

CABLE LINKS AND L-SPACE SURGERIES

EUGENE GORSKY AND JENNIFER HOM

ABSTRACT. An L-space link is a link in S^3 on which all sufficiently large integral surgeries are L-spaces. We prove that for m, n relatively prime, the r -component cable link $K_{rm, rn}$ is an L-space link if and only if K is an L-space knot and $n/m \geq 2g(K) - 1$. We also compute HFL^- and $\widehat{\text{HFL}}$ of an L-space cable link in terms of its Alexander polynomial. As an application, we confirm a conjecture of Licata [Lic12] regarding the structure of $\widehat{\text{HFL}}$ for (n, n) torus links.

1. INTRODUCTION

Heegaard Floer homology is a package of 3-manifold invariants defined by Ozsváth and Szabó [OS04a, OS04b]. In its simplest form, it associates to a closed 3-manifold Y a graded vector space $\widehat{\text{HF}}(Y)$. For a rational homology sphere Y , they show that

$$\dim \widehat{\text{HF}}(Y) \geq |H_1(Y; \mathbb{Z})|.$$

If equality is achieved, then Y is called an *L-space*.

A knot $K \subset S^3$ is an *L-space knot* if K admits a positive L-space surgery. Let $S_{p/q}^3(K)$ denote p/q Dehn surgery along K . If K is an L-space knot, then $S_{p/q}^3(K)$ is an L-space for all $p/q \geq 2g(K) - 1$, where $g(K)$ denotes the Seifert genus of K [OS11, Corollary 1.4]. A link $L \subset S^3$ is an *L-space link* if all sufficiently large integral surgeries on L are L-spaces. In contrast to the knot case, if L admits a positive L-space surgery, it does not necessarily follow that all sufficiently large surgeries are also L-spaces; see [Liu14, Example 2.3].

For relatively prime integers m and n , let $K_{m,n}$ denote the (m, n) cable of K , where m denotes the longitudinal winding. Without loss of generality, we will assume that $m > 0$. Work of Hedden [Hed09] (“if” direction) and the second author [Hom11] (“only if” direction) completely classifies L-space cable knots.

Theorem 1 ([Hed09, Hom11]). *Let K be a knot in S^3 , $m > 1$ and $\gcd(m, n) = 1$. The cable knot $K_{m,n}$ is an L-space knot if and only if K is an L-space knot and $n/m > 2g(K) - 1$.*

Remark 1.1. Note that when $m = 1$, we have that $K_{1,n} = K$ for all n .

We generalize this theorem to cable links with many components. Throughout the paper, we assume that each component of a cable link is oriented in the same direction.

Theorem 2. *Let K be a knot in S^3 and $\gcd(m, n) = 1$. The r -component cable link $K_{rm, rn}$ is an L-space link if and only if K is an L-space knot and $n/m \geq 2g(K) - 1$.*

In [OS05], Ozsváth and Szabó show that if K is an L-space knot, then $\widehat{\text{HFK}}(K)$ is completely determined by $\Delta_K(t)$, the Alexander polynomial of K . Consequently, the Alexander polynomials of L-space knots are quite constrained (the non-zero coefficients are all ± 1 and alternate in sign)

The first author was partially supported by RFBR grant 13-01-00755 and NSF grant DMS-1403560.

The second author was partially supported by NSF grant DMS-1307879.

and the rank of $\widehat{\text{HFK}}(K)$ is at most one in each Alexander grading. In [Liu14, Theorem 1.15], Liu generalizes this result to give bounds on the rank of $\text{HFL}^-(L)$ in each Alexander multi-grading and on the coefficients of the multi-variable Alexander polynomial of an L-space link L in terms of the number of components of L . For L-space cable links, we have the following stronger result.

Definition 1.2. Define the \mathbb{Z} -valued functions $\mathbf{h}(k)$ and $\beta(k)$ by the equations:

$$(1.1) \quad \sum_k \mathbf{h}(k) t^k = \frac{t^{-1} \Delta_{m,n}(t) (t^{mn/2} - t^{-mn/2})}{(1 - t^{-1})^2 (t^{mn/2} - t^{-mn/2})}, \quad \beta(k) = \mathbf{h}(k-1) - \mathbf{h}(k) - 1,$$

where $\Delta_{m,n}(t)$ is the Alexander polynomial of the cable knot $K_{m,n}$.

Throughout, we work with $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$ coefficients. The following theorem gives a complete description of the homology groups $\widehat{\text{HFL}}$ for cable links with $n/m > 2g(K) - 1$.

Theorem 3. *Let $K_{rm,rn}$ be a cable link with $n/m > 2g(K) - 1$.*

(a) *If $\beta(k) + \beta(k+1) \leq r-2$ then:*

$$\widehat{\text{HFL}}(K_{rm,rn}, k, \dots, k) \simeq \bigoplus_{i=0}^{\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i} \oplus \bigoplus_{i=0}^{\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)+2-r+i}$$

(b) *If $\beta(k) + \beta(k+1) \geq r-2$ then:*

$$\widehat{\text{HFL}}(K_{rm,rn}, k, \dots, k) \simeq \bigoplus_{i=0}^{r-2-\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i} \oplus \bigoplus_{i=0}^{r-2-\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)+2-r+i}$$

(c) *If v has j coordinates equal to $k-1$ and $r-j$ coordinates equal to k for some k and $1 \leq j \leq r-1$, then:*

$$\widehat{\text{HFL}}(K_{rm,rn}, (k-1)^j, k^{r-j}) \simeq \binom{r-2}{\beta(k)} \mathbb{F}_{-2\mathbf{h}(k)-\beta(k)-j}.$$

(d) *For all other Alexander gradings the groups $\widehat{\text{HFL}}$ vanish.*

We prove the parts of this theorem as separate Theorems 4.22, 4.24 and 4.25. We compute $\widehat{\text{HFL}}$ explicitly for several examples in Section 5. In particular, we use Theorem 3 to confirm a conjecture of Joan Licata [Lic12, Conjecture 1] concerning $\widehat{\text{HFL}}$ for (n, n) torus links.

Theorem 4. *Suppose that $0 \leq s \leq \frac{n-1}{2}$. Then*

$$\widehat{\text{HFL}}\left(T(n, n), \frac{n-1}{2} - s, \dots, \frac{n-1}{2} - s\right) = \bigoplus_{i=0}^s \binom{n-1}{i} \mathbb{F}_{(-s^2-s-i)} \oplus \bigoplus_{i=0}^{s-1} \binom{n-1}{i} \mathbb{F}_{(-s^2-s-n+2+i)}.$$

Combined with [Lic12, Theorem 2], this completes the description of $\widehat{\text{HFL}}(T(n, n))$.

The following theorem describes the homology groups HFL^- for cable links with $n/m > 2g(K) - 1$.

Theorem 5. *Let K be an L-space knot and $n/m > 2g(K) - 1$. Consider an Alexander grading $v = (v_1, \dots, v_n)$. Suppose that among the coordinates v_i exactly λ are equal to k and all other coordinates are less than k . Let $|v| = v_1 + \dots + v_n$. Then the Heegaard-Floer homology group $\text{HFL}^-(K_{rm,rn}, v)$ can be described as follows:*

(a) *If $\beta(k) < r - \lambda$ then $\text{HFL}^-(K_{rm,rn}, v) = 0$.*

(b) If $\beta(k) \geq r - \lambda$ then

$$\text{HFL}^-(K_{rm,rn}, v) \simeq (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{r-\lambda} \otimes \bigoplus_{i=0}^{\beta(k)-r+\lambda} \binom{\lambda-1}{i} \mathbb{F}_{(-2h(v)-i)},$$

where $h(v) = \mathbf{h}(k) + kr - |v|$.

We prove this theorem in Section 4.2. The structure of the homology for $n/m = 2g(K) - 1$ (which is possible only if $m = 1$) is more subtle and is described in Theorem 4.26.

Finally, we describe HFL^- as an $\mathbb{F}[U_1, \dots, U_r]$ -module. We define a collection of $\mathbb{F}[U_1, \dots, U_r]$ -modules M_β for $0 \leq \beta \leq r - 2$, $M_{r-1,k}$ for $k \geq 0$ and $M_{r-1,\infty}$. These modules can be defined combinatorially and do not depend on a link.

Theorem 6. *Let $R = \mathbb{F}[U_1, \dots, U_r]$ and suppose that $n/m > 2g(K) - 1$. There exists a finite collection of diagonal lattice points $\mathbf{a}_i = (a_i, \dots, a_i)$ (determined by m, n and the Alexander polynomial of K) such that HFL^- admits the following direct sum decomposition:*

$$\text{HFL}^-(K_{rm,rn}) = \bigoplus_i R \cdot \text{HFL}^-(K_{rm,rn}, \mathbf{a}_i).$$

Furthermore, for $\beta(a_i) \leq r - 2$ one has $R \cdot \text{HFL}^-(K_{rm,rn}, \mathbf{a}_i) \simeq M_{\beta(a_i)}$, and for $\beta(a_i) = r - 1$ one has either $R \cdot \text{HFL}^-(K_{rm,rn}, \mathbf{a}_i) \simeq M_{r-1,k}$ for some k or $R \cdot \text{HFL}^-(K_{rm,rn}, \mathbf{a}_i) \simeq M_{r-1,\infty}$.

We compute HFL^- explicitly for several examples in Section 5.

ACKNOWLEDGMENTS

We are grateful to Jonathan Hanselman, Matt Hedden, Yajing Liu, Joan Licata, and András Némethi for useful discussions.

2. DEHN SURGERY AND CABLE LINKS

In this section, we prove Theorem 2. We begin with a result about Dehn surgery on cable links (cf. [Hei74]).

Proposition 2.1. *The manifold obtained by (mn, p_2, \dots, p_r) -surgery on the r -component link $K_{rm,rn}$ is homeomorphic to $S_{n/m}^3(K) \# L(m, n) \# L(p_2 - mn, 1) \# \dots \# L(p_r - mn, 1)$.*

Proof. Recall (see, for example, [Hed09, Section 2.4]) that mn -surgery on $K_{m,n}$ gives the manifold $S_{n/m}^3(K) \# L(m, n)$. Viewing $K_{m,n}$ as the image of $T_{m,n}$ on $\partial N(K)$, we have that the reducing sphere is given by the annulus $\partial N(K) \setminus N(T_{m,n})$ union two parallel copies of the meridional disk of the surgery solid torus; we obtain a sphere since the surgery slope coincides with the surface framing.

The link $K_{rm,rn}$ consists of r parallel copies of $K_{m,n}$ on $\partial N(K)$. Label these r copies $K_{m,n}^1$ through $K_{m,n}^r$. We perform mn -surgery on $K_{m,n}^1$ and consider the image $\tilde{K}_{m,n}^i$ of $K_{m,n}^i$, $2 \leq i \leq r$, in $S_{n/m}^3(K) \# L(m, n)$. Each $\tilde{K}_{m,n}^i$ lies on $\partial N(K) \setminus N(T_{m,n})$ and thus on the reducing sphere. In particular, each $\tilde{K}_{m,n}^i$ bounds a disk D_i^2 in $S_{n/m}^3(K) \# L(m, n)$ such that the collection $\{D_2^2, \dots, D_r^2\}$ is disjoint. It follows that performing surgery on $\bigcup_{i=2}^r \tilde{K}_{m,n}^i$ yields $r - 1$ lens space summands. To see which lens spaces we obtain, note that the mn -framed longitude on $K_{m,n}^i \subset S^3$ coincides with the 0-framed longitude on $\tilde{K}_{m,n}^i \subset S_{n/m}^3(K) \# L(m, n)$. Thus, p_i -surgery on $K_{m,n}^i$ corresponds to $(p_i - mn)$ -surgery on $\tilde{K}_{m,n}^i$, and the result follows. \square

Let us recall that the linking number between each two components of $K_{rm,rn}$ equals $l := mn$. It is well-known that the cardinality of H_1 of the manifold obtained by (p_1, p_2, \dots, p_r) -surgery on $K_{rm,rn}$ equals $|\det \Lambda(p_1, \dots, p_r)|$, where

$$\Lambda_{ij} = \begin{cases} p_i, & \text{if } i = j, \\ l, & \text{if } i \neq j. \end{cases}$$

This cardinality can be computed using the following result.

Proposition 2.2. *One has the following identity:*

$$(2.1) \quad \det \Lambda(p_1, \dots, p_r) = (p_1 - l) \cdots (p_r - l) + l \sum_{i=1}^r (p_1 - l) \cdots (\widehat{p_i - l}) \cdots (p_r - l).$$

Proof. One can easily check that $\det \Lambda(l, p_2, \dots, p_r) = l(p_2 - l) \cdots (p_r - l)$. The expansion of the determinant in the first row yields a recursion relation

$$\begin{aligned} \det \Lambda(p_1, \dots, p_r) &= \det \Lambda(l, p_2, \dots, p_r) + (p_1 - l) \det \Lambda(p_2, \dots, p_r) = \\ &= l(p_2 - l) \cdots (p_r - l) + (p_1 - l) \det \Lambda(p_2, \dots, p_r). \end{aligned}$$

Now (2.1) follows by induction in r . \square

Corollary 2.3. *If $p_i \geq l$ for all i then $\det \Lambda(p_1, \dots, p_r) \geq 0$.*

In order to prove Theorem 2, we will need the following:

Theorem 2.4 ([Liu14, Proposition 1.11]). *A link L is an L-space link if and only if there exists a surgery framing $\Lambda(p_1, \dots, p_r)$, such that for all sublinks $L' \subseteq L$, $\det(\Lambda(p_1, \dots, p_r)|_{L'}) > 0$ and $S^3_{\Lambda|_{L'}}(L')$ is an L-space.*

We will also need the following proposition, which we prove in Subsection 2.1 below.

