CABLE LINKS AND L-SPACE SURGERIES
EUGENE GORSKY AND JENNIFER HOM

ABSTRACT. An L-space link is a link in S® on which all sufficiently large integral surgeries are
L-spaces. We prove that for m, n relatively prime, the r-component cable link Ky, rn is an L-space

link if and only if K is an L-space knot and n/m > 2¢g(K) — 1. We also compute HFL™ and HFL
of an L-space cable link in terms of its Alexander polynomial. As an application, we confirm a
conjecture of Licata [Lic12] regarding the structure of HFL for (n,n) torus links.

1. INTRODUCTION

Heegaard Floer homology is a package of 3-manifold invariants defined by Ozsvath and Szabd
[OS04a, OS04b]. In its simplest form, it associates to a closed 3-manifold Y a graded vector space

L~

HF(Y). For a rational homology sphere Y, they show that
dimHF(Y) > |Hy(Y;7Z)).

If equality is achieved, then Y is called an L-space.
A knot K C S%is an L-space knot if K admits a positive L-space surgery. Let S ;’ /q(K ) denote p/q

Dehn surgery along K. If K is an L-space knot, then S;’/q(K) is an L-space for all p/q > 2¢g(K) —1,

where g(K) denotes the Seifert genus of K [OS11, Corollary 1.4]. A link L C S is an L-space link
if all sufficiently large integral surgeries on L are L-spaces. In contrast to the knot case, if L admits
a positive L-space surgery, it does not necessarily follow that all sufficiently large surgeries are also
L-spaces; see [Liul4, Example 2.3].

For relatively prime integers m and n, let K, ,, denote the (m,n) cable of K, where m denotes
the longitudinal winding. Without loss of generality, we will assume that m > 0. Work of Hedden
[Hed09] (“if” direction) and the second author [Hom11] (“only if” direction) completely classifies
L-space cable knots.

Theorem 1 ([Hed09, Hom11]). Let K be a knot in S®, m > 1 and ged(m,n) = 1. The cable knot
Ky p is an L-space knot if and only if K is an L-space knot and n/m > 2g(K) — 1.

Remark 1.1. Note that when m = 1, we have that K;, = K for all n.

We generalize this theorem to cable links with many components. Throughout the paper, we
assume that each component of a cable link is oriented in the same direction.

Theorem 2. Let K be a knot in S® and ged(m,n) = 1. The r-component cable link Ky, rp is an
L-space link if and only if K is an L-space knot and n/m > 2g(K) — 1.

In [OS05], Ozsvath and Szab6 show that if K is an L-space knot, then ITFT((K ) is completely
determined by Ak (t), the Alexander polynomial of K. Consequently, the Alexander polynomials
of L-space knots are quite constrained (the non-zero coefficients are all +1 and alternate in sign)
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and the rank of }TFT{(K ) is at most one in each Alexander grading. In [Liul4, Theorem 1.15], Liu
generalizes this result to give bounds on the rank of HFL (L) in each Alexander multi-grading and
on the coefficients of the multi-variable Alexander polynomial of an L-space link L in terms of the
number of components of L. For L-space cable links, we have the following stronger result.

Definition 1.2. Define the Z-valued functions h(k) and (k) by the equations:

t_lAmn( )(tmnr/2 _
1.1 h(k)t" =
( ) Z 1 —t 1) (tmn/2 _ t—mn/2) ’

t—mnr/2)

B(k) =h(k —1) —h(k) -1,

where Am,n( ) is the Alexander polynomial of the cable knot K, .

Throughout, we work with F = Z/2Z coefficients. The following theorem gives a complete
description of the homology groups HFL for cable links with n/m > 2¢(K) — 1.
Theorem 3. Let Kyp,,n be a cable link with n/m > 2g(K) — 1.
(a) If B(k) + B(k +1) <r —2 then:
B(k)

= r—1 r—1
HFL (K, k- k) =~ €D ( Z, >F_2h(k)_i » P ( . >IF Sh(k)+2—r+i
i=0 1=0
(b) If B(k) + B(k + 1) > r — 2 then:
o r—2—pB(k+1) o1 r—2—0(k) 1
HFL(Krm,rny k... 7k) = @ < i >F 2h(k)— i @ @ ( >F 2h(k)+2—r+i
i=0

(c) If v has j coordinates equal to k — 1 and r — j coordinates equal to k for some k and
1<j<r—1, then:

I'TF\L(KT’m ey (k= 1)7 K77) <T . 2) F_on(r)—a(k)—j-

’ B(k) !

(d) For all other Alexander gradings the groups HFL vanish.

We prove the parts of this theorem as separate Theorems 4.22, 4.24 and 4.25. We compute HOFL
explicitly for several examples in Section 5. In particular, we use Theorem 3 to confirm a conjecture

of Joan Licata [Lic12, Conjecture 1] concerning AFL for (n,n) torus links.

Theorem 4. Suppose that 0 < s < ”T_l Then

— n—1 n—1 /n—1 P
HFL T(n,n),T—s,..., S -5 . sy ® (25 nt21i)-
0

=0 1=

Combined with [Lic12, Theorem 2], this completes the description of HFL(T(n, n)).
The following theorem describes the homology groups HFL™ for cable links with n/m > 2¢g(K)—1.

Theorem 5. Let K be an L-space knot and n/m > 2g(K) — 1. Consider an Alezander grading
v = (vi,...,v,). Suppose that among the coordinates v; exactly A are equal to k and all other
coordinates are less than k. Let |v| = vy + ... + v,. Then the Heegaard-Floer homology group
HFL™ (K, rn, v) can be described as follows:

(a) If B(k) < r— A then HFL™ (K, p, pn, v) = 0.
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(b) If B(k) > r — X then
BT A
HFLi(KrmJn,’U) ~ (F(o) ® F(_l))r_)‘ & @ < ; >F(—2h(v)—i)a
=0

where h(v) = h(k) + kr — |v].

We prove this theorem in Section 4.2. The structure of the homology for n/m = 2¢g(K) — 1 (which
is possible only if m = 1) is more subtle and is described in Theorem 4.26.

Finally, we describe HFL™ as an F[Uq,...,U,|-module. We define a collection of F[Uq,...,U,|-
modules Mg for 0 < 8 < r —2, M,_q, for K > 0 and M,_1 . These modules can be defined
combinatorially and do not depend on a link.

Theorem 6. Let R =TF[Uy,...,U,] and suppose that n/m > 2g(K) — 1. There exists a finite col-
lection of diagonal lattice points a; = (a;, ..., a;) (determined by m,n and the Alexander polynomial
of K) such that HFL™ admits the following direct sum decomposition:

HFL (Kymn) = @) R - HFL (Kpn,en, ;).

Furthermore, for B(a;) <r —2 one has R - HFL (K n,a;) =~ Mpg(,,), and for B(a;) =r —1 one
has either R - HFL™ (Kyp rn, a;) & M,_y i, for some k or R - HFL™ (K rn, i) &~ My_1 0.

We compute HFL™ explicitly for several examples in Section 5.
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2. DEHN SURGERY AND CABLE LINKS

In this section, we prove Theorem 2. We begin with a result about Dehn surgery on cable links
(cf. [Hei74]).

Proposition 2.1. The manifold obtained by (mn,ps,...,p,)—surgery on the r-component link
Ky rn is homeomorphic to Sg/m(K)#L(m,n)#L(pz —mn,1)#...#L(p, — mn,1).

Proof. Recall (see, for example, [Hed09, Section 2.4]) that mn-surgery on K, ,, gives the manifold
Sg/m(K)#L(m,n). Viewing K, as the image of T}, , on ON(K), we have that the reducing
sphere is given by the annulus ON(K) \ N(T},,) union two parallel copies of the meridional disk
of the surgery solid torus; we obtain a sphere since the surgery slope coincides with the surface
framing.

