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Abstract. An immersed concordance between two links is a concordance with pos-
sible self-intersections. Given an immersed concordance we construct a smooth four-
dimensional cobordism between surgeries on links. By applying d-invariant inequalities
for this cobordism we obtain inequalities between the H-functions of links, which can be
extracted from the link Floer homology package. As an application we show a Heegaard
Floer theoretical criterion for bounding the splitting number of links. The criterion is
especially effective for L-space links, and we present an infinite family of L-space links
with vanishing linking numbers and arbitrary large splitting numbers. We also show
a semicontinuity of the H-function under δ-constant deformations of singularities with
many branches.

1. Introduction

1.1. Overview. An immersed cobordism between two links L1 and L2 in S
3 is a smoothly

immersed surface in S3 ˆ r1, 2s, whose boundary is L1 Ă S3 ˆ t1u and L2 Ă S3 ˆ
t2u. An immersed concordance is an immersed cobordism, whose all the components
are immersed annuli. The notion of an immersed cobordism gives a unified approach for
finding (usually lower) bounds on link invariants such as the smooth four genus, the clasp
number, the splitting number and the unlinking number. Recently many papers using this
technique appeared [3, 5, 19, 25, 27]. Generalizing the construction of [5] we can use an
immersed concordance as a starting point in constructing a four-dimensional cobordism
between large surgeries on L1 and L2 with precisely described surgery coefficients. Under
some extra assumptions we can guarantee that the four-dimensional cobordism is negative
definite. We apply the d-invariant inequality of Ozsváth and Szabó, see (4.3), to relate
the d-invariants of the corresponding surgeries on L1 and L2. These inequalities are best
expressed in terms of the H-functions.
The H-function is a function that is used to calculate the d-invariants of large surgeries

on links (see Theorem 4.10, which can be thought of as an informal definition of H). For
knots it was first defined by Rasmussen in his thesis [31] (as an analogue of the Frøyshov
invariant in Seiberg-Witten theory), who used it to obtain nontrivial bounds for the slice
genus of knots. For L-space knots, the H-function can be easily reconstructed from the
Alexander polynomial. For L-space links with several components (see Section 2.2), the
H-function was introduced by the second author and Némethi [14] (denoted by small h
there), who showed that for algebraic links it coincides with the Hilbert function defined
by the valuations on the local ring of the corresponding singularity.
Unfortunately, apart from different notations of H in the literature, there are at least

three different “natural” conventions on the definition of H, all differing by some shift of
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the argument. This can be seen in [4], where three different functions I, J and R denote
very similar objects. In the link case the situation will be similar. The function called H
will take as an argument the levels of the Alexander filtration in the chain complex CFL´,
that is, its arguments will be from some lattice. Shifting the argument of H by half the
linking numbers will yield a function J from Zn to Z. The normalization of the J-function
makes it very suitable for studying link concordances. Finally, we will have a function R,
defined for algebraic singularities, which most resembles the semigroup counting function
from [4] and agrees with the Hilbert function from [14].

We define theH-function for general links and find inequalities between theH-functions
of two links related by an immersed concordance (under some assumptions on the con-
cordance). The following theorem is one of the main results of the paper. The statement
is simpler in terms of the J-function than in terms of the H-function.

Theorem (Theorem 6.20). Let L1 and L2 be two n-component links differing by a single
positive crossing change, that is, L2 arises by changing a negative crossing of L1 into
a positive one. Let J1 and J2 be the corresponding J-functions and let m P Zn, m “
pm1, . . . ,mnq.

(a) If the crossing change is between two strands of the same component L1i of L1,
then

J2pm1,m2, . . . ,mi ` 1, . . . ,mnq ď J1pm1, . . . ,mnq ď J2pm1, . . . ,mi, . . . ,mnq.

(b) If the crossing change is between the i-th and j-th component of L1, then

J2pm1,m2, . . . ,mnq ď J1pm1, . . . ,mnq ď J2pm1, . . . ,mi ´ 1, . . . ,mnq

and

J2pm1,m2, . . . ,mnq ď J1pm1, . . . ,mnq ď J2pm1, . . . ,mj ´ 1, . . . ,mnq

As an application we provide new criteria for splitting numbers of links.

Theorem (Theorem 7.7).

(a) Suppose that a two component link L “ L1 Y L2 can be unlinked using b` positive
and b´ negative crossing changes. Let gi denote the slice genus of Li. Define
vectors

g :“ pg1, g2q, rg :“

ˆ
g1 `

1

2
lkpL1, L2q, g2 `

1

2
lkpL1, L2q

˙
.

Define the region Rpb`q by inequalities:

Rpb`q :“ tpm1,m2q : m1 ` m2 ě b`,m1 ě 0,m2 ě 0u.

Then Jpmq “ rJpmq “ 0 for m P Rpb`q ` g.
(b) If, in addition, L is an L-space link, then

HFL´pL,vq “ 0 for v P Rpb`q ` rg ` p1, 1q.

In particular, all coefficients of the Alexander polynomial vanish in Rpb`q ` rg `
p1
2
, 1
2
q.

In the examples we focus on a family of two-bridge links which were shown in [23] to be
L-space links. Recall that the splitting number sppLq is the minimal number of crossings
between different components of L that should be changed to turn L into a split link.
Clearly, a linking number yields a lower bound for the splitting number, see Section 7 for
the detailed discussion of splitting numbers and references.
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Theorem (Theorem 7.12). The splitting number of the two-component two-bridge link

Ln “ bp4n2 ` 4n,´2n ´ 1q

equals 2n, although the linking number between the components of Ln vanishes.

We compare this theorem with the work of Batson and Seed [1] which provides a
different bound for the splitting number in terms of Khovanov homology. It turns out
that their lower bound is quite weak in this case and is at most three for all Ln.

Remark 1.1. Almost at the same time as the first version of this paper was posted on the
arXiv, a similar result was proven by Cimasoni, Conway and Zacharova [10] by completely
different methods. In Section 7.6 we compute splitting numbers for a family of links where
the methods of [10] cannot be applied directly.

Another application is a topological proof of semicontinuity of the Hilbert function of
singularities under δ-constant deformations. The result was proved in [5] for unibranched
singular points (there is also an algebraic proof of a more general version in [14] for one
component links). Our result is for multibranched singularities under the assumption that
the number of branches does not change.

1.2. Structure of the paper. The paper uses a lot of background facts about Heegaard
Floer homology and L-space links, most of them were discussed in [14, 23] using slightly
different sets of notations. For the reader’s convenience, we repeat these facts and intro-
duce the functions H and J in full generality in Sections 2 and 3. In Section 4, we relate
the Ozsváth-Szabó d-invariants of large surgeries on a link to the H-function. Section 5
is the technical core of the paper: for an immersed cobordism between two links L1,L2

we construct a cobordism between the surgeries S3
q1

pL1q, S
3
q2

pL2q of the 3-sphere on these
links, and prove that under certain assumptions it is negative definite. In the negative
definite case, we apply the classical inequality for d-invariants of S3

q1
pL1q, S3

q2
pL2q, and

obtain in Section 6 an inequality for H and J-functions for the links L1,L2 stated in
Theorem 6.1. We use this result to prove Theorem 6.20.

In Section 7 we apply these results to obtain more concrete inequalities for two–
component links, and prove Theorems 7.7 and 7.12. Finally, in the last section we apply
the inequalities to algebraic links and compare them with the algebro-geometric results
on deformations of singularities.

1.3. Notations and conventions. All links are assumed to be oriented. For a link L,
we denote by L1, . . . , its components. This allows us to make a distinction between L1,L2

and L1, L2. The former denotes two distinct links, the latter stands for two components
of the same link L.

We will mark vectors in n–dimensional lattices in bold, in particular, we will write
0 “ p0, . . . , 0q. Given u,v P Zn, we write u ĺ v if ui ď vi for all i, and u ă v if u ĺ v

and u ‰ v. We write u Î v if ui ! vi for all i. We will write w “ maxpu,vq (resp.
w “ minpu,vq) if wi “ maxpui, viq (resp. wi “ minpui, viq) for all i. We denote the i-th
coordinate vector by ei.
For a subset I “ ti1, . . . , iru Ă t1, . . . , nu and u P Zn, we denote by uI the vector

pui1 , . . . , uirq. For a link L “
Ťn

i“1 Li we denote by LI “ Li1 Y . . .YLir the corresponding
sublink.

We will always work with F “ Z{2Z coefficients.

Acknowledgements. The authors would like to thank to David Cimasoni, Anthony Conway,
Stefan Friedl, Jennifer Hom, Yajing Liu, Charles Livingston, Wojciech Politarczyk and
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Mark Powell for fruitful discussions. The project was started during a singularity theory
conference in Edinburgh in July 2015. The authors would like to thank the ICMS for
hospitality.

2. Links and L-spaces

2.1. Links and their Alexander polynomials. Let L Ă S3 be a link. Denote by
L1, . . . , Ln its components. Throughout the paper, the multivariable Alexander polyno-
mial (see [17] for definition) will be symmetric up to sign:

∆pt´1
1 , . . . , t´1

n q “ ˘∆pt1, . . . , tnq.

The sign of a multivariable Alexander polynomial can be fixed using the interpretation of
the Alexander polynomial via the sign refined Reidemeister torsion; see [17, Section 4.9]
for discussion and [36] for an introduction to Reidemeister torsion.

Example 2.1. The Alexander polynomial for the Whitehead link equals

∆Whpt1, t2q “ ´pt
1{2
1 ´ t

´1{2
1 qpt

1{2
2 ´ t

´1{2
2 q.

For the Borromean link the Alexander polynomial equals

∆Borpt1, t2, t3q “ pt
1{2
1 ´ t

´1{2
1 qpt

1{2
2 ´ t

´1{2
2 qpt

1{2
3 ´ t

´1{2
3 q.

In some examples we will consider algebraic links, defined as intersections of complex
plane curve singularities with a small 3-sphere. The Alexander polynomials of algebraic
links were computed by Eisenbud and Neumann [12]. In Section 8 below we also discuss
more recent results of Campillo, Delgado and Gusein-Zade [6], relating the Alexander
polynomial to the algebraic invariants of a singularity, such as the multi-dimensional
semigroup.

Example 2.2. The link of the singularity x2 “ y2n consists of 2 unknots with linking
number n. The corresponding Alexander polynomial equals

∆2,2npt1, t2q “
t
n{2
1 t

n{2
2 ´ t

´n{2
1 t

´n{2
2

t
1{2
1 t

1{2
2 ´ t

´1{2
1 t

´1{2
2

.

For future reference we recall the Torres formula, proved first in [34]. It relates the
Alexander polynomial of a link L with the Alexander polynomial of its sublink.

Theorem 2.3 (Torres Formula). Let L “ L1 Y . . . Y Ln be an n component link and
let L1 “ L1 Y . . . Y Ln´1. The Alexander polynomials of L1 and of L are related by the
following formula.

∆Lpt1, . . . , tn´1, 1q “

$
’’&
’’%

´śn´1
i“1 t

1
2
lkpLi,Lnq

i ´
śn´1

i“1 t
´ 1

2
lkpLi,Lnq

i

¯
∆L1pt1, . . . , tn´1q if n ą 2,

ˆ
t
1
2

lkpL1,L2q

1 ´t
´ 1

2
lkpL1,L2q

1

˙

ˆ
t
1
2
1 ´t

´ 1
2

1

˙ ∆L1pt1q if n “ 2,

where lkpLi, Lnq is the linking number between Li and Ln.

Theorem 2.3 shows that if lkpLi, Ljq are all nonzero then the Alexander polynomials
of the sublinks are determined by the Alexander polynomial of the link. If some of the
linking numbers vanish (as in Example 2.1) then this is no longer true.
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2.2. L-spaces and L-space links. We will use the minus version of the Heegaard Floer
link homology, defined in [30]. To fix the conventions, we assume that HF´pS3q “ FrU s
is supported in degrees 0,´2,´4, . . .. To every 3-manifold M this theory associates a
chain complex CF´pMq which naturally splits as a direct sum over Spinc structures on
M : CF´pMq “

À
s
CF´pM, sq. The homology HF´pMq “

À
s
HF´pM, sq, as a graded

FrU s-module, is a topological invariant of M .

Definition 2.4.

(a) A 3-manifoldM is called an L-space if b1pMq “ 0 and its Heegaard Floer homology
has minimal possible rank: HF´pM, sq » FrU s for all s.