Proposition 2.5. *Let K be an L-space knot and $p_i > 0$, $i = 1, \dots, r$. If $n < 2g(K) - 1$, then the manifold obtained by (p_1, \dots, p_r) -surgery on the r -component link $K_{r,rn}$ is not an L-space.*

Proof of Theorem 2. If $K_{rm,rn}$ is an L-space link, then by [Liu14, Lemma 1.10] all its components are L-space knots. On the other hand, its components are isotopic to $K_{m,n}$. Thus, if $m > 1$, then by Theorem 1, K is an L-space knot and $n/m > 2g(K) - 1$. If $m = 1$, then K must be an L-space knot and by Proposition 2.5, $n \geq 2g(K) - 1$.

Conversely, suppose that K is an L-space knot and $n/m \geq 2g(K) - 1$, i.e., $K_{m,n}$ is an L-space knot. Let us prove by induction on r that (p_1, \dots, p_r) -surgery on $K_{rm,rn}$ is an L-space if $p_i > l$ for all i . For $r = 1$ it is clear. By Proposition 2.1, the link $K_{rm,rn}$ admits an L-space surgery with parameters l, p_2, \dots, p_r . Let us apply Theorem 2.4. Indeed, by Corollary 2.3, one has $\det(\Lambda(l, p_2, \dots, p_r)|_{L'}) > 0$ and by the induction assumption $S^3_{\Lambda(l, p_2, \dots, p_r)|_{L'}}(L')$ is an L-space for all sublinks L' . By [Liu14, Lemma 2.5], (p_1, \dots, p_r) -surgery on $K_{rm,rn}$ is also an L-space for all $p_1 > l$. Therefore $K_{rm,rn}$ is an L-space link. \square

2.1. Proof of Proposition 2.5. We will prove Proposition 2.5 using Lipshitz-Ozsváth-Thurston's bordered Floer homology [LOT08], specifically Hanselman-Watson's [HW15] loop calculus. That is, we will decompose the result of surgery on $K_{r,rn}$ into two pieces, one that is surgery on a torus link in the solid torus and the other the knot complement, and then apply a gluing result of Hanselman-Watson to conclude that the result of this surgery along $K_{r,rn}$ is not an L-space. The following was described to us by Jonathan Hanselman.

Let Y_1 denote the Seifert fibered space obtained by performing (p_1, \dots, p_r) -surgery on the r -component $(r, 0)$ -torus link in the solid torus. Consider the bordered manifold (Y_1, α_1, β_1) , where α_1 is the fiber slope and β_1 lies in the base orbifold; that is, α_1 is the longitude and β_1 the meridian of the original solid torus. Let (Y_2, α_2, β_2) be the n -framed complement of K ; that is, $Y_2 = S^3 \setminus N(K)$, α_2 is an n -framed longitude, and β_2 is a meridian. Let $(Y_1, \alpha_1, \beta_1) \cup (Y_2, \alpha_2, \beta_2)$ denote the result of gluing Y_1 to Y_2 by identifying α_1 with α_2 and β_1 with β_2 . Note that $(Y_1, \alpha_1, \beta_1) \cup (Y_2, \alpha_2, \beta_2)$ is homeomorphic to (p_1, \dots, p_r) -surgery along $K_{r, rn}$. We identify the slope $p\alpha_i + q\beta_i$ on ∂Y_i with the (extended) rational number $\frac{p}{q} \in \mathbb{Q} \cup \{\frac{1}{0}\}$.

The following lemma gives a description of $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1)$ in terms of the standard notation defined in [HW15, Section 3.2].

Lemma 2.6. *The invariant $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1)$ can be written in standard notation as a product of d_{k_i} where*

- (1) $k_i \leq 0$ for all i ,
- (2) $k_i = 0$ for at least one i ,
- (3) $k_i = -r$ for exactly one i .

Proof. The computation is similar to the example in [HW15, Section 6.5]. A plumbing tree Γ for Y_1 is given in Figure 1. We first consider the plumbing tree Γ_i in Figure 2(a). We will build Γ by merging the Γ_i , $i = 1, \dots, r$.

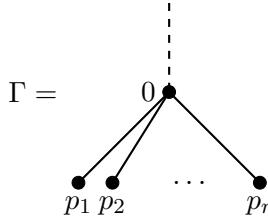


FIGURE 1. The plumbing tree Γ .

We proceed as in [HW15, Section 6.5]. Start with a loop (d_0) representing the tree Γ_0 in Figure 2(b). We have that $\Gamma_i = \mathcal{E}(\mathcal{T}^{p_i}(\Gamma_0))$ so by [HW15, Sections 3.3 and 6.3]:

$$\begin{aligned} \widehat{\text{CFD}}(\Gamma_i) &= \mathcal{E}(\mathcal{T}^{p_i}((d_0))) \\ &= \mathcal{E}((d_{p_i})) \\ &= (d_{-p_i}^*) \\ &\sim (d_{-1} \underbrace{d_0 \dots d_0}_{p_i}). \end{aligned}$$



FIGURE 2. Left, the plumbing tree Γ_i . Right, the plumbing tree Γ_0 .

We then have that $\Gamma = \mathcal{M}(\Gamma_2, \mathcal{M}(\Gamma_2, \dots, \mathcal{M}(\Gamma_{p_{r-1}}, \Gamma_{p_r})))$. By [HW15, Proposition 6.4], we have that $\widehat{\text{CFD}}(\Gamma)$ is represented by a product of d_{k_i} where $k_i \leq 0$ for all i and $k_i = 0$ for at least one i since each $p_i > 0$. Moreover, d_{-r} appears exactly once in the product, since we performed $r - 1$ merges. This completes the proof of the lemma. \square

Lemma 2.7. *The slope 1 is not a strict L-space slope on (Y_1, α_1, β_1) .*

Proof. We will apply a positive Dehn twist to (Y_1, α_1, β_1) to obtain $(Y_1, \alpha_1, \beta_1 + \alpha_1)$. We will show that 0 is not a strict L-space slope on $(Y_1, \alpha_1, \beta_1 + \alpha_1)$, and hence 1 is not a strict L-space slope on (Y_1, α_1, β_1) .

By [HW15, Proposition 6.1], we have that $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1 + \alpha_1)$ can be obtained by applying T to a loop representative of $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1)$. Since $T(d_k) = d_{k+1}$, it follows from Lemma 2.6 that $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1 + \alpha_1)$ can be written in standard notation as a product of d_{k_i} with $k_i \leq 1$ for all i , $k_i = 1$ for at least one i , and $k_i = 1 - r$ for exactly one i .

We claim that if a loop ℓ contains both positive and negative d_k segments (i.e., both $d_i, i > 0$ and $d_j, j < 0$), then in dual notation ℓ contains at least one a_i^* or b_j^* segment. Indeed, suppose by contradiction that ℓ has no a_i^* or b_j^* . Then ℓ consists of only d_i^* segments, $i \in \mathbb{Z}$. It is straightforward to see (for example, by considering the segments as drawn in [HW15, Figure 1]) that one cannot obtain a loop containing both positive and negative d_k segments from d_i^* segments, $i \in \mathbb{Z}$. This completes the proof of the claim.

Furthermore, note that $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1 + \alpha_1)$ consists of simple loops (see Definition 4.19 of [HW15]). Then by [HW15, Proposition 4.24], in dual notation ℓ has no a_k^* or b_k^* segments for $k < 0$. It now follows from Proposition 4.18 of [HW15] that 0 is not a strict L-space slope for $\widehat{\text{CFD}}(Y_1, \alpha_1, \beta_1 + \alpha_1)$. Therefore, 1 is not a strict L-space slope on (Y_1, α_1, β_1) , as desired. \square

Remark 2.8. Note that by Proposition 4.18 of [HW15], we have that 0 and ∞ are strict L-space slopes on (Y_1, α_1, β_1) . Since 1 is not a strict L-space slope, it follows from Corollary 4.5 of [HW15] that the interval of L-space slopes of (Y_1, α_1, β_1) contains the interval $[-\infty, 0]$.

Remark 2.9. An alternative proof of Lemma 2.7 follows from [LS07, Theorem 1.1]. Indeed, by setting $r_i = 1/p_i$ and $e_0 = -1$ in Figure 1 of [LS07], we see that $M(-1; 1/p_1, \dots, 1/p_r)$ is not an L-space, hence neither is $M(1; -1/p_1, \dots, -1/p_r)$, which is homeomorphic to filling (Y_1, α_1, β_1) along a curve of slope 1.

Lemma 2.10. *Let K be an L-space knot. If $n < 2g(K) - 1$, then 1 is not a strict L-space slope on the n -framed knot complement (Y_2, α_2, β_2) .*

Proof. Since K is an L-space knot, we have that $S_K^3(p/q)$ is an L-space exactly when $p/q \geq 2g(K) - 1$. Since α_2 is an n -framed longitude, it follows that the interval of strict L-space slopes on (Y_2, α_2, β_2) is $(0, \frac{1}{2g(K)-1-n})$, that is, the reciprocal of the interval $(2g(K) - 1 - n, \infty)$. \square

Proof of Proposition 2.5. The result now follows from [HW15, Theorem 1.3] combined with Lemmas 2.7 and 2.10; the slope 1 is not a strict L-space slope on either (Y_1, α_1, β_1) or (Y_2, α_2, β_2) , and so the resulting manifold $(Y_1, \alpha_1, \beta_1) \cup (Y_2, \alpha_2, \beta_2)$, which is (p_1, \dots, p_r) -surgery on $K_{r, rn}$, is not an L-space. \square

Remark 2.11. One can use similar methods to provide an alternate proof that $K_{r, rn}$ is an L-space link if K is an L-space knot and $n \geq 2g(K) - 1$. Indeed, if K is an L-space knot, then the interval of strict L-space slopes on the n -framed knot complement (Y_2, α_2, β_2) is $(0, \frac{1}{2g(K)-1-n})$ if $n \leq 2g(K) - 1$ and $(0, \infty] \cup [-\infty, \frac{1}{2g(K)-1-n})$ if $n > 2g(K) - 1$. Hence if $n \geq 2g(K) - 1$, then the

interval of strict L-space slopes on (Y_2, α_2, β_2) contains the interval $(0, \infty)$. By Remark 2.8, we have that the interval of strict L-space slopes on (Y_1, α_1, β_1) contains $[-\infty, 0]$. Therefore, by [HW15, Theorem 1.4], if $n \geq 2g(K) = 1$, then the result of positive surgery (i.e., each surgery coefficient is positive) on $K_{r, rn}$ is an L-space.

3. A SPECTRAL SEQUENCE FOR L-SPACE LINKS

In this section we review some material from [GN15]. Given $u, v \in \mathbb{Z}^r$, we write $u \preceq v$ if $u_i \leq v_i$ for all i , and $u \prec v$ if $u \preceq v$ and $u \neq v$. Recall that we work with $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$ coefficients.

Definition 3.1. Given a r -component oriented link L , we define an affine lattice over \mathbb{Z}^r :

$$\mathbb{H}(L) = \bigoplus_{i=1}^r \mathbb{H}_i(L), \quad \mathbb{H}_i(L) = \mathbb{Z} + \frac{1}{2} \text{lk}(L_i, L - L_i).$$

Let us recall that the Heegaard-Floer complex for a r -component link L is naturally filtered by the subcomplexes $A_L^-(L; v)$ of $\mathbb{F}[U_1, \dots, U_r]$ -modules for $v \in \mathbb{H}(L)$. Such a subcomplex is spanned by the generators in the Heegaard-Floer complex of Alexander filtration less than or equal to v in the natural partial order on $\mathbb{H}(L)$. The group $\text{HFL}^-(L, v)$ can be defined as the homology of the associated graded complex:

$$(3.1) \quad \text{HFL}^-(L, v) = H_* \left(A^-(L; v) / \sum_{u \prec v} A^-(L; u) \right).$$

One can forget a component L_r in L and consider the $(r-1)$ -component link $L - L_r$. There is a natural forgetful map $\pi_r : \mathbb{H}(L) \rightarrow \mathbb{H}(L - L_r)$ defined by the equation:

$$\pi_r(v_1, \dots, v_r) = (v_1 - \text{lk}(L_1, L_r)/2, \dots, v_{r-1} - \text{lk}(L_{r-1}, L_r)/2).$$

Similarly, one can define a map $\pi_{L'} : \mathbb{H}(L) \rightarrow \mathbb{H}(L')$ for every sublink $L' \subset L$. Furthermore, for large $v_r \gg 0$ the subcomplexes $A^-(L; v)$ stabilize, and by [OS08, Proposition 7.1] one has a natural homotopy equivalence $A^-(L; v) \sim A^-(L - L_r; \pi_r(v))$. More generally, for a sublink $L' = L_{i_1} \cup \dots \cup L_{i_{r'}}$ one gets

$$(3.2) \quad A^-(L'; \pi_{L'}(v)) \sim A^-(L; v), \text{ if } v_i \gg 0 \text{ for } i \notin \{i_1, \dots, i_{r'}\}.$$

We will use the ‘‘inversion theorem’’ of [GN15], expressing the h -function of a link in terms of the Alexander polynomials of its sublinks, or, equivalently, the Euler characteristics of their Heegaard-Floer homology. Define $\chi_{L,v} := \chi(\text{HFL}^-(L, v))$. Then by [OS08]

$$\chi_L(t_1, \dots, t_r) := \sum_{v \in \mathbb{H}(L)} \chi_{L,v} t_1^{v_1} \cdots t_r^{v_r} = \begin{cases} (t_1 \cdots t_r)^{1/2} \Delta(t_1, \dots, t_r), & \text{if } r > 1 \\ \Delta(t)/(1 - t^{-1}), & \text{if } r = 1, \end{cases}$$

where $\Delta(t_1, \dots, t_r)$ denotes the *symmetrized* Alexander polynomial.