The link K, consists of r parallel copies of K,,, on ON(K). Label these r copies K,lnn
through K7, ,,. We perform mn-surgery on K,lnn and consider the image INQ,”L of K}, 2<i<r,

in Sfl/m(K)#L(m,n). Each IN(;,”L lies on ON(K) \ N(T},,) and thus on the reducing sphere. In
particular, each IN(TZ,”L bounds a disk D? in Sfl/m(K)#L(m, n) such that the collection {D3, ..., D%}

is disjoint. It follows that performing surgery on J;_, INQ,”L yields r — 1 lens space summands. To
see which lens spaces we obtain, note that the mn-framed longitude on Kﬁnn C S3 coincides with
the O-framed longitude on Kﬁnn c S

n

and the result follows. O

/m(K Y#£L(m,n). Thus, p;-surgery on K! . corresponds to

m,n

(p;i — mn)-surgery on IN(,’nn,
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Let us recall that the linking number between each two components of K, ,, equals [ := mn.
It is well-known that the cardinality of H; of the manifold obtained by (p1,p2,...,p,)-surgery on
Ky equals | det A(py, ..., py)|, where

“ I, ifi#j.
This cardinality can be computed using the following result.

Proposition 2.2. One has the following identity:
(2.1) det A(pr,...,pp) =1 =0 (r =) +1Y (1 =1+ (i = 1)+ (pr — ).
i=1

Proof. One can easily check that det A(l,pa,...,py) = l(p2 — 1)+ (pr — 1). The expansion of the
determinant in the first row yields a recursion relation

det A(p1,...,pr) =det A(l,pa...,pr) + (p1 — 1) det A(pa,...,pr) =

=lp2—=0)-(pr = 1)+ (p1 —1)det A(p2,...,pr).
Now (2.1) follows by induction in 7. O

Corollary 2.3. If p; > for all i then det A(py,...,p;) > 0.
In order to prove Theorem 2, we will need the following:

Theorem 2.4 ([Liul4, Proposition 1.11]). A link L is an L-space link if and only if there exists
a surgery framing A(p1,...,pr), such that for all sublinks L' C L, det(A(p1,...,pr)|rr) > 0 and
S?\‘L/(L’) is an L-space.

We will also need the following proposition, which we prove in Subsection 2.1 below.

Proposition 2.5. Let K be an L-space knot and p; >0, i =1,...,r. If n < 2g(K) — 1, then the
manifold obtained by (p1,...,pr)-surgery on the r-component link K, ., is not an L-space.

Proof of Theorem 2. If Ky, ry is an L-space link, then by [Liul4, Lemma 1.10] all its components
are L-space knots. On the other hand, its components are isotopic to K, . Thus, if m > 1, then
by Theorem 1, K is an L-space knot and n/m > 2¢g(K) — 1. If m = 1, then K must be an L-space
knot and by Proposition 2.5, n > 2g(K) — 1.

Conversely, suppose that K is an L-space knot and n/m > 2¢(K) — 1, ie., Ky, is an L-
space knot. Let us prove by induction on r that (pi,...,p,)-surgery on Ky, is an L-space if
p; > 1 for all i. For r = 1 it is clear. By Proposition 2.1, the link K, ,, admits an L-space
surgery with parameters [, po, ..., p,. Let us apply Theorem 2.4. Indeed, by Corollary 2.3, one has

det(A(l,p2...,pr)|z’) > 0 and by the induction assumption Sf’\(l S (L") is an L-space for all

sublinks L'. By [Liul4, Lemma 2.5], (p1, ..., p,)-surgery on K, , is also an L-space for all p; > .
Therefore K,y is an L-space link. ]

2.1. Proof of Proposition 2.5. We will prove Proposition 2.5 using Lipshitz-Ozsvath-Thurston’s
bordered Floer homology [LOTO8], specifically Hanselman-Watson’s [HW15] loop calculus. That
is, we will decompose the result of surgery on K, ,, into two pieces, one that is surgery on a
torus link in the solid torus and the other the knot complement, and then apply a gluing result of
Hanselman-Watson to conclude that the result of this surgery along K. ,, is not an L-space. The
following was described to us by Jonathan Hanselman.
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Let Y7 denote the Seifert fibered space obtained by performing (p1,...,p,)-surgery on the r-
component (r,0)-torus link in the solid torus. Consider the bordered manifold (Y7, a1, 1), where
v is the fiber slope and 37 lies in the base orbifold; that is, « is the longitude and 31 the meridian of
the original solid torus. Let (Y2, az, 52) be the n-framed complement of K; that is, Yo = S3\ N(K),
ag is an n-framed longitude, and f; is a meridian. Let (Y7, a1, 1) U (Y2, ag, B2) denote the result
of gluing Y] to Y3 by identifying «; with ag and 5 with 3. Note that (Y7, a1, 81) U (Yo, ag, B2) is
homeomorphic to (p1,...,py,)-surgery along K, ,,. We identify the slope pa; + ¢B; on 9Y; with the
(extended) rational number £ € QU {3}

The following lemma gives a description of C/FT)(Yl, a1, 41) in terms of the standard notation
defined in [HW15, Section 3.2].

Lemma 2.6. The invariant (TFT)(Yl,oq,ﬁl) can be written in standard motation as a product of
dy, where

(1) ki <0 for all i,

(2) ki =0 for at least one 1,

(3) ki = —r for exactly one i.

Proof. The computation is similar to the example in [HW15, Section 6.5]. A plumbing tree I' for
Y] is given in Figure 1. We first consider the plumbing tree I'; in Figure 2(a). We will build I" by
merging the [';, i =1,...,7r.

b1 P2 o Dbr
FIGURE 1. The plumbing tree I'.

We proceed as in [HW15, Section 6.5]. Start with a loop (dy) representing the tree I'y in Figure
2(b). We have that I'; = E(TPi(I'g)) so by [HW15, Sections 3.3 and 6.3]:

E
= B((dp,))
= (dZ,,)
~ (d_l dodo'
Di
= &—e@----- Tp= @-----
Di 0 0

FIGURE 2. Left, the plumbing tree I';. Right, the plumbing tree I'g.
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We then have that I' = M(I'y, M(Ty, ... , M(Tp,_,,T},))). By [HW15, Proposition 6.4], we have

that (TFT)(F) is a represented by a product of dj, where k; <0 for all ¢ and k; = 0 for at least one
1 since each p; > 0. Moreover, d_, appears exactly once in the product, since we performed r — 1
merges. This completes the proof of the lemma. O

Lemma 2.7. The slope 1 is not a strict L-space slope on (Y1, a1, 31).

Proof. We will apply a positive Dehn twist to (Y7, a1, 51) to obtain (Y7, a1, 81 + a1). We will show
that 0 is not a strict L-space slope on (Y1, a1, 81 + 1), and hence 1 is not a strict L-space slope on
(Y1, a1, 61).

By [HW15, Proposition 6.1], we have that (TFT)(Yl, a1, f1 + aq) can be obtained by applying T
to a loop representative of (TFT)(Yl,oq,Bl). Since T(dy) = di1, it follows from Lemma 2.6 that

C/FT)(Yl, ai, f1 + a1) can be written in standard notation as a product of dy, with k; <1 for all i,
k; = 1 for at least one i, and k; = 1 — r for exactly one 3.

We claim that if a loop £ contains both positive and negative dj segments (i.e., both d;,i > 0
and dj,j < 0), then in dual notation £ contains at least one a; or b; segment. Indeed, suppose by
contradiction that £ has no a; or b. Then £ consists of only d; segments, ¢ € Z. It is straightforward
to see (for example, by considering the segments as drawn in [HW15, Figure 1]) that one cannot
obtain a loop containing both positive and negative dj segments from d segments, ¢ € Z. This
completes the proof of the cl/a_igl.

Furthermore, note that CFD(Y7, a1, 81 + a1) consists of simple loops (see Definition 4.19 of
[HW15]). Then by [HW15, Proposition 4.24], in dual notation £ has no aj or b segments for
k < 0. It now follows from Proposition 4.18 of [HW15] that 0 is not a strict L-space slope for

C/FT)(Yl, a1, 81 + a1). Therefore, 1 is not a strict L-space slope on (Y7, aq, 1), as desired. O

Remark 2.8. Note that by Proposition 4.18 of [HW15], we have that 0 and oo are strict L-space
slopes on (Y7, aq, 31). Since 1 is not a strict L-space slope, it follows from Corollary 4.5 of [HW15]
that the interval of L-space slopes of (Y1, a1, 1) contains the interval [—oo, 0].

