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Abstract. The existence of traveling wave solutions and wave train solutions

of a diffusive ratio-dependent predator-prey system with distributed delay is

proved. For the case without distributed delay, we first establish the existence
of traveling wave solution by using the upper and lower solutions method.

Second, we prove the existence of periodic traveling wave train by using the
Hopf bifurcation theorem. For the case with distributed delay, we obtain the

existence of traveling wave and traveling wave train solutions when the mean

delay is sufficiently small via the geometric singular perturbation theory. Our
results provide theoretical basis for biological invasion of predator species.

1. Introduction. The biological invasion of some non-native species can poten-
tially cause devastating consequences in an existing ecosystem [21, 43], and spa-
tiotemporal mathematical models have been used to study, analyze, predict and
prevent the occurrence of harmful biological invasions [11, 19, 31, 39]. One of the
common scenarios is the invasion of a predator species into a territory occupied
by a prey species [11, 31], and reaction-diffusion predator-prey models have been
established to describe the invasion of a predator species [9, 39, 41].

On the other hand, the growth of biological organisms may depend on the popu-
lation density of previous times. Moreover the time delay can be a distributed one
over all past time and spatially nonlocal one[6, 19, 25, 46, 48].

In this article, we consider a reaction-diffusion predator-prey model with a dis-
tributed delay on the growth rate of the prey species, and we are interested in the
spatial spreading of the predator and the corresponding retreating of the prey which
emulate the biological invasion of a non-native predator species into an established
ecosystem. To be more precise, we consider a reaction-diffusion Holling-Tanner
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type predator-prey system with ratio-dependent functional response and a distri-
buted delay as follows:
ut(x, t) = duxx(x, t) + u(x, t)(1−G ∗ u(x, t))− Au(x, t)v(x, t)

u(x, t) + av(x, t)
, x ∈ R, t > 0,

vt(x, t) = vxx(x, t) +Bv(x, t)

(
1− v(x, t)

u(x, t)

)
, x ∈ R, t > 0.

(1.1)
Here u(x, t) and v(x, t) are the population densities of the prey and predator species
at the location x and time t respectively; the two species move randomly along a
one-dimensional region R, and the parameter d > 0 is a rescaled diffusion coefficient
of the prey species while the diffusion coefficient for the predator is rescaled to be 1.
The prey population has a logistic growth pattern with the growth rate per-capita
depending on population density in previous time. That is, the term G ∗ u shows
the effect of a distributed delay term with a distribution kernel function G:

(G ∗ u)(x, t) =

∫ t

−∞
G(t− s)u(x, s)ds.

In this article, we will consider the following kernel functions G : R+ → R+:

(i) the Dirac kernel G(t) = δ(t),

(ii) the strong kernel G(t) =
t

τ2
e−t/τ ,

(iii) the weak kernel G(t) =
1

τ
e−t/τ .

In the cases of (ii) and (iii), τ > 0 is the mean value of G(t) over R+. The predator-
prey structure in (1.1) follows the one used in [22, 44], which is typically called
Holling-Tanner predator-prey model. Here the predator functional response is Hol-
ling type II, but also a ratio-dependent one following the proposal in [1, 2, 17] as
the predators may share or complete for food. The parameter A is the capturing
rate, a is the half-capturing saturation constant, and B denotes the predator in-
trinsic growth rate. All the parameters are assumed to be positive. Some previous
work for dynamics of diffusive Holling-Tanner predator-prey systems on a bounded
region can be found in [5, 40].

When the distribution kernel is the Dirac delta function, (1.1) becomes a reaction-
diffusion system without delay effect:

ut(x, t) = duxx(x, t) + u(x, t)(1− u(x, t))− Au(x, t)v(x, t)

u(x, t) + av(x, t)
, x ∈ R, t > 0,

vt(x, t) = vxx(x, t) +Bv(x, t)

(
1− v(x, t)

u(x, t)

)
, x ∈ R, t > 0.

