IMMERSED CONCORDANCES OF LINKS AND HEEGAARD FLOER
HOMOLOGY

MACIEJ BORODZIK AND EUGENE GORSKY

ABSTRACT. An immersed concordance between two links is a concordance with pos-
sible self-intersections. Given an immersed concordance we construct a smooth four-
dimensional cobordism between surgeries on links. By applying d-invariant inequalities
for this cobordism we obtain inequalities between the H-functions of links, which can be
extracted from the link Floer homology package. As an application we show a Heegaard
Floer theoretical criterion for bounding the splitting number of links. The criterion is
especially effective for L-space links, and we present an infinite family of L-space links
with vanishing linking numbers and arbitrary large splitting numbers. We also show
a semicontinuity of the H-function under §-constant deformations of singularities with
many branches.

1. INTRODUCTION

1.1. Overview. Animmersed cobordism between two links £, and £, in S? is a smoothly
immersed surface in S* x [1,2], whose boundary is £; = S% x {1} and L, = S3 x
{2}. An immersed concordance is an immersed cobordism, whose all the components
are immersed annuli. The notion of an immersed cobordism gives a unified approach for
finding (usually lower) bounds on link invariants such as the smooth four genus, the clasp
number, the splitting number and the unlinking number. Recently many papers using this
technique appeared [3, 5, 19, 25, 27]. Generalizing the construction of [5] we can use an
immersed concordance as a starting point in constructing a four-dimensional cobordism
between large surgeries on £, and L, with precisely described surgery coefficients. Under
some extra assumptions we can guarantee that the four-dimensional cobordism is negative
definite. We apply the d-invariant inequality of Ozsvath and Szabd, see (4.3), to relate
the d-invariants of the corresponding surgeries on £, and L£,. These inequalities are best
expressed in terms of the H-functions.

The H-function is a function that is used to calculate the d-invariants of large surgeries
on links (see Theorem 4.10, which can be thought of as an informal definition of H). For
knots it was first defined by Rasmussen in his thesis [31] (as an analogue of the Frgyshov
invariant in Seiberg-Witten theory), who used it to obtain nontrivial bounds for the slice
genus of knots. For L-space knots, the H-function can be easily reconstructed from the
Alexander polynomial. For L-space links with several components (see Section 2.2), the
H-function was introduced by the second author and Némethi [14] (denoted by small h
there), who showed that for algebraic links it coincides with the Hilbert function defined
by the valuations on the local ring of the corresponding singularity.

Unfortunately, apart from different notations of H in the literature, there are at least
three different “natural” conventions on the definition of H, all differing by some shift of
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the argument. This can be seen in [4], where three different functions I, J and R denote
very similar objects. In the link case the situation will be similar. The function called H
will take as an argument the levels of the Alexander filtration in the chain complex CF L™,
that is, its arguments will be from some lattice. Shifting the argument of H by half the
linking numbers will yield a function J from Z" to Z. The normalization of the J-function
makes it very suitable for studying link concordances. Finally, we will have a function R,
defined for algebraic singularities, which most resembles the semigroup counting function
from [4] and agrees with the Hilbert function from [14].

We define the H-function for general links and find inequalities between the H-functions
of two links related by an immersed concordance (under some assumptions on the con-
cordance). The following theorem is one of the main results of the paper. The statement
is simpler in terms of the J-function than in terms of the H-function.

Theorem (Theorem 6.20). Let L1 and Ly be two n-component links differing by a single
positive crossing change, that is, Lo arises by changing a negative crossing of L1 into
a positive one. Let J; and Jy be the corresponding J-functions and let m € Z", m =
(ma,...,my).
(a) If the crossing change is between two strands of the same component Ly; of L4,
then

Jo(my,ma, ..o omy+ 1,000 my) < Ji(may, .o my) < Jo(ma, oo my, L my,).

(b) If the crossing change is between the i-th and j-th component of Ly, then

Jg(ml,mg,...,mn) < J1(m1,...,mn) < JQ(ml,...,mi—l,...,mn)
and
Jg(ml,mg,...,mn) < Jl(ml,...,mn) < Jg(ml,...,mj—l,...,mn)

As an application we provide new criteria for splitting numbers of links.

Theorem (Theorem 7.7).

(a) Suppose that a two component link L = Ly U Ly can be unlinked using b, positive
and b_ negative crossing changes. Let g; denote the slice genus of L;. Define
vectors

~ 1 1
g:=(91,92), &§:= (91 + §1k(L17L2)792 + élk(LlaLQ)) :

Define the region R(by) by inequalities:
R(by) := {(m1,ma) : my +mg = by,my = 0,my = 0}.
Then J(m) = J(m) = 0 for m e R(b,) + g.
(b) If, in addition, L is an L-space link, then
HFL™(L,v) =0 forve R(b,)+ g+ (1,1).
In particular, all coefficients of the Alexander polynomial vanish in R(b,) + g +
(3:2)-
In the examples we focus on a family of two-bridge links which were shown in [23] to be
L-space links. Recall that the splitting number sp(L) is the minimal number of crossings
between different components of £ that should be changed to turn £ into a split link.

Clearly, a linking number yields a lower bound for the splitting number, see Section 7 for
the detailed discussion of splitting numbers and references.
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Theorem (Theorem 7.12). The splitting number of the two-component two-bridge link
L, =b(4n® + 4n, —2n — 1)
equals 2n, although the linking number between the components of L,, vanishes.

We compare this theorem with the work of Batson and Seed [1] which provides a
different bound for the splitting number in terms of Khovanov homology. It turns out
that their lower bound is quite weak in this case and is at most three for all £,,.

Remark 1.1. Almost at the same time as the first version of this paper was posted on the
arXiv, a similar result was proven by Cimasoni, Conway and Zacharova [10] by completely
different methods. In Section 7.6 we compute splitting numbers for a family of links where
the methods of [10] cannot be applied directly.

Another application is a topological proof of semicontinuity of the Hilbert function of
singularities under d-constant deformations. The result was proved in [5] for unibranched
singular points (there is also an algebraic proof of a more general version in [14] for one
component links). Our result is for multibranched singularities under the assumption that
the number of branches does not change.

1.2. Structure of the paper. The paper uses a lot of background facts about Heegaard
Floer homology and L-space links, most of them were discussed in [14, 23| using slightly
different sets of notations. For the reader’s convenience, we repeat these facts and intro-
duce the functions H and J in full generality in Sections 2 and 3. In Section 4, we relate
the Ozsvath-Szabd d-invariants of large surgeries on a link to the H-function. Section 5
is the technical core of the paper: for an immersed cobordism between two links L£;, Lo
we construct a cobordism between the surgeries S5 (£1), S5, (L;) of the 3-sphere on these
links, and prove that under certain assumptions it is negative definite. In the negative
definite case, we apply the classical inequality for d-invariants of Sg (L£1),S5¢,(Ls), and
obtain in Section 6 an inequality for H and J-functions for the links £, Lo stated in
Theorem 6.1. We use this result to prove Theorem 6.20.

In Section 7 we apply these results to obtain more concrete inequalities for two—
component links, and prove Theorems 7.7 and 7.12. Finally, in the last section we apply
the inequalities to algebraic links and compare them with the algebro-geometric results
on deformations of singularities.

1.3. Notations and conventions. All links are assumed to be oriented. For a link L,
we denote by Ly, ..., its components. This allows us to make a distinction between Ly, Lo
and Ly, Ly. The former denotes two distinct links, the latter stands for two components
of the same link L.

We will mark vectors in n—dimensional lattices in bold, in particular, we will write
0=(0,...,0). Given u,v € Z", we write u < vif u; < v; forall i, and u < vifu<wv
and u # v. We write u < v if u; « v; for all i. We will write w = max(u,v) (resp.
w = min(u, v)) if w; = max(u;,v;) (resp. w; = min(u;, v;)) for all .. We denote the i-th
coordinate vector by e;.

For a subset I = {iy,...,i,} < {1,...,n} and u € Z", we denote by u; the vector
(Wys - .., u;,). Foralink £ = (J;; L; we denote by £; = L;, u...uU L;, the corresponding
sublink.

We will always work with F = Z/2Z coefficients.

Acknowledgements. The authors would like to thank to David Cimasoni, Anthony Conway,
Stefan Friedl, Jennifer Hom, Yajing Liu, Charles Livingston, Wojciech Politarczyk and
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Mark Powell for fruitful discussions. The project was started during a singularity theory
conference in Edinburgh in July 2015. The authors would like to thank the ICMS for
hospitality.

2. LINKS AND L-SPACES

2.1. Links and their Alexander polynomials. Let £ < S? be a link. Denote by
Ly, ..., L, its components. Throughout the paper, the multivariable Alexander polyno-
mial (see [17] for definition) will be symmetric up to sign:

ATt ) = £A(f, . ).

r'n

The sign of a multivariable Alexander polynomial can be fixed using the interpretation of
the Alexander polynomial via the sign refined Reidemeister torsion; see [17, Section 4.9]
for discussion and [36] for an introduction to Reidemeister torsion.

Example 2.1. The Alexander polynomial for the Whitehead link equals
Awn(ty,ty) = (t1/2 t71/2>(t1/2 Lrl/Q).
For the Borromean link the Alexander polynomial equals
Apor(ty,ta, t3) = (t1/2 fl/?)(tl/? t71/2>(té/2 _ t;l/Q)'

In some examples we will consider algebraic links, defined as intersections of complex
plane curve singularities with a small 3-sphere. The Alexander polynomials of algebraic
links were computed by Eisenbud and Neumann [12]. In Section 8 below we also discuss
more recent results of Campillo, Delgado and Gusein-Zade [6], relating the Alexander
polynomial to the algebraic invariants of a singularity, such as the multi-dimensional
semigroup.

Example 2.2. The link of the singularity 2> = y*" consists of 2 unknots with linking
number n. The corresponding Alexander polynomial equals

n/2,n/2 —n/2,—n/2

t' "ty

—t ty
Agon(ty, ta) = 72173 L
t

B t1—1/2t2—1/2 :

For future reference we recall the Torres formula, proved first in [34]. It relates the
Alexander polynomial of a link £ with the Alexander polynomial of its sublink.

Theorem 2.3 (Torres Formula). Let £L = Ly v ... U L, be an n component link and
let L' = Ly v ... L, 1. The Alexander polynomials of L' and of L are related by the
following formula.

(H? lltZQ _Hz 1 z L Ln )ALI(tl,...7tn71) an>2’
Aﬁ(t17 ey e, 1) — <t1 1k(Lq, L2)7t;llk(L1,L2)
I3 Ae(t) ifn =2,
(17-17)

where 1k(L;, Ly,) is the linking number between L; and L,.

Theorem 2.3 shows that if 1k(L;, L;) are all nonzero then the Alexander polynomials
of the sublinks are determined by the Alexander polynomial of the link. If some of the
linking numbers vanish (as in Example 2.1) then this is no longer true.
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2.2. L-spaces and L-space links. We will use the minus version of the Heegaard Floer
link homology, defined in [30]. To fix the conventions, we assume that HF~(S?%) = F[U]
is supported in degrees 0,—2,—4,.... To every 3-manifold M this theory associates a
chain complex C'F~ (M) which naturally splits as a direct sum over Spin® structures on
M: CF~ (M) = @,CF~(M,s). The homology HF (M) = @ HF (M, s), as a graded
F[U]-module, is a topological invariant of M.