Remark 2.9. An alternative proof of Lemma 2.7 follows from [L.S07, Theorem 1.1]. Indeed, by
setting ; = 1/p; and ¢y = —1 in Figure 1 of [LS07], we see that M(—1;1/p1,...,1/p,) is not
an L-space, hence neither is M (1;—1/p1,...,—1/p;), which is homeomorphic to filling (Y7, a1, 1)
along a curve of slope 1.

Lemma 2.10. Let K be an L-space knot. If n < 2g(K) —1, then 1 is not a strict L-space slope on
the n-framed knot complement (Ya, az, 532).

Proof. Since K is an L-space knot, we have that S3-(p/q) is an L-space exactly when p/q >
2g(K) — 1. Since ay is an n-framed longitude, it follows that the interval of strict L-space slopes
on (Ya, g, B2) is (0, m), that is, the reciprocal of the interval (2g(K) — 1 — n,c0). O
Proof of Proposition 2.5. The result now follows from [HW15, Theorem 1.3] combined with Lem-
mas 2.7 and 2.10; the slope 1 is not a strict L-space slope on either (Y7, aq, 81) or (Ya2, a9, B2), and
so the resulting manifold (Y7, aq, 51) U (Ya, ag, B2), which is (p1,...,p,)-surgery on K, ., is not an
L-space. ]

Remark 2.11. One can use similar methods to provide an alternate proof that K, ,,, is an L-space
link if K is an L-space knot and n > 2¢(K) — 1. Indeed, if K is an L-space knot, then the
interval of strict L-space slopes on the n-framed knot complement (Yz, ag, f82) is (0, s—ne—) if

» 29(K)—1—n
n < 2g(K) —1 and (0, 00] U [—00, m) if n > 2¢g(K) — 1. Hence if n > 2¢g(K) — 1, then the
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interval of strict L-space slopes on (Y2, g, f2) contains the interval (0,00). By Remark 2.8, we have
that the interval of strict L-space slopes on (Y7, aq,31) contains [—oo,0]. Therefore, by [HW15,
Theorem 1.4], if n > 2g(K) = 1, then the result of positive surgery (i.e., each surgery coefficient is
positive) on K, ,, is an L-space.

3. A SPECTRAL SEQUENCE FOR L-SPACE LINKS

In this section we review some material from [GN15]. Given u,v € Z", we write u < v if u; < v;
for all 4, and w < v if u < v and u # v. Recall that we work with F = Z/2Z coefficients.

Definition 3.1. Given a r-component oriented link L, we define an affine lattice over Z":
- 1
H(L) = H;(L), H;(L) =7+ =1k(L;, L — L;).
L= @Hw). ) =2+l )

Let us recall that the Heegaard-Floer complex for a r-component link L is naturally filtered by
the subcomplexes A} (L;v) of F[Uy,...,U,]-modules for v € H(L). Such a subcomplex is spanned
by the generators in the Heegaard-Floer complex of Alexander filtration less than or equal to v in
the natural partial order on H(L). The group HFL (L,v) can be defined as the homology of the
associated graded complex:

u<v

(3.1) HFL (L,v) = H, (A_(L;v)/ > A_(L;u)) .

One can forget a component L, in L and consider the (r — 1)-component link L — L,. There is
a natural forgetful map =, : H(L) — H(L — L,) defined by the equation:

7'('7»(’[)1, e ,UT») = (’Ul — lk(Ll,Lr)/Q, ey Up—_1 — lk(Lr_l,Lr)/Q) .

Similarly, one can define a map ny, : H(L) — H(L') for every sublink L' C L. Furthermore,
for large v, > 0 the subcomplexes A~ (L;v) stabilize, and by [OS08, Proposition 7.1] one has
a natural homotopy equivalence A~ (L;v) ~ A~ (L — L,;7m-(v)). More generally, for a sublink
L'=1L; U...UL;, one gets

(3.2) A= (Lsmp(v) ~ A= (Lyw), ifv; >0 for i ¢ {iy... i}

We will use the “inversion theorem” of [GN15], expressing the h-function of a link in terms
of the Alexander polynomials of its sublinks, or, equivalently, the Euler characteristics of their
Heegaard-Floer homology. Define xp,, := x(HFL (L, v)). Then by [OS08]

Y ; (t1 -t 2A(ty, ... 1), ifr>1
XL(tla - ,tr) = XL,vt .. 'trr = _ .
UE%(:L) ! A(t)/(1—t7h), if r =1,

where A(ty,...,t,) denotes the symmetrized Alexander polynomial.

Remark 3.2. We choose the factor (t1 ---t,)'/? to match more established conventions on the grad-
ings for the hat-version of link Floer homology. For example, the Alexander polynomial of the Hopf
link equals 1, and one can check [OS08] that HFL is supported in Alexander degrees (:l:%, :l:%) Since
the maximal Alexander degrees in HFL and HFL coincide, one gets x7(2,2)(t1,t2) = t}/ 2t§/ 2,

The following “large surgery theorem” underlines the importance of A~ (L;v).
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Theorem 3.3 ([MO10]). The homology of A~ (L;v) is isomorphic to the Heegaard-Floer homology
of a large surgery on L with spin.-structure specified by v. In particular, if L is an L-space link,
then H.(A™(L,v)) ~ F[U] for all v and all U; are homotopic to each other on the subcomplex
A= (L;v).

One can show that for L-space links the inclusion h, : A= (L,v) < A~(S?) is injective on
homology, so it is multiplication by U":("). Therefore the generator of H,(A™(L,v)) ~ F[U] has
homological degree —2h (v). The function hz(v) will be called the h—function for an L—-space link
L. In [GN15] it was called an “HFL-weight function”.

Furthermore, if L is an L-space link, then for large N € H(L) one has

X (A7(L; N)/A™(L,v)) = hr(v).

Hence, by (3.1) and the inclusion-exclusion formula one can write:

(3.3) Xew= > (=D hp(v—ep),

Bc{1,...,r}
where ep denotes the characteristic vector of the subset B C {1,...,r}. Furthermore, by (3.2) for
a sublink L' = L;; U... U L; , one gets
(3.4) hp (mr(v)) = hr(v), if v; >0 for i & {i1... i}

For r = 1 equation (3.3) has the form xr, = h(v — 1) — h(v), so h(v) can be easily reconstructed
from the Alexander polynomial: hr(v) = »_,~,,1 XLw- For 7 > 1, one can also show that equation
(3.3) (together with the boundary conditions (3.4)) has a unique solution, which is given by the
following theorem:

Theorem 3.4 ([GN15]). The h-function of an L-space link is determined by the Alexander poly-
nomials of its sublinks as following:

(3.5) ho(on,v) = > (D70 > xpw,
L'CL urmp s (v+1)
where the sublink L' has ' components and 1 = (1,...,1).
Given an L-space link, we construct a spectral sequence whose Fy page can be computed from

the multi-variable Alexander polynomial by an explicit combinatorial procedure, and whose F.,
page coincides with the group HFL . The complex (3.1) is quasi-isomorphic to the iterated cone:

K(v) = @ A7 (L,v —ep),
BcC{1,...,r}

where the differential consists of two parts: the first acts in each summand and the second acts
by inclusion maps between summands. There is a spectral sequence naturally associated to this
construction. Its 7 term equals

Eiv)= @ H.(A (Lv—ep)= P FUN(v—ep)),
Bc{l...,r} Bc{l...,r}
where z(u) is the generator of H,(A™ (L, u)) of degree —2hr(u). The next differential 0; is induced
by inclusions and reads as:
(3.6) O1(z(v—ep)) = Z Uhtvmes)=hv=es-i) ,(y —ep +¢;).
i€B
We obtain the following result.
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Theorem 3.5 ([GN15]). Let L be an L-space link with v components and let hy(v) be the cor-
responding h-function. Then there is a spectral sequence with Es(v) = H,(F1,01) and Eoo =~
HFL (L,v).

Remark 3.6. Let us write more precisely the bigrading on the Ey page. The E; page is naturally
bigraded as follows: a generator U™z(v — ep) has cube degree |B| and its homological degree in
A= (L,v — ep) equals —2m — 2h(v — ep). In short, we will write

bideg (U™z(v — ep)) = (|B|, —2m — 2h(v — eR)).