(b) A link L is called an L-space link if S3
qpLq, the integral surgery of S3 on the

components of L with coefficients q “ pq1, . . . , qnq, is an L-space for q Ï 0.

For a link L “ L1 Y . . . Y Ln and a vector m P Zn we define the framing matrix
Λpmq “ pΛijpmqq:

(2.5) Λijpmq “

#
lkpLi, Ljq if i ‰ j,

mi if i “ j.

It is well known that if det Λ ‰ 0 then |H1pS3
mpLqq| “ | det Λpmq|. We recall the following

result of Liu.

Theorem 2.6 (see [23, Lemma 2.5]). Suppose L “ L1 Y . . . Y Ln is a link. Let m “
pm1, . . . ,mnq be a framing such that

(a) The framing matrix Λpmq is positive definite.
(b) For every I Ă t1, . . . , nu the mI–surgery on LI is an L-space.

Then for any integer vector m1
ľ m the m1–surgery on L is an L-space. In particular, L

is an L-space link.

We will generalize this result for rational surgeries.

Proposition 2.7. Suppose L and m are as in the statement of Theorem 2.6. Then for
any rational framing vector q ľ m, the q–surgery on L is an L-space.

Proof. For a surgery vector q denote by tpqq the number of non-integer entries in the
vector q.

Let us make the following statement.

(Ik,l) For any I Ă t1, . . . , nu with |I| ď l, if tpqIq ď k, then S3
qI

pLIq is an L-space.

The statement pI0,lq is covered for all l ě 1 by Theorem 2.6. Our aim is to show that
pIk,lq implies pIk`1,lq.

Choose I Ă t1, . . . , nu with |I| “ l. Take q ľ m with tpqq “ k ` 1. Suppose j P I is
such that qj R Z and let I 1 “ Iztju. Let Y “ S3

qI1
pLI 1q. As tpqI 1q “ k, the assumption

pIk,l´1q (which is contained in pIk,lq) implies that Y is an L-space. The component Lj can
be regarded as a knot in Y . Let A Ă Q Y t8u be the set of surgery coefficients such that
a P A if and only if YapLjq is an L-space. By the inductive assumption all integers l ě mj

belong to A, indeed YlpL1q is the surgery on L with coefficient q1
I , where q

1
I is the vector

qI with l at the j-th position. Furthermore 8 P A as well, because Y itself is an L-space.
In [32] possible shapes of A were classified. In short, A is either empty, or it consists

of one point or it is an interval in Q Y t8uzI, where I is the set of surgery coefficients
l such that YlpL1q is not a rational homology sphere. In the present situation, we have
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shown that m1,m1 ` 1,8 belong to A. This implies all rational numbers greater than or
equal to m1 are in A. This shows pIk`1,lq. �

As an application of Proposition 2.7 we will prove the following result, which generalizes
[16, Theorem 1.10].

Proposition 2.8. Suppose L “ L1 Y . . . Y Ln is an L-space link. Let p, q be coprime
positive integers and let Lp,q be the link Lcab YL2 Y . . .YLn, where Lcab is the pp, qq cable
on L1. If q{p is sufficiently large, than Lp,q is also an L-space link. More precisely, if m
is an integer vector satisfying the conditions of Theorem 2.6 then Lp,q is an L-space link
if q{p ą m1.

Proof. The proof is a direct generalization of [16, Proof of Theorem 1.10]. Choose p and q
coprime and suppose that m satisfies the conditions of Theorem 2.6 and q{p ą m1. First
we will show that the m1–surgery on Lp,q is an L-space, where m1 “ ppq,m2, . . . ,mnq.
By [16, Section 2.4] we know that S3

m1pLp,qq » Lenspp, qq#S3
m2pLq, where we set m2 “

pq{p,m2, . . . ,mnq and Lenspp, qq is the lens space. As Lenspp, qq is an L-space and since a
connected sum of L-spaces is an L-space, it is enough to show that S3

m2pLq is an L-space.
But m2

ľ m, so by Proposition 2.7 we conclude that S3
m2pLq is an L-space. Hence the

m1–surgery on Lp,q is an L-space. The same proof applies to any sublink of Lp,q which
contains Lcab, and for a sublink LI not containing Lcab the m1

I–surgery is an L-space by
assumption.
Let Λpq be the framing matrix for Lp,q with framing m1, let Λ be the framing matrix

for L with framing m. By assumption, Λ is positive definite. The matrix Λpq differs
from Λ only at the first column and at the first row. As lkpLcab, Ljq “ p lkpL1, Ljq for
j “ 2, . . . , n, we conclude that Λpq can be obtained from Λ by multiplying the first row
and the first column by p (the element in the top-left corner is multiplied by p2) and then
adding qp ´ p2m1 to the element in the top-left corner. The first operation is a matrix
congruence so it preserves positive definiteness of the matrix. Adding an element can be
regarded as taking a sum with a matrix with all entries zero but qp´ p2m1 in the top-left
corner. This matrix is positive semi-definite, because we assumed that q{p ą m1. Now
a sum of a positive definite matrix and a positive semi-definite one is a positive definite
matrix. Therefore Λpq is positive definite.

By Theorem 2.6 applied to Lp,q with framing m1 we conclude that Lp,q is an L-space
link. �

To make Proposition 2.8 more concrete, we have to present an explicit vector m satis-
fying the conditions of Theorem 2.6. This is done in the following theorem.

Theorem 2.9. Let Di denote the maximal degree of ti in the multivariable Alexander
polynomial of an L-space link L, mi ě 2Di ` 2. Assume that the number of components
of L equals n ą 1 and lkpLi, Ljq ‰ 0 for all i ‰ j. Then m “ pm1, . . . ,mnq satisfies the
conditions of Theorem 2.6.

Proof. By Theorem 2.6 it is sufficient to prove that S3
mpLq is an L-space and the framing

matrix Λpmq is positive definite. The former is proved below as Lemma 3.21. To prove
the latter, remark that by Theorem 2.3 one has:

(2.10)
∆pL1q

t1{2 ´ t´1{2
“

∆pt, 1, . . . , 1q
ś

j‰1

´
t
1
2
lkpL1,Ljq ´ t´

1
2
lkpL1,Ljq

¯ ,
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so

2Di ´
ÿ

j‰i

lkpLi, Ljq ` 1 ě 2 deg∆pLiq ě 0.

Now Λpmq is a sum of
`
n

2

˘
nonnegative definite matrices

ˆ
lkpLi, Ljq lkpLi, Ljq
lkpLi, Ljq lkpLi, Ljq

˙

with the only nonzero block at i-th and j-th rows and columns, and a diagonal positive
definite matrix with entries

mi ´
ÿ

j‰i

lkpLi, Ljq ě 2Di ` 2 ´
ÿ

j‰i

lkpLi, Ljq ą 0,

so it is positive definite. �

Remark 2.11. This bound is far from being optimal for links with many components. For
example, it is proved in [13] that the point ppq ` 1, . . . , pq ` 1q satisfies the conditions of
Theorem 2.6 for the ppn, qnq torus link, while in the above bound one has Di “ pnpq´p´
qq{2 for n ą 2. On the other hand, for the p2, 2qq torus link we get D1 “ D2 “ pq ´ 1q{2,
so Theorem 2.9 gives mi ě q ` 1, and the two bounds agree.

3. Heegaard Floer link homology and the H-function for links

In this section we define the H-function for links and collect some useful facts about it.

3.1. Alexander filtration. A knot K in a 3-manifold M induces a filtration on the
Heegaard Floer complex CF´pMq. Similarly, a link L “ L1 Y . . .YLn with n components
in M induces n different filtrations on CF´pMq, which can be interpreted as a filtration
indexed by an n-dimensional lattice. For a link in S3, it is natural to make this lattice
different from Zn.

Definition 3.1. Given an n-component oriented link L Ă S3, we define an affine lattice
over Zn:

HpLq “
nà

i“1

„
Z `

1

2
lkpLi,LrLiq


.

We also define the linking vector :

` “ `pLq “
1

2
plkpL1,LrL1q, lkpL2,LrL2q, . . . , lkpLn,LrLnqq

We have HpLq “ Zn ` `.

For v P HpLq define a subcomplex A´pL,vq Ă CF´pS3q corresponding to the filtration
level v. The filtration is ascending, so A´pL,uq Ă A´pL,vq for u ĺ v. The Heegaard
Floer link homology HFL´pL,vq can be defined as the homology of the associated graded
complex:

(3.2) HFL´pL,vq “ H˚

˜
A´pL;vq{

ÿ

uăv

A´pL;uq

¸
.



8 MACIEJ BORODZIK AND EUGENE GORSKY

The Euler characteristic of this homology was computed in [30]:

(3.3) r∆pt1, . . . , tnq :“
ÿ

vPHpLq

χpHFL´pL,vqqtv11 ¨ ¨ ¨ tvnn “

“

#
pt1 ¨ ¨ ¨ tnq1{2∆pt1, . . . , tnq if n ą 1,

∆ptq{p1 ´ t´1q if n “ 1,

where, as above, ∆pt1, . . . , tnq denotes the symmetrized Alexander polynomial of L.
One can forget a component Ln in L and consider the pn ´ 1q-component link LrLn.

There is a natural forgetful map πn : HpLq Ñ HpLrLnq defined by the equation:

(3.4) πnpv1, . . . , vnq “

ˆ
v1 ´

1

2
lkpL1, Lnq, . . . , vn´1 ´

1

2
lkpLn´1, Lnq

˙
.

In general, one defines a map πL1 : HpLq Ñ HpL1q for every sublink L1 Ă L:

(3.5) rπL1pvqsj “ pvj ´ `pLqj ` `pL1qjq for Lj Ă L1.

For vn " 0 the subcomplexes A´pL;vq stabilize, and by [30, Proposition 7.1] one has
a natural homotopy equivalence A´pL;vq „ A´pLrLn; πnpvqq. More generally, for a
sublink L1 “ Li1 Y . . . Y Lin1 one gets:

(3.6) A´pL1; πL1pvqq „ A´pL;vq, if vi " 0 for all i R ti1 . . . , ir1u.

There is an action of commuting operators U1, . . . , Un on the complex A´pLq. The
action of Ui drops the homological grading by 2 and drops the i-th filtration level by 1.
In particular, UiA

´pL,vq Ă A´pL,v ´ eiq. This action makes the complexes A´pL,vq
modules over the polynomial ring FrU1, . . . , Uns. It is known [30] that A´pL,vq is a finitely
generated module over FrU1, . . . , Uns, and the action of all the Ui on A

´pL,vq is homotopic
to each other. In particular, all the Ui act in the same way in the homology H˚pA´pL,vqq,
which can therefore be naturally considered as FrU s–module, where a single variable U
acts as U1.

3.2. The H-function. It is known (see [24], this is also a consequence of the Large
Surgery Theorem 4.7 below) that the homology of A´pL,vq is isomorphic as an FrU s-
module to the Heegaard Floer homology of a large surgery on L equipped with a certain
Spinc structure. Therefore it always splits as a direct sum of a single copy of FrU s and
some U -torsion. We begin with the following fact.

Lemma 3.7. For u ĺ v the natural inclusion

ιu,v : A´pL,uq ãÑ A´pL,vq

is injective on the free parts of the homology, hence it is a multiplication by a nonnegative
power of U .

Proof. It is sufficient to prove that

ι˚v´ei,v
: H˚pA´pL,v ´ eiqq ãÑ H˚pA´pL,vqq

is injective on the free parts. The latter holds because A´pL,v ´ eiq contains the image
of Ui „ U acting on A´pL,vq. Indeed, if H˚pA´pL,vqq » FrU s ` T pvq, where T pvq is U -
torsion, then UFrU s Ă H˚pUiA

´pL,vqq. Consider the inclusions UiA
´pL,vq Ă A´pL,v´

eiq Ă A´pL,vq. Since the composite inclusion of UiA
´pL,vq into A´pL,vq is injective on

free parts, we conclude that ι˚v´ei,v
is injective and

(3.8) UFrU s Ă ι˚v´ei,v
FrU s Ă FrU s
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�

Definition 3.9. We define a function Hpvq “ HLpvq by saying that ´2Hpvq is the
maximal homological degree of the free part of H˚pA´pL,vqq.

We will gather now some important properties of the H-function.