Definition 2.4.

(a) A 3-manifold M is called an L-space if by (M) = 0 and its Heegaard Floer homology
has minimal possible rank: HF ™ (M, s) ~ F[U] for all s.

(b) A link £ is called an L-space link if S3(L£), the integral surgery of S® on the
components of £ with coefficients q = (¢4, ..., @), is an L-space for q > 0.

For a link £ = Ly u...u L, and a vector m € Z" we define the framing matrix
A(m) = (Ay;(m)):

Ik(L;, L;) ifi# 4

(2.5) Agj(m) = { Lo Lg) 1627,

m; if i =j.

It is well known that if det A # 0 then |H;(S2,(L£))| = | det A(m)|. We recall the following
result of Liu.

Theorem 2.6 (see [23, Lemma 2.5]). Suppose L = Ly U ... U L, is a link. Let m =
(mq,...,my,) be a framing such that

(a) The framing matriz A(m) is positive definite.

(b) For every I c {1,...,n} the m;—surgery on L; is an L-space.
Then for any integer vector m’ > m the m’'—surgery on L is an L-space. In particular, L
1s an L-space link.

We will generalize this result for rational surgeries.

Proposition 2.7. Suppose L and m are as in the statement of Theorem 2.6. Then for
any rational framing vector q > m, the q-surgery on L is an L-space.

Proof. For a surgery vector q denote by ¢(q) the number of non-integer entries in the
vector q.
Let us make the following statement.

(Iey)  Forany I < {1,....n} with |I| <1, ift(q;) <k, then Si (L) is an L-space.

The statement (Ip;) is covered for all [ > 1 by Theorem 2.6. Our aim is to show that
(IkJ) implies (Ik+1,l)'

Choose I < {1,...,n} with |/| = [. Take q > m with ¢(q) = k + 1. Suppose j € [ is
such that ¢; ¢ Z and let I' = I\{j}. Let Y = S5 (Lr). As t(qr) = k, the assumption
(Ix;—1) (which is contained in (I;;)) implies that Y is an L-space. The component L; can
be regarded as a knot in Y. Let A < Q U {o0} be the set of surgery coefficients such that
a € Aif and only if Y, (L,) is an L-space. By the inductive assumption all integers [ = m;
belong to A, indeed Y;(L) is the surgery on £ with coefficient q}, where ¢ is the vector
q; with [ at the j-th position. Furthermore oo € A as well, because Y itself is an L-space.

In [32] possible shapes of A were classified. In short, A is either empty, or it consists
of one point or it is an interval in Q U {00}\I, where I is the set of surgery coefficients
[ such that Y;(L;) is not a rational homology sphere. In the present situation, we have
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shown that mq, m; + 1,00 belong to A. This implies all rational numbers greater than or
equal to m; are in A. This shows (fj41,). O

As an application of Proposition 2.7 we will prove the following result, which generalizes
[16, Theorem 1.10].

Proposition 2.8. Suppose L = Ly u ... U L, is an L-space link. Let p,q be coprime
positive integers and let L, , be the link Legy U Lo U ... U Ly, where Leq, is the (p,q) cable
on Ly. If q/p is sufficiently large, than L, , is also an L-space link. More precisely, if m
s an integer vector satisfying the conditions of Theorem 2.6 then L, , is an L-space link

if ¢/p > my.

Proof. The proof is a direct generalization of [16, Proof of Theorem 1.10]. Choose p and ¢
coprime and suppose that m satisfies the conditions of Theorem 2.6 and ¢/p > m;. First
we will show that the m’-surgery on £, , is an L-space, where m’ = (pg, ma,...,m,).
By [16, Section 2.4] we know that S3,(L,,) ~ Lens(p, q)#5S2,(L), where we set m” =
(q/p,ma, ..., my,) and Lens(p, q) is the lens space. As Lens(p, ¢) is an L-space and since a
connected sum of L-spaces is an L-space, it is enough to show that S2 ,(L£) is an L-space.
But m” > m, so by Proposition 2.7 we conclude that S2 ,(L£) is an L-space. Hence the
m'-surgery on L,, is an L-space. The same proof applies to any sublink of £, , which
contains L., and for a sublink £; not containing L., the m’—surgery is an L-space by
assumption.

Let Ay, be the framing matrix for £,, with framing m’, let A be the framing matrix
for £ with framing m. By assumption, A is positive definite. The matrix A,, differs
from A only at the first column and at the first row. As 1k(Lew, Lj) = plk(Ly, L;) for
Jj = 2,...,n, we conclude that A,, can be obtained from A by multiplying the first row
and the first column by p (the element in the top-left corner is multiplied by p?) and then
adding gp — p?m; to the element in the top-left corner. The first operation is a matrix
congruence so it preserves positive definiteness of the matrix. Adding an element can be
regarded as taking a sum with a matrix with all entries zero but gp — p?>m; in the top-left
corner. This matrix is positive semi-definite, because we assumed that ¢/p > m;. Now
a sum of a positive definite matrix and a positive semi-definite one is a positive definite
matrix. Therefore A,, is positive definite.

By Theorem 2.6 applied to £,, with framing m’ we conclude that £, , is an L-space
link. O

To make Proposition 2.8 more concrete, we have to present an explicit vector m satis-
fying the conditions of Theorem 2.6. This is done in the following theorem.

Theorem 2.9. Let D; denote the maximal degree of t; in the multivariable Alexander
polynomial of an L-space link L, m; = 2D; + 2. Assume that the number of components
of L equals n > 1 and 1k(L;, L;) # 0 for alli # j. Then m = (my,...,m,) satisfies the
conditions of Theorem 2.6.

Proof. By Theorem 2.6 it is sufficient to prove that S (£) is an L-space and the framing
matrix A(m) is positive definite. The former is proved below as Lemma 3.21. To prove
the latter, remark that by Theorem 2.3 one has:

A(Ly) A(t,1,...,1)

2.10 =
( ) t1/2 _ t71/2 Hj;ﬂ (t%lk(leLj) . t—%lk(Ll,Lj)> ’
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SO
2D; — Y Ik(Ly, Ly) + 1> 2deg A(Ly) = 0.
J#i

Now A(m) is a sum of (}) nonnegative definite matrices

Ik(L;, L;) 1k(L;, Lj)
(lk(Li, L) k(L Lj)>

with the only nonzero block at i-th and j-th rows and columns, and a diagonal positive
definite matrix with entries

m; — Y Ik(Li, L;) = 2D; + 2 = > 1k(L;, L) > 0,
j#i Jj#i

so it is positive definite. O

Remark 2.11. This bound is far from being optimal for links with many components. For
example, it is proved in [13] that the point (pg + 1,...,pg + 1) satisfies the conditions of
Theorem 2.6 for the (pn, gn) torus link, while in the above bound one has D; = (npg—p—
q)/2 for n > 2. On the other hand, for the (2,2¢) torus link we get D; = Dy = (¢ — 1)/2,
so Theorem 2.9 gives m; > g + 1, and the two bounds agree.

3. HEEGAARD FLOER LINK HOMOLOGY AND THE H-FUNCTION FOR LINKS

In this section we define the H-function for links and collect some useful facts about it.

3.1. Alexander filtration. A knot K in a 3-manifold M induces a filtration on the
Heegaard Floer complex C'F~(M). Similarly, a link £ = Ly u...u L, with n components
in M induces n different filtrations on C'F'~ (M), which can be interpreted as a filtration
indexed by an n-dimensional lattice. For a link in S, it is natural to make this lattice
different from Z".

Definition 3.1. Given an n-component oriented link £ < S3, we define an affine lattice

over Z":
n

1
H(L) =P |Z+ §1k(Li,L‘\Li) :

i=1

We also define the linking vector:
1
L=£LL)= §(lk(L1,E\Ll),lk(Lg,L’\Lg), ooy k(L LN L))

We have H(L) = Z" + £.

For v € H(L) define a subcomplex A~ (L, v) = CF~(S?) corresponding to the filtration
level v. The filtration is ascending, so A~ (£,u) ¢ A= (£,v) for u < v. The Heegaard
Floer link homology HFL™ (L, v) can be defined as the homology of the associated graded
complex:

u<v

(3.2) HFL™(L,v) = H, (A—(c;v)/ DAL u>> :
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The Euler characteristic of this homology was computed in [30]:

(33) Atr,....ta) = >, (HFL™ (L)t -t =

veH(L)
@) A, ) >,
AR/ (1=t if n =1,
where, as above, A(ty,...,t,) denotes the symmetrized Alexander polynomial of L.

One can forget a component L,, in £ and consider the (n — 1)-component link £\ L,,.
There is a natural forgetful map 7, : H(L) — H(L~\ L,,) defined by the equation:

1 1
(3.4) (V1. Un) = (1)1 — —1k(L1,Ly), ..o Uy — 3 k(Ly,-1, Ln)) .
In general, one defines a map 7w, : H(L) — H(L') for every sublink £' < L:
v)

For v, » 0 the subcomplexes A~ ( stablhze and by [30 Pl"OpOSlthIl 7.1] one has

a natural homotopy equivalence A~ (L;v (ﬁ\Ln,wn(v)). More generally, for a
sublink £ = L;, u ... U L; , one gets:
(3.6) A’(C’; e (V) ~ A (L;v), ifv;>» 0 forall i ¢ {iy... 00}

There is an action of commuting operators Uy, ...,U, on the complex A~ (L). The

action of U; drops the homological grading by 2 and drops the i-th filtration level by 1
In particular, U;A=(L,v) € A= (L,v —e;). This action makes the complexes A~(L, V)
modules over the polynomial ring F[Uy, ..., U,]. It is known [30] that A=(L, v) is a finitely
generated module over F[U7, ..., U,], and the action of all the U; on A~ (L, v) is homotopic
to each other. In particular, all the U; act in the same way in the homology H.(A™(L,Vv)),
which can therefore be naturally considered as F[U]-module, where a single variable U
acts as Uj.

3.2. The H-function. It is known (see [24], this is also a consequence of the Large
Surgery Theorem 4.7 below) that the homology of A~ (L, v) is isomorphic as an F[U]-
module to the Heegaard Floer homology of a large surgery on £ equipped with a certain
Spin® structure. Therefore it always splits as a direct sum of a single copy of F[U] and
some U-torsion. We begin with the following fact.

Lemma 3.7. For u < v the natural inclusion
tuy : A (L,u) = A7 (L, v)

1s injective on the free parts of the homology, hence it is a multiplication by a nonnegative
power of U.