The homological degree of the same generator in E;(v) equals the sum of these two degrees. The
differential 9, has bidegree (—1,0), and, more generally, the differential 9y in the spectral sequence
has bidegree (—k,k — 1).

In the next section we will compute the Fs page for cable L-space links and show that Fy = F..
Let us discuss the action of the operators U; on the Ey page. Recall that U; maps A~ (L,v) to
A7 (L,v — ¢;), and in homology one has:

(3.7) Uiz(v) = UYhv=ed+h®) 5y — ¢y),
Since U; commutes with the inclusions of various A~, we get the following result.

Proposition 3.7. Fquation (3.7) defines a chain map from K(v) to K(v —e;) commuting with the
differential 01, so we have a well-defined combinatorial map

Ui : H*(El(v), 61) — H*(El(v — ei), 61)
If E5 = E then one obtains U; : HFL™(L,v) — HFL ™ (L,v — ¢;).

Furthermore, by the definition of HFL [OS08, Section 4] one gets:

HFL(L,v) = H, <A‘(L,v)/

Z A (v—e;) ® Z UiA™ (v +¢;)
i—1 i—1

This implies the following result:

Proposition 3.8. There is a spectral sequence with Eq page

Ey= @ HFL (L,v+ep)
BC{l,...ﬂ“}

and converging to Eoo = ﬁ(L,v). The differential 51 s given by the action of U; induced by
(3.7).
4. HEEGAARD-FLOER HOMOLOGY FOR CABLE LINKS

4.1. The Alexander polynomial and h—function. The Alexander polynomial of cable knots
and links is given by the following well-known formula:

(41) AKT'77L,T'7L(t17 tet 7t7") = AK(t?ln e t:’n) : AT(T’m,T’n) (t17 A 7t7")7
where T'(rm,rn) denotes the (rm,rn) torus link. Throughout, let t =¢; ---¢, and | = mn.

Lemma 4.1. The generating functions for the Euler characteristics of HFL™ for K,y rn and Ky,
are related by the following equation:

(42) XK'rm,'rn (t17 R 7t7«) = XKm,n (t) ' (tl/2 - t_l/2)r_1
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Proof. The statement follows from the identity (4.1) and the expression for the Alexander polyno-
mials of torus links:
B (tmn/2 _ t—mn/2)r
XT(rm,rn)(tb T ’tr) B (tm/2 _ t—m/2)(tn/2 _ t—n/2) ’

0

Remark 4.2. The Alexander polynomial is determined up to a sign. By (4.2), the multivariable
Alexander polynomial of a cable link is supported on the diagonal, so one can fix the sign by
requiring its top coeflicient to be positive.

From now on we will assume that K is an L-space knot and n/m > 2¢g(K) — 1, s0 Kyprp is
an L-space link for all ». To simplify notation, we define Ay, rn(v) = hi, o (V) and Xy rn(v) =

XKy, Let ¢ =1(r —1)/2.
Theorem 4.3. Suppose that v1 < vg < ... < wv,.. Then the following equation holds:
(4.3) hymn (V1,23 0p) = By (V1 — €) + A (V2 —c+1) + ... 4 b (v — ¢+ (r — 1)1).

Proof. We will use Theorem 3.4 to compute h(v). Let L' be a sublink of K, ,, with 7’ components,
ie., L' = Ky pip- By (4.2), one has

r'—1
XKT'/WL " (tla cee 7t7”) - XKm n tl " _1 /2 Z < >t_lj7

hence x1/, does not vanish only if u = (s,...,s), and

r'—1 /
(-1
XL',s,...s = (_1)] <T . >Xm7n(s—l(r'—1)/2+lj).

Therefore

r'—1 r
Z XL = Z(—l)j<T ) 1>Xm7n(s—l(r'—1)/2+lj)

e (v+1) s>max(ry (v)) =0 J
= r—1
= S 0 (" e ) 16 < 1)/2-410)
=0

Furthermore, if L' = L; U... U L; , then 7y (v) = (v, —U(r —7")/2,...,v;, = I(r —1")/2), so
max(7z(v)) = max(vj,,. .. Vi) = I(r — ) /2 = max(vy) — I(r — ') /2.
This means that (3.5) can be rewritten as follows:

hrm,rn('uly e ,Ur) = Z(—l)rl_l—l—j (7‘,; 1> hm,n(max(vy) — l(r — 1)/2 + l])

L'j
’ . T/—l
_thn vi — l(r —1)/2+1j) Z (—1)“”]( . >
- J
L' w;=max(vys)

One can check that the inner sum vanishes unless j =i — 1 (recall that v; < wvy < ... < w,), so one
gets

Poman (V15 - 0 thn v —U(r—1)/2+1(3 —1)).
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O
Lemma 4.4. The following identity holds:
hpmen (=01, - o, =) = By (U1, ..., 0p) + (01 + ...+ 0p).
Proof. Suppose that v1 < vy <...<w,.. Then —v; > —vy > ... > —v,. Therefore
heman(=01, o =0) = 3 (=0 = 1(r = 1)/2+ 1(r — i)
i=1
= hmn(—vi +1(r—1)/2 =13 — 1)).
i=1
It is known (e.g., [HLZ13]) that for all x,
hm,n(_x) = hm,n($) +z,
hence
hp(—vi +1(r —1)/2 =1(i = 1)) = by (v; = U(r —1)/24+1(i = 1)) + (v; = U(r — 1)/2 +1(i — 1)).
Finally, > ., (=l(r—1)/2+1(i — 1)) = 0. O

Lemma 4.5. One has hypen(k, k... k) = h(k), where h(k) is defined by (1.1).
Proof. Indeed, by (4.3) we have
heman(ky .o k) = b (k= 1U(r —1)/2) + by (k= 1U(r = 1)/2+ 1)+ ... + hypn(k+1(r —1)/2),

SO

Ir/2 —lIr/2 —1
S By R)tE = (710D D2 S gk (#r/2 — =1 /2) LA, L (t)
K !

(t/2 — t-1/2) ' (1—¢ 12"
O

For the rest of this section we will assume that n/m > 2¢g(K) — 1.
Lemma 4.6. If v < g(K,, ) — I, then HFK™ (K, 5, v) ~ F.
Proof. By [Hed09, Theorem 1.10], K, 5, is an L-space knot and hence by [OS05]
9(Kmn) =7(Kmn),  9(K) =T7(K).

By [Shi85], we have:
o) = mo(0) + DO,
so for n/m > 2¢g(K) — 1 we have
20(Kmpn) =2mg(K)+mn—m—n+1<mn+1,

hence | = mn > 2g(K,, ). On the other hand, it is well-known that for v < —g(K,, ) one has
HFK (K pn,v)) >~ F. O

We will use the function § defined by (1.1).

Lemma 4.7. If (k) = —1 then HFK (K, ., k — ¢) = 0. Otherwise
(4.4) B(k) =max{j:0<j<r—1, HFK (K., k —c+1j) ~F}.
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Proof. By (1.1) and Lemma 4.5 we have
B(k)+1 = hpmyn(k—1,...,k=1)—hpmn(k, ..., k) = > (hmn(k—1—c+1j) — hpmpn(k —c+1j)).

Note that hpyn(k — 1 —c+1j) — hmn(k — c +1j) = dimHFK (K, 0,k — ¢+ 1j) € {0,1}. If
HFK (K, k—c+1j) = F then k—c+1j < g(Kp ), so by Lemma 4.6 HFK™ (K, 5, k—c+1j’) ~ F
for all j* < j. Therefore, if HFK (K, n, k — ¢) = 0 then 8(k) = —1, otherwise

F if j <pB(k
HFK?(Km,TL7k_C+l]) = l ‘7 — /8( )7
0 if 7 > B(k).
O
Suppose that v1 = ... = vy = UL, UN41 = -0 = Unj4dy = U2y oo+, Uk A 41 = - o0 = Up = Us
where u; <wup <...<wugand A\ +...+ Ay =r. We will abbreviate this as v = (u?l, k).