Remark 3.2. We choose the factor $(t_1 \cdots t_r)^{1/2}$ to match more established conventions on the gradings for the hat-version of link Floer homology. For example, the Alexander polynomial of the Hopf link equals 1, and one can check [OS08] that $\widehat{\text{HFL}}$ is supported in Alexander degrees $(\pm \frac{1}{2}, \pm \frac{1}{2})$. Since the maximal Alexander degrees in $\widehat{\text{HFL}}$ and HFL^- coincide, one gets $\chi_{T(2,2)}(t_1, t_2) = t_1^{1/2} t_2^{1/2}$.

The following ‘‘large surgery theorem’’ underlines the importance of $A^-(L; v)$.

Theorem 3.3 ([MO10]). *The homology of $A^-(L; v)$ is isomorphic to the Heegaard-Floer homology of a large surgery on L with $spin_c$ -structure specified by v . In particular, if L is an L-space link, then $H_*(A^-(L, v)) \simeq \mathbb{F}[U]$ for all v and all U_i are homotopic to each other on the subcomplex $A^-(L; v)$.*

One can show that for L-space links the inclusion $h_v : A^-(L, v) \hookrightarrow A^-(S^3)$ is injective on homology, so it is multiplication by $U^{h_L(v)}$. Therefore the generator of $H_*(A^-(L, v)) \simeq \mathbb{F}[U]$ has homological degree $-2h_L(v)$. The function $h_L(v)$ will be called the *h-function* for an L-space link L . In [GN15] it was called an “HFL-weight function”.

Furthermore, if L is an L-space link, then for large $N \in \mathbb{H}(L)$ one has

$$\chi(A^-(L; N)/A^-(L, v)) = h_L(v).$$

Hence, by (3.1) and the inclusion-exclusion formula one can write:

$$(3.3) \quad \chi_{L,v} = \sum_{B \subset \{1, \dots, r\}} (-1)^{|B|-1} h_L(v - e_B),$$

where e_B denotes the characteristic vector of the subset $B \subset \{1, \dots, r\}$. Furthermore, by (3.2) for a sublink $L' = L_{i_1} \cup \dots \cup L_{i_{r'}}$ one gets

$$(3.4) \quad h_{L'}(\pi_{L'}(v)) = h_L(v), \text{ if } v_i \gg 0 \text{ for } i \notin \{i_1, \dots, i_{r'}\}.$$

For $r = 1$ equation (3.3) has the form $\chi_{L,v} = h(v-1) - h(v)$, so $h(v)$ can be easily reconstructed from the Alexander polynomial: $h_L(v) = \sum_{u \geq v+1} \chi_{L,v}$. For $r > 1$, one can also show that equation (3.3) (together with the boundary conditions (3.4)) has a unique solution, which is given by the following theorem:

Theorem 3.4 ([GN15]). *The h-function of an L-space link is determined by the Alexander polynomials of its sublinks as following:*

$$(3.5) \quad h_L(v_1, \dots, v_r) = \sum_{L' \subseteq L} (-1)^{r'-1} \sum_{u \succeq \pi_{L'}(v+1)} \chi_{L',u},$$

where the sublink L' has r' components and $\mathbf{1} = (1, \dots, 1)$.

Given an L-space link, we construct a spectral sequence whose E_2 page can be computed from the multi-variable Alexander polynomial by an explicit combinatorial procedure, and whose E_∞ page coincides with the group HFL^- . The complex (3.1) is quasi-isomorphic to the iterated cone:

$$\mathcal{K}(v) = \bigoplus_{B \subset \{1, \dots, r\}} A^-(L, v - e_B),$$

where the differential consists of two parts: the first acts in each summand and the second acts by inclusion maps between summands. There is a spectral sequence naturally associated to this construction. Its E_1 term equals

$$E_1(v) = \bigoplus_{B \subset \{1, \dots, r\}} H_*(A^-(L, v - e_B)) = \bigoplus_{B \subset \{1, \dots, r\}} \mathbb{F}[U] \langle z(v - e_B) \rangle,$$

where $z(u)$ is the generator of $H_*(A^-(L, u))$ of degree $-2h_L(u)$. The next differential ∂_1 is induced by inclusions and reads as:

$$(3.6) \quad \partial_1(z(v - e_B)) = \sum_{i \in B} U^{h(v - e_B) - h(v - e_{B-i})} z(v - e_B + e_i).$$

We obtain the following result.

Theorem 3.5 ([GN15]). *Let L be an L -space link with r components and let $h_L(v)$ be the corresponding h -function. Then there is a spectral sequence with $E_2(v) = H_*(E_1, \partial_1)$ and $E_\infty \simeq \text{HFL}^-(L, v)$.*

Remark 3.6. Let us write more precisely the bigrading on the E_2 page. The E_1 page is naturally bigraded as follows: a generator $U^m z(v - e_B)$ has *cube degree* $|B|$ and its homological degree in $A^-(L, v - e_B)$ equals $-2m - 2h(v - e_B)$. In short, we will write

$$\text{bideg}(U^m z(v - e_B)) = (|B|, -2m - 2h(v - e_B)).$$

The homological degree of the same generator in $E_1(v)$ equals the sum of these two degrees. The differential ∂_1 has bidegree $(-1, 0)$, and, more generally, the differential ∂_k in the spectral sequence has bidegree $(-k, k - 1)$.

In the next section we will compute the E_2 page for cable L -space links and show that $E_2 = E_\infty$. Let us discuss the action of the operators U_i on the E_2 page. Recall that U_i maps $A^-(L, v)$ to $A^-(L, v - e_i)$, and in homology one has:

$$(3.7) \quad U_i z(v) = U^{1-h(v-e_i)+h(v)} z(v - e_i).$$

Since U_i commutes with the inclusions of various A^- , we get the following result.

Proposition 3.7. *Equation (3.7) defines a chain map from $\mathcal{K}(v)$ to $\mathcal{K}(v - e_i)$ commuting with the differential ∂_1 , so we have a well-defined combinatorial map*

$$U_i : H_*(E_1(v), \partial_1) \rightarrow H_*(E_1(v - e_i), \partial_1).$$

If $E_2 = E_\infty$ then one obtains $U_i : \text{HFL}^-(L, v) \rightarrow \text{HFL}^-(L, v - e_i)$.

Furthermore, by the definition of $\widehat{\text{HFL}}$ [OS08, Section 4] one gets:

$$\widehat{\text{HFL}}(L, v) = H_* \left(A^-(L, v) / \left[\sum_{i=1}^r A^-(v - e_i) \oplus \sum_{i=1}^r U_i A^-(v + e_i) \right] \right).$$

This implies the following result:

Proposition 3.8. *There is a spectral sequence with E_1 page*

$$\widehat{E}_1 = \bigoplus_{B \subset \{1, \dots, r\}} \text{HFL}^-(L, v + e_B)$$

and converging to $\widehat{E}_\infty = \widehat{\text{HFL}}(L, v)$. The differential $\widehat{\partial}_1$ is given by the action of U_i induced by (3.7).

4. HEEGAARD-FLOER HOMOLOGY FOR CABLE LINKS

4.1. The Alexander polynomial and h -function. The Alexander polynomial of cable knots and links is given by the following well-known formula:

$$(4.1) \quad \Delta_{K_{rm, rn}}(t_1, \dots, t_r) = \Delta_K(t_1^m \cdots t_r^m) \cdot \Delta_{T(rm, rn)}(t_1, \dots, t_r),$$

where $T(rm, rn)$ denotes the (rm, rn) torus link. Throughout, let $\mathbf{t} = t_1 \cdots t_r$ and $l = mn$.

Lemma 4.1. *The generating functions for the Euler characteristics of HFL^- for $K_{rm, rn}$ and $K_{m, n}$ are related by the following equation:*

$$(4.2) \quad \chi_{K_{rm, rn}}(t_1, \dots, t_r) = \chi_{K_{m, n}}(\mathbf{t}) \cdot (\mathbf{t}^{l/2} - \mathbf{t}^{-l/2})^{r-1}.$$

Proof. The statement follows from the identity (4.1) and the expression for the Alexander polynomials of torus links:

$$\chi_{T(rm, rn)}(t_1, \dots, t_r) = \frac{(\mathbf{t}^{mn/2} - \mathbf{t}^{-mn/2})^r}{(\mathbf{t}^{m/2} - \mathbf{t}^{-m/2})(\mathbf{t}^{n/2} - \mathbf{t}^{-n/2})}.$$

□

Remark 4.2. The Alexander polynomial is determined up to a sign. By (4.2), the multivariable Alexander polynomial of a cable link is supported on the diagonal, so one can fix the sign by requiring its top coefficient to be positive.

From now on we will assume that K is an L-space knot and $n/m \geq 2g(K) - 1$, so $K_{rm, rn}$ is an L-space link for all r . To simplify notation, we define $h_{rm, rn}(v) = h_{K_{rm, rn}}(v)$ and $\chi_{rm, rn}(v) = \chi_{K_{rm, rn}, v}$. Let $c = l(r - 1)/2$.

Theorem 4.3. *Suppose that $v_1 \leq v_2 \leq \dots \leq v_r$. Then the following equation holds:*

$$(4.3) \quad h_{rm, rn}(v_1, \dots, v_r) = h_{m, n}(v_1 - c) + h_{m, n}(v_2 - c + l) + \dots + h_{m, n}(v_r - c + (r - 1)l).$$

Proof. We will use Theorem 3.4 to compute $h(v)$. Let L' be a sublink of $K_{rm, rn}$ with r' components, i.e., $L' = K_{r'm, r'n}$. By (4.2), one has

$$\chi_{K_{r'm, r'n}}(t_1, \dots, t_{r'}) = \chi_{K_{m, n}}(\mathbf{t}) \cdot \mathbf{t}^{l(r' - 1)/2} \sum_{j=0}^{r'-1} (-1)^j \binom{r' - 1}{j} \mathbf{t}^{-lj},$$

hence $\chi_{L', u}$ does not vanish only if $u = (s, \dots, s)$, and

$$\chi_{L', s, \dots, s} = \sum_{j=0}^{r'-1} (-1)^j \binom{r' - 1}{j} \chi_{m, n}(s - l(r' - 1)/2 + lj).$$

Therefore

$$\begin{aligned} \sum_{u \succeq \pi_{L'}(v+1)} \chi_{L', u} &= \sum_{s > \max(\pi_{L'}(v))} \sum_{j=0}^{r'-1} (-1)^j \binom{r' - 1}{j} \chi_{m, n}(s - l(r' - 1)/2 + lj) \\ &= \sum_{j=0}^{r'-1} (-1)^j \binom{r' - 1}{j} h_{m, n}(\max(\pi_{L'}(v)) - l(r' - 1)/2 + lj). \end{aligned}$$

Furthermore, if $L' = L_{i_1} \cup \dots \cup L_{i_{r'}}$ then $\pi_{L'}(v) = (v_{i_1} - l(r - r')/2, \dots, v_{i_{r'}} - l(r - r')/2)$, so

$$\max(\pi_{L'}(v)) = \max(v_{i_1}, \dots, v_{i_{r'}}) - l(r - r')/2 = \max(v_{L'}) - l(r - r')/2.$$

This means that (3.5) can be rewritten as follows:

$$\begin{aligned} h_{rm, rn}(v_1, \dots, v_r) &= \sum_{L', j} (-1)^{r'-1+j} \binom{r' - 1}{j} h_{m, n}(\max(v_{L'}) - l(r - 1)/2 + lj) \\ &= \sum_{i, j} h_{m, n}(v_i - l(r - 1)/2 + lj) \sum_{L': v_i = \max(v_{L'})} (-1)^{r'-1+j} \binom{r' - 1}{j}. \end{aligned}$$

One can check that the inner sum vanishes unless $j = i - 1$ (recall that $v_1 \leq v_2 \leq \dots \leq v_r$), so one gets

$$h_{rm, rn}(v_1, \dots, v_r) = \sum_i h_{m, n}(v_i - l(r - 1)/2 + l(i - 1)).$$

□

Lemma 4.4. *The following identity holds:*

$$h_{rm,rn}(-v_1, \dots, -v_r) = h_{rm,rn}(v_1, \dots, v_r) + (v_1 + \dots + v_r).$$

Proof. Suppose that $v_1 \leq v_2 \leq \dots \leq v_r$. Then $-v_1 \geq -v_2 \geq \dots \geq -v_r$. Therefore

$$\begin{aligned} h_{rm,rn}(-v_1, \dots, -v_r) &= \sum_{i=1}^r h_{m,n}(-v_i - l(r-1)/2 + l(r-i)) \\ &= \sum_{i=1}^r h_{m,n}(-v_i + l(r-1)/2 - l(i-1)). \end{aligned}$$

It is known (e.g., [HLZ13]) that for all x ,

$$h_{m,n}(-x) = h_{m,n}(x) + x,$$

hence

$$h_{m,n}(-v_i + l(r-1)/2 - l(i-1)) = h_{m,n}(v_i - l(r-1)/2 + l(i-1)) + (v_i - l(r-1)/2 + l(i-1)).$$

Finally, $\sum_{i=1}^r (-l(r-1)/2 + l(i-1)) = 0$. □

Lemma 4.5. *One has $h_{rm,rn}(k, k, \dots, k) = \mathbf{h}(k)$, where $\mathbf{h}(k)$ is defined by (1.1).*

Proof. Indeed, by (4.3) we have

$$h_{rm,rn}(k, \dots, k) = h_{m,n}(k - l(r-1)/2) + h_{m,n}(k - l(r-1)/2 + l) + \dots + h_{m,n}(k + l(r-1)/2),$$

so

$$\sum_k h_{rm,rn}(k, \dots, k) t^k = (t^{-l(r-1)/2} + \dots + t^{l(r-1)/2}) \sum_k h_{m,n}(k) t^k = \frac{(t^{lr/2} - t^{-lr/2})}{(t^{l/2} - t^{-l/2})} \cdot \frac{t^{-1} \Delta_{m,n}(t)}{(1 - t^{-1})^2}.$$

□

For the rest of this section we will assume that $n/m > 2g(K) - 1$.