Proposition 3.10. The function Hpvq has nonnegative integer values. Furthermore, for
all v P HpLq one has Hpv ´ eiq “ Hpvq or Hpv ´ eiq “ Hpvq ` 1.

Proof. By Lemma 3.7 the inclusion of A´pL,vq in CF´pS3q induces an injective map on
the free parts of the homology, so it sends a generator of the free part to Uk times a
generator of the free part for some k ě 0. Since the inclusion preserves the homological
grading (and the generator of HF´pS3q has grading 0), the generator of the free part of
H˚pA´pL,vqq has grading ´2k, and k “ Hpvq. The last statement immediately follows
from (3.8). �

Proposition 3.11. If L is a split link then Hpvq “
řn

i“1Hipviq, where Hi is the H-
function for the i-th component of the link.

Proof. For a split link by [30, Section 11] one has

A´pL,vq » A´pL1, v1q bFrUs ¨ ¨ ¨ bFrUs A
´pLn, vnq,

and the isomorphism preserves the homological gradings. Note that all the linking num-
bers of a split link vanish, so HpLq “ Zn, and the projections to sublattices do not require
any shifts as in (3.6). �

Proposition 3.12. For a sublink L1 “ Li1 Y . . . Y Lir1 , one has

(3.13) HLpvq “ HL1pπL1pvqq if vi " 0 for i R ti1 . . . , iru.

Proof. Follows from (3.6). �

3.3. The H-function for L-space links. By Theorem 4.7 (see also [23]), a link is an
L-space link if and only if H˚pA´pvqq » FrU s for all v P HpLq. It turns out that for
L-space links the H-function is determined by the Alexander polynomial.
Throughout Section 3.3 we will assume that L is an L-space link. Since H˚pA´pvqq »

FrU s for all v P HpLq, by (3.2) and by the inclusion-exclusion formula one can write:

(3.14) χpHFL´pL,vqq “
ÿ

BĂt1,...,nu

p´1q|B|´1HLpv ´ eBq,

where eB denotes the characteristic vector of the subset B Ă t1, . . . , nu; see [13, formula
(3.3)]. For n “ 1 equation (3.14) has the form χL,v “ Hpv ´ 1q ´ Hpvq, so Hpvq can be
easily reconstructed from the Alexander polynomial: HLpvq “

ř
uěv`1 χL,u. For n ą 1,

one can also show that equation (3.14) together with the boundary conditions (3.13) has
a unique solution, which is given by the following theorem:

Theorem 3.15 ([14]). The H-function of an L-space link is determined by the Alexander
polynomials of its sublinks as following:

(3.16) HLpv1, . . . , vnq “
ÿ

L1ĎL

p´1q#L1´1
ÿ

u1PHpL1q
u1

ľπ
L1 pv`1q

χpHFL´pL1,u1qq,

where 1 “ p1, . . . , 1q.
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There is a formula for the H-function in terms of the multivariable Alexander polyno-
mial. Consider the generating function:

(3.17) Hpt1, . . . , tnq :“
ÿ

v1,...,vnPZn

tv11 . . . tvnn Hpv1, . . . , vnq.

Note that H is a Laurent series in t
´1{2
i : by (3.13) Hpvq vanishes if vi " 0 for some i, but

it does not vanish for v Î 0. Then [14, Theorem 3.4.3] implies

(3.18) Hpt1, . . . , tnq “
nź

i“1

1

1 ´ t´1
i

ÿ

L1ĂL

p´1q#L1´1 r∆L1ptj1 , . . . , tj#L1 q
ź

j : LjĂL1

t
`pLqj´`pL1qj´1
j ,

where r∆ is defined by (3.3).
As above, let Di denote the maximal ti-degree of the Alexander polynomial of L,

D “ pD1, . . . , Dnq.

Lemma 3.19. Assume that lkpLi, Ljq ‰ 0, then Hpvq “ Hpminpv,Dqq.

Proof. By Theorem 2.3 the degree of the Alexander polynomial of a sublink L1 “ LI in
variable ti is less than or equal to Di ´ 1

2

ř
jRI lkpLi, Ljq “ πL1pDqi. Therefore if vi ą Di

then
πL1pvqi ą πL1pDqi ě degti ∆pL1q,

and if u ľ πL1pvq ` 1 then χpHFL´pL1,u1qq “ 0. Therefore the summands contributing
to (3.16) nontrivially correspond to subsets I such that vi ď Di for i P I. Applying (3.16)
to minpv,Dq, one gets exactly the same summands. �

Corollary 3.20. For v ľ D one has Hpvq “ 0.

Lemma 3.21. Let D be as above, then for m ľ 2D ` 2 the surgery S3
mpLq yields an

L-space.

Proof. Consider the parallelepiped P in Zn with opposite corners at D and ´D. To com-
pute the Heegaard Floer homology of S3

mpLq, we use the surgery complex of Manolescu-
Ozsváth [24]. Every Spinc structure on S3

mpLq corresponds to an equivalence class of Zn

modulo the lattice generated by the columns of Λpmq. For m ľ 2D this equivalence class
has at most one point in P , and the whole surgery complex can be contracted to a single
copy of FrU s supported at that point. For the precise description of the “truncation”
procedure, we refer to [24, Section 8.3, Case I], where the constant b in [24, Lemma 8.8]
can be chosen equal to D by Lemma 3.19. �

The following symmetry property of H, which generalizes the symmetry in the case of
knots [26, 18], is proved in [23, Lemma 5.5].

Proposition 3.22. For an L-space link one has

(3.23) Hp´vq “ Hpvq ` |v|

The symmetry (3.23) and the projection formula (3.13) imply a useful “dual projection
formula”.

Corollary 3.24. Let L be an L-space link, consider a set I “ ti1, . . . , iru Ă t1, . . . , nu
and the sublink LI . Then, as long as vj ! 0 for all j R I, the following holds:

(3.25) HLpvq “ HLI
pπLI

pvq ` 2`pLqI ´ 2`pLIqq ´
ÿ

jRI

vj ` |`pLqI ´ `pLIq|.
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Proof. For v P HpLq set vI “ pvi1 , . . . , virq. By (3.23), HLpvq “ HLp´vq ´ |v|. Since
´vj " 0 for j R I, the projection formula implies

HLp´vq “ HLI
pπLI

p´vqq “ HLI
p´vI ´ `pLqI ` `pLIqq,

and (3.23) for LI implies

HLI
p´vI ´ `pLqI ` `pLIqq “ HLI

pvI ` `pLqI ´ `pLIqq ` |vI ` `pLqI ´ `pLIq| “

HLI
pπLI

pvq ` 2`pLqI ´ 2`pLIqq ` |vI | ` |`pLqI ´ `pLIq|.

�

3.4. The J-function. The J-function of a link L is essentially the same object as the
H-function, only it differs from H by a shift in variables. This shift makes J a function
on Zn instead of HpLq. It is therefore more convenient to study changes of the J-function
under some changes (like crossing changes) of the link L: these changes might affect the

lattice HpLq. Yet another variant is the rJ-function, which turns out to be useful for
bounding the splitting number of L-space links; see Section 7 for details.

Definition 3.26. The J-function of a link L with n components is a function J : Zn Ñ Z

given by

Jpmq “ Hpm ` `q, m P Zn.

With this definition the projection formula (3.13) takes a particularly simple form.

Lemma 3.27. Let m P Zn and I Ă t1, . . . , nu. Consider a sublink LI of L and suppose
that mi " 0 for i R I. Then we have

JLpmq “ JLI
pmIq.

Proof. Indeed, by (3.5) and (3.13):

JLpmq “ HLpm ` `q “ HLI
pmI ` `pLqI ´ `pLqI ` `pLIqq “ JLI

pmIq.

�

In particular, the J-function of a component Li can be reconstructed from the values
of the J-function for L evaluated on vectors whose all components but the i-th one are
sufficiently large.

Definition 3.28. For m “ pm1, . . . ,mnq P Zn define

rJpmq “ Jpmq ´
nÿ

i“1

JLi
pmiq.

The main feature of the rJ-function is the following corollary to Proposition 3.11.

Corollary 3.29. If L is a split link, then rJ “ 0.

For general L-space links the rJ-function can be calculated from the Alexander polyno-
mial. We have the following result.

Proposition 3.30. Define the generating function

rJpt1, . . . , tnq “
ÿ

m1,...,mn

tm1

1 . . . tmn

n
rJpmq.
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Then rJ is a Laurent series in t
´1{2
i and the following equation holds:

(3.31) rJpt1, . . . , tnq “
nź

i“1

1

1 ´ t´1
i

ÿ

L1ĂL

#L1ą1

p´1q#L1´1∆L1ptj1 , . . . , tj#L1 q
ź

j : LjĂL1

t
´`pL1qj´ 1

2

j .

Proof. This is a consequence of previous definitions. The formula for the generating

function for Jpmq immediately follows from (3.18). To get a generating function for rJ
we need to subtract the sum of J-functions for components L1, . . . , Ln of L. We apply

(3.18) again to calculate this contribution, and remark that for r ą 1 one has r∆L1 “ś
t
1{2
j ¨ ∆1

L
. �

Equation (3.31) takes a particularly simple form for a two-component link.

Corollary 3.32. For a link with two components

rJpt1, t2q “ ´
pt1t2q

´ lkpL1,L2q{2∆pt1, t2q´
t
1{2
1 ´ t

´1{2
1

¯ ´
t
1{2
2 ´ t

´1{2
2

¯ .

3.5. Examples.

Example 3.33. Consider the Whitehead link. By [23, Example 3.1] it is an L-space link.
The linking number vanishes. The symmetrized Alexander polynomial equals ∆pt1, t2q “

´pt
1{2
1 ´ t

´1{2
1 qpt

1{2
2 ´ t

´1{2
2 q (see Example 2.1), so the nontrivial values of χpHFL´pvqq are

χpHFL´p0, 0qq “ ´1, χpHFL´p1, 0qq “ χpHFL´p0, 1qq “ 1, χpHFL´p1, 1qq “ ´1.

Furthermore, both components are unknots, so χpHFL´pvqq “ 1 for v “ pv, 0q or v “
p0, vq with v ď 0, and χpHFL´pvqq “ 0 for v “ pv, 0q or v “ p0, vq for v ą 0. The
H-function of the components equals

Hkpvkq “
ÿ

jěvk`1

χpHFL´pjqq “ maxp´vk, 0q

for k “ 1, 2. By (3.16) we get

Hpv1, v2q “ H1pv1q ` H2pv2q ´
ÿ

uľv`1

χpHFL´puqq “

“

#
H1pv1q ` H2pv2q ` 1 “ 1, if v “ p0, 0q

H1pv1q ` H2pv2q, otherwise.

Example 3.34. Consider the Borromean link. By [23, Example 3.1] it is an L-space
link. The linking number between components vanishes, so do all bivariate Alexander
polynomials of sublinks. The trivariate symmetrized Alexander polynomial equals

∆pt1, t2, t3q “ pt
1{2
1 ´ t

´1{2
1 qpt

1{2
2 ´ t

´1{2
2 qpt

1{2
3 ´ t

´1{2
3 q,

so

χpHFL´pL,vqq “

$
’&
’%

1 if v “ p1, 1, 1q, p1, 0, 0q, p0, 0, 1q, p0, 1, 0q

´1 if v “ p0, 1, 1q, p1, 1, 0q, p1, 0, 1q, p0, 0, 0q

0 otherwise
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By (3.16), we get

Hpv1, v2, v3q “
3ÿ

i“1

Hipviq `
ÿ

uľv`1

χpHFL´puqq “

$
’’&
’’%

3ř
i“1

Hipviq ` 1 “ 1 if v “ p0, 0, 0q

3ř
i“1

Hipviq otherwise.

4. The H-function and d-invariants

4.1. Ozsváth–Szabó d-invariants. Let Y be a rational homology three-sphere equipped
with a Spinc structure s. The d-invariant of pY, sq is the maximal grading of an element
x P HF´pY, sq, which maps non-trivially into HF8pY, sq. It is a rational number. The
usefulness of the d-invariant comes from two facts: firstly it behaves well under a negative
definite Spinc cobordism, secondly it can be calculated from the knot (or link) Floer chain
complex; we will describe this in detail in Section 4.2 below. As for the behavior under
cobordism, suppose that pY1, s1q and pY2, s2q are rational homology 3-spheres and W is
a smooth 4-manifold with boundary Y2 \ ´Y1 endowed with a Spinc structure t which
restricts to s2 on Y2 and to s1 on Y1, put differently, pW, tq is a Spinc cobordism between
pY1, s1q and pY2, s2q. The following result is proved in [28].