Lemma 4.8. Suppose that 5(us) < r — As. Then for any subset B C {1,...,r — 1} one has
hrm,rn(v - eB) = hrm,rn(v — €éB — er)-

Proof. To apply (4.3), one needs to reorder the components of the vectors v — eg and v — eg — e,.
Note that in both cases the last (largest) A; components are equal either to us or to ug — 1,
and the corresponding contributions to Ay, are equal to hp, n(us — ¢ + I(r — As) + 1j) or to
B (us —c+1(r — Xg) +1j — 1), respectively (j =0,...,As —1). On the other hand, by (4.4) one
has

HFK (Kpp,us —c+1U(r—Xs) +15) =0
and so
B (us —c+1Ur —Xs) +1j — 1) = by (us — ¢+ 1(r — Xg) + 17).

O

Lemma 4.9. If B(us) > 1 — s then hpp pn(v) = h(ug) + rus — |v].

Proof. Since B(us) > 1 — As, we have HFK™ (K, p,us —c+1(r — Ag)) ~ F, so

us —c+Ur—Xs) < g(Kpmn)-
For i <r — A\; we get
vi—ct+l(i—1)<us—c+Il(i—1) <us—c+1Ur—2X) =l < g(Kpmpn) — 1,
so by Lemma 4.6, HFK (K, ,,w) ~ F for all w € [v; —c+ (i — 1),us — ¢+ (i — 1)], and
hpn(vi —c+1(3i—1)) = hpn(us —c+ 10 — 1)) + (us — v;).
Now the statement follows from Lemma 4.3. O

Lemma 4.10. Suppose that B(us) > r — Xs. Then for any subsets B' C {1,...,r — X\s} and
B"c{r—Xs+1,...,r} one has

Bomn(V — epr — epr) = R en (V) + |B’| + min(|B"|, B(us) —r + s + 1).
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Proof. Since HFK™ (K, n,us — c+ 1(r — Ag)) @ F, we have ug — c+1(r — Xs) < g(Kp, ), so for all
i <r—Asonehas v, —c+1(i—1) <us—c+1lr—»XA)—1<g(Kmn)— I, and by Lemma 4.6
HFK (K, vi —c+ (i — 1)) = F, and hpp(v; — 1 —c+1(i — 1)) = hmn( vi—c+1(i—1))+ 1L
Therefore Rpprn(v — epr — epr) = |B'| + By o (v — epr). Finally,

|B"|

Rymn (U — €pr) = Ry pn (V) = Z (hmn(us =1 —cH+1Ur—As) +15) — hpp(us — c+U(r — Xs) + 1j)
=0

=min(|B”|, B(us) —r + As + 1).

4.2. Spectral sequence for HFL .

Definition 4.11. Let &, denote the exterior algebra over F with variables z1, ..., z.. Let us define
the cube differential on &, by the equation

O(zay N A Zay) ZZm N Zag NN 2y

and the b-truncated differential on &,.[U] by the equation

Ud(zay N ... N 2zqy), ifk<Db

OO 2oy Ao A 2gy) =
(e Zon) {8(2@1/\.../\2%), if k> b.

More invariantly, one can define the weight of a monomial 2z, = zq; A ... A 2o, as w(zq) =
min(|a|,b), and the b-truncated differential is given by the equation:

(4.5) a(b)(za) = Z U“’(a)_“’(a_ai)za_ai.
ica
Indeed, w(a) — w(a — ;) = 1 for |a| < b and w(a) — w(a — «;) = 0 for |af > b.
Definition 4.12. Let £ C &, be the subalgebra of &, generated by the differences z; — zj for all
1% ].
Lemma 4.13. The kernel of the cube differential & on &, coincides with E°9.
Proof. 1t is clear that 0(z; — z;) = 0, and Leibniz rule implies vanishing of 0 on Ered. Let us prove

that Ker 9 C £24. Since (&,,0) is acyclic, it is sufficient to prove that the image of every monomial
Zay N+ A Zq, is contained in &,. Indeed, one can check that

8(25041 /\”'/\Zak) = (Zocz - 2061) ARRRNA (ZOék - Zak—l)‘

Lemma 4.14. The homology of 9®) is given by the following equation:
(Y, ifk<b

dim Hy,(£,[U],0%)) = {0 ifk>b

Proof. Since 9 is acyclic, one immediately gets Hy(E.[U],0®)) = 0
homology is supported at the zeroth power of U and one has Hy(E.[U
dimension of the latter kernel equals

._.)—h

or k > b. For k < b, the
~ 7___7%)). The

—1
dimKer(a‘/\k(217...7Z7")) = dlm /\k(Zl —Z22,...,21 — Z?“) — <T k )
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O

Proof of Theorem 5. Let us compute HFL™ (K, yn,v) using the spectral sequence constructed in
Theorem 3.5. By Lemma 4.8, in case (a) it is easy to see that the complex (E1,d;) is contractible
in the direction of e, and Ey = H,.(FEy,01) = 0.

In case (b) by Lemma 4.10 and (4.5) one can write £y = &, [U] ®p(y] €x,[U], a tensor product
of chain complexes of F[U]-modules, and 8y acts as U on the first factor and as 0**1) on the
second one. This implies

(4.6) Ey = H,(Ey,81) ~ E_»x, ®r H, (gAS ], a<5+1>) ,

Indeed, U acts trivially on H, (&, [U], G(BH)), so one can take the homology of d¥+1) first and
then observe that U0 vanishes on

Er U] @) He (1, [U],0040) = £,y @ H. (60, [0),007)).

By Lemma 4.14, the Fy page (4.6) agrees with the statement of the theorem, hence we need to
prove that the spectral sequence collapses.

Indeed, the E; page is bigraded by the homological degree and |B| (see Remark 3.6). By Lemma
4.14 any surviving homology class on the Ey page of cube degree = has bidegree (x, —2hyp rn(v) —
2x), so all bidegrees on the Es page belong to the same line of slope (—2). Therefore all higher
differentials must vanish.

Finally, a simple formula for A, n(v) in case (b) follows from Lemma 4.9. O

4.3. Action of U;. One can use Proposition 3.7 to compute the action of U; on HFL™ for cable
links. Recall that R = F[U; ..., U,]. Throughout this section we assume n/m > 2g(K) — 1. We
start with a simple algebraic statement.

Proposition 4.15. Let C be an F-algebra. Given a finite collection of elements ¢, € C and vectors
(c) «
v(® € 77, consider the ideal T C C Qr R generated by cq ® Ufl ---U;’£ ). Then the following
statements hold:
(a) The quotient (C @ R)/Z can be equipped with a Z"—grading, with U; of grading (—e;) and
C of grading 0.
(b) The subspace of (C @ R)/Z with grading v is isomorphic to

[(C ®F R)/T] (v) ~C/ (ca (@) < _U) ‘
Proof. Straightforward. -

Definition 4.16. We define A, = &, Qr R and Aﬁed = 5§ed ®r R. Let I’B denote the ideal in A,
generated by the monomials (zj; A--- A 2,) ® Ui,y -+ Uiy, for all s < 8+ 1 and all tuples of
pairwise distinct 41,...,ig41. Let Zg := Ié N A be the corresponding ideal in A",

The algebras A, and A" are naturally Z"T!-graded: the generators z; have Alexander grading
0 and homological grading (—1), the generators U; have Alexander grading (—e;) and homological
grading (—2).
Definition 4.17. We define H(k) := €D,,ax()
grading, H (k) is naturally an R—module.

<k HFL ™ (Kym,rn,v). Since U; decreases the Alexander

The following theorem clarifies the algebraic structure of Theorem 5.
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Theorem 4.18. The following graded R—modules are isomorphic:
H(k)/H(k — 1) = A Tg [—2h(k){k, ... k},
where [-] and {-} denote the shifts of the homological grading and the Alexander grading, respectively.
Proof. By definition, H(k)/H(k — 1) is supported on the set of Alexander gradings v such that
max(v) = k. The monomial U; - - - U, belongs to the ideal Zg), so .Af,ed/Iﬁ(k) is supported on the
set of Alexander gradings v with max(u) = 0.

Suppose that exactly A components of v are equal to k. Without loss of generality we can
assume vy, ..., 0y < k and v,_yy1 = ... = v, = k. It follows from Lemma 4.13 and the proof of
Theorem 5 that HFL™ (K, rpn,v) is isomorphic to the quotient of Eﬁed by the ideal generated by
degree 8 —r + A+ 1 monomials in (z; — z;) for i,j > r — A.