Lemma 4.6. *If $v \leq g(K_{m,n}) - l$, then $\text{HFK}^-(K_{m,n}, v) \simeq \mathbb{F}$.*

Proof. By [Hed09, Theorem 1.10], $K_{m,n}$ is an L-space knot and hence by [OS05]

$$g(K_{m,n}) = \tau(K_{m,n}), \quad g(K) = \tau(K).$$

By [Shi85], we have:

$$g(K_{m,n}) = mg(K) + \frac{(m-1)(n-1)}{2},$$

so for $n/m > 2g(K) - 1$ we have

$$2g(K_{m,n}) = 2mg(K) + mn - m - n + 1 < mn + 1,$$

hence $l = mn \geq 2g(K_{m,n})$. On the other hand, it is well-known that for $v \leq -g(K_{m,n})$ one has $\text{HFK}^-(K_{m,n}, v) \simeq \mathbb{F}$. □

We will use the function β defined by (1.1).

Lemma 4.7. *If $\beta(k) = -1$ then $\text{HFK}^-(K_{m,n}, k - c) = 0$. Otherwise*

$$(4.4) \quad \beta(k) = \max\{j : 0 \leq j \leq r-1, \text{HFK}^-(K_{m,n}, k - c + lj) \simeq \mathbb{F}\}.$$

Proof. By (1.1) and Lemma 4.5 we have

$$\beta(k)+1 = h_{rm,rn}(k-1, \dots, k-1) - h_{rm,rn}(k, \dots, k) = \sum_{j=0}^{r-1} (h_{m,n}(k-1-c+lj) - h_{m,n}(k-c+lj)).$$

Note that $h_{m,n}(k-1-c+lj) - h_{m,n}(k-c+lj) = \dim \text{HFK}^-(K_{m,n}, k-c+lj) \in \{0, 1\}$. If $\text{HFK}^-(K_{m,n}, k-c+lj) \simeq \mathbb{F}$ then $k-c+lj \leq g(K_{m,n})$, so by Lemma 4.6 $\text{HFK}^-(K_{m,n}, k-c+lj') \simeq \mathbb{F}$ for all $j' < j$. Therefore, if $\text{HFK}^-(K_{m,n}, k-c) = 0$ then $\beta(k) = -1$, otherwise

$$\text{HFK}^-(K_{m,n}, k-c+lj) = \begin{cases} \mathbb{F} & \text{if } j \leq \beta(k), \\ 0 & \text{if } j > \beta(k). \end{cases}$$

□

Suppose that $v_1 = \dots = v_{\lambda_1} = u_1, v_{\lambda_1+1} = \dots = v_{\lambda_1+\lambda_2} = u_2, \dots, v_{\lambda_1+\dots+\lambda_{s-1}+1} = \dots = v_r = u_s$ where $u_1 < u_2 < \dots < u_s$ and $\lambda_1 + \dots + \lambda_s = r$. We will abbreviate this as $v = (u_1^{\lambda_1}, \dots, u_s^{\lambda_s})$.

Lemma 4.8. *Suppose that $\beta(u_s) < r - \lambda_s$. Then for any subset $B \subset \{1, \dots, r-1\}$ one has $h_{rm,rn}(v - e_B) = h_{rm,rn}(v - e_B - e_r)$.*

Proof. To apply (4.3), one needs to reorder the components of the vectors $v - e_B$ and $v - e_B - e_r$. Note that in both cases the last (largest) λ_s components are equal either to u_s or to $u_s - 1$, and the corresponding contributions to $h_{rm,rn}$ are equal to $h_{m,n}(u_s - c + l(r - \lambda_s) + lj)$ or to $h_{m,n}(u_s - c + l(r - \lambda_s) + lj - 1)$, respectively ($j = 0, \dots, \lambda_s - 1$). On the other hand, by (4.4) one has

$$\text{HFK}^-(K_{m,n}, u_s - c + l(r - \lambda_s) + lj) = 0$$

and so

$$h_{m,n}(u_s - c + l(r - \lambda_s) + lj - 1) = h_{m,n}(u_s - c + l(r - \lambda_s) + lj).$$

□

Lemma 4.9. *If $\beta(u_s) \geq r - \lambda_s$ then $h_{rm,rn}(v) = \mathbf{h}(u_s) + ru_s - |v|$.*

Proof. Since $\beta(u_s) \geq r - \lambda_s$, we have $\text{HFK}^-(K_{m,n}, u_s - c + l(r - \lambda_s)) \simeq \mathbb{F}$, so

$$u_s - c + l(r - \lambda_s) \leq g(K_{m,n}).$$

For $i \leq r - \lambda_s$ we get

$$v_i - c + l(i-1) < u_s - c + l(i-1) \leq u_s - c + l(r - \lambda_s) - l \leq g(K_{m,n}) - l,$$

so by Lemma 4.6, $\text{HFK}^-(K_{m,n}, w) \simeq \mathbb{F}$ for all $w \in [v_i - c + l(i-1), u_s - c + l(i-1)]$, and

$$h_{m,n}(v_i - c + l(i-1)) = h_{m,n}(u_s - c + l(i-1)) + (u_s - v_i).$$

Now the statement follows from Lemma 4.3. □

Lemma 4.10. *Suppose that $\beta(u_s) \geq r - \lambda_s$. Then for any subsets $B' \subset \{1, \dots, r - \lambda_s\}$ and $B'' \subset \{r - \lambda_s + 1, \dots, r\}$ one has*

$$h_{rm,rn}(v - e_{B'} - e_{B''}) = h_{rm,rn}(v) + |B'| + \min(|B''|, \beta(u_s) - r + \lambda_s + 1).$$

Proof. Since $\text{HFK}^-(K_{m,n}, u_s - c + l(r - \lambda_s)) \simeq \mathbb{F}$, we have $u_s - c + l(r - \lambda_s) \leq g(K_{m,n})$, so for all $i \leq r - \lambda_s$ one has $v_i - c + l(i - 1) < u_s - c + l(r - \lambda_s) - l \leq g(K_{m,n}) - l$, and by Lemma 4.6 $\text{HFK}^-(K_{m,n}, v_i - c + l(i - 1)) \simeq \mathbb{F}$, and $h_{m,n}(v_i - 1 - c + l(i - 1)) = h_{m,n}(v_i - c + l(i - 1)) + 1$. Therefore $h_{rm,rn}(v - e_{B'} - e_{B''}) = |B'| + h_{rm,rn}(v - e_{B''})$. Finally,

$$\begin{aligned} h_{rm,rn}(v - e_{B''}) - h_{rm,rn}(v) &= \sum_{j=0}^{|B''|} (h_{m,n}(u_s - 1 - c + l(r - \lambda_s) + lj) - h_{m,n}(u_s - c + l(r - \lambda_s) + lj) \\ &= \min(|B''|, \beta(u_s) - r + \lambda_s + 1). \end{aligned}$$

□

4.2. Spectral sequence for HFL^- .

Definition 4.11. Let \mathcal{E}_r denote the exterior algebra over \mathbb{F} with variables z_1, \dots, z_r . Let us define the *cube differential* on \mathcal{E}_r by the equation

$$\partial(z_{\alpha_1} \wedge \dots \wedge z_{\alpha_k}) = \sum_{j=1}^k z_{\alpha_1} \wedge \dots \wedge \widehat{z_{\alpha_j}} \wedge \dots \wedge z_{\alpha_k},$$

and the *b-truncated differential* on $\mathcal{E}_r[U]$ by the equation

$$\partial^{(b)}(z_{\alpha_1} \wedge \dots \wedge z_{\alpha_k}) = \begin{cases} U\partial(z_{\alpha_1} \wedge \dots \wedge z_{\alpha_k}), & \text{if } k \leq b \\ \partial(z_{\alpha_1} \wedge \dots \wedge z_{\alpha_k}), & \text{if } k > b. \end{cases}$$

More invariantly, one can define the *weight* of a monomial $z_\alpha = z_{\alpha_1} \wedge \dots \wedge z_{\alpha_k}$ as $w(z_\alpha) = \min(|\alpha|, b)$, and the *b-truncated differential* is given by the equation:

$$(4.5) \quad \partial^{(b)}(z_\alpha) = \sum_{i \in \alpha} U^{w(\alpha) - w(\alpha - \alpha_i)} z_{\alpha - \alpha_i}.$$

Indeed, $w(\alpha) - w(\alpha - \alpha_i) = 1$ for $|\alpha| \leq b$ and $w(\alpha) - w(\alpha - \alpha_i) = 0$ for $|\alpha| > b$.

Definition 4.12. Let $\mathcal{E}_r^{\text{red}} \subset \mathcal{E}_r$ be the subalgebra of \mathcal{E}_r generated by the differences $z_i - z_j$ for all $i \neq j$.

Lemma 4.13. *The kernel of the cube differential ∂ on \mathcal{E}_r coincides with $\mathcal{E}_r^{\text{red}}$.*

Proof. It is clear that $\partial(z_i - z_j) = 0$, and Leibniz rule implies vanishing of ∂ on $\mathcal{E}_r^{\text{red}}$. Let us prove that $\text{Ker } \partial \subset \mathcal{E}_r^{\text{red}}$. Since $(\mathcal{E}_r, \partial)$ is acyclic, it is sufficient to prove that the image of every monomial $z_{\alpha_1} \wedge \dots \wedge z_{\alpha_k}$ is contained in \mathcal{E}_r . Indeed, one can check that

$$\partial(z_{\alpha_1} \wedge \dots \wedge z_{\alpha_k}) = (z_{\alpha_2} - z_{\alpha_1}) \wedge \dots \wedge (z_{\alpha_k} - z_{\alpha_{k-1}}).$$

□

Lemma 4.14. *The homology of $\partial^{(b)}$ is given by the following equation:*

$$\dim H_k(\mathcal{E}_r[U], \partial^{(b)}) = \begin{cases} \binom{r-1}{k}, & \text{if } k < b \\ 0, & \text{if } k \geq b. \end{cases}$$

Proof. Since ∂ is acyclic, one immediately gets $H_k(\mathcal{E}_r[U], \partial^{(b)}) = 0$ for $k \geq b$. For $k < b$, the homology is supported at the zeroth power of U and one has $H_k(\mathcal{E}_r[U]) \simeq \text{Ker}(\partial|_{\wedge^k(z_1, \dots, z_r)})$. The dimension of the latter kernel equals

$$\dim \text{Ker}(\partial|_{\wedge^k(z_1, \dots, z_r)}) = \dim \wedge^k(z_1 - z_2, \dots, z_1 - z_r) = \binom{r-1}{k}.$$

□

Proof of Theorem 5. Let us compute $\text{HFL}^-(K_{rm,rn}, v)$ using the spectral sequence constructed in Theorem 3.5. By Lemma 4.8, in case (a) it is easy to see that the complex (E_1, ∂_1) is contractible in the direction of e_r and $E_2 = H_*(E_1, \partial_1) = 0$.

In case (b) by Lemma 4.10 and (4.5) one can write $E_1 = \mathcal{E}_{r-\lambda_s}[U] \otimes_{\mathbb{F}[U]} \mathcal{E}_{\lambda_s}[U]$, a tensor product of chain complexes of $\mathbb{F}[U]$ -modules, and ∂_1 acts as $U\partial$ on the first factor and as $\partial^{(\beta+1)}$ on the second one. This implies

$$(4.6) \quad E_2 = H_*(E_1, \partial_1) \simeq \mathcal{E}_{r-\lambda_s} \otimes_{\mathbb{F}} H_*\left(\mathcal{E}_{\lambda_s}[U], \partial^{(\beta+1)}\right).$$

Indeed, U acts trivially on $H_*(\mathcal{E}_{\lambda_s}[U], \partial^{(\beta+1)})$, so one can take the homology of $\partial^{(\beta+1)}$ first and then observe that $U\partial$ vanishes on

$$\mathcal{E}_{r-\lambda_s}[U] \otimes_{\mathbb{F}[U]} H_*\left(\mathcal{E}_{\lambda_s}[U], \partial^{(\beta+1)}\right) \simeq \mathcal{E}_{r-\lambda_s} \otimes_{\mathbb{F}} H_*\left(\mathcal{E}_{\lambda_s}[U], \partial^{(\beta+1)}\right).$$

By Lemma 4.14, the E_2 page (4.6) agrees with the statement of the theorem, hence we need to prove that the spectral sequence collapses.

Indeed, the E_1 page is bigraded by the homological degree and $|B|$ (see Remark 3.6). By Lemma 4.14 any surviving homology class on the E_2 page of cube degree x has bidegree $(x, -2h_{rm,rn}(v) - 2x)$, so all bidegrees on the E_2 page belong to the same line of slope (-2) . Therefore all higher differentials must vanish.

Finally, a simple formula for $h_{rm,rn}(v)$ in case (b) follows from Lemma 4.9. □

4.3. Action of U_i . One can use Proposition 3.7 to compute the action of U_i on HFL^- for cable links. Recall that $R = \mathbb{F}[U_1, \dots, U_r]$. Throughout this section we assume $n/m > 2g(K) - 1$. We start with a simple algebraic statement.