Proof. 1t is sufficient to prove that
v cH (A (L, v—¢;)) — H (A (L,V))

is injective on the free parts. The latter holds because A~ (L, v — e;) contains the image
of U; ~ U acting on A~ (L,v). Indeed, if H,(A~(L,v)) ~ F[U] + T(v), where T'(v) is U-
torsion, then UF[U]| ¢ H,(U;A™(L,v)). Consider the inclusions U; A~ (L,v) € A~ (L, v —

e;) < A~ (L,v). Since the composite inclusion of U; A~ (L, v) into A~ (L, v) is injective on
free parts, we conclude that ¢ is injeotive and

F[U] < F[U]

v—e;, VvV

(3.8) UF[U] <

vev
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U

Definition 3.9. We define a function H(v) = H.(v) by saying that —2H(v) is the
maximal homological degree of the free part of H,(A™(L,v)).

We will gather now some important properties of the H-function.

Proposition 3.10. The function H(v) has nonnegative integer values. Furthermore, for
all ve H(L) one has H(v —e;) = H(v) or H(v —¢;) = H(v) + 1.

Proof. By Lemma 3.7 the inclusion of A=(£,v) in CF~(S?) induces an injective map on
the free parts of the homology, so it sends a generator of the free part to U* times a
generator of the free part for some £ > 0. Since the inclusion preserves the homological
grading (and the generator of HF~(S?) has grading 0), the generator of the free part of
H.(A™(L,v)) has grading —2k, and k = H(v). The last statement immediately follows
from (3.8). O

Proposition 3.11. If £ is a split link then H(v) = > | H;(v;), where H; is the H-
function for the i-th component of the link.

Proof. For a split link by [30, Section 11] one has
A_('Cy V) =~ A_(L17 Ul) ®]F[U] e ®]F[U] A_(Ln7 Un)a

and the isomorphism preserves the homological gradings. Note that all the linking num-
bers of a split link vanish, so H(L) = Z", and the projections to sublattices do not require

any shifts as in (3.6). O
Proposition 3.12. For a sublink L' = L U ... U L; ,, one has

(3.13) Hp(v) = Hp(mp (V) if vp » 0 fori ¢ {iy..., 0.}

Proof. Follows from (3.6). O

3.3. The H-function for L-space links. By Theorem 4.7 (see also [23]), a link is an
L-space link if and only if H.(A™(v)) ~ F[U] for all v € H(L). It turns out that for
L-space links the H-function is determined by the Alexander polynomial.

Throughout Section 3.3 we will assume that £ is an L-space link. Since H,(A™(v)) ~
F[U] for all v € H(L), by (3.2) and by the inclusion-exclusion formula one can write:

(3.14) XHFL™(L,v)) = > (=)' He(v —ep),
Bc{1,...,n}
where ep denotes the characteristic vector of the subset B < {1,...,n}; see [13, formula

(3.3)]. For n =1 equation (3.14) has the form x,, = H(v —1) — H(v), so H(v) can be
easily reconstructed from the Alexander polynomial: He(v) = >} o, Xcu- Forn > 1,
one can also show that equation (3.14) together with the boundary conditions (3.13) has
a unique solution, which is given by the following theorem:

Theorem 3.15 ([14]). The H-function of an L-space link is determined by the Alezander
polynomials of its sublinks as following:

(3.16) He(vi,...,0) = Y, (=D)#70 Y y(HFL™ (£ ),

L'cL u’eH(L’)
u'>me(v+1)

where 1 = (1,...,1).
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There is a formula for the H-function in terms of the multivariable Alexander polyno-
mial. Consider the generating function:

(3.17) H(ty,... ta) = >, #' t0H(v,. .. v).

Note that H is a Laurent series in ti_l/Q: by (3.13) H(v) vanishes if v; » 0 for some i, but
it does not vanish for v < 0. Then [14, Theorem 3.4.3] implies

E 1 1% o(L);— (L)) —
(318> H(thatn) = T -1 Z (_1)#£ lAﬁl(tjl,..~,tj#L,) 1_[ t]( )i —8(£D; 1,

i=1 o LleL ji LjcL!

where A is defined by (3.3).
As above, let D; denote the maximal t;-degree of the Alexander polynomial of L,

D= (Di,...,D,).
Lemma 3.19. Assume that 1k(L;, L;) # 0, then H(v) = H(min(v,D)).

Proof. By Theorem 2.3 the degree of the Alexander polynomial of a sublink £’ = L; in
variable ¢; is less than or equal to D; — %Zﬁ] Ik(L;, Lj) = me/(D);. Therefore if v; > D;
then

T (V) > me(D); = degy, A(L),
and if u > 7z (v) + 1 then y(HFL™(£',u')) = 0. Therefore the summands contributing
to (3.16) nontrivially correspond to subsets I such that v; < D; for i € I. Applying (3.16)
to min(v, D), one gets exactly the same summands. 0

Corollary 3.20. For v > D one has H(v) = 0.

Lemma 3.21. Let D be as above, then for m > 2D + 2 the surgery S3 (L) yields an
L-space.

Proof. Consider the parallelepiped P in Z"™ with opposite corners at D and —D. To com-
pute the Heegaard Floer homology of S3 (L), we use the surgery complex of Manolescu-
Ozsvath [24]. Every Spin® structure on S2 (£) corresponds to an equivalence class of Z"
modulo the lattice generated by the columns of A(m). For m > 2D this equivalence class
has at most one point in P, and the whole surgery complex can be contracted to a single
copy of F[U] supported at that point. For the precise description of the “truncation”
procedure, we refer to [24, Section 8.3, Case I], where the constant b in [24, Lemma 8.8|
can be chosen equal to D by Lemma 3.19. U

The following symmetry property of H, which generalizes the symmetry in the case of
knots [26, 18], is proved in [23, Lemma 5.5].

Proposition 3.22. For an L-space link one has
(3.23) H(—v)=H(v)+ |v|

The symmetry (3.23) and the projection formula (3.13) imply a useful “dual projection
formula”.

Corollary 3.24. Let L be an L-space link, consider a set I = {iy,...,i,} < {1,...,n}
and the sublink L;. Then, as long as v; < 0 for all j ¢ I, the following holds:

(3.25) He(v) = He, (me, (V) + 26(C)1 — 26(L1)) — vy + (L)1 — €(Ly)].
J¢l
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Proof. For v € H(L) set v; = (viy,...,v;.). By (3.23), Hz(v) = Hg(—v) — |v|. Since
—v; » 0 for j ¢ I, the projection formula implies
He(=v) = He, (g, (=v)) = He, (=vi —€(L)r + £(Ly)),
and (3.23) for £; implies
H£I<—V[ - E(ﬁ)[ + E([,[)) = HCI(VI + E(ﬁ)] - E(ﬁ])) + ‘V] + E(ﬁ)] - E(E})| =
HLI(WLI(V> + 2£(£)[ — 23(51)) + ‘V[‘ + |£(£)] — E(EI)\
OJ
3.4. The J-function. The J-function of a link £ is essentially the same object as the
H-function, only it differs from H by a shift in variables. This shift makes J a function

on Z™ instead of H(L). It is therefore more convenient to study changes of the J-function
under some changes (like crossing changes) of the link £: these changes might affect the

lattice H(L). Yet another variant is the J-function, which turns out to be useful for
bounding the splitting number of L-space links; see Section 7 for details.

Definition 3.26. The J-function of a link £ with n components is a function J: Z" — Z
given by
J(m)=H(m+£), meZ".

With this definition the projection formula (3.13) takes a particularly simple form.

Lemma 3.27. Let m € Z" and I < {1,...,n}. Consider a sublink L; of L and suppose
that m; » 0 for i ¢ I. Then we have

J[;(m) = ng(mj).
Proof. Indeed, by (3.5) and (3.13):
J/;(m) = H/;(m + 6) = Hl;l(m[ + g(ﬁ)[ — e<£)[ + e(ﬁ[)) = J[;I(m[).
U

In particular, the J-function of a component L; can be reconstructed from the values
of the J-function for £ evaluated on vectors whose all components but the i-th one are
sufficiently large.

Definition 3.28. For m = (mq,...,m,) € Z" define

n

J(m) = J(m) = Y Jp, (m).

i=1
The main feature of the J-function is the following corollary to Proposition 3.11.
Corollary 3.29. If L is a split link, then J=0.

For general L-space links the J-function can be calculated from the Alexander polyno-
mial. We have the following result.

Proposition 3.30. Define the generating function

~

I, t) = > 7t J(m).
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Then J is a Laurent series in ti_l/2 and the following equation holds:

- —e(c);—1
(3.31)  J(t1,....tn :]_[1 t—1 DD ALty toTE,
i=1 #fégﬁl j: LjcLl!
>

Proof. This is a consequence of previous definitions. The formula for the generating
function for J(m) immediately follows from (3.18). To get a generating function for J

we need to subtract the sum of J-functions for components Lq,..., L, of L. We apply

(3.18) again to calculate this contribution, and remark that for » > 1 one has Ay =
1/2

[1t7- AL O

Equation (3.31) takes a particularly simple form for a two-component link.

Corollary 3.32. For a link with two components

(tltg)i lk(Ll’L2)/2A(t1, tg)

(t}ﬂ _ t;lm) (t;ﬂ _ t;1/2> ’

Example 3.33. Consider the Whitehead link. By [23, Example 3.1] it is an L-space link.
The linking number vanishes. The symmetrized Alexander polynomial equals A(ty,t5) =

(t1/2 t 1/2)(251/2 to 52 (see Example 2.1), so the nontrivial values of x(HFL™(v)) are
X(HFL™(0,0)) = =1, x(HFL™(1,0)) = x(HFL™(0,1)) = 1, x(HFL™(1,1)) = —1.

J(t1,t) = —

3.5. Examples.

Furthermore, both components are unknots, so y(HFL™(v)) = 1 for v = (v,0) or v =
(0,v) with v < 0, and x(HFL™(v)) = 0 for v = (v,0) or v = (0,v) for v > 0. The
H-function of the components equals

Hi(ve) = Y X(HFL™(j)) = max(—uv,0)

for k =1,2. By (3.16) we get

H(vi,v9) = Hi(v1) + Ha(vs) — Z X(HFL™ (u)) =

u>v+1

. Hl(?}l)—FHQ(Ug)"{'l = 1, if v= (0,0)
Hi(v1) + Ha(v), otherwise.

Example 3.34. Consider the Borromean link. By [23, Example 3.1] it is an L-space
link. The linking number between components vanishes, so do all bivariate Alexander
polynomials of sublinks. The trivariate symmetrized Alexander polynomial equals

1/2 —1/27,,1/2 —1/27\/,1/2 —1/2
A(t17t2at3) = (t1/ —t /)(tz/ —ty /)(ts/ — 1 /)v
SO
1 ifv= (1,1,1),(1,0,0),(0,0,1),(0,1,0)

x(HFL™(L,v)) =< -1 ifv=(0,1,1),(1,1,0),(1,0,1),(0,0,0)
0 otherwise
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By (3.16), we get

3
S Hi(vi)+1=1 ifv=(0,0,0)

3
H(vla V2, UB) = Z HZ(Uz) + Z X(HFL_(U)) — z§1
= usvH > Hi(v) otherwise.

i=1

4. THE H-FUNCTION AND d-INVARIANTS

4.1. Ozsvath—Szabd d-invariants. Let Y be a rational homology three-sphere equipped
with a Spin® structure s. The d-invariant of (Y,s) is the maximal grading of an element
x € HF(Y,s), which maps non-trivially into HF*(Y,s). It is a rational number. The
usefulness of the d-invariant comes from two facts: firstly it behaves well under a negative
definite Spin® cobordism, secondly it can be calculated from the knot (or link) Floer chain
complex; we will describe this in detail in Section 4.2 below. As for the behavior under
cobordism, suppose that (Y7,s;) and (Y3,82) are rational homology 3-spheres and W' is
a smooth 4-manifold with boundary Y5 1 —Y; endowed with a Spin® structure t which
restricts to s, on Y3 and to s; on Y;, put differently, (W, t) is a Spin® cobordism between
(Y1,s1) and (Y2,82). The following result is proved in [28].