Theorem 4.1. There exists a chain map FpW,tq : CF
8pY1, s1q Ñ CF8pY2, s2q, commuting

with multiplication by U and shifting the absolute grading by

(4.2) degFpW,tq “
1

4

`
c21ptq ´ 3σpW q ´ 2χpW q

˘
,

The chain map descends to maps HF8pY1, s1q Ñ HF8pY2, s2q, HF
´pY1, s1q Ñ HF´pY2, s2q

and HF`pY1, s1q Ñ HF`pY2, s2q (which will still be denoted by FpW,tq). If additionally W
is negative definite, that is, the intersection form on H2pW ;Qq is negative definite, then
FpW,tq is an isomorphism on HF8 and

(4.3) dpY2, s2q ě degFpW,tq ` dpY1, s1q.

A standard way of interpreting c21ptq, providedH1pBW ;Qq “ 0, is to use an isomorphism
H2pW ;Qq – H2pW, BW ;Qq – H2pW ;Qq (the first part is Poincaré duality, the second
is the long exact sequence of pair) to identify c1ptq with an element in H2pW ;Qq. Then
c21ptq is a self–intersection of an element in H2pW ;Qq, so it is a rational number.

Remark 4.4. It follows from the definition that the degree is additive under the composi-
tion of Spinc cobordisms.

The degree formula (4.2) will play an important role in this article. We will need the
following fact, which is well known to the experts.

Proposition 4.5. The degree degFpW,tq is preserved under negative blow-ups. Namely,
suppose π : W 1 Ñ W is a blow-down map and E is the exceptional divisor. Let t1 be the
Spinc structure of W 1 whose first Chern class is π˚c1ptq ˘ PDrEs, where PD stays for
Poincaré dual. Then

degFpW 1,t1q “ degFpW,tq.

On the other hand, if π : W 1 Ñ W is a blow-down of a p`1q-sphere, then

degFpW 1,t1q “ degFpW,tq ´ 1.

Proof. Let s “ rEs2, so s “ `1 for the positive blow-up and s “ ´1 for the negative one.
We have that χpW 1q “ χpW q ` 1, c21pt1q “ c21ptq ` s and σpW 1q “ σpW q ` s. The change
of the degree is 1

4
ps ´ 3s ´ 2q “ ´1

2
ps ` 1q. �
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4.2. Large surgery theorem. The subcomplexes A´pL,vq are naturally related to the
surgeries of the 3-sphere on L. Choose a framing vector q “ pq1, . . . , qnq such that
q1, . . . , qn are sufficiently large. Let Λ be the linking matrix of L, that is Λij “ lkpLi, Ljq
if i ‰ j and Λii “ qi.

Form a four-manifold Xq by adding n two-handles to a ball B4: a handle with framing
qi is attached along the component Li. The boundary BXq, denoted Yq, is the surgery on
L with framing q. Let Fi be the surface obtained by gluing a core of the i-th handle to a
Seifert surface for Li. By construction the classes rF1s, . . . , rFns freely generate H2pXqq.
With this choice of generators, we identify H2pXqq with Zn.
Suppose det Λ ‰ 0. In this case Yq is a rational homology sphere. In [24, Section 8.5]

there is given an enumeration of Spinc structures on Yq, which we are now going to recall.
Fix ζ “ pζ1, . . . , ζnq, a sufficiently small real vector whose entries are linearly indepen-

dent over Q. Then let P pΛq be the hyper-parallelepiped with vertices

ζ `
1

2
p˘Λ1 ˘ Λ2˘, . . . ,˘Λnq,

where all combinations of the signs are used and Λ1, . . . ,Λn are column vectors of the
matrix Λ. Then P pΛq is the fundamental domain for Rn{HpΛq, where HpΛq is the lattice
generated by the vectors Λ1, . . . ,Λn. Denote

PHpΛq “ P pΛq X HpLq,

where HpLq is the lattice for L as described in Definition 3.1 above. The set PHpΛq might
depend on the choice of ζ, but its cardinality is independent of ζ; see [24, Section 8.5] for
more details.

Proposition 4.6 (see [24, Equation (125)]). For any v P PHpΛq there exists a unique
Spinc structure sv on Yq which extends to a Spinc structure tv on Xq with c1ptvq “
2v ´ pΛ1 ` . . . ` Λmq.

Theorem 4.7 (Large Surgery Theorem, see [24, Section 10.1]). Assume that q Ï 0. For
any v P PHpΛq, the homology of A´pL;vq is isomorphic to the Heegaard Floer homology
of S3

qpLq with Spinc structure sv. More precisely, we have an isomorphism over FrU s:

(4.8) A´pL,vq » CF´pS3
qpLq, svq,

where U acts as U1 on the left hand side. In particular, the actions of all the Ui on
A´pL,vq are homotopic to each other and to the action of U .

It is important to note that the isomorphism (4.8) shifts the grading. The grading shift
can be calculated explicitly from the linking matrix Λ and the vector v. We present a
more geometric way, which will suit best our applications.
Remove a small ball from Xq and call the resulting manifold Uq. This is a cobordism

between S3 and Yq. Let U
1
q “ ´Uq. The Spin

c structure tv on U 1
q gives a Spinc cobordism

between pYq, svq and S3 (equipped with the unique Spinc structure), so it induces a map
FpU 1

q
,tvq between Heegaard Floer homologies of pYq, svq and S3.

Proposition 4.9 (see [24, Section 10]). The isomorphism (4.8) shifts the degree by
´ degFpU 1

q
,tvq.

As a corollary we can give a formula for d-invariants of large surgery on links.

Theorem 4.10. For v P PHpΛq, the d-invariant of a surgery on L is given by

dpS3
qpLq, svq “ ´ degFpU 1

q
,tvq ´ 2Hpvq.
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5. PSICs and four–manifolds

A positively self-intersecting cobordism (later shortened to: a PSIC) is a generalization
of the notion of a positively self-intersecting annulus used in [5] as a way to translate
the questions about the unknotting number of knots into questions about cobordisms of
three-manifolds, where d-invariants can be used. The notion of a PSIC will play the same
role for links.

5.1. PSICs in various guises. Let L1 and L2 be two links. Denote by L11, . . . , L1n1

and L21, . . . , L2n2
the components of L1 and L2, respectively. A positively self–intersecting

cobordism (in short: PSIC) from L1 to L2 is a surface A, smoothly immersed into S3ˆr1, 2s
such that BA “ L2\´L1 and A is topologically a union of immersed punctured disks. We
require that A has ordinary positive double points as singularities. Here and afterwards,
whenever we write L1 or L2 it should be understood that L1 Ă S3ˆt1u and L2 Ă S3ˆt2u.
The same applies for the components of L1 and L2.

If A is a PSIC, we denote by A1, . . . , An its components. Each of the Ai is an immersed
surface and A “ A1 Y . . . Y An. We define ηij “ #pAi X Ajq for i, j “ 1, . . . , n and i ‰ j;
for i “ j we set ηii to be the number of double points of Ai. The total number of double
points of A is

p “
ÿ

iďj

ηij.

Furthermore, set

(5.1) a “ pa1, . . . , anq, where ai “
ÿ

j‰i

ηij.

The following specifications of the definition of a PSIC will be used in the present
article:

‚ an annular PSIC, shortly APSIC, is a PSIC such that each of the Ai is an annulus
such that BAi “ L2i \ ´L1i. For an APSIC n “ n2 “ n1. An exemplary APSIC
is presented in Figure 1. An APIC is a concordance (in the standard sense) with
positive self-intersections allowed. The notion of APSIC will be most important
in the applications.

‚ a sprouting PSIC, shortly SPSIC, is a PSIC such that for every i “ 1, . . . , n, the
intersection Ai XS3 ˆ t1u “ L1i. For a SPSIC we have n2 ě n1 “ n. Furthermore,
for any i “ 1, . . . , n we define the subset

(5.2) Θi “ tj “ 1, . . . , n : L2j Ă BAiu.

‚ an elementary sprouting PSIC, shortly ESPSIC, is a SPSIC such that A is smooth
and there exists k P t1, . . . , nu such that for i ‰ k we have Θi “ tiu and Θk “
tk, n2u. For an EPSIC we have n2 ´ 1 “ n1 “ n.

Let us introduce some useful terminology.

Definition 5.3. A double point z of A is called multicolored respectively monochromatic,
if z belongs to two components of A (respectively, to one component of A).

For future reference we will need two simple facts. For simplicity, suppose A is an
APSIC (analogous statement can be proved for general SPSIC, but we do not need it).
Define a shorthand

lkij “ lkpLki, Lkjq for i ‰ j, k “ 1, 2.
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A1

A1

A2

A2

S3 ˆ r0, 1s

L12

L11

Figure 1. An APSIC between two two-component links. Two crossings
are marked: one is a double point on an annulus, another one is a crossing
between two annuli.

D1

D2

E1

E2

Z

L12

L11

Figure 2. Step 2 of the construction in Section 5.2. The boundary of Z
is the disjoint union of S3 on the left and S3

q2
pL2q on the right.

As all the self-intersections of A are positive and a positive self-intersection between
different link components increases the linking number by 1, we have that for i ‰ j:

(5.4) l2ij “ l1ij ` ηij.

Equation (5.4) summed up over j ‰ i yields the following result.

Lemma 5.5. Suppose that A is an APSIC and let `1 and `2 be the linking vectors of L1

and L2 respectively. Then

`2 ´ `1 “
1

2
a.

5.2. Topological constructions involving a PSIC. In the following we generalize the
construction of [5] that based on a version of a PSIC for knots and as an output produced
a cobordism between surgeries of the two knots involved. We begin with a rather general
construction, later on we will specify its three variants. The construction is done in four
steps.

Step 1. Begin with A Ă S3 ˆ r1, 2s and blow up all the double points of A (we do not
specify yet, whether we perform positive or negative blow-ups). The exceptional

divisors are denoted by E1, . . . , Ep. For a component Aj of A, let rAj be its strict
transform, that is, the closure in the blow-up of the inverse image of AjzSing A.
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B0

B

N

Z

Figure 3. The final step of constructing the cobordisms W01, W12 and
W02. The shaded part is W01. The unfilled part is W12.

Set

(5.6) dij :“ Ai ¨ Ej and rdij :“
Ai ¨ Ej

Ej ¨ Ej

.

Step 2. Fix a framing vector q2 “ pq21, . . . , q2n2
q P Zn2 , where n2 is the number of compo-

nents of the link L2. This turns L2 into a framed link and let Λ2 be its framing
matrix. Attach to the p-fold blow-up of S3 ˆ r1, 2s constructed in Step 1 n2 two-
handles along L2 with framings given by q2. The resulting manifold is called Z.
Its boundary is Y2\´S3ˆt1u, where Y2 “ S3

q2
pL2q is a surgery on L2; see Figure 2.

Let C1, . . . , Cn2
be the cores of the handles attached. For each component L2i of

L2 choose a Seifert surface Σ2i Ă S3 ˆ t2u. Let F2i “ Σ2i YCi. Then F21, . . . , F2n2

are closed connected surfaces.
Step 3. Form the union D “ C1 Y . . . Y Cn2

Y rA1 Y . . . Y rAn. Denote by D1, . . . , Dn the
connected components of D as in Figure 2. Let N be a tubular neighbourhood
of D in Z; see Figure 3. Set W12 “ ZzN and let Y1 “ BW zY2. Then W12 is a
cobordism between Y1 and Y2.

Step 4. Take again Z and glue to it a four-ball B along S3 ˆ t1u Ă BZ. Let Xq2
be the

resulting manifold. Finally pick a small ball B0 Ă B and drill it out from Xq2
. Set

W02 “ Xq2
zB0 and W01 “ pBzB0q Y N , so that W01 Y W12 “ W02. Let Y0 “ S3.

Then W01 is a cobordism between Y0 and Y1 and W02 is a cobordism between Y0
and Y2. See Figure 3.

We have the following immediate observation.

Lemma 5.7.