Proposition 4.15. *Let \mathcal{C} be an \mathbb{F} -algebra. Given a finite collection of elements $c_\alpha \in \mathcal{C}$ and vectors $v^{(\alpha)} \in \mathbb{Z}^r$, consider the ideal $\mathcal{I} \subset \mathcal{C} \otimes_{\mathbb{F}} R$ generated by $c_\alpha \otimes U_1^{v_1^{(\alpha)}} \cdots U_r^{v_r^{(\alpha)}}$. Then the following statements hold:*

- (a) *The quotient $(\mathcal{C} \otimes_{\mathbb{F}} R)/\mathcal{I}$ can be equipped with a \mathbb{Z}^r -grading, with U_i of grading $(-e_i)$ and \mathcal{C} of grading 0.*
- (b) *The subspace of $(\mathcal{C} \otimes_{\mathbb{F}} R)/\mathcal{I}$ with grading v is isomorphic to*

$$[(\mathcal{C} \otimes_{\mathbb{F}} R)/\mathcal{I}] (v) \simeq \mathcal{C} / \left(c_\alpha : v^{(\alpha)} \preceq -v \right).$$

Proof. Straightforward. □

Definition 4.16. We define $\mathcal{A}_r = \mathcal{E}_r \otimes_{\mathbb{F}} R$ and $\mathcal{A}_r^{\text{red}} = \mathcal{E}_r^{\text{red}} \otimes_{\mathbb{F}} R$. Let \mathcal{I}'_β denote the ideal in \mathcal{A}_r generated by the monomials $(z_{i_1} \wedge \cdots \wedge z_{i_s}) \otimes U_{i_{s+1}} \cdots U_{i_{\beta+1}}$ for all $s \leq \beta + 1$ and all tuples of pairwise distinct $i_1, \dots, i_{\beta+1}$. Let $\mathcal{I}_\beta := \mathcal{I}'_\beta \cap \mathcal{A}_r^{\text{red}}$ be the corresponding ideal in $\mathcal{A}_r^{\text{red}}$.

The algebras \mathcal{A}_r and $\mathcal{A}_r^{\text{red}}$ are naturally \mathbb{Z}^{r+1} -graded: the generators z_i have Alexander grading 0 and homological grading (-1) , the generators U_i have Alexander grading $(-e_i)$ and homological grading (-2) .

Definition 4.17. We define $\mathcal{H}(k) := \bigoplus_{\max(v) \leq k} \text{HFL}^-(K_{rm,rn}, v)$. Since U_i decreases the Alexander grading, $\mathcal{H}(k)$ is naturally an R -module.

The following theorem clarifies the algebraic structure of Theorem 5.

Theorem 4.18. *The following graded R -modules are isomorphic:*

$$\mathcal{H}(k)/\mathcal{H}(k-1) \simeq \mathcal{A}_r^{\text{red}}/\mathcal{I}_{\beta(k)}[-2\mathbf{h}(k)]\{k, \dots, k\},$$

where $[\cdot]$ and $\{\cdot\}$ denote the shifts of the homological grading and the Alexander grading, respectively.

Proof. By definition, $\mathcal{H}(k)/\mathcal{H}(k-1)$ is supported on the set of Alexander gradings v such that $\max(v) = k$. The monomial $U_1 \cdots U_r$ belongs to the ideal $\mathcal{I}_{\beta(k)}$, so $\mathcal{A}_r^{\text{red}}/\mathcal{I}_{\beta(k)}$ is supported on the set of Alexander gradings u with $\max(u) = 0$.

Suppose that exactly λ components of v are equal to k . Without loss of generality we can assume $v_1, \dots, v_{r-\lambda} < k$ and $v_{r-\lambda+1} = \dots = v_r = k$. It follows from Lemma 4.13 and the proof of Theorem 5 that $\text{HFL}^-(K_{rm, rn}, v)$ is isomorphic to the quotient of $\mathcal{E}_r^{\text{red}}$ by the ideal generated by degree $\beta - r + \lambda + 1$ monomials in $(z_i - z_j)$ for $i, j > r - \lambda$.

Consider the subspace of $\mathcal{A}_r/\mathcal{I}'_{\beta}$ of Alexander grading $(v_1 - k, \dots, v_r - k)$. By Proposition 4.15 it is isomorphic to a quotient of \mathcal{E}_r modulo the following relations. For each subset $B \subset \{1, \dots, r - \lambda\}$ and each degree $\beta + 1 - |B|$ monomial m' in variables z_i for $i \notin B$ there is a relation $m' \otimes \prod_{b \in B} U_b \in \mathcal{I}'_{\beta}$. All these relations can be multiplied by an appropriate monomial in R to have Alexander grading $(v_1 - k, \dots, v_r - k)$.

Note that such m' should contain at most $r - \lambda - |B|$ factors with indices in $\{1, \dots, r - \lambda\} \setminus B$, hence it contains at least $\beta - r + \lambda + 1$ factors with indices in $\{r - \lambda + 1, \dots, r\}$. Therefore $[\mathcal{A}_r/\mathcal{I}'_{\beta}] (v_1 - k, \dots, v_r - k)$ is naturally isomorphic to the quotient of \mathcal{E}_r by the ideal generated by degree $\beta - r + \lambda + 1$ monomials in z_i for $i > r - \lambda$.

We conclude that $[\mathcal{A}_r^{\text{red}}/\mathcal{I}_{\beta(k)}] (v_1 - k, \dots, v_r - k)$ is isomorphic to $\text{HFL}^-(K_{rm, rn}, v)$. The action of U_i on $\mathcal{H}(k)$ is described by Proposition 3.7. One can check that it commutes with the above isomorphisms for different v , so we get the isomorphism of R -modules. \square

We illustrate the above theorem with the following example (cf. Example 5.8).

Example 4.19. Let us describe the subspaces of $\mathcal{A}_3^{\text{red}}/\mathcal{I}_1$ with various Alexander gradings. The ideal \mathcal{I}_1 equals:

$$\mathcal{I}_1 = ((z_1 - z_2)(z_2 - z_3), (z_1 - z_2)U_3, (z_1 - z_3)U_2, (z_2 - z_3)U_1, U_1U_2, U_1U_3, U_2U_3) \subset \mathcal{A}_3^{\text{red}}.$$

In the Alexander grading $(0, 0, 0)$ one gets

$$[\mathcal{A}_3^{\text{red}}/\mathcal{I}_1] (0, 0, 0) \simeq \mathcal{E}_3^{\text{red}}/((z_1 - z_2)(z_2 - z_3)) = \langle 1, z_1 - z_2, z_2 - z_3 \rangle,$$

in the Alexander grading $(k, 0, 0)$ (for $k > 0$) one gets two relations

$$U_1^k(z_1 - z_2)(z_2 - z_3), U_1^{k-1}(z_2 - z_3) \in \mathcal{I}_1.$$

Since the latter implies the former, we get

$$[\mathcal{A}_3^{\text{red}}/\mathcal{I}_1] (k, 0, 0) \simeq \mathcal{E}_3^{\text{red}}/(z_2 - z_3) = \langle 1, z_1 - z_2 \rangle.$$

The map $U_1 : [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1] (0, 0, 0) \rightarrow [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1] (1, 0, 0)$ is a natural projection

$$\mathcal{E}_3^{\text{red}}/((z_1 - z_2)(z_2 - z_3)) \rightarrow \mathcal{E}_3^{\text{red}}/(z_2 - z_3),$$

while the map $U_1 : [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1] (k, 0, 0) \rightarrow [\mathcal{A}_3^{\text{red}}/\mathcal{I}_1] (k+1, 0, 0)$ is an isomorphism for $k > 0$.

The gradings $(0, k, 0)$ and $(0, 0, k)$ can be treated similarly. Furthermore, $U_iU_j \in \mathcal{I}_1$ for $i \neq j$, so all other graded subspaces of $\mathcal{A}_3^{\text{red}}/\mathcal{I}_1$ vanish.

Since the multiplication by U_i preserves the ideal \mathcal{I}_β , we get the following useful result.

Corollary 4.20. *If $\max(v) = \max(v - e_i)$, then the map*

$$U_i : \text{HFL}^-(K_{rm,rn}, v) \rightarrow \text{HFL}^-(K_{rm,rn}, v - e_i)$$

is surjective.

Lemma 4.21. *Suppose that $\max(v) = k$ and $\max(v - e_i) = k - 1$, and the homology group $\text{HFL}^-(K_{rm,rn}, v)$ does not vanish. Then $\beta(k) = r - 1$, $\beta(k - 1) \geq r - 2$ and the map*

$$U_i : \text{HFL}^-(K_{rm,rn}, v) \rightarrow \text{HFL}^-(K_{rm,rn}, v - e_i)$$

is surjective.

Proof. Since $\max(v) = k$ and $\max(v - e_i) = k - 1$, the multiplicity of k in v equals 1, so by Theorem 5 $\beta(k) \geq r - 1$, hence $\beta(k) = r - 1$. Therefore $\text{HFL}^-(K_{rm,rn}, v) \simeq \mathcal{E}_r^{\text{red}}$, so U_i is surjective. Indeed, by Theorem 5 $\text{HFL}^-(K_{rm,rn}, v - e_i)$ is naturally isomorphic to a quotient of $\mathcal{E}_r^{\text{red}}$, and by Proposition 3.7 U_i coincides with a natural quotient map. Finally, by (4.4) $\text{HFK}^-(K_{m,n}, k - c + l(r - 1)) \simeq \mathbb{F}$, and by Lemma 4.6 $\text{HFK}^-(K_{m,n}, k - 1 - c + l(r - 2)) \simeq \mathbb{F}$, so $\beta(k - 1) \geq r - 2$. \square

Proof of Theorem 6. Let us prove that the homology classes with diagonal Alexander gradings generate HFL^- over R . Indeed, given $v = (v_1 \leq \dots \leq v_r)$ with $\text{HFL}^-(K_{rm,rn}, v) \neq 0$, by Theorems 5 and 4.18 one can check that $\text{HFL}^-(K_{rm,rn}, v_r, \dots, v_r) \neq 0$ and by Corollary 4.20 the map

$$U_1^{v_r - v_1} \cdots U_{r-1}^{v_r - v_{r-1}} : \text{HFL}^-(K_{rm,rn}, v_r, \dots, v_r) \rightarrow \text{HFL}^-(K_{rm,rn}, v)$$

is surjective.

Let us describe the R -modules generated by the diagonal classes in degree (k, \dots, k) . If $\beta(k) = -1$ then $\text{HFL}^-(K_{rm,rn}, k, \dots, k) = 0$. If $0 \leq \beta(k) \leq r - 2$ then by Lemma 4.21 the submodule $R \cdot \text{HFL}^-(K_{rm,rn}, k, \dots, k)$ does not contain any classes with maximal Alexander degree less than k , so by Theorem 4.18

$$R \cdot \text{HFL}^-(K_{rm,rn}, k, \dots, k) \simeq \mathcal{A}_r^{\text{red}} / \mathcal{I}_{\beta(k)} =: M_{\beta(k)}$$

Suppose that $\beta(k) = r - 1$, and consider minimal a and maximal b such that $a \leq k \leq b$ and $\beta(i) = r - 1$ for $i \in [a, b]$. If there is no minimal a , we set $a = -\infty$. By Lemma 4.21, $\beta(a - 1) = r - 2$ and all the maps

$$\begin{aligned} \text{HFL}^-(K_{rm,rn}, b, \dots, b) &\xrightarrow{U_1 \cdots U_r} \text{HFL}^-(K_{rm,rn}, b - 1, \dots, b - 1) \rightarrow \dots \\ &\dots \rightarrow \text{HFL}^-(K_{rm,rn}, a, \dots, a) \xrightarrow{U_1 \cdots U_r} \text{HFL}^-(K_{rm,rn}, a - 1, \dots, a - 1) \end{aligned}$$

are surjective. Therefore

$$R \cdot \text{HFL}^-(K_{rm,rn}, b, \dots, b) \simeq \mathcal{A}_r^{\text{red}} / (U_1 \cdots U_r)^{b-a} \mathcal{I}_{r-2} =: M_{r-1, b-a+1}$$

is supported in all Alexander degrees with maximal coordinates in $[a, b]$ and in Alexander degrees with maximal coordinate $(a - 1)$ which appears with multiplicity at least 2.

Finally, we get the following decomposition of HFL^- as an R -module:

$$\text{HFL}^-(K_{rm,rn}) = \bigoplus_{\substack{k: 0 \leq \beta(k) < r-1 \\ \beta(k+1) < r-1}} M_{\beta(k)} \oplus \bigoplus_{\substack{a, b: \beta(a-1) = r-2 \\ \beta(b+1) < r-1 \\ \beta([a, b]) = r-1}} M_{r-1, b-a+1} \oplus M_{r-1, \infty}.$$

\square

Note that for $r = 1$ we get $M_{0,l} \simeq \mathbb{F}[U_1]/(U_1^l)$ and $M_{0,+\infty} \simeq \mathbb{F}[U]$.

4.4. Spectral sequence for $\widehat{\text{HFL}}$.

Theorem 4.22. *If $\beta(k) + \beta(k+1) \leq r-2$ then the spectral sequence for $\widehat{\text{HFL}}(K_{rm,rn}, k, \dots, k)$ degenerates at the \widehat{E}_2 page and*

$$\widehat{\text{HFL}}(K_{rm,rn}, k, \dots, k) \simeq \bigoplus_{i=0}^{\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i} \oplus \bigoplus_{i=0}^{\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)+2-r+i}.$$

Proof. By Proposition 3.8, for a given v there is a spectral sequence with \widehat{E}_1 page

$$\widehat{E}_1 = \bigoplus_{B \subset \{1, \dots, r\}} \text{HFL}^-(L, v + e_B)$$

and converging to $\widehat{E}_\infty = \widehat{\text{HFL}}(L, v)$. If $v = (k, \dots, k)$ then (for $B \neq \emptyset$) the maximal coordinate of $v + e_B$ equals $k+1$ and appears with multiplicity $\lambda = |B|$. Therefore, by Theorem 5 $\text{HFL}^-(L, v + e_B)$ does not vanish if and only if either $B = \emptyset$ or $|B| \geq r - \beta(k+1)$, and it is given by Theorem 5. By (1.1) we have $\mathbf{h}(k+1) = \mathbf{h}(k) - \beta(k+1) - 1$.

The spectral sequence is bigraded by the homological (Maslov) grading at each vertex of the cube and the ‘‘cube grading’’ $|B|$. The differential $\widehat{\partial}_1$ acts along the edges of the cube, and decreases the Maslov grading by 2 and the cube grading by 1.