Theorem 4.1. There exists a chain map Fuygy: CF*(Y1,81) — CF*(Y3,52), commuting
with multiplication by U and shifting the absolute grading by

(12) dog vy = 7 (61(6) — 30(7) — 2x(WW))

The chain map descends to maps HF* (Y1, 81) — HF*(Y3,89), HF ~(Y1,51) — HF (Y, 55)
and HFE*(Y1,81) — HF* (Y2, 85) (which will still be denoted by Fwyy). If additionally W
is negative definite, that is, the intersection form on Hy(W;Q) is negative definite, then
Fuwy is an isomorphism on HF™ and

(4.3) d(YQ,Eg) > deg F(W,t) + d(Yl,ﬁl).

A standard way of interpreting ¢2(t), provided H;(0W;Q) = 0, is to use an isomorphism
H2(W;Q) =~ Hy(W,0W;Q) =~ Ho(W;Q) (the first part is Poincaré duality, the second
is the long exact sequence of pair) to identify c;(t) with an element in Ho(W;Q). Then

ci(t) is a self-intersection of an element in Hy(W;Q), so it is a rational number.

Remark 4.4. Tt follows from the definition that the degree is additive under the composi-
tion of Spin® cobordisms.

The degree formula (4.2) will play an important role in this article. We will need the
following fact, which is well known to the experts.

Proposition 4.5. The degree deg Fyyy s preserved under negative blow-ups. Namely,
suppose w: W' — W is a blow-down map and E is the exceptional divisor. Let t' be the
Spin® structure of W' whose first Chern class is m*c1(t) + PD[E], where PD stays for
Poincaré dual. Then
deg F(W’,t’) = deg F(W,t)-
On the other hand, if m: W — W is a blow-down of a (+1)-sphere, then
deg F(W/,y) = deg F(W,t) — 1.

Proof. Let s = [E]?, so s = +1 for the positive blow-up and s = —1 for the negative one.
We have that x(W') = x(W) + 1, c3(t') = c}(t) + s and o(W’') = o(W) + s. The change
of the degree is 1(s — 3s — 2) = —%(s + 1). O
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4.2. Large surgery theorem. The subcomplexes A~ (L, v) are naturally related to the
surgeries of the 3-sphere on £. Choose a framing vector q = (q1,...,¢,) such that
¢, - - -, qn are sufficiently large. Let A be the linking matrix of £, that is A;; = 1k(L;, L;)

Form a four-manifold X, by adding n two-handles to a ball B*: a handle with framing
g; is attached along the component L;. The boundary 0X, denoted Yy, is the surgery on
L with framing q. Let F; be the surface obtained by gluing a core of the i-th handle to a
Seifert surface for L;. By construction the classes [Fi],...,[F,] freely generate Hy(Xgq).
With this choice of generators, we identify Hy(X,) with Z™.

Suppose det A # 0. In this case Yy is a rational homology sphere. In [24, Section 8.5]
there is given an enumeration of Spin® structures on Yy, which we are now going to recall.

Fix ¢ = (1, ..,¢), a sufficiently small real vector whose entries are linearly indepen-
dent over Q. Then let P(A) be the hyper-parallelepiped with vertices

¢+ %(iAl + Ao+, ..., i’An)7

where all combinations of the signs are used and Aq,..., A, are column vectors of the
matrix A. Then P(A) is the fundamental domain for R"/H (A), where H(A) is the lattice
generated by the vectors Ay, ..., A,. Denote

Pu(A) = P(A) n H(L),

where H(L) is the lattice for £ as described in Definition 3.1 above. The set Pg(A) might
depend on the choice of ¢, but its cardinality is independent of (; see [24, Section 8.5] for
more details.

Proposition 4.6 (see [24, Equation (125)]). For any v € Pg(A) there exists a unique
Spin° structure sy on Yy which extends to a Spin® structure t, on Xq with ¢ (t,) =
2v— (A + ...+ Ay).

Theorem 4.7 (Large Surgery Theorem, see [24, Section 10.1]). Assume that q - 0. For
any v € Pg(A), the homology of A~ (L; V) is isomorphic to the Heegaard Floer homology
of Se(L) with Spin° structure s,. More precisely, we have an isomorphism over F[U]:

(4.8) A™(L,v) = CF(S3(L),sv),

where U acts as Uy on the left hand side. In particular, the actions of all the U; on
A~ (L,v) are homotopic to each other and to the action of U.

It is important to note that the isomorphism (4.8) shifts the grading. The grading shift
can be calculated explicitly from the linking matrix A and the vector v. We present a
more geometric way, which will suit best our applications.

Remove a small ball from X and call the resulting manifold Ug. This is a cobordism
between S® and Yq. Let U = —Uq. The Spin® structure t, on U] gives a Spin® cobordism
between (Yy,sy) and S® (equipped with the unique Spin® structure), so it induces a map
Fy, 4,y between Heegaard Floer homologies of (Yq, s,) and S°.

Proposition 4.9 (see [24, Section 10]). The isomorphism (4.8) shifts the degree by
— deg F(U('pfv) .

As a corollary we can give a formula for d-invariants of large surgery on links.

Theorem 4.10. For v € Py(A), the d-invariant of a surgery on L is given by
d(Sg(ﬁ),ﬁv) = — deg F(Uél,’tv) — QH(V)
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5. PSICS AND FOUR—MANIFOLDS

A positively self-intersecting cobordism (later shortened to: a PSIC) is a generalization
of the notion of a positively self-intersecting annulus used in [5] as a way to translate
the questions about the unknotting number of knots into questions about cobordisms of
three-manifolds, where d-invariants can be used. The notion of a PSIC will play the same
role for links.

5.1. PSICs in various guises. Let £; and £, be two links. Denote by Lii,..., Lin,
and Loy, ..., Loy, the components of £1 and L, respectively. A positively self-intersecting
cobordism (in short: PSIC) from L; to £, is a surface A, smoothly immersed into S*x[1, 2]
such that 0A = L51—L; and A is topologically a union of immersed punctured disks. We
require that A has ordinary positive double points as singularities. Here and afterwards,
whenever we write £; or L, it should be understood that £; = S3x {1} and £, = S3 x {2}.
The same applies for the components of £, and L,.

If Ais a PSIC, we denote by Ay, ..., A, its components. Each of the A; is an immersed
surface and A = Ay u... U A,. We define n;; = #(A; n A;) for 4,5 =1,...,n and i # j;
for i = 7 we set n;; to be the number of double points of A;. The total number of double
points of A is

b= 2 Mij-

1<y

Furthermore, set

(5.1) a=(ay,...,a,), where a; 2277@.
i
The following specifications of the definition of a PSIC will be used in the present
article:

e an annular PSIC, shortly APSIC, is a PSIC such that each of the A; is an annulus
such that 0A; = Lo; b —Ly;. For an APSIC n = ny, = n;. An exemplary APSIC
is presented in Figure 1. An APIC is a concordance (in the standard sense) with
positive self-intersections allowed. The notion of APSIC will be most important
in the applications.

e a sprouting PSIC, shortly SPSIC, is a PSIC such that for every ¢ = 1,...,n, the
intersection A; N S® x {1} = Ly;. For a SPSIC we have ny > n; = n. Furthermore,
for any ¢ = 1,...,n we define the subset

(5.2) O, ={j=1,...,n: Ly < 0A;}.

e an clementary sprouting PSIC, shortly ESPSIC, is a SPSIC such that A is smooth
and there exists k € {1,...,n} such that for ¢ # k we have ©; = {i} and O =
{k,n2}. For an EPSIC we have ng — 1 = n; = n.

Let us introduce some useful terminology.

Definition 5.3. A double point z of A is called multicolored respectively monochromatic,
if z belongs to two components of A (respectively, to one component of A).

For future reference we will need two simple facts. For simplicity, suppose A is an
APSIC (analogous statement can be proved for general SPSIC, but we do not need it).
Define a shorthand

15, = Ik(Lys, Lij) for i # j, k =1,2.
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A

A

S3 % [0,1]

FiGURE 1. An APSIC between two two-component links. Two crossings
are marked: one is a double point on an annulus, another one is a crossing
between two annuli.

A

FIGURE 2. Step 2 of the construction in Section 5.2. The boundary of Z
is the disjoint union of S* on the left and 332(52) on the right.

As all the self-intersections of A are positive and a positive self-intersection between
different link components increases the linking number by 1, we have that for ¢ # j:

2 _ g1
(5.4) liy = Uiy + mij
Equation (5.4) summed up over j # i yields the following result.

Lemma 5.5. Suppose that A is an APSIC and let £, and €5 be the linking vectors of L1
and Ly respectively. Then
1
82 — El = 50,.

5.2. Topological constructions involving a PSIC. In the following we generalize the
construction of [5] that based on a version of a PSIC for knots and as an output produced
a cobordism between surgeries of the two knots involved. We begin with a rather general
construction, later on we will specify its three variants. The construction is done in four
steps.

Step 1. Begin with A < S3 x [1,2] and blow up all the double points of A (we do not
specify yet, whether we perform positive or negative blow-ups). The exceptional

divisors are denoted by E\,. .., E,. For a component A; of A, let A; be its strict
transform, that is, the closure in the blow-up of the inverse image of A;\Sing A.
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FI1GURE 3. The final step of constructing the cobordisms Wy, Wis and
Wosa. The shaded part is Wy;. The unfilled part is Wi,.

Set
~ A E;
Step 2. Fix a framing vector qs = (ga1, - - - , Gon,) € Z™2, where ny is the number of compo-

nents of the link £,. This turns £, into a framed link and let A, be its framing
matrix. Attach to the p-fold blow-up of S® x [1,2] constructed in Step 1 ny two-
handles along £, with framings given by q,. The resulting manifold is called Z.
Its boundary is Y5 11—S5% x {1}, where Y5 = S3 (L,) is a surgery on Ls; see Figure 2.
Let C4,...,C,, be the cores of the handles attached. For each component Lo; of
L, choose a Seifert surface Yo; = S x {2}. Let Fy; = ¥o; U Ci. Then Fyy, ..., Fyy,
are closed connected surfaces. N N

Step 3. Form the union D =Cy u...uC,, U Ay U ... U A,. Denote by Dy,...,D, the
connected components of D as in Figure 2. Let N be a tubular neighbourhood
of D in Z; see Figure 3. Set Wiy, = Z\N and let Y7 = 0W\Y,. Then Wy, is a
cobordism between Y] and Y5.

