5 β(k) ≥ r− 1, hence β(k) = r − 1. Therefore HFL–(Krm,rn, v) ≃ Ered

r , so Ui is surjective. Indeed,

by Theorem 5 HFL–(Krm,rn, v−ei) is naturally isomorphic to a quotient of Ered
r , and by Proposition

3.7 Ui coincides with a natural quotient map. Finally, by (4.4) HFK–(Km,n, k − c+ l(r − 1)) ≃ F,
and by Lemma 4.6 HFK–(Km,n, k − 1− c+ l(r − 2)) ≃ F, so β(k − 1) ≥ r − 2. �

Proof of Theorem 6. Let us prove that the homology classes with diagonal Alexander gradings
generate HFL– over R. Indeed, given v = (v1 ≤ . . . ≤ vr) with HFL–(Krm,rn, v) 6= 0, by Theorems
5 and 4.18 one can check that HFL–(Krm,rn, vr, . . . , vr) 6= 0 and by Corollary 4.20 the map

Uvr−v1
1 · · ·U

vr−vr−1

r−1 : HFL–(Krm,rn, vr, . . . , vr) → HFL–(Krm,rn, v)

is surjective.
Let us describe theR-modules generated by the diagonal classes in degree (k, . . . , k). If β(k) = −1

then HFL–(Krm,rn, k, . . . , k) = 0. If 0 ≤ β(k) ≤ r − 2 then by Lemma 4.21 the submodule
R · HFL–(Krm,rn, k, . . . , k) does not contain any classes with maximal Alexander degree less than
k, so by Theorem 4.18

R · HFL–(Krm,rn, k, . . . , k) ≃ Ared
r /Iβ(k) =: Mβ(k)

Suppose that β(k) = r − 1, and consider minimal a and maximal b such that a ≤ k ≤ b and
β(i) = r−1 for i ∈ [a, b]. If there is no minimal a, we set a = −∞. By Lemma 4.21, β(a−1) = r−2
and all the maps

HFL–(Krm,rn, b, . . . , b)
U1···Ur−→ HFL–(Krm,rn, b− 1, . . . , b− 1) → . . .

. . . → HFL–(Krm,rn, a, . . . , a)
U1···Ur−→ HFL–(Krm,rn, a− 1, . . . , a− 1)

are surjective. Therefore

R · HFL–(Krm,rn, b, . . . , b) ≃ Ared
r /(U1 · · ·Ur)

b−aIr−2 =: Mr−1,b−a+1

is supported in all Alexander degrees with maximal coordinates in [a, b] and in Alexander degrees
with maximal coordinate (a− 1) which appears with multiplicity at least 2.

Finally, we get the following decomposition of HFL– as an R–module:

HFL–(Krm,rn) =
⊕

k:0≤β(k)<r−1
β(k+1)<r−1

Mβ(k) ⊕
⊕

a,b:β(a−1)=r−2
β(b+1)<r−1
β([a,b])=r−1

Mr−1,b−a+1 ⊕Mr−1,∞.

�

Note that for r = 1 we get M0,l ≃ F[U1]/(U
l
1) and M0,+∞ ≃ F[U ].
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4.4. Spectral sequence for ĤFL.

Theorem 4.22. If β(k) + β(k + 1) ≤ r − 2 then the spectral sequence for ĤFL(Krm,rn, k, . . . , k)

degenerates at the Ê2 page and

ĤFL(Krm,rn, k, . . . , k) ≃

β(k)⊕

i=0

(
r − 1

i

)
F−2h(k)−i ⊕

β(k+1)⊕

i=0

(
r − 1

i

)
F−2h(k)+2−r+i.

Proof. By Proposition 3.8, for a given v there is a spectral sequence with Ê1 page

Ê1 =
⊕

B⊂{1,...,r}

HFL–(L, v + eB)

and converging to Ê∞ = ĤFL(L, v). If v = (k, . . . , k) then (for B 6= ∅) the maximal coordinate of
v+eB equals k+1 and appears with multiplicity λ = |B|. Therefore, by Theorem 5 HFL–(L, v+eB)
does not vanish if and only if either B = ∅ or |B| ≥ r− β(k+1), and it is given by Theorem 5. By
(1.1) we have h(k + 1) = h(k) − β(k + 1)− 1.