(a) The cobordism W02 is a p-fold blow-up of the cobordism Uq2
pL2q defined before

Proposition 4.9.
(b) Suppose A is a SPSIC. Then D1, . . . , Dn are disks and n “ n1 is the number

of components of L1. Furthermore Y1 is a surgery on L1 with a framing vector
q1 “ pq11, . . . , q1n1

q depending on q2 and on the signs of blow-ups (we give a precise
formula for q1 below). The cobordism W01 is identified with Uq1

pL1q.

From now on we will assume that A is a SPSIC.
Choose Seifert surfaces for L11, . . . , L1n1

and call them Σ11, . . . ,Σ1n1
. Let F11, . . . , F1n1

be closed surfaces obtained by capping the disks D1, . . . , Dn1
with Σ11, . . . ,Σ1n1

. The
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classes rF11s, . . . , rF1n1
s generate H2pW01;Zq. The map W01 ãÑ W02 induces a monomor-

phism on second homologies. We will not distinguish between the class rF1is P H2pW01;Zq
and its image in H2pW02;Zq.

Lemma 5.8. In H2pW02,Zq we have the following relation.

rF1is “
ÿ

jPΘi

rF2js `
pÿ

k“1

rdikrEks.

Proof. The class of rF1is is the sum of a class
ř

jPΘi
rF2js and the class of a closed immersed

surface

Si “ Σ1i Y rAi Y
ÿ

jPΘi

Σ2j.

The surfaces Si will usually be only immersed, because the Seifert surfaces Σ21, . . . ,Σ2n2

can intersect (we may assume that their intersection is transverse, but this is irrelevant
for the present proof).
Notice that Si can be regarded as a strict transform of a closed surface in S3 ˆ r0, 1s,

formed by capping the component Ai with the Seifert surfaces of corresponding links. This
surface in S3 ˆ r0, 1s is homologically trivial, as H2pS

3 ˆ r0, 1s;Zq “ 0. Therefore, the
class of Si in H2pW02;Zq is a linear combination of classes generated by the exceptional
divisors. The coefficients in this linear combination can be calculated by intersecting
Si with divisors E1, . . . , Ep. More concretely rSis “

ř
Si¨Ek

Ek¨Ek
rEks. But geometrically

Si ¨ Ek “ Ai ¨ Ek “ dik. The lemma follows. �

Lemma 5.9. If A is a SPSIC and all the blow-ups are of fixed sign (either all positive or
all negative), then q1 and q2 are related by the following formula.

If all the blow-ups are negative

q1i “
ÿ

jPΘi

q2j ´ 4ηii ´ ai.(5.10)

If all the blow-ups are positive

q1i “
ÿ

jPΘi

q2j ` ai.(5.11)

Proof. The coefficients q11, . . . , q1n1
are self-intersections of disks D1, . . . , Dn1

. Here, by
the word ’self-intersection’ we mean the following: push slightly Di to obtain another
disk, called D1

i, intersecting Di transversally and such that BD1
i Ă S3 ˆ t1u is disjoint

from BDi and the linking number lkpBDi, BD
1
iq calculated on S3 ˆ t1u is equal to zero.

Then the self-intersection of Di is defined as the number of intersection points (counted
with signs) of Di and D

1
i. In other words, the self-intersection of Di is equal to the self-

intersection of rF1is. On the other hand, the framing q2j is interpreted in the same way
as the self-intersection of rF2js.

As the classes rF2js and rEks are orthogonal, by Lemma 5.8 the difference of self-
intersections ˜

ÿ

jPΘi

rF2js

¸2

´ rF1is
2
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is equal to ˜
pÿ

k“1

rdikrEks

¸2

“
pÿ

k“1

rd2ikrEks2.

Now we have two cases. First suppose that all the blow-ups are negative. Then rEks2 “

´1 for all k. Moreover, rd2ik “ 0, 1 or 4 is the square of the multiplicity of the double point

zk if zk P Ai and rdik “ 0 if zk R Ai. The sum
ř rd2ik can be calculated using the fact that

ai is equal to the number of multicolored double points on Ai and ηii is the number of
monochromatic double points on Ai. This proves (5.10).
The situation with positive blow-ups is analogous. There is one difference, though. If

an exceptional divisor Ek is a blow-up of a monochromatic point on Ai, then dik “ 0 (and

not ˘2). This corresponds to the fact that in the blow-up the annulus ĂAi will intersect
the exceptional divisor Ek in two points with opposite orientations. �

5.3. Homological properties ofW12. We will study some homological properties ofW02

and W12. They are synthesized in the following lemma, which is a direct generalization
of results in [5, Section 2.2].

Lemma 5.12. Suppose A is sprouting and q2 has all coordinates sufficiently large.

‚ The homology of H2pW12;Zq is the coimage of the map H2pZ;Zq Ñ Zn1 which
takes x to the vector px ¨ D1, . . . , x ¨ Dn1

q.
‚ If all the blow-ups are positive, the manifold W12 has positive definite intersection
form on H2. If all the blow-ups are negative definite and A is an APSIC, then
W12 has negative definite intersection form.

Proof. The manifold W12 is built from Z by removing tubular neighborhoods of disks. As
Z arises by gluing n2 two-handles to the p-fold blow-up of S3 ˆ r0, 1s and the framing
matrix is nondegenerate, we have H1pZ;Qq “ 0, H2pZ;Qq – Qp`n2 and H3pZ;Qq “ 0,
furthermore H3pZ;Zq “ 0.

Consider the long exact sequence of homology (with Z coefficients) of the pair pZ,W12q.
By excision we have H˚pZ,W12q – H˚pN, B`Nq. Here N is viewed as a D2 bundle
over D and N` is the associated S1 bundle. Using Thom isomorphism we obtain that
H3pN, B`Nq “ 0 and that H2pN, B`Nq – Zn1 is generated by classes αj :“ rptj ˆD2, tj ˆ
S1qs P H2pN, B`N ;Zq, j “ 1, . . . , n1, where t1, . . . , tn1

are some points in D1, . . . , Dn1

respectively.
The latter implies that H2pW12;Zq injects into H2pZ;Zq. The map

κ : H2pZ;Zq Ñ H2pZ,W12;Zq

can be explicitly described. Namely, for x P H2pZ;Zq we choose its representative as a
union of cycles each intersecting D transversally. Then

κpxq “ px ¨ D1qα1 ` px ¨ D2qα2 ` . . . ` px ¨ Dn1
qαn1

.

This proves the first part of the lemma.
The first part can also be rephrased in another way. As each class x P H2pZ;Zq can be

represented by a surface disjoint from S3 ˆt1u, the geometric intersection number px ¨Djq
is equal to x ¨ rF1js. With this description it follows that H2pW12;Zq is an orthogonal
(with respect to the intersection form) complement to a submodule of H2pZ;Zq generated
by rF11s, . . . , rF1n1

s. The same applies for homologies with Q coefficients. Therefore,
the signature of the intersection form on W12 can be calculated as the difference of the
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signature of the intersection form on Z and the signature of the intersection form on
rF11s, . . . , rF1n1

s. The proof of the second part follows now by a case by case analysis.
If all the blow-ups are positive, then Z has a positive definite intersection form, hence

it restricts to a positive definite intersection form on W12. If A is an APSIC and all
the blow-ups are negative, then one readily computes that b`

2 pZq “ n and b´
2 pZq “ p.

Moreover, the intersection form on an n-dimensional subspace spanned by rF11s, . . . , rF1ns
is positive definite. So its orthogonal complement is negative definite.

�

6. Inequalities for the H-function under the crossing change

We will now assume that links L1 and L2 are connected by a PSIC. The inequality for
d-invariants (4.3) will translate into the inequality between H-functions, or, equivalently,
J-functions.

We are going to prove the following two results (we use the notation from Section 5.1).

Theorem 6.1. Let A be an APSIC from L1 to L2. Let J1 and J2 be the J-functions as
in Definition 3.26. Set r “ pη11, . . . , ηnnq. Choose a presentation of ηil for i ă l as the
sum

ηil “ η1il ` η2il,

where η1il, η
2
il are non-negative integers. Set

ki “
ÿ

jăi

η2ji `
ÿ

jąi

η1ij.

Let k “ pk1, . . . , knq. Then for any m P Zn we have

(6.2) J1pm ` kq ď J2pmq ď J1pm ´ rq

A counterpart of this result for an EPSIC is the following.

Theorem 6.3. Suppose A is an EPSIC. Choose m2 P Zn2 and let m1 P Zn1 be given by
m1i “ m2i if i ‰ k and m1k “ m2k ` m2,n2

. Then

(6.4) J1pm1q ď J2pm2q.

Theorem 6.1 is proved in Sections 6.1 and 6.2. Theorem 6.3 is proved in Section 6.3. In
Section 6.4 we prove Theorem 6.20, which is a straightforward, but important, corollary
of Theorem 6.1.

6.1. Proof of Theorem 6.1. Part 1. In this section we prove the part J2pmq ď
J1pm ´ rq.

Construct W02 by making negative blow-ups of the APSIC; see Section 5.2. Choose
m P Zn. Pick q2 sufficiently large (we specify below the precise meaning of sufficiently
large), but now we point out that q2 is chosen after m. According to Lemma 5.9 define
q1 “ q2 ´ 4r ´ a.

Set v2 “ m´`2, where `2 is the linking vector for L2. Let sv2
be the Spinc structure on

Y2. It extends to a Spinc structure tv2
on Uq2

pL2q (see Section 4.2 for definition of UqpLq).
Recall that W02 is identified with a p-fold blow-up of Uq2

pL2q. Let π : W02 Ñ Uq2
pL2q be

the blow-down map. Define the Spinc structure t
1
v2

on W02 as the Spinc structure, whose
first Chern class is equal to

π˚c1ptv2
q ` PDrE1s ` . . . ` PDrEns.
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Lemma 6.5. The Spinc structure t
1
v2

on W02 restricts to the Spinc structure sv1
on Y1,

where

(6.6) v1 “ v2 ´ r ´
1

2
a.

Proof of Lemma 6.5. By construction of W01 and by Lemma 5.9 we have W01 “ Uq1
pL1q.

The Spinc structure sv1
on Y1 extends to the Spinc structure tv1

on W01. Our aim is to
show that with the choice of v1 as in the statement of the lemma, c1ptv1

q and c1ptv1
2
q

evaluate in the same way on the classes rF11s, . . . , rF1ns.
By definition of t1v2

we have

xc1pt
1
v2

q, rF2isy “ 2v2,i ´ pΛ21 ` . . . ` Λ2n2
qi

xc1pt
1
v2

q, rEjsy “ Ej ¨ Ej “ ´1,
(6.7)

where Λ21, . . . ,Λ2n2
are column vectors of the framing matrix Λ2 for L2. The subscript i in

the first formula means that we take the i-th coordinate of the vector in the parentheses.
Combining (6.7) with Lemma 5.8 we obtain

(6.8) xc1pt1v2
q, rF1isy “ 2v2,i ´ pΛ21 ` . . . ` Λ2nqi `

pÿ

j“1

dij.

The framing matrices Λ2 and Λ1 can be compared using (5.4) and (5.10).

pΛ21 ` . . . ` Λ2nqi ´ pΛ11 ` . . . ` Λ1nqi
(5.4)
“

ÿ

j‰i

ηij ` q2i ´ q1i
(5.10)

“ 4ηii ` 2ai.

Notice that dij “ 1 for all multicolored double points that lie on Ai and dij “ 2 for all
monochromatic double points on Ai. Therefore (6.8) implies that

xc1pt
1
v2

q, rF1isy “ 2v2,i ´ pΛ21 ` . . . ` Λ2nqi ` ai ` 2ηii.

The two above equations yield

xc1pt
1
v2

q, rF1isy “ 2v2,i ´ pΛ11 ` . . . ` Λ1nqi ´ ai ´ 2ηii.

On the other hand, by Proposition 4.6

(6.9) xc1ptv1
q, rF1isy “ 2v1,i ´ pΛ11 ` . . . ` Λ1nqi .

Combining the two above formulae we conclude that c1ptv1
q and c1pt

1
v2

q evaluate to the
same number on each of the rF1is. It follows that c1ptv1

q “ c1ptv1
2
q in H2pW01;Zq. By

Proposition 4.6 (see also [24, Section 10.1]) this implies that tv1
“ tv1

2
. �

We resume the proof of the inequality J2pmq ď J1pm´rq. If q2 is large, then the state-
ment of Theorem 4.10 holds for q2–surgery on L2 and for q1–surgery on L1. Furthermore,
we require that q2 and q1 are large enough so that v2 P PHpΛ2q and v1 P PHpΛ1q.