One can check using Theorem 4.18 that its homology \widehat{E}_2 does not vanish in cube degrees 0 and $r - \beta(k+1)$, so one can write $\widehat{E}_2 = \widehat{E}_2^0 \oplus \widehat{E}_2^{r-\beta(k+1)}$, and

$$\widehat{E}_2^0 \simeq \bigoplus_{i=0}^{\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i}, \quad \widehat{E}_2^{r-\beta(k+1)} \simeq \bigoplus_{i=0}^{\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k+1)-3\beta(k+1)+i}.$$

By (1.1) we have $\mathbf{h}(k+1) = \mathbf{h}(k) - \beta(k+1) - 1$, so $-2\mathbf{h}(k+1) - 3\beta(k+1) + i = -2\mathbf{h}(k) + 2 - \beta(k+1) + i$.

A higher differential $\widehat{\partial}_s$ decreases the cube grading by s and decreases the Maslov grading by $s+1$. Therefore the only nontrivial higher differential is $\widehat{\partial}_{r-\beta(k+1)}$ which vanishes by degree reasons too. Indeed, the maximal Maslov grading in $\widehat{E}_2^{r-\beta(k+1)}$ equals $-2\mathbf{h}(k) + 2$ while the minimal Maslov grading in \widehat{E}_2^0 equals $-2\mathbf{h}(k) - \beta(k)$, so the differential can decrease the Maslov grading at most by $\beta(k) + 2$. On the other hand, $\widehat{\partial}_{r-\beta(k+1)}$ drops it by $r - \beta(k+1) + 1$, and for $\beta(k) + \beta(k+1) < r - 1$ one has $r - \beta(k+1) + 1 > \beta(k) + 2$. Therefore $\widehat{\partial}_{r-\beta(k+1)} = 0$ and the spectral sequence vanishes at the \widehat{E}_2 page. \square

We illustrate the proof of Theorem 4.22 by Examples 5.4 and 5.5

Lemma 4.23. *The following identity holds:*

$$\beta(1-k) + \beta(k) = r-2.$$

Proof. By (1.1) and Lemma 4.5 we have

$$\beta(k) = h(k-1, \dots, k-1) - h(k, \dots, k) - 1, \quad \beta(1-k) = h(-k, \dots, -k) - h(1-k, \dots, 1-k) - 1.$$

By Lemma 4.4 we have

$$h(-k, \dots, -k) = h(k, \dots, k) + kr, \quad h(1-k, \dots, 1-k) = h(k-1, \dots, k-1) + r(k-1).$$

These two identities imply the desired statement. \square

Theorem 4.24. *If $\beta(k) + \beta(k+1) \geq r-2$ then:*

$$\widehat{\text{HFL}}(K_{rm,rn}, k, \dots, k) \simeq \bigoplus_{i=0}^{r-2-\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)-i} \oplus \bigoplus_{i=0}^{r-2-\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(k)+2-r+i}$$

Proof. By Lemma 4.23 we get $\beta(-k) = r-2-\beta(k+1)$ and $\beta(1-k) = r-2-\beta(k)$, so

$$\beta(k) + \beta(k+1) + \beta(-k) + \beta(1-k) = 2(r-2),$$

so $\beta(-k) + \beta(1-k) \leq r-2$. By Theorem 4.22 the spectral sequence degenerates for $\widehat{\text{HFL}}(-k, \dots, -k)$ and

$$\widehat{\text{HFL}}(K_{rm,rn}, -k, \dots, -k) \simeq \bigoplus_{i=0}^{r-2-\beta(k+1)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(-k)-i} \oplus \bigoplus_{i=0}^{r-2-\beta(k)} \binom{r-1}{i} \mathbb{F}_{-2\mathbf{h}(-k)+2-r+i}$$

Finally, by [OS08, Proposition 8.2] we have

$$\widehat{\text{HFL}}_\bullet(K_{rm,rn}, k, \dots, k) = \widehat{\text{HFL}}_{\bullet-2kr}(K_{rm,rn}, -k, \dots, -k)$$

and by Lemma 4.4 $\mathbf{h}(k) = \mathbf{h}(-k) - kr$. \square

Theorem 4.25. *Off-diagonal homology groups are supported on the union of the unit cubes along the diagonal. In such a cube with corners (k, \dots, k) and $(k+1, \dots, k+1)$ one has*

$$\widehat{\text{HFL}}(K_{rm,rn}, (k-1)^j, k^{r-j}) \simeq \binom{r-2}{\beta(k)} \mathbb{F}_{-2\mathbf{h}(k)-\beta(k)-j}.$$

Proof. We use the spectral sequence from HFL^- to $\widehat{\text{HFL}}$. By Theorem 4.18, all the \widehat{E}_2 homology outside the union of these cubes vanish (since some U_i would provide an isomorphism between $\text{HFL}^-(K_{rm,rn}, v)$ and $\text{HFL}^-(K_{rm,rn}, v - e_i)$). Furthermore, if $\beta(k) = r-1$ then the homology in the cube vanish too, so we can focus on the case $\beta(k) \leq r-2$.

One can check that \widehat{E}_2 does not vanish in cube degrees $j - \beta(k), \dots, j$ and

$$\widehat{E}_2^{j-c} \simeq \binom{j-1}{c} \binom{r-1-j}{\beta(k)-c} \mathbb{F}_{-2\mathbf{h}(k)-\beta(k)-c}.$$

Note that the total homological degree on \widehat{E}_2^{j-c} equals $-2\mathbf{h}(k) - \beta(k) - j$ and does not depend on c . Therefore all higher differentials in the spectral sequence must vanish and the rank of $\widehat{\text{HFL}}$ equals:

$$\sum_{c=0}^{\beta} \binom{j-1}{c} \binom{r-1-j}{\beta(k)-c} = \binom{r-2}{\beta(k)}.$$

\square

We illustrate this proof by Example 5.6.

4.5. Special case: $m = 1, n = 2g(K) - 1$. The case $m = 1, n = 2g(K) - 1$ is special since Lemma 4.6 is not always true. Indeed, $K_{m,n} = K$ and $l = n = 2g(K) - 1$, but for $v = g(K) - l = 1 - g(K)$ we have $\text{HFL}^-(K, v) = 0$. However, it is clear that in all other cases Lemma 4.6 is true, so for generic v Lemmas 4.8 and 4.10 hold true. This allows one to prove an analogue of Theorem 5.

Theorem 4.26. *Assume that $m = 1, n = 2g(K) - 1$ (so $l = 2g(K) - 1$) and suppose that $v = (u_1^{\lambda_1}, u_2^{\lambda_2}, \dots, u_s^{\lambda_s})$ where $u_1 < \dots < u_s$. Then the Heegaard-Floer homology group $\text{HFL}^-(K_{rm,rn}, v)$ can be described as following:*

(a) Assume that $u_s - c + l(r - \lambda_s) = g(K) - \nu l$ with $1 \leq \nu \leq \lambda_s$. Then

$$\text{HFL}^-(K_{rm,rn}, v) \simeq (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{r-\lambda_s} \otimes \left[\bigoplus_{j=0}^{\nu-2} \binom{\lambda_s - 1}{j} \mathbb{F}_{(-2h(v)-j)} \oplus \binom{\lambda_s - 1}{\nu} \mathbb{F}_{(-2h(v)+2-\nu)} \right]$$

(b) In all other cases, the homology is given by Theorem 5.

Proof. One can check that the proof of Lemma 4.8 fails if $u_s - c + l(r - \lambda_s) = g(K) - l$, and remains true in all other cases. Similarly, the proof of Lemma 4.10 fails only if $u_s - c + l(r - \lambda_s) + lj = g(K) - l$ for $1 \leq j \leq \lambda_s - 1$, which is equivalent to $u_s - c + l(r - \lambda_s) = g(K) - (j + 1)$. This proves (b).

Let us consider the special case (a). Note that

$$h_{m,n}(u_s - c + l(r - \lambda_s) + lj - 1) - h_{m,n}(u_s - c + l(r - \lambda_s) + lj) =$$

$$\chi(\text{HFK}^-(K, g(K) + l(j - \nu))) = \begin{cases} 1, & \text{if } j < \nu - 1 \\ 0, & \text{if } j = \nu - 1 \\ 1, & \text{if } j = \nu \\ 0, & \text{if } j > \nu. \end{cases}$$

Given a pair of subsets $B' \subset \{1, \dots, r - \lambda_s\}$ and $B'' \subset \{r - \lambda_s + 1, \dots, r\}$, one can write, analogously to Lemma 4.10:

$$h_{rm,rn}(v - e_{B'} - e_{B''}) = h_{rm,rn}(v) + |B'| + w(B''),$$

where

$$w(B'') = \begin{cases} |B''|, & \text{if } |B''| \leq \nu - 1 \\ \nu - 1, & \text{if } |B''| = \nu \\ \nu, & \text{if } |B''| > \nu. \end{cases}$$

By the Künneth formula, the E_2 page of the spectral sequence is determined by the “deformed cube homology” with the weight function $w(B'')$, as in (4.5). If ∂ , as above, denotes the standard cube differential, then, similarly to Lemma 4.14, the homology of ∂_U^w is isomorphic to the kernel of ∂ in cube degrees $0, \dots, \nu - 2$ and ν .

Finally, we need to prove that all higher differentials vanish. For a homology generator α on the E_2 page of cube degree x , its bidegree is equal either to $(x, -2h(v) - 2x)$ or to $(x, -2h(v) - 2x + 2)$. The differential ∂_k has bidegree $(-k, k - 1)$ (see Remark 3.6), so the bidegree of $\partial_k(\alpha)$ is equal either to $(x - k, -2h(v) - 2x + k - 1)$ or to $(x - k, -2h(v) - 2x + k + 1)$. Since $-2x + k + 1 < -2(x - k)$ for $k > 1$, we have $\partial_k(\alpha) = 0$. \square

The action of U_i in this special case can be described similarly to Theorem 4.18. However, it is not true that U_i is surjective whenever it does not obviously vanish. In particular, the following example shows that HFL^- may be not generated by diagonal classes, so Theorem 6 does not hold. We leave the appropriate adjustment of Theorem 6 as an exercise to a reader.

Example 4.27. Consider $T_{2,2}$, the $(2, 2)$ cable of the trefoil. We have $g(K) = l = 1$ and $c = 1/2$, so by Theorem 4.26

$$\text{HFL}^-(T_{2,2}, 1/2, 1/2) \simeq \mathbb{F}_{(-1)}, \quad \text{HFL}^-(T_{2,2}, -1/2, 1/2) \simeq \mathbb{F}_{(-2)} \oplus \mathbb{F}_{(-3)}.$$

Therefore U_1 is not surjective. Furthermore, the class in $\text{HFL}^-(T_{2,2}, -1/2, 1/2)$ of homological degree (-2) is not in the image of any diagonal class under the R -action.

5. EXAMPLES

5.1. (n, n) torus links. The symmetrized multi-variable Alexander polynomial of the (n, n) torus link equals (for $n > 1$):

$$\Delta_{T_{n,n}}(t_1, \dots, t_n) = ((t_1 \cdots t_n)^{1/2} - (t_1 \cdots t_n)^{-1/2})^{n-2}.$$

Each pair of components has linking number 1, so $c = (n-1)/2$. The homology groups $\text{HFL}^-(T(n, n), v)$ are described by the following theorem, which is a special case of Theorem 5.

Theorem 5.1. *Consider the (n, n) torus link, and an Alexander grading $v = (v_1, \dots, v_n)$. Suppose that among the coordinates v_i exactly λ are equal to k and all other coordinates are less than k . Let $|v| = v_1 + \dots + v_n$. Then*

$$\text{HFL}^-(T(n, n), v) = \begin{cases} 0 & \text{if } k > \lambda - \frac{n+1}{2}, \\ (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-1} \otimes \mathbb{F}_{2|v|} & \text{if } k < -\frac{n-1}{2}, \\ (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-\lambda} \otimes \bigoplus_{i=0}^{\lambda - \frac{n+1}{2} - k} \binom{\lambda - 1}{i} \mathbb{F}_{(-2h(v)-i)} & \text{if } -\frac{n-1}{2} \leq k \leq \lambda - \frac{n+1}{2}, \end{cases}$$

where $h(v) = \frac{1}{2}(\frac{n-1}{2} - k)(\frac{n-1}{2} - k + 1) + kn - |v|$ in the last case.

Proof. Indeed, $\beta(k) = \frac{n-1}{2} - k$ for $k > -\frac{n-1}{2}$ and $\beta(k) = n-1$ for $k \leq -\frac{n-1}{2}$. By Theorem 5, the homology group $\text{HFL}^-(T(n, n), v)$ does not vanish if and only if

$$(5.1) \quad k \leq \lambda - \frac{n+1}{2}.$$

If $k \geq -\frac{n-1}{2}$, equation (4.3) implies:

$$h_{n,n}(v) = \frac{1}{2} \left(\frac{n-1}{2} - k \right) \left(\frac{n-1}{2} - k + 1 \right) + kn - |v|.$$

If $k \leq -\frac{n-1}{2}$, equation (4.3) implies $h_{n,n}(v) = -|v|$. Furthermore, for all v satisfying (5.1) one has

$$\text{HFL}^-(T(n, n), v) = (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-\lambda} \otimes \bigoplus_{j=0}^{\lambda - \frac{n+1}{2} - k} \binom{\lambda - 1}{j} \mathbb{F}_{(-2h_{n,n}(v)-j)}.$$

Finally, if $k = \frac{n-1}{2}$, then (5.1) holds for all λ and $\lambda - \frac{n+1}{2} - k > \lambda - 1$, hence

$$\text{HFL}^-(T(n, n), v) = (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-\lambda} \otimes \bigoplus_{j=0}^{\lambda-1} \binom{\lambda - 1}{j} \mathbb{F}_{(-2h_{n,n}(v)-j)} = (\mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)})^{n-1} \otimes \mathbb{F}_{(-2h_{n,n}(v))}.$$

□

Remark 5.2. One can check that, in agreement with [GN15], the condition (5.1) defines the multi-dimensional semigroup of the plane curve singularity $x^n = y^n$.