The spectral sequence is bigraded by the homological (Maslov) grading at each vertex of the cube

and the “cube grading” |B|. The differential ∂̂1 acts along the edges of the cube, and decreases the
Maslov grading by 2 and the cube grading by 1.

One can check using Theorem 4.18 that its homology Ê2 does not vanish in cube degrees 0 and

r − β(k + 1), so one can write Ê2 = Ê0
2 ⊕

̂
E

r−β(k+1)
2 , and

Ê0
2 ≃

β(k)⊕

i=0

(
r − 1

i

)
F−2h(k)−i,

̂
E

r−β(k+1)
2 ≃

β(k+1)⊕

i=0

(
r − 1

i

)
F−2h(k+1)−3β(k+1)+i.

By (1.1) we have h(k+1) = h(k)−β(k+1)−1, so −2h(k+1)−3β(k+1)+i = −2h(k)+2−β(k+1)+i.

A higher differential ∂̂s decreases the cube grading by s and decreases the Maslov grading by

s+1. Therefore the only nontrivial higher differential is ̂∂r−β(k+1) which vanishes by degree reasons

too. Indeed, the maximal Maslov grading in
̂

E
r−β(k+1)
2 equals −2h(k)+2 while the minimal Maslov

grading in Ê0
2 equals −2h(k)−β(k), so the differential can decrease the Maslov grading at most by

β(k)+2. On the other hand, ̂∂r−β(k+1) drops it by r−β(k+1)+1, and for β(k)+β(k+1) < r− 1

one has r − β(k + 1) + 1 > β(k) + 2. Therefore ̂∂r−β(k+1) = 0 and the spectral sequence vanishes

at the Ê2 page. �

We illustrate the proof of Theorem 4.22 by Examples 5.4 and 5.5

Lemma 4.23. The following identity holds:

β(1− k) + β(k) = r − 2.

Proof. By (1.1) and Lemma 4.5 we have

β(k) = h(k − 1, . . . , k − 1)− h(k, . . . , k)− 1, β(1− k) = h(−k, . . . ,−k)− h(1− k, . . . , 1− k)− 1.

By Lemma 4.4 we have

h(−k, . . . ,−k) = h(k, . . . , k) + kr, h(1 − k, . . . , 1− k) = h(k − 1, . . . , k − 1) + r(k − 1).

These two identities imply the desired statement. �
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Theorem 4.24. If β(k) + β(k + 1) ≥ r − 2 then:

ĤFL(Krm,rn, k, . . . , k) ≃

r−2−β(k+1)⊕

i=0

(
r − 1

i

)
F−2h(k)−i ⊕

r−2−β(k)⊕

i=0

(
r − 1

i

)
F−2h(k)+2−r+i

Proof. By Lemma 4.23 we get β(−k) = r − 2− β(k + 1) and β(1 − k) = r − 2− β(k), so

β(k) + β(k + 1) + β(−k) + β(1− k) = 2(r − 2),

so β(−k)+β(1−k) ≤ r−2. By Theorem 4.22 the spectral sequence degenerates for ĤFL(−k, . . . ,−k)
and

ĤFL(Krm,rn,−k, . . . ,−k) ≃

r−2−β(k+1)⊕

i=0

(
r − 1

i

)
F−2h(−k)−i ⊕

r−2−β(k)⊕

i=0

(
r − 1

i

)
F−2h(−k)+2−r+i

Finally, by [OS08, Proposition 8.2] we have

ĤFL•(Krm,rn, k, . . . , k) = ĤFL•−2kr(Krm,rn,−k, . . . ,−k)

and by Lemma 4.4 h(k) = h(−k)− kr. �

Theorem 4.25. Off-diagonal homology groups are supported on the union of the unit cubes along
the diagonal. In such a cube with corners (k, . . . , k) and (k + 1, . . . , k + 1) one has

ĤFL(Krm,rn, (k − 1)j , kr−j) ≃

(
r − 2

β(k)

)
F−2h(k)−β(k)−j .

Proof. We use the spectral sequence from HFL– to ĤFL. By Theorem 4.18, all the Ê2 homology
outside the union of these cubes vanish (since some Ui would provide an isomorphism between
HFL–(Krm,rn, v) and HFL–(Krm,rn, v − ei)). Furthermore, if β(k) = r − 1 then the homology in
the cube vanish too, so we can focus on the case β(k) ≤ r − 2.