Denote for simplicity t “ t
1
v2
. By Lemma 6.5, pW12, tq is a Spinc cobordism between

pY1, sv1
q and pY2, sv2

q.
By Lemma 5.12 W12 is negative definite. By (4.2) we have:

(6.10) dpY2, sv2
q ě degFpW12,tq ` dpY1, sv2

q.

By Proposition 4.5 combined with Theorem 4.10:

dpY2, sv2
q “ ´ degF p´W02, tq ´ 2J2pv2 ´ `2q ´ p

dpY1, sv1
q “ ´ degF p´W01, tq ´ 2J1pv1 ´ `1q.

(6.11)
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Notice that the first equation contains the term ´p. This follows from the fact that W02

is not Uq2
pL2q, but it is a negative blow-up of Uq2

pL2q with p blow-ups. If we reverse
the orientation, the negative blow-up becomes a positive blow-up, so degFp´W02,tq “
degFpU 1

q2
pL2q,tq ´ p by Proposition 4.5.

Substituting (6.11) into (6.10) we obtain:

(6.12) ´ degFp´W02,tq ` degFp´W01,tq ´ degFpW12,tq ´ p ` J1pv1 ´ `1q ě J2pv2 ´ `2q.

Let us look at the expression

∆ :“ degFp´W02,tq ` degFpW12,tq ´ degFp´W01,tq.

Denote by c02, c12 and c01 the evaluations of c21ptq on W02, W12 and W01 respectively.
Likewise denote by σ02, σ12 and σ01 the corresponding signatures and χ02, χ12, χ01 the
Euler characteristic. We have by (4.2):

4 degFp´W02,tq “ ´c02 ` 3σ02 ´ 2χ02

4 degFpW12,tq “ c12 ´ 3σ12 ´ 2χ12

´4 degFp´W01,tq “ c01 ´ 3σ01 ` 2χ01.

Notice that in the above expression we switched signs of σ and c according to the orien-
tation. Notice also that σ02 “ σ01 ` σ12 and χ02 “ χ01 ` χ12 (additivity of the signature
and of the Euler characteristic) and c02 “ c01 ` c12 (functoriality of the Chern class).
Summing up the three equations we obtain

4∆ “ 4χ12 “ ´4χpW12q.

The Euler characteristic of W12 can be quickly calculated. Recall that in Section 5.2
the manifold W12 was constructed by taking S3 ˆ r0, 1s, blowing up p times, gluing n
two-handles and drilling out n disks. The original S3 ˆ r0, 1s has Euler characteristic 0.
Each blow-up increases it by 1. A two-handle attachment increases it by 1 and drilling
out a disk decreases it by 1. Finally χpW12q “ p so ∆ “ ´p. Plugging the value of ∆ into
(6.12) we obtain.

J1pv1 ´ `1q ě J2pv2 ´ `2q.

By definition, v2 ´ `2 “ m. The last step is to calculate v1 ´ `1. We use Lemma 6.5.
By Lemma 5.5, equation (6.6) can be rewritten as

v1 “ v2 ´ k ´ p`2 ´ `1q.

This amounts to saying that v1 ´ `1 “ m ´ r, so J1pm ´ rq ě J2pmq.

6.2. Proof of Theorem 6.1. Part 2. We are going to prove the part J1pm`kq ď J2pmq.
The proof is analogous to the proof of J2pmq ď J1pm ´ rq, although there are some

differences. We construct W02 by making all blow-ups positive. Choose m P Zn and let
q2 be sufficiently large.

We begin with some combinatorics. Recall that the exceptional divisors of the blow-up
are denoted E1, . . . , Ep. We choose orientation of the divisors by requiring that if Ej is
the exceptional divisor of the blow-up of the point of intersection AiXAi1 with i ă i1, then
Ej X Ai “ 1 and Ej X Ai1 “ ´1. The orientation of the exceptional divisors of blow-ups
of monochromatic double points is irrelevant.

Choose now δ1, . . . , δp P t´1,`1u in the following way. If Ej is the exceptional divisor
of the blow-up of a monochromatic double point, then δj “ 1. Let now i and i1 be the
indices such that i ă i1. Let Iii1 be the set of indices t1, . . . , pu such that j P Iii1 if and
only if Ej is the exceptional divisor of the blow-up of a point in Ai X Ai1 . We know that
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#Iii1 “ ηii1 . Partition the set Iii1 into two subsets I1ii1 and I2ii1 of cardinality m1
ii1 and m2

ii1

respectively. Set δj “ ´1 for j P I1ii1 and δj “ 1 for j P I2ii1 . Finally denote

θ “ pθ1, . . . , θnq “

˜
pÿ

l“1

δld1l, . . . ,

pÿ

l“1

δldnl

¸
.

We have the following result

Lemma 6.13. With the choice of δ1, . . . , δp as above and with k as in the statement of
Theorem 6.1 we have

`2 ´ `1 ´ k “
1

2
θ.

Proof. In view of Lemma 5.5 we need to prove that

θ “ 2k ´ a.

By definition, ki “
ř

jăi η
2
ji `

ř
jąi η

1
ij. Using the definition of ai in (5.1) and the fact that

for i ă j ηji “ ηij “ η1ij ` η2ij we transform the above equation into the following set of
equations for i “ 1, . . . , n:

(6.14)
pÿ

l“1

δldil “
ÿ

jăi

pη2ji ´ η1jiq `
ÿ

i1ąi

pη1ji ´ η2jiq.

The way the exceptional divisors are oriented implies that dil “ 1 if l P Iii1 for some i1 ą i,
dil “ ´1 if l P Ii1i for some i1 ă i, and otherwise dil “ 0. The left hand side of (6.14) can
be expressed as

pÿ

l“1

δldil “
ÿ

i1ăi

ÿ

lPIi1i

δl ´
ÿ

i1ąi

ÿ

lPIii1

δl.

But
ř

lPIii1 YIi1i
δl “ η2i1i ´ η1i1i by definition, so

pÿ

l“1

δldil “
ÿ

jăi

pη2ji ´ η1jiq `
ÿ

i1ąi

pη1ji ´ η2jiq.

This proves (6.14) and concludes the proof of the lemma. �

We resume the proof of Theorem 6.1. The manifold W02 is a p-fold positive blow-up
of Uq2

pL2q, and let again π be the blow-down map. Choose v2 “ m ` `2 and the Spinc

structure t
1
v2

on W02 given by

c1pt
1
v2

q “ π˚c1ptv2
q ` δ1PDrE1s ` . . . ` δnPDrEns.

We have the following result, which is a counterpart of Lemma 6.5.

Lemma 6.15. The Spinc structure t
1
v2

restricts to the Spinc structure v1 on Y1, where

v1 “ v2 ´
1

2
θ.

Proof of Lemma 6.15. The proof of Lemma 6.15 resembles the proof of Lemma 6.5. We
will show that first Chern classes of the two Spinc structures, t1v2

and tv1
evaluate in the

same way on the generators of H2pW01;Zq and conclude by Proposition 4.6.
By definition of t1v2

we obtain

xc1pt
1
v2

q, rF2isy “ 2v2,i ´ pΛ21 ` . . . ` Λ2n2
qi

xc1pt
1
v2

q, rEjsy “ δjEj ¨ Ej “ δj.
(6.16)
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Combining (6.16) with Lemma 5.8 we obtain

(6.17) xc1pt
1
v2

q, rF1isy “ 2v2,i ´ pΛ21 ` . . . ` Λ2nqi `
pÿ

j“1

δjdij.

Notice that by Lemma 5.9 Y1 is a q1–surgery on L1, where q1 “ q2 ` a. Therefore a
quick calculation using (5.4) yields

pΛ21 ` . . . ` Λ2nqi ´ pΛ11 ` . . . ` Λ1nqi “

pΛ21 ` . . . ` Λ2,i´1 ` Λ2,i`1 ` . . . ` Λ2nq
i

´ pΛ21 ` . . . ` Λ2,i´1 ` Λ2,i`1 ` . . . ` Λ2nq
i

` q2,i ´ q1,i “ ai ´ ai “ 0.

Substituting this into (6.17) we obtain.

xc1pt
1
v2

q, rF1isy “ 2v2,i ´ pΛ11 ` . . . ` Λ1nqi `
pÿ

j“1

δjdij.

The evaluation of c1ptv1
q on rF1is is given by (6.9). We obtain that

xc1pt
1
v2

q, rF1isy “ xc1ptv1q, rF1isy, if 2v2 ´ θ “ 2v1.

�

We continue the proof of Theorem 6.1. With the choice of v1 as in Lemma 6.15, the
manifold pW12, t

1
v2

q is a Spinc cobordism between pY1, sv1
q and pY2, sv2

q. By Lemma 5.12
W12 is positive definite. Then ´W12 is negative definite and (4.3) gives

dpY1, sv1
q ě degFp´W12,tq ` dpY2, sv2

q.

Using again the formula for d–invariants of large surgeries we obtain

(6.18) ´ degFp´W01,tq ` degFp´W02,tq ´ degFp´W12,tq ` J2pv2 ´ `2q ě J1pv1 ´ `1q.

Now the expression degFp´W01,tq ` degFp´W12,tq ´ degFp´W02,tq is much easier to handle
than an analogous expression in Section 6.1 because ´W02 “ ´W01 Y ´W12. Therefore
the map Fp´W02,tq is the composition of Fp´W01,tq and Fp´W12,tq so its degree is the sum of
the degrees of the summands. The three degrees in (6.18) cancel out and we are left with

(6.19) J2pv2 ´ `2q ě J1pv1 ´ `1q.

By definition v2´`2 “ m. On the other hand, by Lemma 6.13 combined with Lemma 6.15:

`2 ´ `1 ´ k “
1

2
θ “ v2 ´ v1.

Plugging this into (6.19) yields J2pmq ě J1pm ` kq. This accomplishes the proof of
Theorem 6.1.

6.3. Proof of Theorem 6.3. The construction is similar as in Section 6.2. Takem2 P Zn2

and let q2 be sufficiently large. The construction of W02 is as in the proof of Theorem 6.1,
but there are no blow-ups, hence W02 “ Uq2

pL2q. We know that W01 “ Uq1
pL1q, where

by Lemma 5.9 q1i “ q2i if i ‰ k and q1k “ q2k ` q2n2
. Set v2 “ m2 ´ `2 and let tv2

be
the Spinc structure on W02 extending the Spinc structure sv2

on Y2. Evaluating c1ptv2
q on

classes rF11s, . . . , rF1n1
s we show that tv2

restricts to sv1
on Y1, where v1i “ v2i if i ‰ k

and v1k “ v2k ` v2n2
. By Lemma 5.12, W12 is positive definite. Therefore p´W12, tv2

q is
a negative definite Spinc cobordism between pY2, sv2

q and pY1, sv1
q. Acting exactly in the

same way as in Section 6.2 we arrive at the inequality J2pv2 ´ `2q ě J1pv1 ´ `1q. We have
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v2 ´ `2 “ m2. Moreover it is easy to see that with the definition of v1 and m1, we have
v1 ´ `1 “ m1. This concludes the proof.

6.4. A variant of Theorem 6.1 for a single crossing change.

Theorem 6.20. Let L1 and L2 be two n-component links differing by a single positive
crossing change, that is, L2 arises by changing a negative crossing of L1 into a positive
one. Let J1 and J2 be the corresponding J-functions and let m P Zn, m “ pm1, . . . ,mnq.

(a) If the crossing change is between two strands of the same component L1i of L1,
then

J2pm1,m2, . . . ,mi ` 1, . . . ,mnq ď J1pm1, . . . ,mnq ď J2pm1, . . . ,mi, . . . ,mnq.

(b) If the crossing change is between the i-th and j-th component of L1, then

J2pm1,m2, . . . ,mnq ď J1pm1, . . . ,mnq ď J2pm1, . . . ,mi ´ 1, . . . ,mnq

and

J2pm1,m2, . . . ,mnq ď J1pm1, . . . ,mnq ď J2pm1, . . . ,mj ´ 1, . . . ,mnq

Proof. We begin with part (a). If L1 and L2 differ by a single positive crossing change
involving the component L1i, then there is an APSIC from L1 to L2. The construction is a
generalization of [5, Example 2.2]. We take a product cobordism between components L1j

and L2j for j ‰ i and an annulus with a single positive double point connecting L1i to L2i.
The cobordism has ηkl “ 0 unless k “ l “ i and ηii “ 1. In the notation of Theorem 6.1
we have r “ ei and k “ p0, . . . , 0q. Part (a) of Theorem 6.20 follows immediately.