Consider the subspace of A, /Ié of Alexander grading (vy—k, ..., v,—k). By Proposition 4.15 it is
isomorphic to a quotient of £, modulo the following relations. For each subset B C {1,...,r—A} and
each degree f+1— |B| monomial m’ in variables z; for i ¢ B there is a relation m' @[, 5 Up € Zj.
All these relations can be multiplied by an appropriate monomial in R to have Alexander grading
(v —kyoooyur — k).

Note that such m’ should contain at most » — A\ — | B| factors with indices in {1,...,7 — A} \ B,
hence it contains at least 8 — r + A + 1 factors with indices in {r — A + 1,...,r}. Therefore

[Ar /I’B} (vy — k,...,v, — k) is naturally isomorphic to the quotient of &, by the ideal generated by

degree 8 —r + A + 1 monomials in z; for i > r — A.

We conclude that [A3*!/Zgq)] (01 —k, ..., v, — k) is isomorphic to HFL™ (K, m,v). The action
of U; on H(k) is described by Proposition 3.7. One can check that it commutes with the above
isomorphisms for different v, so we get the isomorphism of R—modules. O

We illustrate the above theorem with the following example (cf. Example 5.8).

Ezample 4.19. Let us describe the subspaces of .Aged /I with various Alexander gradings. The ideal
7, equals:

T = ((21 — 22)(22 — 23), (21 — 22)Us, (21 — 23)Us, (22 — 23)U, UrUs, U Us, UpUs) C AF.
In the Alexander grading (0,0,0) one gets
[Agod/ll} (0,0,0) = E5°/((21 — 22)(22 — 23)) = (1,21 — 22,22 — 23),
in the Alexander grading (k,0,0) (for £ > 0) one gets two relations
Uf(zl — 22)(22 — 23), Uf_l(ZQ — 23) € Il.
Since the latter implies the former, we get
[Aged/zl] (k,0,0) = £/ (25 — 23) = (1, 21 — 2).
The map U : [AFY/Z;] (0,0,0) — [APY/Z] (1,0,0) is a natural projection

£/ (21 — 22) (22 — 23)) = E5°%/(22 — 23),

while the map Uy : [A¥Y/Z4] (K, 0,0) — [AFY/Z;] (k + 1,0,0) is an isomorphism for k > 0.
The gradings (0, &,0) and (0,0, k) can be treated similarly. Furthermore, U;U; € I; for i # j, so
all other graded subspaces of Aged /2y vanish.

Since the multiplication by U; preserves the ideal Zg, we get the following useful result.
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Corollary 4.20. If max(v) = max(v — e;), then the map

Ui : HFL (K rn, v) = HFL (Ko, v — €;)
18 surjective.

Lemma 4.21. Suppose that max(v) = k and max(v — e;) = k — 1, and the homology group
HFL™ (K, rn,v) does not vanish. Then f(k) =r —1,8(k —1) > r —2 and the map

Ui : HFL (K rn, v) = HFL (Ko, v — €;)
18 surjective.

Proof. Since max(v) = k and max(v—e¢;) = k—1, the multiplicity of k in v equals 1, so by Theorem
5 B(k) > r — 1, hence B(k) = r — 1. Therefore HFL (K, rn,v) =~ 4, so U; is surjective. Indeed,
by Theorem 5 HFL™ (K, p, yn, v—e;) is naturally isomorphic to a quotient of cffed, and by Proposition
3.7 U; coincides with a natural quotient map. Finally, by (4.4) HFK (K, n,k —c+1(r — 1)) ~F,
and by Lemma 4.6 HFK (K, p,k — 1 —c+(r—2)) ~F,so B(k —1) > r —2. O

Proof of Theorem 6. Let us prove that the homology classes with diagonal Alexander gradings
generate HFL™ over R. Indeed, given v = (v; < ... < v,) with HFL™ (K, rn,v) # 0, by Theorems
5 and 4.18 one can check that HFL™ (Kyp, pn, Ur, ..., v,) # 0 and by Corollary 4.20 the map

Uy = Ut HEL (Kpmeny Urs - -+ 5 V) — HFL ™ (Kp e, ©)

T

is surjective.

Let us describe the R-modules generated by the diagonal classes in degree (k, ..., k). If (k) = —1
then HFL™ (K, n, k,...,k) = 0. If 0 < (k) < r — 2 then by Lemma 4.21 the submodule
R -HFL (Kymn, k, ..., k) does not contain any classes with maximal Alexander degree less than
k, so by Theorem 4.18

R-HFL (K, k... k) 22 A2 Tg0 = Mg

Suppose that S(k) = r — 1, and consider minimal a and maximal b such that a < k < b and
B(i) =r—1for i € [a,b]. If there is no minimal a, we set a = —co. By Lemma 4.21, f(a—1) = r—2
and all the maps

HFL (Kpmns by -5 b) S HFL (Kppgms b — 1,0 b — 1) = ...

. 5 HFL (Km0, - .. a) 28" HFL (Kpmpmsa — 1, a — 1)
are surjective. Therefore
R-HFL (Kypmn, by ..oy b) = A (U - U L9 = My 0t

is supported in all Alexander degrees with maximal coordinates in [a, ] and in Alexander degrees
with maximal coordinate (a — 1) which appears with multiplicity at least 2.
Finally, we get the following decomposition of HFL™ as an R—module:

HFL (Kymm) = @ Ma® B Mripar1 © Mo
k:0<B(k)<r—1 a,b:f(a—1)=r—2
B(k+1)<r—1 B(b+1)<r—1

B([a,b])=r—1

Note that for r = 1 we get Mo ~ F[U1]/(U}) and Mo 4o ~ F[U].
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4.4. Spectral sequence for HFL.

Theorem 4.22. If f(k) + B(k + 1) < r — 2 then the spectral sequence for ﬁ(Krm,m, k,...,k)
degenerates at the Eo page and
B(k+1)

B(k)
— r—1 r—1
HFL(Krm,rny ky... 7k) = @ < i ) —2h(k)— i D @ < ) —2h(k)+2—r+i-

i=0
Proof. By Proposition 3.8, for a given v there is a spectral sequence with E1 page

Ei= @ HFL (Lv+ep)
BC{l,...ﬂ“}

and converging to En, = ﬁ(l/,v). If v=(k,...,k) then (for B # )) the maximal coordinate of
v+ep equals k+1 and appears with multiplicity A = |B|. Therefore, by Theorem 5 HFL™(L,v+ep)
does not vanish if and only if either B = or |B| > r — (k4 1), and it is given by Theorem 5. By
(1.1) we have h(k+ 1) = h(k) — f(k+ 1) — 1.

The spectral sequence is bigraded by the homological (Maslov) grading at each vertex of the cube
and the “cube grading” |B|. The differential 51 acts along the edges of the cube, and decreases the
Maslov grading by 2 and the cube grading by 1. -

One can check using Theorem 4.18 that its/h&mology FE5 does not vanish in cube degrees 0 and

— B(k + 1), so one can write E\g = E\S @ Eg_ﬁ(kﬂ), and

_ B(k) _ s
N@< >F 2h(k)—i By P o &y < ; >F 2 (k+1)—38(k+1)+i

i=0
By (1.1) we have h(k+1) = h(k)—B(k+1)—1, so —2h(k+1)—38(k+1)+i = —2h(k)+2—F(k+1)+:.
A higher differential 05 decreases the cube grading by s and decreases the Maslov grading by

s+ 1. Therefore the only nontrivial higher differential is E?T_/ﬁ_(;:_l) which vanishes by degree reasons

—B(k+1)

too. Indeed, the maximal Maslov grading in F; equals —2h(k)+2 while the minimal Maslov

grading in ES equals —2h(k) — 8(k), so the differential can decrease the Maslov grading at most by
B(k)+2. On the other hand, J,_g(;1) drops it by r — B(k+1) +1, and for B(k) +B(k+1) <r—1
one has r — f(k+ 1) + 1 > B(k) + 2. Therefore 87,_/5_(,;1) = 0 and the spectral sequence vanishes
at the E; page. O
We illustrate the proof of Theorem 4.22 by Examples 5.4 and 5.5
Lemma 4.23. The following identity holds:
B(l—k)+ p(k)=r—2.
Proof. By (1.1) and Lemma 4.5 we have

Bk)y=h(k—1,....,k—1)—h(k,...,k) =1, B(1 —k)=h(—k,...,—k)—h(1—Fk,...,1 — k) — 1.
By Lemma 4.4 we have
h(=k,...,—k)=h(k,....,k)+kr, h(1 —=Fk,....,1—k)=h(k—1,...,k—=1)+r(k—1).