Step 4. Take again Z and glue to it a four-ball B along S® x {1} = 0Z. Let X, be the
resulting manifold. Finally pick a small ball By = B and drill it out from Xg,. Set
Wog = Xq2\30 and W01 = (B\B()) U N, so that W01 U W12 = W()g. Let Yb = SS.
Then Wy, is a cobordism between Y, and Y; and Wy, is a cobordism between Y
and Y;. See Figure 3.

We have the following immediate observation.

Lemma 5.7.

(a) The cobordism Wyy is a p-fold blow-up of the cobordism Ug,(Ls) defined before
Proposition 4.9.

(b) Suppose A is a SPSIC. Then Dy,...,D, are disks and n = ny is the number
of components of Ly. Furthermore Y1 is a surgery on Li with a framing vector
a1 = (q11,- - -, q1ny ) depending on qy and on the signs of blow-ups (we give a precise
formula for qi below). The cobordism Wy, is identified with Uqg, (L1).

From now on we will assume that A is a SPSIC.
Choose Seifert surfaces for Liq, ..., L1,, and call them ¥;q,...,%y,,. Let Fi1,..., Fi,,
be closed surfaces obtained by capping the disks Dy,...,D,, with ¥1,...,%,,. The
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classes [Fi1], ..., [Fin,] generate Hy(Woi;Z). The map Wy < Woe induces a monomor-
phism on second homologies. We will not distinguish between the class [Fy;] € Ha(Wo1; Z)
and its image in Hy(Wos; Z).

Lemma 5.8. In Hy(Wyo, Z) we have the following relation.

[Fu] = . [Fy] + iji [EL].

JEO;

Proof. The class of [ F};] is the sum of a class ;¢ [F?;] and the class of a closed immersed
surface
Si = Zli U A; ) Z Egj.
JEO;
The surfaces S; will usually be only immersed, because the Seifert surfaces oy, ..., Yop,
can intersect (we may assume that their intersection is transverse, but this is irrelevant
for the present proof).

Notice that S; can be regarded as a strict transform of a closed surface in S® x [0, 1],
formed by capping the component A; with the Seifert surfaces of corresponding links. This
surface in S% x [0, 1] is homologically trivial, as Hy(S® x [0,1];Z) = 0. Therefore, the
class of S; in Hy(Woe;7Z) is a linear combination of classes generated by the exceptional
divisors. The coefficients in this linear combination can be calculated by intersecting
S; with divisors Ey, ..., E,. More concretely [S;] = S E’“ [Ek] But geometrically
S; - B, = A; - B, = d;,. The lemma follows. O

Lemma 5.9. If A is a SPSIC and all the blow-ups are of fized sign (either all positive or
all negative), then q; and qs are related by the following formula.

If all the blow-ups are negative

(5-10) q1; = Z q2; — 4ni; — a;.

JEO;

If all the blow-ups are positive

(511) qd1; = Z q2j + a;.
Jj€o;
Proof. The coeflicients qi1, ..., qin, are self-intersections of disks Dy, ..., D,,. Here, by

the word ’self-intersection” we mean the following: push slightly D; to obtain another
disk, called D!, intersecting D; transversally and such that dD; < S® x {1} is disjoint
from 0D; and the linking number 1k(0D;, dD!) calculated on S® x {1} is equal to zero.
Then the self-intersection of D; is defined as the number of intersection points (counted
with signs) of D; and D). In other words, the self-intersection of D; is equal to the self-
intersection of [Fy;]. On the other hand, the framing ¢o; is interpreted in the same way
as the self-intersection of [ Fy;].

As the classes [Fy;] and [E)] are orthogonal, by Lemma 5.8 the difference of self-

intersections
2
(Z [ng]> — [Fu]?

JeEO;



IMMERSED CONCORDANCES OF LINKS 19

is equal to

(Z Jik[Ek]> = > di[E).

Now we have two cases. First suppose that all the blow-ups are negative. Then [E}j]* =
—1 for all k. Moreover, 6712]6 = 0,1 or 4 is the square of the multiplicity of the double point
2 if 23, € A; and czk = 01if zx ¢ A;. The sum ), Jfk can be calculated using the fact that
a; is equal to the number of multicolored double points on A; and 7; is the number of
monochromatic double points on A;. This proves (5.10).

The situation with positive blow-ups is analogous. There is one difference, though. If
an exceptional divisor Ej is a blow-up of a monochromatic point on A;, then d;; = 0 (and

not +2). This corresponds to the fact that in the blow-up the annulus A; will intersect
the exceptional divisor Ej in two points with opposite orientations. 0

5.3. Homological properties of 1W;5. We will study some homological properties of W,
and Wis. They are synthesized in the following lemma, which is a direct generalization
of results in [5, Section 2.2].

Lemma 5.12. Suppose A is sprouting and qo has all coordinates sufficiently large.
e The homology of Hy(Wia;7Z) is the coimage of the map Ho(Z;Z) — Z™ which
takes x to the vector (x - Dy,...,x - Dy,).
o [f all the blow-ups are positive, the manifold W15 has positive definite intersection
form on Hsy. If all the blow-ups are negative definite and A is an APSIC, then
Wis has negative definite intersection form.

Proof. The manifold W5 is built from Z by removing tubular neighborhoods of disks. As
Z arises by gluing ny two-handles to the p-fold blow-up of S® x [0,1] and the framing
matrix is nondegenerate, we have H{(Z;Q) = 0, Hy(Z;Q) =~ Q™ and H3(Z;Q) = 0,
furthermore H3(Z;7Z) = 0.

Consider the long exact sequence of homology (with Z coefficients) of the pair (Z, Wis).
By excision we have H,(Z,Wys) =~ H.(N,0,N). Here N is viewed as a D? bundle
over D and N, is the associated S' bundle. Using Thom isomorphism we obtain that
H3(N,0.N) =0 and that Hy(N, 0, N) = Z™ is generated by classes «; := [(t; x D?,t; x
SYH] € Hy(N,0,N;Z), j = 1,...,nq, where ty,...,t,, are some points in Dy,..., D,,
respectively.

The latter implies that Hy(Wia;Z) injects into Hy(Z;Z). The map

K: HQ(Z7Z) — HQ(Z, ng,Z)

can be explicitly described. Namely, for x € Hy(Z;7Z) we choose its representative as a
union of cycles each intersecting D transversally. Then

k(x) = (x-Di)ag + (x - Dy)ag + ... + (x- Dy, )iy, .

This proves the first part of the lemma.

The first part can also be rephrased in another way. As each class x € Hy(Z;Z) can be
represented by a surface disjoint from S* x {1}, the geometric intersection number (x- D)
is equal to x - [Fy;]. With this description it follows that Hy(Wi2;Z) is an orthogonal
(with respect to the intersection form) complement to a submodule of Hy(Z;Z) generated
by [Fi1],--.[Fin,]- The same applies for homologies with Q coefficients. Therefore,
the signature of the intersection form on Wis can be calculated as the difference of the
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signature of the intersection form on Z and the signature of the intersection form on
[Fi1],- .., [Fin,]- The proof of the second part follows now by a case by case analysis.

If all the blow-ups are positive, then Z has a positive definite intersection form, hence
it restricts to a positive definite intersection form on Wi, If A is an APSIC and all
the blow-ups are negative, then one readily computes that b3 (Z) = n and b, (Z) = p.
Moreover, the intersection form on an n-dimensional subspace spanned by [Fi1], ..., [Fix]
is positive definite. So its orthogonal complement is negative definite.

O

6. INEQUALITIES FOR THE H-FUNCTION UNDER THE CROSSING CHANGE

We will now assume that links £; and £ are connected by a PSIC. The inequality for
d-invariants (4.3) will translate into the inequality between H-functions, or, equivalently,
J-functions.

We are going to prove the following two results (we use the notation from Section 5.1).

Theorem 6.1. Let A be an APSIC from Ly to Ls. Let J; and Jy be the J-functions as
in Definition 3.26. Set v = (M1, ...,Mun). Choose a presentation of ny for i <l as the
sum

1,2
Nt = Mg + Mty
where ny, N5 are non-negative integers. Set

ki = 277]21 + 277@‘13"

Jj<t 7>t
Letk = (ky,...,k,). Then for any m € Z™ we have
(6.2) Ji(m+ k) < Jo(m) < Ji(m —1)

A counterpart of this result for an EPSIC is the following.

Theorem 6.3. Suppose A is an EPSIC. Choose my € Z"* and let my € Z™ be given by
mi; = My, Zfl # k and mi; = My + ms p,. Then

(64) Jl(ml) < Jg(mg).

Theorem 6.1 is proved in Sections 6.1 and 6.2. Theorem 6.3 is proved in Section 6.3. In
Section 6.4 we prove Theorem 6.20, which is a straightforward, but important, corollary
of Theorem 6.1.

6.1. Proof of Theorem 6.1. Part 1. In this section we prove the part Jo(m) <
Ji(m —r).

Construct Wy, by making negative blow-ups of the APSIC; see Section 5.2. Choose
m € Z". Pick q. sufficiently large (we specify below the precise meaning of sufficiently
large), but now we point out that qs is chosen after m. According to Lemma 5.9 define
q1 =qz —4r —a.

Set vo = m — €5, where £5 is the linking vector for L. Let sy, be the Spin® structure on
Y,. It extends to a Spin® structure ty, on Ug,(L2) (see Section 4.2 for definition of Uy (L)).
Recall that Wy, is identified with a p-fold blow-up of Ug,(L2). Let m: Wyo — Uy, (L2) be
the blow-down map. Define the Spin® structure t,,, on Wy, as the Spin® structure, whose
first Chern class is equal to

m*c1(ty,) + PD[Ey] + ...+ PD|E,].
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Lemma 6.5. The Spin® structure t(,2 on Wye restricts to the Spin® structure sy, on Yi,
where
1

(6.6) Vi=Vvz—I-—ca.
Proof of Lemma 6.5. By construction of Wy, and by Lemma 5.9 we have Wy = Ug, (£1).
The Spin® structure sy, on Y; extends to the Spin® structure t,, on Wy;. Our aim is to
show that with the choice of v, as in the statement of the lemma, ¢(t,,) and c;(t,;)
evaluate in the same way on the classes [Fi1], ..., [Fin)-

By definition of t, we have

<Cl(t:,2), [FQZ]> = 22)2’1‘ — (A21 + ...+ A2n2>i
(erlty,), [E]) = Ej - Ej = —1,

where Aoy, ..., Ay, are column vectors of the framing matrix A, for £o. The subscript ¢ in
the first formula means that we take the ¢-th coordinate of the vector in the parentheses.
Combining (6.7) with Lemma 5.8 we obtain

(6.7)

p

(6.8) (er(t,), [Fril) = 2005 — (Aox + ... + Aoy, + > .

j=1

The framing matrices Ay and A; can be compared using (5.4) and (5.10).