One can check that Ê2 does not vanish in cube degrees j − β(k), . . . , j and

Êj−c
2 ≃

(
j − 1

c

)(
r − 1− j

β(k) − c

)
F−2h(k)−β(k)−c.

Note that the total homological degree on Êj−c
2 equals −2h(k)−β(k)− j and does not depend on c.

Therefore all higher differentials in the spectral sequence must vanish and the rank of ĤFL equals:

β∑

c=0

(
j − 1

c

)(
r − 1− j

β(k)− c

)
=

(
r − 2

β(k)

)
.

�

We illustrate this proof by Example 5.6.

4.5. Special case: m = 1, n = 2g(K)−1. The case m = 1, n = 2g(K)−1 is special since Lemma
4.6 is not always true. Indeed, Km,n = K and l = n = 2g(K)− 1, but for v = g(K)− l = 1− g(K)
we have HFL–(K, v) = 0. However, it is clear that in all other cases Lemma 4.6 is true, so for
generic v Lemmas 4.8 and 4.10 hold true. This allows one to prove an analogue of Theorem 5.

Theorem 4.26. Assume that m = 1, n = 2g(K) − 1 (so l = 2g(K) − 1) and suppose that v =

(uλ1
1 , uλ2

2 , . . . , uλs
s ) where u1 < . . . < us. Then the Heegaard-Floer homology group HFL–(Krm,rn, v)

can be described as following:
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(a) Assume that us − c+ l(r − λs) = g(K)− νl with 1 ≤ ν ≤ λs. Then

HFL–(Krm,rn, v) ≃ (F(0) ⊕ F(−1))
r−λs ⊗



ν−2⊕

j=0

(
λs − 1

j

)
F(−2h(v)−j) ⊕

(
λs − 1

ν

)
F(−2h(v)+2−ν)




(b) In all other cases, the homology is given by Theorem 5.

Proof. One can check that the proof of Lemma 4.8 fails if us− c+ l(r−λs) = g(K)− l, and remains
true in all other cases. Similarly, the proof of Lemma 4.10 fails only if us−c+l(r−λs)+lj = g(K)−l
for 1 ≤ j ≤ λs − 1, which is equivalent to us − c+ l(r − λs) = g(K)− (j + 1). This proves (b).

Let us consider the special case (a). Note that

hm,n(us − c+ l(r − λs) + lj − 1)− hm,n(us − c+ l(r − λs) + lj) =

χ(HFK–(K, g(K) + l(j − ν)) =





1, if j < ν − 1

0, if j = ν − 1

1, if j = ν

0, if j > ν.

Given a pair of subsets B′ ⊂ {1, . . . , r−λs} and B′′ ⊂ {r−λs+1, . . . , r}, one can write, analogously
to Lemma 4.10:

hrm,rn(v − eB′ − eB′′) = hrm,rn(v) + |B′|+ w(B′′),

where

w(B′′) =





|B′′|, if |B′′| ≤ ν − 1

ν − 1, if |B′′| = ν

ν, if |B′′| > ν.

By the Künneth formula, the E2 page of the spectral sequence is determined by the “deformed
cube homology” with the weight function w(B′′), as in (4.5). If ∂, as above, denotes the standard
cube differential, then, similarly to Lemma 4.14, the homology of ∂w

U is isomorphic to the kernel of
∂ in cube degrees 0, . . . ν − 2 and ν.

Finally, we need to prove that all higher differentials vanish. For a homology generator α on the
E2 page of cube degree x, its bidegree is equal either to (x,−2h(v)−2x) or to (x,−2h(v)−2x+2).
The differential ∂k has bidegree (−k, k−1) (see Remark 3.6), so the bidegree of ∂k(α) is equal either
to (x− k,−2h(v)− 2x+ k − 1) or to (x− k,−2h(v)− 2x+ k+ 1). Since −2x+ k+ 1 < −2(x− k)
for k > 1, we have ∂k(α) = 0. �

The action of Ui in this special case can be described similarly to Theorem 4.18. However, it is
not true that Ui is surjective whenever it does not obviously vanish. In particular, the following
example shows that HFL– may be not generated by diagonal classes, so Theorem 6 does not hold.
We leave the appropriate adjustment of Theorem 6 as an exercise to a reader.

Example 4.27. Consider T2,2, the (2, 2) cable of the trefoil. We have g(K) = l = 1 and c = 1/2, so
by Theorem 4.26

HFL–(T2,2, 1/2, 1/2) ≃ F(−1), HFL–(T2,2,−1/2, 1/2) ≃ F(−2) ⊕ F(−3).