These two identities imply the desired statement. O
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Theorem 4.24. If f(k) + B(k+ 1) > r — 2 then:

o r—2—pB(k+1) o1 r—2—p(k)
HFL(Krm,rny ky..., k) = @ < i >F 2h(k)— i D @ ( >F 2h(k)+2—r+i
=0

Proof. By Lemma 4.23 we get 8(—k) =r—2—3(k+1) and (1 — k) =r —2 — 3(k), so
B(k) + B(k+1) + B(=k) + B(1 — k) = 2(r — 2),

so B(—k)+p(1—k) < r—2. By Theorem 4.22 the spectral sequence degenerates for }TF\L(—k;, ooy —k)
and

- r—2—pF(k+1) o1 r—2—0(k) 1

HFL(Krm,rna —k,..., _k) =~ @ < i )F 2h(—k)— i D @ < ) —2h(—k)+2—r+i

=0
Finally, by [OS08, Proposition 8.2] we have
ﬁo(Krm,rny k’, s 7k7) = ﬁo—ﬂw(Krm,rna —kf, B _k)

and by Lemma 4.4 h(k) = h(—k) — kr. O

Theorem 4.25. Off-diagonal homology groups are supported on the union of the unit cubes along
the diagonal. In such a cube with corners (k,..., k) and (k+1,...,k+ 1) one has

o S r—2
HFL(Kmon, (K — 1), E"77) >~ <5(k) >F—2h(k)—ﬁ(k)—j'

Proof. We use the spectral sequence from HFL™ to HFL. By Theorem 4.18, all the E\g homology
outside the union of these cubes vanish (since some U; would provide an isomorphism between
HFL (K rn,v) and HEL™ (K, pn, v — €;)). Furthermore, if (k) = r — 1 then the homology in
the cube vanish too, S0 we can focus on the case B(k) <r — 2.

One can check that E2 does not vanish in cube degrees j — 8(k),...,j and

i J=1\(r—=1-7
Eé 2( ¢ ><B(k)_C>F—2h(k)—B(k)—c'

—

Note that the total homological degree on Eg_c equals —2h(k) — (k) — 7 and does not depend on c.
Therefore all higher differentials in the spectral sequence must vanish and the rank of HFL equals:

()G =)= G

We illustrate this proof by Example 5.6

4.5. Special case: m =1, n =2g(K)—1. The case m = 1,n = 2¢g(K) —1 is special since Lemma
4.6 is not always true. Indeed, K, , = K and | =n =2¢g(K) — 1, but for v = g(K) -l =1 — g(K)
we have HFL™(K,v) = 0. However, it is clear that in all other cases Lemma 4.6 is true, so for
generic v Lemmas 4.8 and 4.10 hold true. This allows one to prove an analogue of Theorem 5

Theorem 4.26. Assume that m = 1,n = 29(K) — 1 (so l = 29(K) — 1) and suppose that v =
(ui‘%u%‘ﬁ . ud) where uy < ... < us. Then the Heegaard-Floer homology group HFL™ (K, rn, v)

can be described as following:



CABLE LINKS AND L-SPACE SURGERIES 19
(a) Assume that us —c+1(r — Xs) = g(K) — vl with 1 <v < X\s. Then

v—2

. N A —1 Ao — 1
HFL (K, v) = (Fo) @ F1) ™ @ [P < j >F<—2h(v>—j> @ ( v >F<—2h(v)+2—u>
=0

(b) In all other cases, the homology is given by Theorem 5.

Proof. One can check that the proof of Lemma 4.8 fails if us —c+1(r — \s) = g(K) —, and remains

true in all other cases. Similarly, the proof of Lemma 4.10 fails only if us—c+I(r—Xs)+1j = g(K)—I

for 1 < j < Ag — 1, which is equivalent to us —c+I(r — As) = g(K) — (j + 1). This proves (b).
Let us consider the special case (a). Note that

hn(us —c+1Ur—Xs) +1j — 1) = by (us —c+1(r —Xs) +1j) =

1, ifj<v—1
. , 0, ifj=v—1
X(HFK™ (K, g(K) +1(j —v)) = e
1, ifj=v
0, ifj>w.
Given a pair of subsets B' C {1,...,r—Xs} and B” C {r—Xs+1,...,r}, one can write, analogously

to Lemma 4.10:
hrmmn(v — e — eBn) = hrmmn(’u) + ‘B,‘ + w(B”),
where
|B"|, if|B"|<v-1
w(B")y=Sv—1, if|B"|=v
v, if |B"| > v.

By the Kiinneth formula, the Fo page of the spectral sequence is determined by the “deformed
cube homology” with the weight function w(B"), as in (4.5). If 9, as above, denotes the standard
cube differential, then, similarly to Lemma 4.14, the homology of ;7 is isomorphic to the kernel of
0 in cube degrees 0,...v — 2 and v.

Finally, we need to prove that all higher differentials vanish. For a homology generator a on the
Es5 page of cube degree z, its bidegree is equal either to (x, —2h(v) — 2x) or to (z, —2h(v) — 2z + 2).
The differential 0y has bidegree (—k, k—1) (see Remark 3.6), so the bidegree of k() is equal either
to (x —k,—2h(v) =2z +k—1) or to (x — k,—2h(v) —2x + k+1). Since —2x +k+1 < —2(x — k)
for k > 1, we have Ji(a)) = 0. O

The action of U; in this special case can be described similarly to Theorem 4.18. However, it is
not true that U; is surjective whenever it does not obviously vanish. In particular, the following
example shows that HFL™ may be not generated by diagonal classes, so Theorem 6 does not hold.
We leave the appropriate adjustment of Theorem 6 as an exercise to a reader.

Example 4.27. Consider T5 9, the (2,2) cable of the trefoil. We have g(K) =1=1and ¢ =1/2, so
by Theorem 4.26

HFLi(T272, 1/2,1/2) ~ F(_l), HFLi(T272, —-1/2,1/2) ~ F(_Q) D F(_g).

Therefore U; is not surjective. Furthermore, the class in HFL (T52,—1/2,1/2) of homological
degree (—2) is not in the image of any diagonal class under the R-action.
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5. EXAMPLES

5.1. (n,n) torus links. The symmetrized multi-variable Alexander polynomial of the (n,n) torus
link equals (for n > 1):

A7, estn) = (8 )2 =t 1) 7272

Each pair of components has linking number 1, so ¢ = (n—1)/2. The homology groups HFL™(T'(n,n),v)
are described by the following theorem, which is a special case of Theorem 5

Theorem 5.1. Consider the (n,n) torus link, and an Alexander grading v = (v1,...,v,). Suppose
that among the coordinates v; exactly A are equal to k and all other coordinates are less than k. Let
|| =v1+ ...+ v,. Then

0 if k> \— 1,
HFL (T (n,n),v) = { F) &F1))" ! @ Fyp if k< -5,

)‘_7_]6 ; n— n

Foy @F)" @@y (7)Fanw-y o —25H <k<A—2
where h(v) = (252 — k)(252 — k+ 1) + kn — [v| in the last case.
Proof. Indeed, B(k) = 25 — k for k > =271 and B(k) =n — 1 for k < —271. By Theorem 5, the
homology group HFL (T'(n,n),v) does not vanish if and only if
n+1

(5.1) k<\—

Ifk> —”T_l, equation (4.3) implies:

1 /n—-1 n—1
hn,n(v)—§< 5 —k:>< 5 >—|—k‘n—|v|,

Ifk < —"T_l, equation (4.3) implies hy, ,(v) = —|v|. Furthermore, for all v satisfying (5.1) one has

n+1

, - A—1
e (oo = o e Bl o @ ()R
Finally, if & — "T_l, then (5.1) holds for all A and A — "TH — k> X—1, hence

A—1
. o A1 .
HFL (T (n,n),v) = (F() ®F(-1)) A®@< j >F(—2hn,n(v>—j>Z(F(o>@F(—1>> "QF Zon, (v))-
5=0
0

Remark 5.2. One can check that, in agreement with [GN15], the condition (5.1) defines the multi-
dimensional semigroup of the plane curve singularity 2" = y".