(1.2)
Indeed our strategy of studying the spreading is to first consider the delay-free
system (1.2), then consider the distributed delay system (1.1) when the mean delay
τ is small.

It is easy to check that the system (1.2) has two nonnegative equilibria E1(1, 0)
and E2(u∗, u∗), where u∗ = 1−A/(a+ 1) > 0, if and only if the following condition
holds:

(H1) 0 < A < a+ 1.

Throughout this article, we assume the condition (H1) always holds unless other-
wise noted.
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Our first result is on the existence, nonexistence and the minimal wave speed
of traveling wave solutions of the delay-free system (1.2) connecting the equilibria
E1(1, 0) to E2(u∗, u∗):

Theorem 1.1. Suppose d, A, a, B are all positive constants which satisfy

(H2) 0 < A <
(1 + a)a

a+ 2
.

Then the following statements are true:

1. For each c ≥ c∗ = 2
√
B, the system (1.2) has a positive traveling wave solution

(u(x, t), v(x, t)) = (U(x+ ct), V (x+ ct)) connecting E1(1, 0) and E2(u∗, u∗).

2. For 0 < c < c∗ = 2
√
B, the system (1.2) has no nonnegative traveling wave

solution connecting E1(1, 0) and E2(u∗, u∗). That is, c∗ = 2
√
B is the minimal

wave speed.

Note that (H1) is satisfied if (H2) holds. Hence (H2) requires more restricted
condition on a and A for the existence of traveling wave solutions. The result on
the minimal wave speed shows a linear determinacy on the predator growth rate
B similar to the Fisher type equation. The proof of Theorem 1.1 relies on a fixed
point theorem argument.

Our second result is on the existence of small amplitude periodic traveling wave
train solutions for the system (1.2). Wave trains or periodic traveling waves are
spatio-temporal patterns which have periodic profile, maintain their shape and move
at a constant speed. For that purpose, we make another sets of assumptions on the
parameters:

(H3)

√
A

B

(
A(a+ 2)

(a+ 1)2
−B − 1

)
> a+ 1−A, or

(H3’) 0 <

√
A

B

(
A(a+ 2)

(a+ 1)2
−B − 1

)
< a+ 1−A.

Then we have the following results:

Theorem 1.2. 1. Assume that (H1) and (H3) hold. Then for any c > 0, the
system (1.2) has a family of small amplitude positive periodic traveling wave
train solutions (u(x, t), v(x, t)) = (U(x + ct), V (x + ct)) with periodic (U, V ),
when the diffusion coefficient d is near d = d(c) which is defined by

d(c) =
(a+ 1)2

2B(A−B(a+ 1)2)

(
−ρ(c2 + 2B) +

√
∆
)
− 1, (1.3)

where

ρ = B + 1− A(a+ 2)

(a+ 1)2
, ∆ = ρ2(c2 + 2B)2 + 4ρ2B

(
A

(a+ 1)2
−B

)
; (1.4)

2. Assume (H1) and (H3’) hold. Then there exists a unique c∗ > 0 such that for
c > c∗, the system (1.2) has a family of periodic traveling wave train solutions
near d = d(c), where d(c) is defined by (1.3) and c∗ is the unique zero of
d(c) = 0.

Here the conditions (H3) and (H3’) actually complement each other, so it only
makes a difference on the range of wave speed c. The results are proved using
the Hopf bifurcation theorem [20] for the corresponding ODE system around the
positive equilibrium E2(u∗, u∗).
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Finally the traveling wave solutions and traveling wave train solutions found in
Theorems 1.1 and 1.2 also exist for the distributed delay system(1.1) with a small
mean delay τ . More precisely we have

Theorem 1.3. For the system (1.1) with the strong kernel or the weak kernel, there
exists a τ0 > 0 such that for any τ ∈ (0, τ0), the following statements are true:

1. if the condition (H2) holds, then for each c ≥ c∗ = 2
√
B, there exists a

nonnegative traveling wave solution connecting E1(1, 0) and E2(u∗, u∗).
2. if the conditions (H1) and (H3) (or (H3’)) hold, then there exists a family of

small amplitude periodic traveling wave train solutions when d is near d = d(c)
for all c > 0 (or for c > c∗), where d(c) is defined in Theorem 1.2.