Therefore U1 is not surjective. Furthermore, the class in HFL–(T2,2,−1/2, 1/2) of homological
degree (−2) is not in the image of any diagonal class under the R–action.
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5. Examples

5.1. (n, n) torus links. The symmetrized multi-variable Alexander polynomial of the (n, n) torus
link equals (for n > 1):

∆Tn,n(t1, . . . , tn) = ((t1 · · · tn)
1/2 − (t1 · · · tn)

−1/2)n−2.

Each pair of components has linking number 1, so c = (n−1)/2. The homology groups HFL–(T (n, n), v)
are described by the following theorem, which is a special case of Theorem 5.

Theorem 5.1. Consider the (n, n) torus link, and an Alexander grading v = (v1, . . . , vn). Suppose
that among the coordinates vi exactly λ are equal to k and all other coordinates are less than k. Let
|v| = v1 + . . .+ vn. Then

HFL–(T (n, n), v) =





0 if k > λ− n+1
2 ,

(F(0) ⊕ F(−1))
n−1 ⊗ F2|v| if k < −n−1

2 ,

(F(0) ⊕ F(−1))
n−λ ⊗

⊕λ−n+1
2

−k

i=0

(λ−1
i

)
F(−2h(v)−i) if − n−1

2 ≤ k ≤ λ− n+1
2 ,

where h(v) = 1
2 (

n−1
2 − k)(n−1

2 − k + 1) + kn− |v| in the last case.

Proof. Indeed, β(k) = n−1
2 − k for k > −n−1

2 and β(k) = n− 1 for k ≤ −n−1
2 . By Theorem 5, the

homology group HFL–(T (n, n), v) does not vanish if and only if

(5.1) k ≤ λ−
n+ 1

2
.

If k ≥ −n−1
2 , equation (4.3) implies:

hn,n(v) =
1

2

(
n− 1

2
− k

)(
n− 1

2
− k + 1

)
+ kn− |v|.

If k ≤ −n−1
2 , equation (4.3) implies hn,n(v) = −|v|. Furthermore, for all v satisfying (5.1) one has

HFL–(T (n, n), v) = (F(0) ⊕ F(−1))
n−λ ⊗

λ−n+1
2

−k⊕

j=0

(
λ− 1

j

)
F(−2hn,n(v)−j).

Finally, if k − n−1
2 , then (5.1) holds for all λ and λ− n+1

2 − k > λ− 1, hence

HFL–(T (n, n), v) = (F(0)⊕F(−1))
n−λ⊗

λ−1⊕

j=0

(
λ− 1

j

)
F(−2hn,n(v)−j) = (F(0)⊕F(−1))

n−1⊗F(−2hn,n(v)).

�

Remark 5.2. One can check that, in agreement with [GN15], the condition (5.1) defines the multi-
dimensional semigroup of the plane curve singularity xn = yn.

Corollary 5.3. We have the following decomposition of HFL– as an R-module:

HFL–(T (n, n)) = M0 ⊕M1 ⊕M2 ⊕ . . . ⊕Mn−2 ⊕Mn−1,+∞.

To prove Theorem 4, we use Theorem 3.

Proof of Theorem 4. We have β(n−1
2 − s) = s for s < n− 1, and

β(
n− 1

2
− s) + β(

n − 1

2
− s+ 1) = 2s− 1 ≤ n− 2 ≤ s ≤

n− 1

2
.
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Therefore for s ≤ n−1
2 Theorem 4.22 implies the degeneration of the spectral sequence from HFL–

to ĤFL, and

ĤFL

(
T (n, n),

n− 1

2
− s, . . . ,

n− 1

2
− s

)
=

s⊕

i=0

(
n− 1

i

)
F(−s2−s−i) ⊕

s−1⊕

i=0

(
n− 1

i

)
F(−s2−s−n+2+i).

�

Let us illustrate the degeneration of the spectral sequence from HFL– to ĤFL in some examples.