Corollary 5.3. *We have the following decomposition of HFL^- as an R -module:*

$$\text{HFL}^-(T(n, n)) = M_0 \oplus M_1 \oplus M_2 \oplus \dots \oplus M_{n-2} \oplus M_{n-1, +\infty}.$$

To prove Theorem 4, we use Theorem 3.

Proof of Theorem 4. We have $\beta(\frac{n-1}{2} - s) = s$ for $s < n-1$, and

$$\beta(\frac{n-1}{2} - s) + \beta(\frac{n-1}{2} - s + 1) = 2s - 1 \leq n - 2 \leq s \leq \frac{n-1}{2}.$$

Therefore for $s \leq \frac{n-1}{2}$ Theorem 4.22 implies the degeneration of the spectral sequence from HFL^- to $\widehat{\text{HFL}}$, and

$$\widehat{\text{HFL}}\left(T(n, n), \frac{n-1}{2} - s, \dots, \frac{n-1}{2} - s\right) = \bigoplus_{i=0}^s \binom{n-1}{i} \mathbb{F}_{(-s^2-s-i)} \oplus \bigoplus_{i=0}^{s-1} \binom{n-1}{i} \mathbb{F}_{(-s^2-s-n+2+i)}.$$

□

Let us illustrate the degeneration of the spectral sequence from HFL^- to $\widehat{\text{HFL}}$ in some examples.

Example 5.4. For $s = 0$ we have $\widehat{E}_1 = \widehat{E}_2 = \mathbb{F}_{(0)}$. For $s = 1$ the \widehat{E}_1 page has nonzero entries in cube degree 0 where one gets

$$\text{HFL}^-\left(T(n, n), \frac{n-1}{2} - 1, \dots, \frac{n-1}{2} - 1\right) \simeq \mathbb{F}_{(-2)} \oplus (n-1)\mathbb{F}_{(-3)},$$

and in cube degree n where one gets $\mathbb{F}_{(0)}$. Indeed, the differential $\widehat{\partial}_1$ vanishes, so for $n > 2$

$$\widehat{\text{HFL}}\left(T(n, n), \frac{n-1}{2} - 1, \dots, \frac{n-1}{2} - 1\right) \simeq \mathbb{F}_{(-2)} \oplus (n-1)\mathbb{F}_{(-3)} \oplus \mathbb{F}_{(-n)}.$$

Note that for $n = 2$ the differential $\widehat{\partial}_2$ does not vanish, so the bound $s \leq \frac{n-1}{2}$ is indeed necessary for the spectral sequence to collapse at \widehat{E}_2 page.

Example 5.5. The case $s = 2$ is more interesting. The \widehat{E}_1 page has nonzero entries in cube degree 0, $n-1$ (where we have n vertices) and n , where one has

$$\widehat{E}_1^0 = \mathbb{F}_{(-6)} \oplus (n-1)\mathbb{F}_{(-7)} \oplus \binom{n-1}{2} \mathbb{F}_{(-8)}, \quad \widehat{E}_1^{n-1} = n(\mathbb{F}_{(-4)} \oplus \mathbb{F}_{(-5)}), \quad \widehat{E}_1^n = \mathbb{F}_{(-2)} \oplus (n-1)\mathbb{F}_{(-3)}.$$

The differential $\widehat{\partial}_1$ cancels some summands in \widehat{E}_1^{n-1} and \widehat{E}_1^n ;

$$\widehat{E}_2^0 = \mathbb{F}_{(-6)} \oplus (n-1)\mathbb{F}_{(-7)} \oplus \binom{n-1}{2} \mathbb{F}_{(-8)}, \quad \widehat{E}_2^{n-1} = (n-1)\mathbb{F}_{(-4)} + \mathbb{F}_{(-5)}.$$

For $n > 4$ all higher differentials vanish and

$$(5.2) \quad \widehat{\text{HFL}}\left(T(n, n), \frac{n-1}{2} - 2, \dots, \frac{n-1}{2} - 2\right) \simeq \mathbb{F}_{(-6)} \oplus (n-1)\mathbb{F}_{(-7)} \oplus \binom{n-1}{2} \mathbb{F}_{(-8)} \oplus (n-1)\mathbb{F}_{(-3-n)} + \mathbb{F}_{(-4-n)}.$$

The following example illustrates the computation of $\widehat{\text{HFL}}$ for the off-diagonal Alexander gradings.

Example 5.6. Let us compute the homology $\widehat{\text{HFL}}(T(n, n), v)$ for $v = (\frac{n-1}{2} - 2)^j (\frac{n-1}{2} - 1)^{n-j}$ ($1 \leq j \leq n-1$) using the spectral sequence from HFL^- . In the n dimensional cube $(v + e_B)$ almost all vertices have vanishing HFL^- , except for the vertex $(\frac{n-1}{2} - 1, \dots, \frac{n-1}{2} - 1)$

$$\text{HFL}^-\left(\frac{n-1}{2} - 1, \dots, \frac{n-1}{2} - 1\right) = \mathbb{F}_{(-2)} \oplus (n-1)\mathbb{F}_{(-3)}$$

and j of its neighbors with homology $\mathbb{F}_{(-4)} \oplus \mathbb{F}_{(-5)}$. Clearly, \widehat{E}_2 is concentrated in degrees j (with homology $(n-1-j)\mathbb{F}_{(-3)}$) and $(j-1)$ (with homology $(j-1)\mathbb{F}_{(-4)}$). Note that both parts contribute to the total degree $(-3-j)$, so

$$\widehat{\text{HFL}}(T(n, n), v) = (n-1-j)\mathbb{F}_{(-3-j)} \oplus (j-1)\mathbb{F}_{(-3-j)} = (n-2)\mathbb{F}_{(-3-j)}.$$

Finally, we draw all the homology groups HFL^- for $(2, 2)$ and $(3, 3)$ torus links.

Example 5.7. For the Hopf link, one has two cases. If $v_1 < v_2$, then the condition (5.1) implies $v_2 \leq -1/2$. If $v_1 = v_2$, then (5.1) implies $v_2 \geq 1/2$.

The nonzero homology of the Hopf link is shown in Figure 3 and Table 1

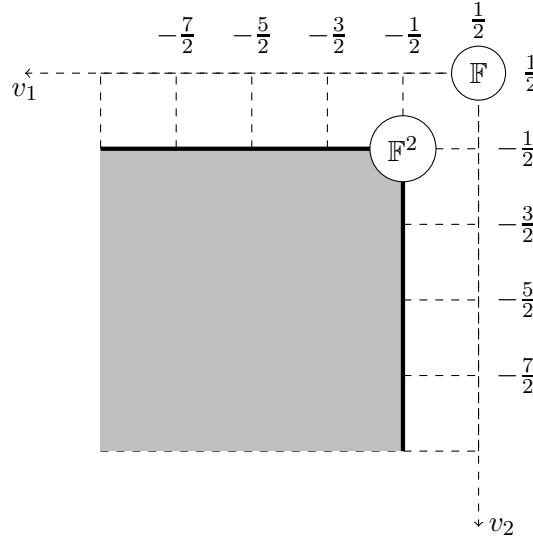


FIGURE 3. HFL^- for the $(2, 2)$ torus link: \mathbb{F}^2 on thick lines and in the grey region

Alexander grading	Homology
$(1/2, 1/2)$	$\mathbb{F}_{(0)}$
$(a, b), a, b \leq -1/2$	$\mathbb{F}_{(2a+2b)} \oplus \mathbb{F}_{(2a+2b-1)}$

TABLE 1. Maslov gradings for the $(2, 2)$ torus link

Example 5.8. For the $(3, 3)$ torus link, one has two cases. If $v_1 \leq v_2 < v_3$, then the condition (5.1) implies $v_3 \leq 1$. If $v_1 < v_2 = v_3$, then (5.1) implies $v_3 \leq 0$. Finally, if $v_1 = v_2 = v_3$, then (5.1) implies $v_3 \leq 1$. In other words, nonzero homology appears at the point $(1, 1, 1)$, at three lines $(0, 0, k), (0, k, 0), (k, 0, 0)$ ($k \leq 0$) and at the octant $\max(v_1, v_2, v_3) \leq -1$.

This homology is shown in Figure 4 and Table 2.

Alexander grading	Homology
$(1, 1, 1)$	$\mathbb{F}_{(0)}$
$(0, 0, 0)$	$\mathbb{F}_{(-2)} \oplus 2\mathbb{F}_{(-3)}$
$(0, 0, k), (0, k, 0)$ and $(k, 0, 0)$ ($k < 0$)	$\mathbb{F}_{(2k-2)} \oplus \mathbb{F}_{(2k-3)}$
$(a, b, c), a, b, c \leq -1$	$\mathbb{F}_{(2a+2b+2c)} \oplus 2\mathbb{F}_{(2a+2b+2c-1)} \oplus \mathbb{F}_{(2a+2b+2c-2)}$

TABLE 2. Maslov gradings for the $(3, 3)$ torus link

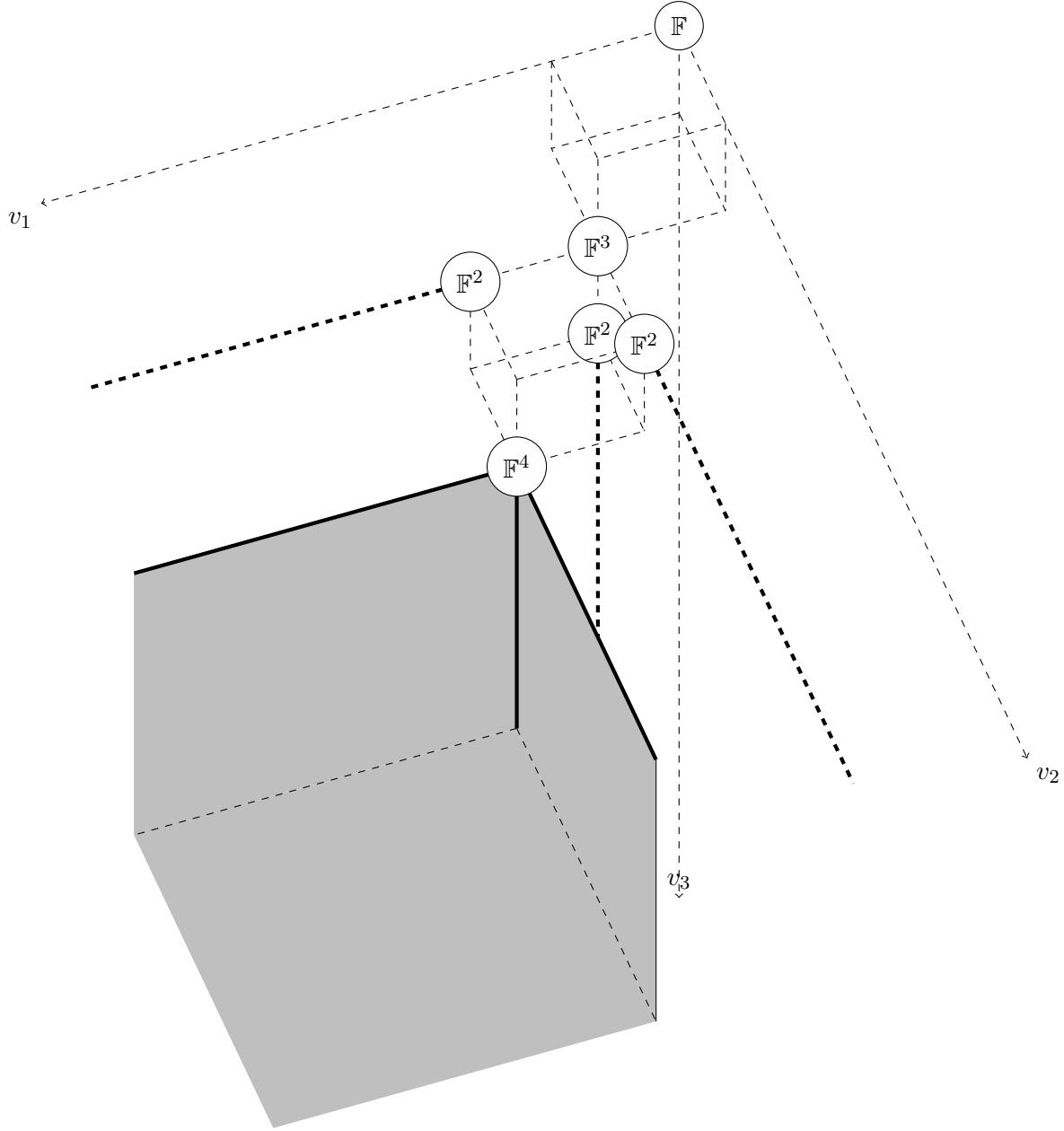
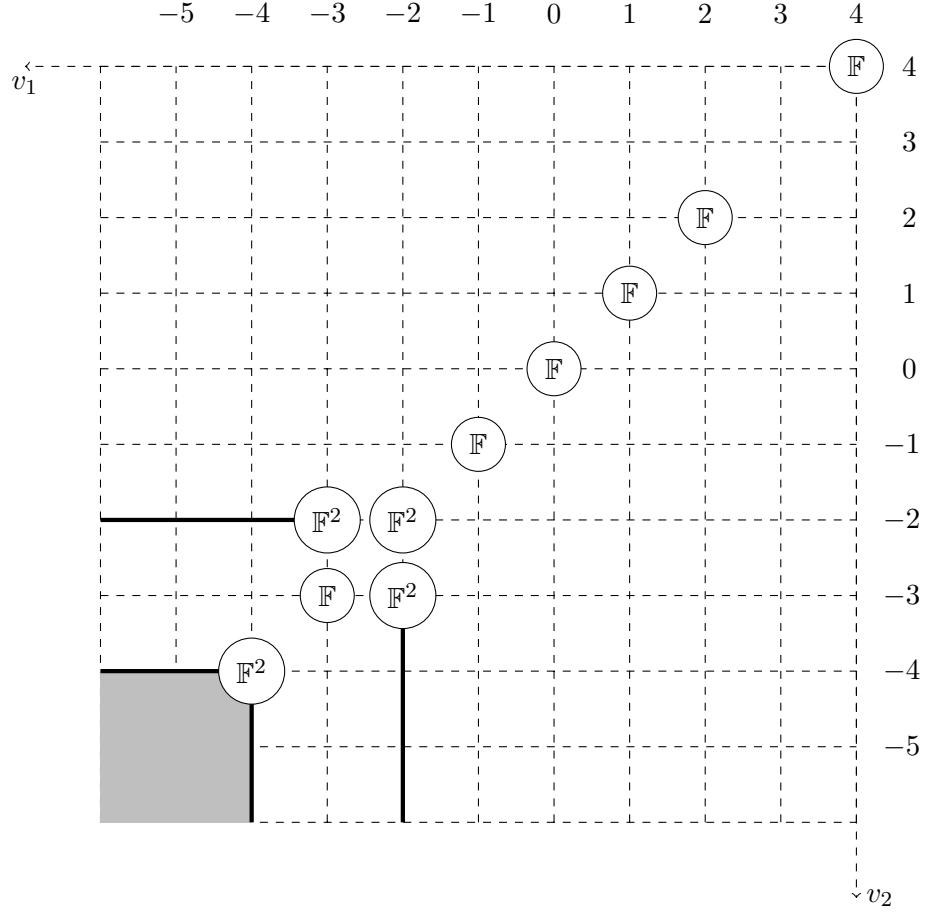