Part (b) is analogous. We construct an APSIC with ηkl “ 0 with the exception that
ηij “ ηji “ 1. We have r “ p0, . . . , 0q and the splitting 1 “ ηij “ η1ij ` η2ij can be done in

two ways: pη1ij, η
2
ijq “ p0, 1q or p1, 0q. This gives two possibilities for choosing k, namely

k “ ei or k “ ej. Applying Theorem 6.1 concludes the proof. �

7. Splitting numbers of links

Let us recall the following definition.

Definition 7.1. Let L be a link with n components. The splitting number sppLq is the
minimal number of multicolored crossing changes (that is, between different components)
needed to turn L into a split link.

Example 7.2. The splitting number of the Whitehead link is 2, even though the unlinking
number is 1.

We will use the following terminology:

Definition 7.3. A positive crossing change is a change of a negative crossing of a link
into a positive crossing. Likewise, a negative crossing change is a change of a positive
crossing into a negative crossing.

7.1. Splitting number bound from the rJ-function. In Definition 3.28 we defined

the rJ-function of a link. The following result gives a ready-to-use bound for the splitting
number.

Theorem 7.4. Suppose that L can be turned into an unlink using t` positive and t´
negative multicolored crossing changes. Then ´t´ ď rJpmq ď t` for all m P Zn.
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Proof. Use Theorem 6.20 together with Proposition 3.10 (the latter holds for the J-
function as well, because J differs from H by an overall argument shift). We obtain
that if two links L1 and L2 differ by a single positive multicolored crossing change, then
for all m P Zn

J2pmq ď J1pmq ď J2pmq ` 1.

Notice that a multicolored crossing change of a link L does not affect the isotopy type of
its components, in particular the J-functions of its components remain the same. This
shows that if L1 and L2 differ by a single positive multicolored crossing change, then for
all m P Zn:

rJ2pmq ď rJ1pmq ď rJ2pmq ` 1.

Using this result repeatedly we show that if L1 and L2 differ by t` positive multicolored
crossing changes and t´ negative multicolored crossing changes, then

rJ2pmq ´ t´ ď rJ1pmq ď rJ2pmq ` t`.

Suppose now that rJ2 is a split link. Then by Corollary 3.29 we know that rJ2 “ 0. In
particular

´t´ ď rJ1pmq ď t`.

�

Theorem 7.4 is very useful for quick estimates of the splitting number of L-space links

with two components, because then the rJ-function can be quickly determined from the
Alexander polynomial.

Example 7.5. We continue the example of Whitehead link, see Example 3.33. As the

Alexander polynomial is ∆ “ ´pt1 ´ 1qpt2 ´ 1qt
´1{2
1 t

´1{2
2 , by Corollary 3.32 we have

rJp1, 1q “ 1. This shows that the splitting number of the Whitehead link is at least 1.

7.2. Two-component links. Theorem 6.20 can be used directly to obtain some bounds
for splitting numbers for two-component links.

Theorem 7.6. Let L be an arbitrary link with two components, and a link L1 can be
obtained from L by changing a negative multicolored crossings to positive, and b positive
multicolored crossings to negative. Write a “ a1 ` a2 and b “ b1 ` b2 for arbitrary
nonnegative ai, bi, then the following inequalities hold for all m1,m2:

J 1pm1 ` b1,m2 ` b2q ď Jpm1,m2q ď J 1pm1 ´ a1,m2 ´ a2q.

Proof. It is sufficient to consider a single crossing change. If a1 “ 1, a2 “ b1 “ b2 “ 0,
then by Theorem 6.20 one has

J 1pm1,m2q ď Jpm1,m2q ď J 1pm1 ´ 1,m2q.

If b1 “ 1, a1 “ a2 “ b2 “ 0, then by Theorem 6.20 one has

Jpm1,m2q ď J 1pm1,m2q ď Jpm1 ´ 1,m2q,

so
J 1pm1 ` 1,m2q ď Jpm1,m2q ď J 1pm1,m2q.

�

The following corollary will be useful below:

Theorem 7.7.
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g1 g1 ` b`

g2

g2 ` b`

Figure 4. Region Rpb`q ` g where J and rJ vanish.

(a) Suppose that a two component link L “ L1 Y L2 can be unlinked using b` positive
and b´ negative crossing changes. Let gi denote the slice genus of Li. Define
vectors

g :“ pg1, g2q, rg :“

ˆ
g1 `

1

2
lkpL1, L2q, g2 `

1

2
lkpL1, L2q

˙
.

Define the region Rpb`q by inequalities:

Rpb`q :“ tpm1,m2q : m1 ` m2 ě a,m1 ě 0,m2 ě 0u;

see Figure 4. Then Jpmq “ rJpmq “ 0 for m P Rpb`q ` g.
(b) If, in addition, L is an L-space link, then

HFL´pL,vq “ 0 for v P Rpb`q ` rg ` p1, 1q.

In particular, all coefficients of the Alexander polynomial vanish in Rpaq`rg`p1
2
, 1
2
q.

Proof. As above, let Ji denote the J-functions for the components of L. For a split link
L1 “ L1 \ L2 we get J 1pv1, v2q “ J1pv1q ` J2pv2q. Furthermore, by [31, Corollary 7.4] we
get Jipviq “ 0 for vi ě gi.

Assume that m “ pm1,m2q belongs to Rpaq `g. By definition, Jpm1,m2q ě 0. On the
other hand, let us choose b1 “ minpm1 ´ g1, b`q and b2 “ b` ´ b1, then m1 ´ b1 ě g1 and

m2 ´ a2 “ m2 ´ a ` minpm1 ´ g1, b`q ě m2 ´ b` ` m1 ´ g1 ě g2.

Therefore by Theorem 7.6:

Jpm1,m2q ď J 1pm1 ´ b1,m2 ´ b2q “ J1pm1 ´ b1q ` J2pm2 ´ b2q “ 0.

Since J1pm1q “ J2pm2q “ 0, we get also get rJpmq “ 0.
Suppose now that L is an L-space link. By the above, H-vanishes in v P Rpb`q ` rg.

Corollary 3.32 implies the vanishing of the coefficients of the Alexander polynomial in
Rpb`q ` rg ` p1

2
, 1
2
q. To show that HFL´pvq “ 0 for v P Rpb`q ` rg ` p1, 1q, note that for

such v one has Hpv ´ eiq “ Hpvq “ 0, so the natural inclusions A´pv ´ eiq ãÑ A´pvq
induce isomorphisms on homology. By (3.2), HFL´pvq “ 0. �

Remark 7.8. Part (b) of Theorem 7.7 does not hold for non L-space links. For example,
the link L9a31 in [9] has two components, one being an unknot and one being a trefoil.
The linking number of the components is 1, so rg “ p1

2
, 3
2
q. Now the Alexander polynomial

is

t´1
1 t´2

2 ´ t´2
2 ´ 2t´1

1 t´1
2 ` 4t´1

2 ´ t1t
´1
2 ` 2t´1

1 ´ 5 ` 2t1 ´ t´1
1 t2 ` 4t2 ´ 2t1t2 ´ t22 ` t1t

2
2.
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Figure 5. The link bp24,´5q. Its two components are unknots.

The term t1t
2
2 has exponents p1, 2q which belong to Rp0q ` rg ` p1

2
, 1
2
q. Therefore, Theo-

rem 7.7 would imply that we need at least one positive crossing change to split L9a31.
Such a crossing change will make the two components have linking number 2, so we will
need at least two more crossing changes to make the linking number equal to 0. Alto-
gether, we would need at least three crossing changes to split L9a31. However, we can
split L9a31 in a single move.

7.3. Example: the two-bridge link bp24,´5q. We will discuss an example of the two-
bridge link bp24,´5q which was shown by Liu [23, Example 3.8] to be an L-space link. It
is presented in Figure 5. The orientation of bp24,´5q is as in [23]. The two components
have linking number 0. In the notation of LinkInfo [9] it is the link L9a40. It was shown
in [8, Section 7.1] that the splitting number of this link is 4. The tool was studying the
smooth four genus of the link obtained by taking a double branch cover of one of the
components of bp24,´5q. The splitting number of bp24,´5q can be also detected by the
signatures as in [10]. We will show that sppbp24,´5qq “ 4 using the J-function.

The Alexander polynomial of bp24,´5q can be found on the LinkInfo web page [9] or
calculated using the SnapPy package [11]. We have

∆pt1, t2q “ ´pt1 ` t2 ` 1 ` t´1
1 ` t´1

2 qpt
1{2
1 ´ t

´1{2
1 qpt

1{2
2 ´ t

´1{2
2 q.

By Corollary 3.32 the generating function for the rJ-function equals

(7.9) rJpt1, t2q “ t1 ` t2 ` 1 ` t´1
1 ` t´1

2 .

Theorem 7.4 implies that we need to make at least one positive crossing change to unlink
bp24,´5q. As the original linking number is zero and a positive crossing change increases
the linking number, we have to compensate the positive crossing change with a negative
crossing change, so the splitting number is at least 2. That is all we can deduce from
Theorem 7.4.

On the other hand, Jp1, 0q “ 1, so by Theorem 7.7 one needs at least two positive
crossing changes to split bp24,´5q. As each such crossing change increases the linking
number between the two components of bp24,´5q, we also need two negative crossing
changes. Therefore we have proved the following result.

Proposition 7.10. The splitting number of bp24,´5q is at least 4.

It is quite easy to split the bp24,´5q in four moves.
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n full twists k full twists

Figure 6. The general bprq ´ 1,´qq two-bridge link, where r “ 2n ` 1,
q “ 2k ` 1. The linking number is n ´ k.
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Figure 7. The E1 page of the Batson–Seed spectral sequence for the link
bp48,´7q with splitting number 6. It can be shown that E2 “ E8 is the
Khovanov homology of the unknot. The calculations were made using the
KnotKit program [33].

.

Remark 7.11. SnapPy and and the LinkInfo webpage [9] give the Alexander polynomial
of bp24,´5q with opposite sign. To choose the sign we notice that the other choice of sign

of the Alexander polynomial yields rJ with negative coefficients only, hence, for example
Jp0, 0q “ ´1. This contradicts the property of non-negativity of the J-function. Liu’s
algorithm in [22, Section 3.3] gives the proper sign of the Alexander polynomial.

7.4. More general two-bridge links. The arguments used in Section 7.3 can be easily
generalized for the case of two-bridge links Ln “ bp4n2 ` 4n,´2n ´ 1q. The components
of Ln are unknots with linking number 0. For example, L1 is the Whitehead link. It is
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proved in [23, Section 3] that all the Ln are L-space links, and their Alexander polynomials
were computed in [23, Section 6], see also [22, Section 3.3]:

∆Ln
pt1, t2q “ p´1qn

ÿ

|i`1{2|`|j`1{2|ďn

p´1qi`jt
i`1{2
1 t

j`1{2
2 .

Clearly,

∆pt1, t2q “ ´t
n´ 1

2

1

´
t
1{2
2 ´ t

´1{2
2

¯
` terms of lower degree in t1,

Hence by Corollary 3.32:

rJLn
pt1, t2q “ ´

∆Ln
pt1, t2q´

t
1{2
1 ´ t

´1{2
1

¯ ´
t
1{2
2 ´ t

´1{2
2

¯ “ tn´1
1 ` terms of lower degree in t1,

and Jpn´ 1, 0q “ rJpn´ 1, 0q “ 1. By Theorem 7.7 one needs at least n positive crossing
changes to split Ln, and the linking number argument from the previous section implies
that one needs same number of negative crossing changes. We obtained the following
result.

Theorem 7.12. The splitting number of Ln is at least 2n.

It is quite easy to split the Ln in 2n moves using Figure 6 (where k “ n).

7.5. Comparison with the Batson–Seed criterion. In [1] Batson and Seed proved
an obstruction for splitting number. For the sake of simplicity we formulate the result for
a link with two components and for homologies over Z2.