5.4 5.10
(AQl + ...+ AQn)l — (AH + ...+ A1n>z (I) Z?’]ij + q2; — 414 ( = ) 47711 + 2(11'.
j#i
Notice that d;; = 1 for all multicolored double points that lie on A; and d;; = 2 for all
monochromatic double points on A;. Therefore (6.8) implies that

<Cl<f:,2), [Fh]> = 21)2,2‘ — (A21 + ...+ A2n)z + a; + 27]“
The two above equations yield

(er(t,,), [Ful) = 2v2; — (A + ... + A1), — a5 — 2155
On the other hand, by Proposition 4.6

(69) <Cl (tvl), [Fh]> = 21)172‘ - (AH + ...+ Aln)l .
Combining the two above formulae we conclude that c;(t,,) and c;(t,,) evaluate to the

same number on each of the [Fy;]. It follows that ¢;(ty,) = c1(ty,) in H*(Woi;Z). By
Proposition 4.6 (see also [24, Section 10.1]) this implies that t,, = t;. O

We resume the proof of the inequality Jo(m) < Jy(m—r). If qq is large, then the state-
ment of Theorem 4.10 holds for qo—surgery on £ and for q;—surgery on £;. Furthermore,
we require that qs and q; are large enough so that vy € Pg(As) and vy € Pg(Ay).

Denote for simplicity t = t;,. By Lemma 6.5, (Wi, t) is a Spin® cobordism between
(Y1,8y,) and (Y2, 5y,).

By Lemma 5.12 Wy, is negative definite. By (4.2) we have:

(6.10) A(Y2.5v,) > dog Fuy +d(V1.5,).
By Proposition 4.5 combined with Theorem 4.10:
d(}/g,ﬁ\,Q) = — deg F(—WDQ, t) — 2J2(V2 — Eg) — P

6.11
( ) d<Y175v1) = — deg F(-W()l,t) — 2J1(V1 — £1>
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Notice that the first equation contains the term —p. This follows from the fact that Wy,
is not Ug,(L2), but it is a negative blow-up of Ug,(L2) with p blow-ups. If we reverse
the orientation, the negative blow-up becomes a positive blow-up, so deg Fi_wg,y =
deg F(Ul/112 (2),) — P by Proposition 4.5.

Substituting (6.11) into (6.10) we obtain:

(612) — deg F(—Wog,t) + deg F(—Wohf) — deg F(ng,t) —p+ Jl (Vl — el) = JQ(VQ — £2>
Let us look at the expression
A = deg F(*WOQ,{) + deg F(W12,t) — deg F(*Wm,t)'

Denote by cg2, 12 and cg; the evaluations of ¢2(t) on Wy, Wis and Wy, respectively.
Likewise denote by o0go, 012 and og; the corresponding signatures and xo2, X12, Xo1 the
Euler characteristic. We have by (4.2):

4ddeg Fl_wy,,) = —Co2 + 3002 — 2X02
4 deg F(le,t) = C12 — 3012 — 2X12
—4ddeg Fi_wy, 1) = co1 — 3001 + 2Xo1.

Notice that in the above expression we switched signs of o and ¢ according to the orien-
tation. Notice also that ogs = 0¢1 + 012 and xo2 = Xo1 + x12 (additivity of the signature
and of the Fuler characteristic) and cpy = co; + c12 (functoriality of the Chern class).
Summing up the three equations we obtain

A = dxp = —4X(W12)-

The Euler characteristic of Wi, can be quickly calculated. Recall that in Section 5.2
the manifold Wi, was constructed by taking S* x [0, 1], blowing up p times, gluing n
two-handles and drilling out n disks. The original S* x [0, 1] has Euler characteristic 0.
Each blow-up increases it by 1. A two-handle attachment increases it by 1 and drilling
out a disk decreases it by 1. Finally x(Wi2) = p so A = —p. Plugging the value of A into
(6.12) we obtain.

Jl(Vl — 81) = J2(V2 — Eg)

By definition, vo — £5 = m. The last step is to calculate vi — £;. We use Lemma 6.5.
By Lemma 5.5, equation (6.6) can be rewritten as

Vi =V2—k—(£2—£1).
This amounts to saying that vi —£€; =m —r, so J;(m —r) = Jo(m).

6.2. Proof of Theorem 6.1. Part 2. We are going to prove the part J; (m+k) < Jy(m).

The proof is analogous to the proof of Jo(m) < Ji(m — r), although there are some
differences. We construct Wy by making all blow-ups positive. Choose m € Z™ and let
g2 be sufficiently large.

We begin with some combinatorics. Recall that the exceptional divisors of the blow-up
are denoted Fi, ..., E, We choose orientation of the divisors by requiring that if F; is
the exceptional divisor of the blow-up of the point of intersection A; N A; with i < 4’ then
E;nA; =1and E; n Ay = —1. The orientation of the exceptional divisors of blow-ups
of monochromatic double points is irrelevant.

Choose now 9y, ..., 0, € {—1,+1} in the following way. If E; is the exceptional divisor
of the blow-up of a monochromatic double point, then §; = 1. Let now ¢ and ' be the
indices such that i < 4’. Let I;; be the set of indices {1,...,p} such that j € I;; if and
only if F; is the exceptional divisor of the blow-up of a point in A; n A;y. We know that
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#1;» = n;y. Partition the set [;; into two subsets ]Zli, and IZ-QZ-, of cardinality mz-lz-, and m?z-,
respectively. Set d; = —1 for j € I}, and §; = 1 for j € IZ,. Finally denote

/4 p
0 = (ela"-79n) = <Z5Zd117---,251dn1> .
=1 =1

We have the following result
Lemma 6.13. With the choice of 61,...,0, as above and with k as in the statement of
Theorem 6.1 we have )

b — 0 — k = 50.

Proof. In view of Lemma 5.5 we need to prove that
0 =2k —a.

By definition, k; = 3., n5; + >, 7i;. Using the definition of a; in (5.1) and the fact that
for v < jmji = nij = n}j + 77% we transform the above equation into the following set of
equations for 1 = 1,...,n:

P
(6.14) Z Oydy = 2(77;21 - 77]1@) + Z(njlz - 77]2@)
=1

j<i 1>
The way the exceptional divisors are oriented implies that d; = 1 if [ € I;; for some i’ > i,
dy = —1if l € I; for some i’ < i, and otherwise d; = 0. The left hand side of (6.14) can

be expressed as
p
Sade= Y Y6 Y N
I1=1

.y .y
i <ilely, i'>ilel;;,

But >, ,o;, & = n5; — ny; by definition, so

p
DiGidi =5 —nk) + (k= ).
=1

j<i i >i
This proves (6.14) and concludes the proof of the lemma. 0
We resume the proof of Theorem 6.1. The manifold Wy, is a p-fold positive blow-up

of Uq,(L2), and let again 7 be the blow-down map. Choose vo = m + €5 and the Spin®
structure t:,z on Wy, given by

al(ty,) = 7 ci(ty,) + 00PD[E] + ... + 6, PD[E,].
We have the following result, which is a counterpart of Lemma 6.5.

Lemma 6.15. The Spin® structure t,,, restricts to the Spin® structure vy on Y1, where

1
Vi =V2—§0.

Proof of Lemma 6.15. The proof of Lemma 6.15 resembles the proof of Lemma 6.5. We
will show that first Chern classes of the two Spin® structures, t,, and t,, evaluate in the
same way on the generators of Hy(Wyy;7Z) and conclude by Proposition 4.6.

By definition of t, we obtain

<Cl(ti,2)7 [Fy]) = 20y, — (Ao + ...+ A2n2>i

(6.16) {a(t,,), [E;]) = 6;E; - E; = §;.
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Combining (6.16) with Lemma 5.8 we obtain

p
(6.17) (er(€,), [Ful) = 2025 — (Moy + ... + M), + ) 65dy5.

J=1

Notice that by Lemma 5.9 Y] is a q;—surgery on £;, where q; = qs + a. Therefore a
quick calculation using (5.4) yields

(Aor 4+ ...+ As), — (A + ...+ Ay, =
(Aot + .o+ Ao+ Ao 4+ ..+ Ay,
—(Agr 4. F Ao F Ao+ Agyy),
+ a2 — Q1 = @i —a; = 0.
Substituting this into (6.17) we obtain.

p
<Cl (t/v2)7 [Flz]> = 2U2,i - (An + ...+ A1">i + Z 6jdij~

j=1
The evaluation of ¢;(ty,) on [F};] is given by (6.9). We obtain that

(e1(t,), [Fu]) = {e1(tr), [Fui]), if 2vo — 6 = 2vy.
O

We continue the proof of Theorem 6.1. With the choice of v; as in Lemma 6.15, the
manifold (Wi, t,,) is a Spin® cobordism between (Y1, sy,) and (Y3, sy,). By Lemma 5.12
Wis is positive definite. Then —W5 is negative definite and (4.3) gives

d(}/lvsvl) = deg F(*Wm,t) + d(Yéaﬁvz)-
Using again the formula for d-invariants of large surgeries we obtain
(6.18) —deg F_wy, 0 + deg Fiowy,0 — deg Fl_wyy ) + J2(vo — £2) = Ji(vi — £1).

Now the expression deg F(_yy, 1) + deg F_w,,, — deg F_wy,,) 1s much easier to handle
than an analogous expression in Section 6.1 because —Wyy = —Wy U —Wi5. Therefore
the map F(_w,, is the composition of F(_yy, ¢ and F(_w,, so its degree is the sum of
the degrees of the summands. The three degrees in (6.18) cancel out and we are left with

(619) JQ(VQ — 22) = Jl(Vl — £1)

By definition vo—£€3 = m. On the other hand, by Lemma 6.13 combined with Lemma 6.15:
1
Eg—ﬁl—k: 50:V2—V1.
Plugging this into (6.19) yields Jy(m) > J;(m + k). This accomplishes the proof of
Theorem 6.1.

6.3. Proof of Theorem 6.3. The construction is similar as in Section 6.2. Take m, € Z™2
and let qs be sufficiently large. The construction of Wy, is as in the proof of Theorem 6.1,
but there are no blow-ups, hence Wy = Ug,(L2). We know that Wy, = Ug, (£1), where
by Lemma 5.9 q1; = q9; if ¢ # k and ¢1x = qor + Gon,. Set vo = my — £y and let t,, be
the Spin® structure on Wy, extending the Spin® structure s, on Y,. Evaluating ¢;(ty,) on
classes [F11],...,[Fin,] we show that t,, restricts to sy, on Yj, where vy; = vy; if @ # k
and vy = Vg + Ugp,. By Lemma 5.12, Wy, is positive definite. Therefore (—Wia, ty,) is
a negative definite Spin® cobordism between (Y3, sy,) and (Y1, sy,). Acting exactly in the
same way as in Section 6.2 we arrive at the inequality Ja(vy —€y) = Ji(vi —£;1). We have
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vy — €5 = my. Moreover it is easy to see that with the definition of v; and m;, we have
vi — £ = my. This concludes the proof.