FIGURE 4. HFL^- for the $(3,3)$ torus link: \mathbb{F}^2 on dashed thick lines; \mathbb{F}^4 on solid thick lines and in the shaded region. Top Alexander grading is $(1, 1, 1)$.

5.2. More general torus links. The HFL^- homology of the $(4, 6)$ torus link is shown in Figure 5 and Table 3. Note that as an $\mathbb{F}[U_1, U_2]$ module it can be decomposed into 5 copies of $M_0 \simeq \mathbb{F}$, a copy of $M_{1,1}$ and a copy of $M_{1,+\infty}$. In particular, the map $U_1 U_2 : \text{HFL}^-(-2, -2) \rightarrow \text{HFL}^-(-3, -3)$ is surjective with one-dimensional kernel.

5.3. Non-algebraic example. In this subsection we compute the Heegaard-Floer homology for the $(4, 6)$ -cable of the trefoil. Its components are $(2, 3)$ -cables of the trefoil, which are known to be

FIGURE 5. HFL^- for the $(4,6)$ torus link: \mathbb{F}^2 on thick lines and in the grey region

Alexander grading	Homology
$(4,4)$	$\mathbb{F}_{(0)}$
$(2,2)$	$\mathbb{F}_{(-2)}$
$(1,1)$	$\mathbb{F}_{(-4)}$
$(0,0)$	$\mathbb{F}_{(-6)}$
$(-1,-1)$	$\mathbb{F}_{(-8)}$
$(-2,k)$ and $(k,-2)$, $k \leq -2$	$\mathbb{F}_{(2k-6)} \oplus \mathbb{F}_{(2k-7)}$
$(-3,-3)$	$\mathbb{F}_{(-12)}$
(a,b) , $a,b \leq -4$	$\mathbb{F}_{(2a+2b)} \oplus \mathbb{F}_{(2a+2b-1)}$

TABLE 3. Maslov gradings for the $(4,6)$ torus link

L-space knots (cf. [Hed09]), but not algebraic knots. By Theorem 2, the $(4,6)$ -cable of the trefoil is an L-space link, but its homology is not covered by [GN15].

The Alexander polynomial of the $(2, 3)$ -cable of the trefoil equals:

$$\Delta_{T_{2,3}}(t) = \frac{(t^6 - t^{-6})(t^{1/2} - t^{-1/2})}{(t^{3/2} - t^{-3/2})(t^2 - t^{-2})},$$

hence the Euler characteristic of its Heegaard-Floer homology equals

$$\chi_{2,3}(t) = \frac{\Delta_{T_{2,3}}(t)}{1 - t^{-1}} = t^3 + 1 + t^{-1} + t^{-3} + t^{-4} + \dots$$

By (4.1), the bivariate Alexander polynomial of the $(4, 6)$ -cable equals:

$$\begin{aligned} \chi_{4,6}(t_1, t_2) &= \chi_{2,3}(t_1 \cdot t_2)((t_1 t_2)^3 - (t_1 t_2)^{-3}) \\ &= (t_1 t_2)^6 + (t_1 t_2)^3 + (t_1 t_2)^2 + (t_1 t_2)^{-1} + (t_1 t_2)^{-2} + (t_1 t_2)^{-5}. \end{aligned}$$

The nonzero Heegaard-Floer homology are shown in Figure 6 and the corresponding Maslov gradings are given in Table 4. Note that as $\mathbb{F}[U_1, U_2]$ module it can be decomposed in the following way:

$$\text{HFL}^- \simeq 4M_0 \oplus M_{1,1} \oplus M_{1,2} \oplus M_{1,+\infty}.$$

REFERENCES

- [GN15] Eugene Gorsky and András Némethi, *Lattice and Heegaard-Floer homologies of algebraic links*, Int. Math. Res. Not. IMRN (2015).
- [Hed09] Matthew Hedden, *On knot Floer homology and cabling II*, Int. Math. Res. Not. IMRN (2009), no. 12, 2248–2274.
- [Hei74] Wolfgang Heil, *Elementary surgery on Seifert fiber spaces*, Yokohama Math. J. **22** (1974), 135–139.
- [HLZ13] Jennifer Hom, Tye Lidman, and Nicholas Zufelt, *Reducible surgeries and Heegaard Floer homology*, 2013, Preprint, arXiv:1307.5317.
- [Hom11] Jennifer Hom, *A note on cabling and L-space surgeries*, Algebr. Geom. Topol. **11** (2011), no. 1, 219–223.
- [HW15] Jonathan Hanselman and Liam Watson, *A calculus for bordered Floer homology*, 2015, Preprint, arXiv:1508.05445.
- [Lic12] Joan Licata, *Heegaard Floer homology of (n, n) -torus links: computations and questions*, 2012, Preprint, arXiv:1208.0394.
- [Liu14] Yajing Liu, *L-space surgeries on links*, 2014, Preprint, arXiv:1409.0075v1.
- [LOT08] Robert Lipshitz, Peter Ozsváth, and Dylan Thurston, *Bordered Heegaard Floer homology: Invariance and pairing*, 2008, Preprint, arXiv:0810.0687.
- [LS07] Paolo Lisca and András I. Stipsicz, *Ozsváth-Szabó invariants and tight contact 3-manifolds. III*, J. Symplectic Geom. **5** (2007), no. 4, 357–384.
- [MO10] Ciprian Manolescu and Peter Ozsváth, *Heegaard Floer homology and integer surgeries on links*, 2010, Preprint, arXiv:1011.1317v1.
- [OS04a] Peter Ozsváth and Zoltán Szabó, *Holomorphic disks and three-manifold invariants: properties and applications*, Ann. of Math. (2) **159** (2004), no. 3, 1159–1245.
- [OS04b] ———, *Holomorphic disks and topological invariants for closed three-manifolds*, Ann. of Math. (2) **159** (2004), no. 3, 1027–1158.
- [OS05] ———, *On knot Floer homology and lens space surgeries*, Topology **44** (2005), no. 6, 1281–1300.
- [OS08] ———, *Holomorphic disks, link invariants and the multi-variable Alexander polynomial*, Algebr. Geom. Topol. **8** (2008), no. 2, 615–692.
- [OS11] ———, *Knot Floer homology and rational surgeries*, Algebr. Geom. Topol. **11** (2011), no. 1, 1–68.
- [Shi85] Tetsuo Shiba, *On the genus of torus links*, Kobe J. Math. **2** (1985), no. 2, 123–125.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, 2990 BROADWAY, NEW YORK, NY 10027

DEPARTMENT OF MATHEMATICS, UC DAVIS, ONE SHIELDS AVE, DAVIS, CA 95616

Alexander grading	Homology
(6, 6)	$\mathbb{F}_{(0)}$
(3, 3)	$\mathbb{F}_{(-2)}$
(2, 2)	$\mathbb{F}_{(-4)}$
(0, k) and (k , 0), $k \geq 0$	$\mathbb{F}_{(2k-6)} \oplus \mathbb{F}_{(2k-7)}$
(-1, -1)	$\mathbb{F}_{(-10)}$
(-2, -2)	$\mathbb{F}_{(-12)}$
(-3, k) and (k , -3), $k \geq -3$	$\mathbb{F}_{(2k-8)} \oplus \mathbb{F}_{(2k-9)}$
(-4, k) and (k , -4), $k \geq 10$	$\mathbb{F}_{(2k-10)} \oplus \mathbb{F}_{(2k-11)}$
(-5, -5)	$\mathbb{F}_{(-22)}$
(a , b), $a, b \leq -6$	$\mathbb{F}_{(2a+2b)} \oplus \mathbb{F}_{(2a+2b-1)}$

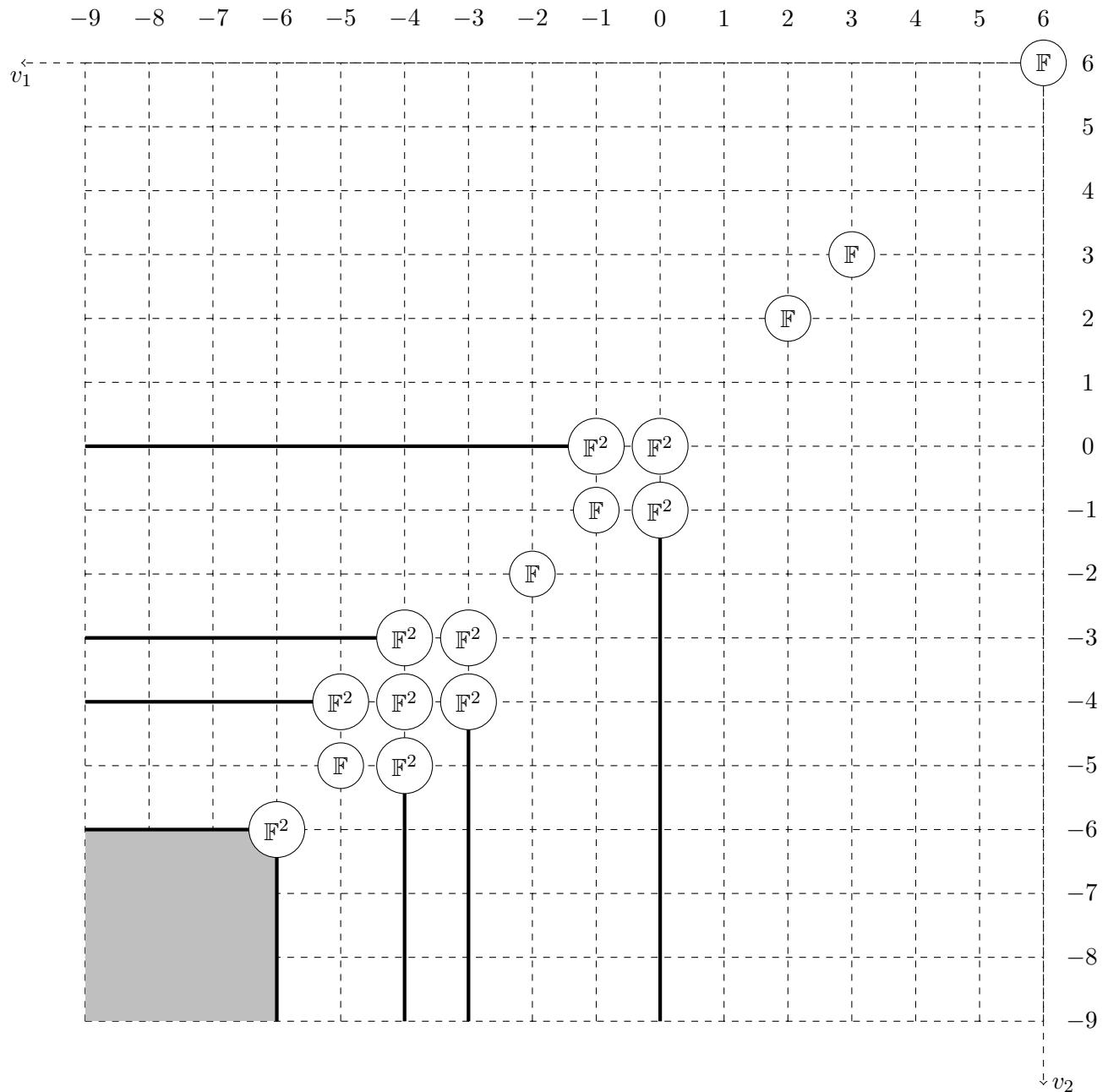
TABLE 4. Maslov gradings for the (4,6) cable of the trefoil

INTERNATIONAL LABORATORY OF REPRESENTATION THEORY AND MATHEMATICAL PHYSICS, NRU-HSE, 7 VAVILOVA ST., MOSCOW, RUSSIA 117312

E-mail address: `egorsky@math.columbia.edu`

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, 2990 BROADWAY, NEW YORK, NY 10027

E-mail address: `hom@math.columbia.edu`

FIGURE 6. HFL^- for the $(4,6)$ cable of the trefoil: \mathbb{F}^2 on thick lines and in the grey region