Theorem 7.13. [1] Suppose L “ L1 Y L2 is a two component link and let L1 be a split
link with components L1, L2. Then there exists a spectral sequence, whose E1 page is
the Khovanov homology KhpLq and E8 page is the Khovanov homology KhpL1q. If the
splitting number of L is k, then the Ek page is equal to the E8 page of this sequence.

In Figure 7 there is shown the E1 page of the Batson–Seed spectral sequence for
bp48,´7q, whose splitting number was shown to be 6. The arrows in the figure correspond
to the differential. We have E2 “ E8, so Theorem 7.13 implies that sppbp48,´7qq ě 2.
This means that the Batson–Seed criterion does not detect the splitting number of
bp48,´7q.

For general two-bridge links bp4n2 ` 4n,´2n ´ 1q we have the following observation,
which limits the usage of the Batson–Seed criterion. It is well known to the experts.

Proposition 7.14. Suppose L is an alternating non-split link. Then the Batson–Seed
spectral sequence collapses at most at the E3 page.

Proof. By [21] L is Khovanov thin, that is, the Khovanov homology is supported on two
diagonals. More precisely, if x is a non-trivial element of KhpLq, then qpxq “ 2hpxq ´
σpLq ˘ 1, where qpxq is the q-grading, hpxq is the homological grading and σpLq is the
signature of L.
The differential in the Batson–Seed spectral sequence is d “ d0 ` d1, where d0 is the

standard differential in the Khovanov complex and d1 decreases the homological grading
by 1 and drops the q-grading by 2. A higher differential dk changes the ph, qq bigrading
by p1 ´ 2k,´2kq, and hence changes the difference q ´ 2h by 2k ´ 2. As L is thin, the
only potentially non-trivial differentials are d0, d1 and d2. �
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7.6. Cables on the Whitehead link. As a more complicated example, we calculate the
splitting number of cables on the Whitehead link. Let Whp,q denote the link consisting of
the pp, qq cable on one of the component of the Whitehead link and the unchanged second
component of it. It is clear that the linking number of Whp,q vanishes. A p1, 1q-surgery
on the Whitehead link is an L-space [23, Example 3.1], hence by Proposition 2.8 Whp,q
is an L-space link as long as 1 ă p ă q and p, q are coprime.

The Whitehead link has Alexander polynomial ∆ “ ´pt
1{2
1 ´ t

´1{2
1 qpt

1{2
2 ´ t

´1{2
2 q. The

Alexander polynomial of a cable link was calculated by Turaev in [35, Theorem 1.3.1],
which we now state.

Theorem 7.15. Let L “ L1 Y . . . Y Ln be a link and ∆Lpt1, . . . , tnq its multivariable
Alexander polynomial. Let Lp,q be as in the statement of Proposition 2.8 above. Set

T “ t
q
1t

l2
2 . . . t

ln
n , where lj “ lkpL1, Ljq. Then

∆Lp,q
pt1, . . . , tnq “ ∆Lptp1, t2, t3, . . . , tnq

T p{2 ´ T´p{2

T 1{2 ´ T´1{2
.

It follows from the theorem that the Alexander polynomial of Whp,q is equal to

∆Whp,q
“ ´

´
t
p{2
1 ´ t

´p{2
1

¯ ´
t
1{2
2 ´ t

´1{2
2

¯ t
pq{2
1 ´ t

´pq{2
1

t
q{2
1 ´ t

´q{2
1

.

From this we obtain by Corollary 3.32.

rJpt1, t2q “

´
t
p{2
1 ´ t

´p{2
1

¯ ´
t
pq{2
1 ´ t

´pq{2
1

¯

´
t
1{2
1 ´ t

´1{2
1

¯ ´
t
q{2
1 ´ t

´q{2
1

¯ “ t
δ`pp´1q
1 ` terms of lower degree in t1,

where δ “ 1
2
pp ´ 1qpq ´ 1q. In particular, rJpδ ` pp ´ 1q, 0q “ 1.

Now the genera of the components ofWhp,q are g1 “ δ, g2 “ 0. By Theorem 7.7 we infer
that we need to perform at least p positive multicolored crossing changes to transform
Whp,q into the disjoint sum of T pp, qq and the unknot. The linking number argument
shows that we also need p negative crossing changes, hence we obtain the following result.

Proposition 7.16. The splitting number of the pp, qq-cable on the Whitehead link is at
least 2p.

It is not hard to find a splitting sequence of length 2p.

8. Algebraic links

8.1. The H-function for links of singularities. Let C be a germ of a complex plane
curve singularity with branches C1, . . . , Cn. Its intersection with a small sphere is called
an algebraic link. It is shown in [15] that all algebraic links are L-space links. For algebraic
links the H-function admits the following description. Let γi : pC, 0q Ñ pCi, 0q denote the
uniformization of Ci. Define the set

J pvq :“ tf P Crrx, yss : Ord0 fpγiptqq ě viu

It is clear that J pvq is in fact a vector subspace of Crrx, yss. Define the Hilbert function
of C as

(8.1) Rpvq “ codimJ pvq “ dimC Crx, ys{J pvq.

Moreover, set
Ripviq “ Rp0, . . . , 0, vi, 0, . . . , 0q.
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Notice that for a singularity with one branch, Rpvq “ R1pv1q is the number of the elements
of the semigroup of the singular point in the interval r0, v1q, so (8.1) can be regarded as
a generalization the definition of R–function in [4].
We can relate R to the H-function discussed above. Define

(8.2) g “ pg1, . . . , gnq; rg “ prg1, . . . , rgnq, rgi “ gi `
1

2

ÿ

j‰i

lkpLi, Ljq,

where gi is the Seifert genus of Li (or, equivalently, the delta-invariant of the singularity
Ci). It is known that for algebraic links 2rg is the conductor of the multi-dimensional
semigroup of C; see for instance [20, Chapter 17]. Campillo, Delgado and Gusein-Zade
related [6] the Alexander polynomial of an algebraic link to the semigroup of the corre-
sponding curve. Based on their result and (3.16), the following formula for the Hilbert
function was obtained in [14]:

Theorem 8.3 (see [14]). For an algebraic link, one has

(8.4) Hpvq “ Rprg ´ vq, Jpvq “ Rpg ´ vq.

Remark 8.5. It was proven in [7] that for all plane curve singularities the Hilbert function
satisfies the following symmetry property:

(8.6) Rp2rg ´ vq “ Rpvq ` |rg| ´ |v|.

Indeed, this agrees with the symmetry property (3.23) of H.

Theorem 8.7. We have the following inequality for the Hilbert function of a plane curve
singularity.

0 ě Rpvq ´
nÿ

i“1

Ripviq ě ´
ÿ

iăj

lkpLi, Ljq.

Both inequalities are sharp.

Corollary 8.8. For an algebraic link, for all v:

0 ě rJpvq ě ´
ÿ

iăj

lkpLi, Ljq

Proof. By (8.4), Jpvq “ Rpg ´ vq. Similarly, Jipviq “ Ripgi ´ viq, so it remains to apply
the theorem to the vector g ´ v. �

Remark 8.9. Corollary 8.8 can be compared with Theorem 7.4. Indeed, all crossings
in an algebraic link are positive, so t` “ 0, and by the above corollary we get t´ ěř

iăj lkpLi, Ljq. In other words, to split an algebraic link one needs to change exactlyř
iăj lkpLi, Ljq crossings from positive to negative. It is well known that the splitting

number of an algebraic link is equal to
ř

iăj lkpLi, Ljq.

The following two lemmas will be used in the proof of Theorem 8.7.

Lemma 8.10. For u,v P Zn, one has

Rpuq ` Rpvq ě Rpminpu,vqq ` Rpmaxpu,vqq.

Proof. Indeed, J puq,J pvq Ă J pminpu,vqq and J puq X J pvq “ J pmaxpu,vqq. One has

dimJ pminpu,vqq{J puq ` dimJ pminpu,vqq{J pvq ě dimJ pminpu,vqq{J pmaxpu,vqq,

therefore

´Rpminpu,vqq ` Rpuq ´ Rpminpu,vqq ` Rpvq ě ´Rpminpu,vqq ` Rpmaxpu,vqq.
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�

Lemma 8.11. Suppose that u,v P Zn, 0 ĺ u ĺ v. Then

Rpvq ´ Rpuq ď
nÿ

i“1

pRipviq ´ Ripuiqq.

Proof. Consider a sequence of lattice points vpiq “ pu1, . . . , ui, vi`1, . . . , vnq, so that u “
vpnq and v “ vp0q. Let ei denote the i-th coordinate vector. Then

maxpvpiq, vieiq “ vpi´1q, minpvpiq, vieiq “ uiei,

hence by Lemma 8.10:

Ripviq ` Rpvpiqq ě Rpvpi´1qq ` Ripuiq,

so

Rpvpi´1qq ´ Rpvpiqq ď Ripviq ´ Ripuiq,

and

Rpvq ´ Rpuq “ Rpvp0qq ´ Rpvprqq “
nÿ

i“1

pRpvpi´1qq ´ Rpvpiqqq ď
nÿ

i“1

pRipviq ´ Ripuiqq.

�

Proof of Theorem 8.7. By Lemma 8.11, one has

Rpvq “ Rpvq ´ Rp0q ď
nÿ

i“1

pRipviq ´ Rip0qq “
nÿ

i“1

Ripviq.

Furthermore, if u Ï 0, then by (8.6) Rpuq “ |u| ´ |rg|. By Lemma 8.11, we get

Rpuq ´ Rpvq ď
nÿ

i“1

pRipuiq ´ Ripviqq, so

|u| ´ |rg| ´ Rpvq ď
nÿ

i“1

pui ´ gi ´ Ripviqq, that is

Rpvq ´
nÿ

i“1

Ripviq ě ´|rg| `
nÿ

i“1

gi “ ´
ÿ

iăj

lij.

�

8.2. Semicontinuity of the Hilbert function. We can use Theorem 6.1 to give a
topological proof of semigroup semicontinuity property under δ-constant deformation,
generalizing the result of [5] for many components. We refer the reader to [2, 14] for other
approaches to semicontinuity property of semigroups.

Suppose Ft : pC2, 0q Ñ pC, 0q is a family of polynomials depending on a parameter
t P p´ε, εq Ă R. We assume that for every t the curve F´1

t p0q has an isolated singularity
with n branches.

Theorem 8.12. Assume that the deformation is δ-constant. Then for any m P Zn and
t ‰ 0 sufficiently close to 0 we have

Rtpmq ě R0pmq.
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Proof. We follow the proof of [4, Theorem 2.15]. Take a ball B Ă C2 with center at 0
such that F´1

0 p0q X BB is the link of the singularity of F´1
0 p0q at 0. Denote this link by

L2.
Choose t sufficiently small. Then F´1

t p0q X BB is still isotopic to L2. Choose a smaller
ball B1 with center at 0 such that F´1

t p0q X BB1 is the link of the singularity of F´1
t p0q at

0. Denote this link by L1. For i “ 1, 2, let Li1, . . . , Lin be the components of the link Li.
Denote by gi1, . . . , gin the Seifert genus of the corresponding component. Let g be as in
(8.2).

Similarly to [5, Lemma 2.3], we construct an APSIC from L1 to L2 in the following way.
As the deformation is δ-constant, we can find a complex parametrization ψ of F´1

t p0qXB2

(where B2 is a ball slightly larger than B), whose domain is a disjoint union of n disks

D1, . . . , Dn. Set D “ D1 \ . . .\Dn. Perturb ψ to a complex analytic map rψ such that rψ
has only generic singularities, that is, positive double points. For small perturbation the

links L1
2 “ rψpDq X BB and L1

1 “ rψpDq X BB1 are isotopic to L2 and L1 respectively. The

APSIC is the intersection rψpDq X pBzB1q. The number of double monochromatic double
points of the i-th component (denoted by ηii in Section 5) is calculated as in [5, Lemma
2.3] and is equal to gi2 ´ gi1.

We use Theorem 6.1 to obtain

(8.13) J2pm1q ď J1pm
1 ´ kq,

where k “ pη11, . . . , ηnnq “ g2 ´g1 and m1 P Zn is arbitrary. Substituting (8.4) into (8.13)
we obtain

R2pmq “ J2pg2 ´ mq ď J1pg2 ´ m ´ kq “ J1pg1 ´ mq “ R1pmq.

�
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