6.4. A variant of Theorem 6.1 for a single crossing change.

Theorem 6.20. Let £, and Ly be two n-component links differing by a single positive
crossing change, that is, Lo arises by changing a negative crossing of L1 into a positive

one. Let Jy and Jy be the corresponding J-functions and let m € Z", m = (mq, ..., my,).
(a) If the crossing change is between two strands of the same component Ly; of L,
then
Jo(my,ma, ..o omy+ 1,00 my) < Ji(ma, ..o my) < Jo(my, oo my, . my,).

(b) If the crossing change is between the i-th and j-th component of Ly, then

Jg(ml,mg,...,mn) < Jl(ml,...,mn) < Jg(ml,...,mi—l,...,mn)
and
Jg(ml,mg,...,mn) < Jl(ml,...,mn) < Jg(ml,...,mj—l,...,mn)

Proof. We begin with part (a). If £; and L, differ by a single positive crossing change
involving the component Ly;, then there is an APSIC from £ to £5. The construction is a
generalization of [5, Example 2.2]. We take a product cobordism between components L
and Lo; for j # ¢ and an annulus with a single positive double point connecting L; to Lo;.
The cobordism has 7, = 0 unless k = [ = ¢ and n; = 1. In the notation of Theorem 6.1
we have r = e; and k = (0,...,0). Part (a) of Theorem 6.20 follows immediately.

Part (b) is analogous. We construct an APSIC with 7 = 0 with the exception that
i = N = 1. We have r = (0,...,0) and the splitting 1 = 1;; = 1;; + 77, can be done in
two ways: (n;;,75;) = (0,1) or (1,0). This gives two possibilities for choosing k, namely
k = e; or k = e;. Applying Theorem 6.1 concludes the proof. U

7. SPLITTING NUMBERS OF LINKS

Let us recall the following definition.

Definition 7.1. Let £ be a link with n components. The splitting number sp(L) is the
minimal number of multicolored crossing changes (that is, between different components)
needed to turn £ into a split link.

Example 7.2. The splitting number of the Whitehead link is 2, even though the unlinking
number is 1.

We will use the following terminology:

Definition 7.3. A positive crossing change is a change of a negative crossing of a link
into a positive crossing. Likewise, a negative crossing change is a change of a positive
crossing into a negative crossing.

7.1. Splitting number bound from the J-function. In Definition 3.28 we defined
the J-function of a link. The following result gives a ready-to-use bound for the splitting
number.

Theorem 7.4. Suppose that L can be turned into an unlink using t, positive and t_
negative multicolored crossing changes. Then —t_ < J(m) < t, for all m e Z™.
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Proof. Use Theorem 6.20 together with Proposition 3.10 (the latter holds for the J-
function as well, because J differs from H by an overall argument shift). We obtain
that if two links £; and L, differ by a single positive multicolored crossing change, then
for all m e Z"

Jo(m) < Jy(m) < Jo(m) + 1.
Notice that a multicolored crossing change of a link £ does not affect the isotopy type of
its components, in particular the J-functions of its components remain the same. This

shows that if £, and L, differ by a single positive multicolored crossing change, then for
all m e Z™:

Jo(m) < Jy(m) < Jo(m) + 1.
Using this result repeatedly we show that if £; and L, differ by ¢, positive multicolored
crossing changes and ¢_ negative multicolored crossing changes, then
Jo(m) —t_ < Jy(m) < Jo(m) + .
Suppose now that 172 is a split link. Then by Corollary 3.29 we know that (72 = 0. In
particular
—t, < Jl(m> < t+.
O

Theorem 7.4 is very useful for quick estimates of the splitting number of L-space links
with two components, because then the J-function can be quickly determined from the
Alexander polynomial.

Example 7.5. We continue the example of Whitehead link, see Example 3.33. As the
Alexander polynomial is A = —(t; — 1)(ty — 1)t1_1/ 2ty Y2 by Corollary 3.32 we have

~

J(1,1) = 1. This shows that the splitting number of the Whitehead link is at least 1.

7.2. Two-component links. Theorem 6.20 can be used directly to obtain some bounds
for splitting numbers for two-component links.

Theorem 7.6. Let £ be an arbitrary link with two components, and a link L' can be
obtained from L by changing a negative multicolored crossings to positive, and b positive
multicolored crossings to negative. Write a = ay + ay and b = by + by for arbitrary
nonnegative a;, b;, then the following inequalities hold for all my, moy:

J'(my + by, ma + by) < J(my,me) < J'(my — ag,ma — as).

Proof. 1t is sufficient to consider a single crossing change. If a1 = 1,a9 = b = by = 0,
then by Theorem 6.20 one has

J’(ml,mQ) < J(ml,mg) < J/<m1 — 1,m2).
If by = 1,a; = as = by = 0, then by Theorem 6.20 one has
J(my,me) < J'(my,me) < J(my — 1,my),

)
J'(my + 1, mg) < J(my,my) < J'(my, my).

The following corollary will be useful below:

Theorem 7.7.
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FIGURE 4. Region R(by) + g where J and J vanish.

(a) Suppose that a two component link L = Ly U Ly can be unlinked using b, positive
and b_ negative crossing changes. Let g; denote the slice genus of L;. Define
vectors

~ 1 1
g:=(91,92), 8:= (91 + §lk(L1,L2)792 + §lk(L1,L2)) .

Define the region R(by) by inequalities:
R(by) := {(m1,mg) : mq + mg = a,my = 0,my = 0};

see Figure 4. Then J(m) = J(m) = 0 forme R(b,) + g.
(b) If, in addition, L is an L-space link, then

HFL™(L,v) =0 forve R(by) + g + (1,1).
In particular, all coefficients of the Alexander polynomial vanish in R(a)+§+(%, %)

Proof. As above, let J; denote the J-functions for the components of £. For a split link
L' = Ly u Ly we get J'(vy,v2) = Ji(v1) + Ja(v2). Furthermore, by [31, Corollary 7.4] we
get Jz(”z) = ( for V; = g;.

Assume that m = (my, my) belongs to R(a) + g. By definition, J(my,ms) = 0. On the
other hand, let us choose b; = min(m; — g1,b,) and by = b, — by, then my — by > ¢; and

My — as = my — a + min(my — g1,by) = mg — by +my — g1 = go.
Therefore by Theorem 7.6:
J(m17m2) < J'(ml — bl,mg — bz) = Jl(ml — bl) + J2<m2 — bg) = (.

~

Since Jy(my) = Jo(mg) = 0, we get also get J(m) = 0.

Suppose now that £ is an L-space link. By the above, H-vanishes in v € R(b,) + g.
Corollary 3.32 implies the vanishing of the coefficients of the Alexander polynomial in
R(by) + &+ (3,3). To show that HFL™(v) = 0 for v € R(by) + & + (1,1), note that for
such v one has H(v —e;) = H(v) = 0, so the natural inclusions A~ (v — e;) — A~ (v)
induce isomorphisms on homology. By (3.2), HFL™(v) = 0. O

Remark 7.8. Part (b) of Theorem 7.7 does not hold for non L-space links. For example,

the link L9a31 in [9] has two components, one being an unknot and one being a trefoil.
13

The linking number of the components is 1, so g = (5, 5). Now the Alexander polynomial
is

7 — 2 =2t Myt Ayt — ity 2 — B 2t — 1y + Aty — 201t — 15 + 5.
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FIGURE 5. The link (24, —5). Its two components are unknots.

The term ¢t} has exponents (1,2) which belong to R(0) + g + (3,1). Therefore, Theo-
rem 7.7 would imply that we need at least one positive crossing change to split L9a31.
Such a crossing change will make the two components have linking number 2, so we will
need at least two more crossing changes to make the linking number equal to 0. Alto-
gether, we would need at least three crossing changes to split L9a31. However, we can

split L9a31 in a single move.

7.3. Example: the two-bridge link 5(24, —5). We will discuss an example of the two-
bridge link 6(24, —5) which was shown by Liu [23, Example 3.8] to be an L-space link. It
is presented in Figure 5. The orientation of b(24, —5) is as in [23]. The two components
have linking number 0. In the notation of LinkInfo [9] it is the link L9a40. It was shown
in [8, Section 7.1] that the splitting number of this link is 4. The tool was studying the
smooth four genus of the link obtained by taking a double branch cover of one of the
components of (24, —5). The splitting number of b(24, —5) can be also detected by the
signatures as in [10]. We will show that sp(b(24, —5)) = 4 using the J-function.

The Alexander polynomial of b(24, —5) can be found on the LinkInfo web page [9] or
calculated using the SnapPy package [11]. We have

Aty t) = —(t + o+ L+ 67 + 1517 = 1728 = 1,777).

By Corollary 3.32 the generating function for the J-function equals
(7.9) J(t,ts) =t +to+ 1+ t7" + 150

Theorem 7.4 implies that we need to make at least one positive crossing change to unlink
b(24, —5). As the original linking number is zero and a positive crossing change increases
the linking number, we have to compensate the positive crossing change with a negative
crossing change, so the splitting number is at least 2. That is all we can deduce from
Theorem 7.4.

On the other hand, J(1,0) = 1, so by Theorem 7.7 one needs at least two positive
crossing changes to split b(24, —5). As each such crossing change increases the linking
number between the two components of (24, —5), we also need two negative crossing
changes. Therefore we have proved the following result.

Proposition 7.10. The splitting number of b(24, —5) is at least 4.

It is quite easy to split the b(24, —5) in four moves.
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n full twists k full twists

FIGURE 6. The general b(rq — 1, —q) two-bridge link, where r = 2n + 1,
q = 2k + 1. The linking number is n — k.

—6-5-4-3-2-101 2 3 45 6 7

FiGURE 7. The E; page of the Batson—Seed spectral sequence for the link
b(48, —7) with splitting number 6. It can be shown that Fy = E,, is the
Khovanov homology of the unknot. The calculations were made using the
KnotKit program [33].

Remark 7.11. SnapPy and and the LinkInfo webpage [9] give the Alexander polynomial
of b(24, —5) with opposite sign. To choose the sign we notice that the other choice of sign
of the Alexander polynomial yields J with negative coefficients only, hence, for example
J(0,0) = —1. This contradicts the property of non-negativity of the J-function. Liu’s
algorithm in [22, Section 3.3] gives the proper sign of the Alexander polynomial.

7.4. More general two-bridge links. The arguments used in Section 7.3 can be easily
generalized for the case of two-bridge links £,, = b(4n? + 4n, —2n — 1). The components
of £, are unknots with linking number 0. For example, £; is the Whitehead link. It is
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proved in [23, Section 3] that all the £,, are L-space links, and their Alexander polynomials
were computed in [23, Section 6], see also [22, Section 3.3]:

Ap,(tt) = ()" > ()R
[i41/2]+|74+1/2|<n
Clearly,
n—3% (172 ,-1/2 .
Aty ty) = —t; 2 ()" —t, + terms of lower degree in t;,
Hence by Corollary 3.32:
Aﬁn (tla t2)
(ﬁ/z _ t;1/2> (té/Z _ 25271/2>

and J(n—1,0) = J(n —1,0) = 1. By Theorem 7.7 one needs at least n positive crossing
changes to split £,,, and the linking number argument from the previous section implies
that one needs same number of negative crossing changes. We obtained the following
result.