Example 5.4. For s = 0 we have Ê1 = Ê2 = F(0). For s = 1 the Ê1 page has nonzero entries in
cube degree 0 where one gets

HFL–

(
T (n, n),

n− 1

2
− 1, . . . ,

n− 1

2
− 1

)
≃ F(−2) ⊕ (n− 1)F(−3),

and in cube degree n where one gets F(0). Indeed, the differential ∂̂1 vanishes, so for n > 2

ĤFL

(
T (n, n),

n− 1

2
− 1, . . . ,

n− 1

2
− 1

)
≃ F(−2) ⊕ (n − 1)F(−3) ⊕ F(−n).

Note that for n = 2 the differential ∂̂2 does not vanish, so the bound s ≤ n−1
2 is indeed necessary

for the spectral sequence to collapse at Ê2 page.

Example 5.5. The case s = 2 is more interesting. The Ê1 page has nonzero entries in cube degree
0, n− 1 (where we have n vertices) and n, where one has

Ê0
1 = F(−6) ⊕ (n− 1)F(−7) ⊕

(
n− 1

2

)
F(−8), Ên−1

1 = n(F(−4) ⊕ F(−5)), Ên
1 = F(−2) ⊕ (n − 1)F(−3).

The differential ∂̂1 cancels some summands in Ên−1
1 and Ên

1 ;

Ê0
2 = F(−6) ⊕ (n− 1)F(−7) ⊕

(
n− 1

2

)
F(−8), Ên−1

2 = (n− 1)F(−4) + F(−5).

For n > 4 all higher differentials vanish and

(5.2) ĤFL

(
T (n, n),

n− 1

2
− 2, . . . ,

n− 1

2
− 2

)
≃

F(−6) ⊕ (n− 1)F(−7) ⊕

(
n− 1

2

)
F(−8) ⊕ (n− 1)F(−3−n) + F(−4−n).

The following example illustrates the computation of ĤFL for the off-diagonal Alexander gradings.

Example 5.6. Let us compute the homology ĤFL(T (n, n), v) for v = (n−1
2 − 2)j(n−1

2 − 1)n−j (1 ≤
j ≤ n− 1) using the spectral sequence from HFL–. In the n dimensional cube (v + eB) almost all
all vertices have vanishing HFL–, except for the vertex (n−1

2 − 1, . . . , n−1
2 − 1)

HFL–(
n− 1

2
− 1, . . . ,

n− 1

2
− 1) = F(−2) ⊕ (n− 1)F(−3)

and j of its neighbors with homology F(−4) ⊕ F(−5). Clearly, Ê2 is concentrated in degrees j (with
homology (n−1−j)F(−3)) and (j−1) (with homology (j−1)F(−4)). Note that both parts contribute
to the total degree (−3− j), so

ĤFL(T (n, n), v) = (n− 1− j)F(−3−j) ⊕ (j − 1)F(−3−j) = (n− 2)F(−3−j).
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Finally, we draw all the homology groups HFL– for (2, 2) and (3, 3) torus links.

Example 5.7. For the Hopf link, one has two cases. If v1 < v2, then the condition (5.1) implies
v2 ≤ −1/2. If v1 = v2, then (5.1) implies v2 ≥ 1/2.

The nonzero homology of the Hopf link is shown in Figure 3 and Table 1

v1

v2

F

F2

1
2−1

2−3
2−5

2−7
2

1
2

−1
2

−3
2

−5
2

−7
2

Figure 3. HFL– for the (2,2) torus link: F2 on thick lines and in the grey region

Alexander grading Homology
(1/2, 1/2) F(0)

(a, b), a, b ≤ −1/2 F(2a+2b) ⊕ F(2a+2b−1)

Table 1. Maslov gradings for the (2, 2) torus link

Example 5.8. For the (3, 3) torus link, one has two cases. If v1 ≤ v2 < v3, then the condition
(5.1) implies v3 ≤ 1. If v1 < v2 = v3, then (5.1) implies v3 ≤ 0. Finally, if v1 = v2 = v3, then
(5.1) implies v3 ≤ 1. In other words, nonzero homology appears at the point (1, 1, 1), at three lines
(0, 0, k), (0, k, 0), (k, 0, 0) (k ≤ 0) and at the octant max(v1, v2, v3) ≤ −1.

This homology is shown in Figure 4 and Table 2.