Corollary 5.3. We have the following decomposition of HFL™ as an R-module:
HFL’(T(n, n)=My@®M SMy®... 5 My_2® M1, 400-
To prove Theorem 4, we use Theorem 3.

Proof of Theorem /. We have B(%5t — s) = s for s <n — 1, and

-1 -1 -1
ﬁ(n2 —s)+ﬂ(nT—s+1):2s—1§n—2 SsgnT.
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Therefore for s < "T_l Theorem 4.22 implies the degeneration of the spectral sequence from HFL~
to ﬁ, and

S s—1
— n—1 n—1 n—1 n—1
HFL <T(n,n), T TS T T s) = EB < ; )F(—Sz—s—i) @ EB < ; )F(_Sz_s_nJrzH).
=0

1=0

O
Let us illustrate the degeneration of the spectral sequence from HFL™ to HFL in some examples.

Example 5.4. For s = 0 we have E\l = ]/’3\2 = F(O). For s = 1 the E\l page has nonzero entries in
cube degree 0 where one gets

-1 -1
HFL <T(n,n), L T — - 1> ~F (g @ (n— 1)F(_y),
and in cube degree n where one gets [F(q. Indeed, the differential 51 vanishes, so for n > 2
— -1 -1
HAFL <T(n,n), L - 1) ~F (g @ (n— DF(_g) @ F (.

Note that for n = 2 the differential 52 does not vanish, so the bound s < ”T_l is indeed necessary

for the spectral sequence to collapse at E\g page.

Ezample 5.5. The case s = 2 is more interesting. The E\l page has nonzero entries in cube degree
0, n — 1 (where we have n vertices) and n, where one has

— n—1 — —
E? = F(—G) &) (n — 1)F(_7) b < 9 >F(_8), E‘1 1_ n(F(_4) &) F(_5)), E{L = F(_z) &) (’I’L — 1)F(_3).

—

The differential 9; cancels some summands in E}~! and E7;

= n-1 =
Eg = F(—G) &) (n — 1)F(_7) &) ( 9 >F(_8)7 E2 1_ (n — 1)F(_4) + F(_g,).

For n > 4 all higher differentials vanish and

. 1 1
(5.2) HFL<T(n,n),"2 —2,...,”2 _2>:

n—1

F(_(g) D (n — 1)15‘(_7) D < 9

>F(—8) O (n—DF_3_n) +F_4_p)-

The following example illustrates the computation of HFL for the off-diagonal Alexander gradings.

Ezample 5.6. Let us compute the homology }TF\L(T(n,n),v) for v = (27 —2)7 (2L —1)" (1<
j < n—1) using the spectral sequence from HFL™. In the n dimensional cube (v + ep) almost all

all vertices have vanishing HFL ™, except for the vertex ("T_l -1,..., "T_l -1)

n—1 n—1
—-1,...
) ) 2

and j of its neighbors with homology F_4) & F(_s5). Clearly, E\g is concentrated in degrees j (with
homology (n—1—j3)F_3)) and (j—1) (with homology (j—1)F_4)). Note that both parts contribute
to the total degree (—3 — j), so

HFL(T'(n,n),v) = (n = 1= j)F (35 ® (j = DF (35 = (n = 2)F(_5_;).

HFLi( — 1) = F(_g) @ (Tl - 1)F(_3)
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Finally, we draw all the homology groups HFL™ for (2,2) and (3, 3) torus links.

=

Ezample 5.7. For the Hopf link, one has two cases. If v; < vy, then the condition (5.1) implies
vy < —1/2. If v; = vg, then (5.1) implies vo > 1/2.
The nonzero homology of the Hopf link is shown in Figure 3 and Table 1

FIGURE 3. HFL™ for the (2,2) torus link: F? on thick lines and in the grey region

Alexander grading Homology
(1/2,1/2) F o)
(a,0), a,b < —1/2 | Froayo) ® Fioayan—1)

TABLE 1. Maslov gradings for the (2,2) torus link

Ezample 5.8. For the (3,3) torus link, one has two cases. If v; < v < w3, then the condition
(5.1) implies v3 < 1. If v; < vy = w3, then (5.1) implies v3 < 0. Finally, if v1 = v9 = v3, then
(5.1) implies v3 < 1. In other words, nonzero homology appears at the point (1,1,1), at three lines
(0,0,%),(0,k,0),(k,0,0) (k <0) and at the octant max(vy,ve,v3) < —1.

This homology is shown in Figure 4 and Table 2.

Alexander grading Homology
(1,1,1) Fo)
(0,0,0) F_9 ®2F_3
(0, 0, k‘), (0, k, 0) and (k?, 0, 0) (k‘ < 0) F(Qk_g) ©® F(Zk—?))
(a,b,¢), a,b,c < —1 F2at204+2¢) D 2F 2a42p42c—1) D Fl2a42p42c—2)

TABLE 2. Maslov gradings for the (3,3) torus link
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FIGURE 4. HFL™ for the (3,3) torus link: F? on dashed thick lines; F* on solid thick
lines and in the shaded region. Top Alexander grading is (1,1,1).

5.2. More general torus links. The HFL™ homology of the (4,6) torus link is shown in Figure
5 and Table 3. Note that as an F[U;, U] module it can be decomposed into 5 copies of My ~ F, a
copy of Mj 1 and a copy of M to. In particular, the map U U, : HFL (-2, —-2) — HFL (-3, -3)
is surjective with one-dimensional kernel.

5.3. Non-algebraic example. In this subsection we compute the Heegaard-Floer homology for
the (4,6)-cable of the trefoil. Its components are (2, 3)-cables of the trefoil, which are known to be
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FIGURE 5. HFL™ for the (4,6) torus link: F? on thick lines and in the grey region
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TABLE 3. Maslov gradings for the (4,6) torus link

L-space knots (cf. [Hed09]), but not algebraic knots. By Theorem 2, the (4,6)-cable of the trefoil

is an L-space link, but its homology is not covered by [GN15].



CABLE LINKS AND L-SPACE SURGERIES 25
The Alexander polynomial of the (2, 3)-cable of the trefoil equals:
(6 — +76)(¢1/2 — =1/2)
(t3/2 — t=3/2)(¢2 — t-2)’
hence the Euler characteristic of its Heegaard-Floer homology equals

Ar, 4 (t
Xg,g(t):1_27’;(_1):t3+1+t_1+t_3+t_4+...

AT2,3 (t) =

By (4.1), the bivariate Alexander polynomial of the (4, 6)-cable equals:
Xa,6(t1,t2) = Xa,3(t1 - t2)((t1t2)® — (t1t2) ™)

= (t112)® + (t1t2)® + (t1t2)? + (tita) ™ + (tita) ™2 + (t1t2) 5.

The nonzero Heegaard-Floer homology are shown in Figure 6 and the corresponding Maslov grad-
ings are given in Table 4. Note that as F[U;,Us] module it can be decomposed in the following
way:

HFL™ ~4My ® M11 ® M2 ® M 4oo-
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Alexander grading Homology
(6,6) Fo
(3,3) F_g
(2,2) F_y
(0, k‘) and (k‘, 0), k>0 F(Zk—ﬁ) O] F(Zk—7)
(-1,-1) F10)
(—2,-2) F19)
(—3, k?) and (k?, —3), k>-3 F(Zk—S) O] F(Zk—g)
( 4, k?) and (k‘, —4), k>10 F(2k—10) O] F(Zk—ll)
(=5,-5) F(_ 29
(av b)v a,b< -6 IE‘(Za-i-2b) D IF(2a+2b—1)

TABLE 4. Maslov gradings for the (4,6) cable of the trefoil
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FIGURE 6. HFL™ for the (4,6) cable of the trefoil: F2 on thick lines and in the grey region
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