5£n (t1,t2) = — = "1 + terms of lower degree in t,

Theorem 7.12. The splitting number of L, is at least 2n.

It is quite easy to split the £, in 2n moves using Figure 6 (where k = n).

7.5. Comparison with the Batson—Seed criterion. In [1] Batson and Seed proved
an obstruction for splitting number. For the sake of simplicity we formulate the result for
a link with two components and for homologies over Zs.

Theorem 7.13. [1] Suppose L = Ly U Ly is a two component link and let L' be a split
link with components Ly, Lo. Then there exists a spectral sequence, whose Fy page is
the Khovanov homology Kh(L) and Ey page is the Khovanov homology Kh(L'). If the
splitting number of L is k, then the Ey page is equal to the Ey page of this sequence.

In Figure 7 there is shown the FE; page of the Batson—Seed spectral sequence for
b(48, —7), whose splitting number was shown to be 6. The arrows in the figure correspond
to the differential. We have Ey = E,,, so Theorem 7.13 implies that sp(b(48,—7)) > 2.
This means that the Batson—Seed criterion does not detect the splitting number of
b(48, —17).

For general two-bridge links b(4n? + 4n, —2n — 1) we have the following observation,
which limits the usage of the Batson—Seed criterion. It is well known to the experts.

Proposition 7.14. Suppose L is an alternating non-split link. Then the Batson—Seed
spectral sequence collapses at most at the Fs page.

Proof. By [21] L is Khovanov thin, that is, the Khovanov homology is supported on two
diagonals. More precisely, if z is a non-trivial element of Kh(L), then ¢(z) = 2h(x) —
o(L) £ 1, where ¢(z) is the g-grading, h(x) is the homological grading and o (L) is the
signature of L.

The differential in the Batson—Seed spectral sequence is d = dy + di, where dj is the
standard differential in the Khovanov complex and d; decreases the homological grading
by 1 and drops the ¢g-grading by 2. A higher differential dj, changes the (h,q) bigrading
by (1 — 2k, —2k), and hence changes the difference ¢ — 2h by 2k — 2. As L is thin, the
only potentially non-trivial differentials are dy, d; and ds. 0
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7.6. Cables on the Whitehead link. As a more complicated example, we calculate the
splitting number of cables on the Whitehead link. Let Wh, , denote the link consisting of
the (p, q) cable on one of the component of the Whitehead link and the unchanged second
component of it. It is clear that the linking number of Wh, , vanishes. A (1, 1)-surgery
on the Whitehead link is an L-space [23, Example 3.1], hence by Proposition 2.8 Wh,,,
is an L-space link as long as 1 < p < ¢ and p, ¢ are coprime.

The Whitehead link has Alexander polynomial A = —(t7/% — 7 "?)(t3* = ;/%). The
Alexander polynomial of a cable link was calculated by Turaev in [35, Theorem 1.3.1],
which we now state.

Theorem 7.15. Let L = Ly u ... u L, be a link and Ag(ty,...,t,) its multivariable
Alexander polynomial. Let L,, be as in the statement of Proposition 2.8 above. Set
T =ity .. th, where l; = 1k(Ly, L;). Then

TP/2 _ T—p/2

It follows from the theorem that the Alexander polynomial of Wh,, is equal to

M = — (87— 17%) (87— 1)
From this we obtain by Corollary 3.32.

2 ,—p/2 2 ,—pq/2
N (t]l)/ _ tl p/ ) <t117Q/ _ tl pq/ ) S
J(t1,t2) = 1/2 1/2 /2 2\ fh"
- q —q
(07 =) (07 -0

where 0 = Z(p — 1)(¢ — 1). In particular, J@+ (p—1),0) = 1.

Now the genera of the components of Wh, , are g1 = 9, go = 0. By Theorem 7.7 we infer
that we need to perform at least p positive multicolored crossing changes to transform
Wh,, into the disjoint sum of T'(p, q) and the unknot. The linking number argument
shows that we also need p negative crossing changes, hence we obtain the following result.

Aﬁp,q (tla SR 7tn) = Aﬁ(tz{, t2, t37 e 7tn)

2 ,—pg/2
tzqu/ — 1 pq/

2 —q/2
t[{/ _tl‘I/

+ terms of lower degree in 1,

Proposition 7.16. The splitting number of the (p,q)-cable on the Whitehead link is at
least 2p.

It is not hard to find a splitting sequence of length 2p.

8. ALGEBRAIC LINKS

8.1. The H-function for links of singularities. Let C' be a germ of a complex plane
curve singularity with branches C1, ..., C,. Its intersection with a small sphere is called
an algebraic link. Tt is shown in [15] that all algebraic links are L-space links. For algebraic
links the H-function admits the following description. Let ; : (C,0) — (C;,0) denote the
uniformization of C;. Define the set

J () :={f e Cllz,y]] : Ordo f(%i(t)) = vi}
It is clear that J(v) is in fact a vector subspace of C[[z,y]]|. Define the Hilbert function
of C' as

(8.1) R(v) = codim J (v) = dim¢ Cz, y]/T (v).

Moreover, set
RZ(’UZ> = R(O, e ,O,vi,O, co ,0)
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Notice that for a singularity with one branch, R(v) = R;(v;) is the number of the elements
of the semigroup of the singular point in the interval [0,v1), so (8.1) can be regarded as
a generalization the definition of R-function in [4].

We can relate R to the H-function discussed above. Define
(8.2) g=(91,---,9n); €=(01,-- 0n)s Gi=0i+ %Zlk(Li;LJ);

J#i

where g; is the Seifert genus of L; (or, equivalently, the delta-invariant of the singularity
C;). Tt is known that for algebraic links 2g is the conductor of the multi-dimensional
semigroup of C; see for instance [20, Chapter 17]. Campillo, Delgado and Gusein-Zade
related [6] the Alexander polynomial of an algebraic link to the semigroup of the corre-
sponding curve. Based on their result and (3.16), the following formula for the Hilbert
function was obtained in [14]:

Theorem 8.3 (see [14]). For an algebraic link, one has
(8.4) H(v) = R(g—-v), J(v) = R(g — V).

Remark 8.5. It was proven in [7] that for all plane curve singularities the Hilbert function
satisfies the following symmetry property:

(8.6) R(2g —v) = R(v) + |g] — |v|.
Indeed, this agrees with the symmetry property (3.23) of H.

Theorem 8.7. We have the following inequality for the Hilbert function of a plane curve

singularity.

0= R(v) = > Ri(v;) = — > k(L;, Ly).
=1 1<j
Both inequalities are sharp.
Corollary 8.8. For an algebraic link, for all v:
0= J(v) = =) Ik(L;, L;)

1<j
Proof. By (8.4), J(v) = R(g — v). Similarly, J;(v;) = R;(g; — v;), so it remains to apply
the theorem to the vector g — v. 0

Remark 8.9. Corollary 8.8 can be compared with Theorem 7.4. Indeed, all crossings
in an algebraic link are positive, so t, = 0, and by the above corollary we get t_ >
Die i Ik(L;, L;j). In other words, to split an algebraic link one needs to change exactly
2i<jk(Li, Lj) crossings from positive to negative. It is well known that the splitting
number of an algebraic link is equal to >, _;1k(L;, L;).

The following two lemmas will be used in the proof of Theorem 8.7.
Lemma 8.10. For u,v € Z", one has
R(u) + R(v) = R(min(u,v)) + R(max(u,v)).
Proof. Indeed, J(u), J(v) € J(min(u,v)) and J(u) n J(v) = J(max(u,v)). One has
dim J (min(u, v))/J (u) + dim J (min(u, v))/J (v) = dim J (min(u, v))/J (max(u, v)),
therefore
—R(min(u,v)) + R(u) — R(min(u,v)) + R(v) = —R(min(u, v)) + R(max(u,v)).
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Lemma 8.11. Suppose that u,v e Z",0 <u < v. Then
R(v) = R(u) < Y (Ri(v;) — Ri(uy)).
i=1

Proof. Consider a sequence of lattice points vV = (uy, ..., u;,viy1,...,0,), so that u =
v and v = v(9. Let e; denote the i-th coordinate vector. Then

i—1)

max(v®¥ ve;) = v, min(vl? ve;) = use;,

hence by Lemma 8.10:
Ri(v;) + R(vY) = R(vU™Y) + Ry(w),

SO

R(v) = R(v) = R(0) < > (Ri(v;) — Ri(0)) = > Ri(vy).

i—1 i—1
Furthermore, if u »- 0, then by (8.6) R(u) = |u| — |g|. By Lemma 8.11, we get

R(u) = R(v) < Z(Rl(ul) — R;i(vy)), so
lul - [g| - R(v) < Z(u — g, — R;(v;)), that is

R(v) — ZRz‘(%‘) > —[g| + Zgi = —lej-

i=1 i<j

O

8.2. Semicontinuity of the Hilbert function. We can use Theorem 6.1 to give a
topological proof of semigroup semicontinuity property under d-constant deformation,
generalizing the result of [5] for many components. We refer the reader to [2, 14] for other
approaches to semicontinuity property of semigroups.

Suppose F;: (C%,0) — (C,0) is a family of polynomials depending on a parameter
t € (—e,e) = R. We assume that for every ¢ the curve F; '(0) has an isolated singularity
with n branches.

Theorem 8.12. Assume that the deformation is d-constant. Then for any m € Z™ and
t # 0 sufficiently close to 0 we have

Ri(m) > Ry(m).
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Proof. We follow the proof of [4, Theorem 2.15]. Take a ball B < C? with center at 0
such that F;'(0) n 0B is the link of the singularity of F;;'(0) at 0. Denote this link by
L.
Choose t sufficiently small. Then F, '(0) n 0B is still isotopic to £;. Choose a smaller
ball B" with center at 0 such that F,'(0) n 0B’ is the link of the singularity of F,"*(0) at
0. Denote this link by £;. For ¢ = 1,2, let L;1, ..., L;, be the components of the link £;.
Denote by g;1,...,gin the Seifert genus of the corresponding component. Let g be as in
(8.2).

Similarly to [5, Lemma 2.3], we construct an APSIC from £; to L5 in the following way.
As the deformation is §-constant, we can find a complex parametrization ¢ of F,"*(0)n B”
(where B” is a ball slightly larger than B), whose domain is a disjoint union of n disks

Di,...,D,. Set D =D;u...uD,. Perturb ¢ to a complex analytic map @E such that @E
has only generic singularities, that is, positive double points. For small perturbation the
links £, = ¢(D) n 0B and £ = (D) A 0B’ are isotopic to £y and £ respectively. The
APSIC is the intersection (D) n (B\B’). The number of double monochromatic double
points of the i-th component (denoted by n; in Section 5) is calculated as in [5, Lemma
2.3] and is equal to g;2 — gi1-

We use Theorem 6.1 to obtain

(8.13) Jo(m') < Ji(m’ — k),

where k = (11, ..., n) = 82— g1 and m’ € Z" is arbitrary. Substituting (8.4) into (8.13)
we obtain

Ry(m) = Jo(ge —m) < Ji(g2 — m —k) = Ji(g1 —m) = Ry(m).
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