Alexander grading Homology
(1, 1, 1) F(0)

(0, 0, 0) F(−2) ⊕ 2F(−3)

(0, 0, k), (0, k, 0) and (k, 0, 0) (k < 0) F(2k−2) ⊕ F(2k−3)

(a, b, c), a, b, c ≤ −1 F(2a+2b+2c) ⊕ 2F(2a+2b+2c−1) ⊕ F(2a+2b+2c−2)

Table 2. Maslov gradings for the (3, 3) torus link
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v1

v2

v3

F

F2

F3

F4

F2

F2

Figure 4. HFL– for the (3,3) torus link: F2 on dashed thick lines; F4 on solid thick
lines and in the shaded region. Top Alexander grading is (1, 1, 1).

5.2. More general torus links. The HFL– homology of the (4, 6) torus link is shown in Figure
5 and Table 3. Note that as an F[U1, U2] module it can be decomposed into 5 copies of M0 ≃ F, a
copy of M1,1 and a copy of M1,+∞. In particular, the map U1U2 : HFL

–(−2,−2) → HFL–(−3,−3)
is surjective with one-dimensional kernel.

5.3. Non-algebraic example. In this subsection we compute the Heegaard-Floer homology for
the (4, 6)-cable of the trefoil. Its components are (2, 3)-cables of the trefoil, which are known to be
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v1

v2

F

F

F

F

F

F2

F

F2

F2

F2

43210−1−2−3−4−5

4

3

2

1

0
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Figure 5. HFL– for the (4,6) torus link: F2 on thick lines and in the grey region

Alexander grading Homology
(4, 4) F(0)

(2, 2) F(−2)

(1, 1) F(−4)

(0, 0) F(−6)

(−1,−1) F(−8)

(−2, k) and (k,−2), k ≤ −2 F(2k−6) ⊕ F(2k−7)

(−3,−3) F(−12)

(a, b), a, b ≤ −4 F(2a+2b) ⊕ F(2a+2b−1)

Table 3. Maslov gradings for the (4, 6) torus link

L-space knots (cf. [Hed09]), but not algebraic knots. By Theorem 2, the (4, 6)-cable of the trefoil
is an L-space link, but its homology is not covered by [GN15].
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The Alexander polynomial of the (2, 3)-cable of the trefoil equals:

∆T2,3(t) =
(t6 − t−6)(t1/2 − t−1/2)

(t3/2 − t−3/2)(t2 − t−2)
,

hence the Euler characteristic of its Heegaard-Floer homology equals

χ2,3(t) =
∆T2,3(t)

1− t−1
= t3 + 1 + t−1 + t−3 + t−4 + . . .

By (4.1), the bivariate Alexander polynomial of the (4, 6)-cable equals:

χ4,6(t1, t2) = χ2,3(t1 · t2)((t1t2)
3 − (t1t2)

−3)

= (t1t2)
6 + (t1t2)

3 + (t1t2)
2 + (t1t2)

−1 + (t1t2)
−2 + (t1t2)

−5.

The nonzero Heegaard-Floer homology are shown in Figure 6 and the corresponding Maslov grad-
ings are given in Table 4. Note that as F[U1, U2] module it can be decomposed in the following
way:

HFL– ≃ 4M0 ⊕M1,1 ⊕M1,2 ⊕M1,+∞.
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Alexander grading Homology
(6, 6) F(0)

(3, 3) F(−2)

(2, 2) F(−4)

(0, k) and (k, 0), k ≥ 0 F(2k−6) ⊕ F(2k−7)

(−1,−1) F(−10)

(−2,−2) F(−12)

(−3, k) and (k,−3), k ≥ −3 F(2k−8) ⊕ F(2k−9)

(−4, k) and (k,−4), k ≥ 10 F(2k−10) ⊕ F(2k−11)

(−5,−5) F(−22)

(a, b), a, b ≤ −6 F(2a+2b) ⊕ F(2a+2b−1)

Table 4. Maslov gradings for the (4,6) cable of the trefoil
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Figure 6. HFL– for the (4,6) cable of the trefoil: F2 on thick lines and in the grey region


	1. Introduction
	Acknowledgments
	2. Dehn surgery and cable links
	2.1. Proof of Proposition 2.5

	3. A spectral sequence for L-space links
	4. Heegaard-Floer homology for cable links
	4.1. The Alexander polynomial and h–function
	4.2. Spectral sequence for HFL-
	4.3. Action of Ui
	4.4. Spectral sequence for HFL-hat
	4.5. Special case: m=1, n=2g(K)-1

	5. Examples
	5.1. (n,n) torus links
	5.2. More general torus links
	5.3. Non-algebraic example

	References