The last results are proved by applying the geometric singular perturbation the-
ory [14, 30, 4, 18] when the mean delay is sufficiently small. We note that there have
been very few results on the existence of traveling wave solutions for the diffusive
predator-prey systems with distributed delays.

The existence of traveling wave solutions and traveling wave train solutions for
reaction-diffusion systems has been a hot subject of study for the last a few decades,
and important applications in biology can be found in [15, 47]. If the underlying
dynamical system has a monotone structure (for example cooperative systems or
two-species competition systems), then the theory of monotone dynamical systems
provides a powerful tool to prove the existence of spreading speed and traveling
wave solutions [12, 32, 45]. However the predator-prey systems do not generate
monotone semi-flows so these theories cannot be applied.

In [8, 9, 10] the existence of traveling wave solutions connecting two equilibria of
diffusive predator-prey systems was proved by using the ODE shooting arguments
and Lyapunov theory, and this method has been improved and refined in [23, 24,
26, 27, 35]. Another approach of proving the existing of traveling wave solutions is
to use topological index method, see [16, 38]. Finally upper-lower solution and fixed
point theory have also be used to prove the existence of traveling wave solutions in
a quasimonotone system, see [13, 29, 33, 34, 36]. For the proof of the existence of
traveling wave solutions in Theorem 1.1, we use the fixed point theory similar to
the ones in [13, 33, 34]. Note that the existence of weak traveling wave solution for
a spatio-temporal Holling-Tanner system was also considered in [7]. In [37, 42], the
wave train solutions modeling predator invasion have been considered with some
less rigorous way.

The rest of the paper is organized as follows. Section 2 is devoted to the existence
of the traveling wave solution of the system (1.2) and obtain the minimum wave
speed. In Section 3, we study the existence of small amplitude periodic traveling
waves train of the system (1.2). In Section 4, we discuss the existence of traveling
wave solutions and periodic traveling waves of the system (1.1) when the mean
delay is treated as a small parameter. Finally, numerical simulations are given to
illustrate our theoretical results.

2. Traveling wave solutions.

2.1. Preliminaries. We first present a general existence result of the traveling
wave solutions of a two-species reaction-diffusion system with mixed quasimonotone
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nonlinearity. Consider a general two-species reaction-diffusion system:{
ut(x, t) = duxx(x, t) +H1(u(x, t), v(x, t)), x ∈ R, t > 0,

vt(x, t) = vxx(x, t) +H2(u(x, t), v(x, t)), x ∈ R, t > 0,
(2.1)

where d > 0, and Hi(u, v) (i = 1, 2) are continuously differential functions.
Set (u(x, t), v(x, t)) = (U(ξ), V (ξ)) with ξ = x+ ct where c > 0 is a wave speed.

Then (U(x + ct), V (x + ct)) is a traveling wave solution of (2.1) if and only if
(U(ξ), V (ξ)) is a solution of the following system:{

dÜ(ξ)− cU̇(ξ) +H1(U(ξ), V (ξ)) = 0, ξ ∈ R,
V̈ (ξ)− cV̇ (ξ) +H2(U(ξ), V (ξ)) = 0, ξ ∈ R.

(2.2)

For convenience, we introduce some notations. Define

X = {U : U is a bounded and absolutely continuous function from R to R2},

which is a Banach space with the maximum norm | · |. If a,b ∈ R2 with a ≤ b,
then the order interval X[a,b] is defined by

X[a,b] = {U ∈ X : a ≤ U(ξ) ≤ b, ξ ∈ R}.

We assume the following conditions hold:

(A1) (Mixed quasi-monotonicity) For a ≤ (u, v) ≤ b, the function H1(u, v) is
monotone nonincreasing in v and H2(u, v) is monotone nondecreasing in u.
Also, there exists a constant β0 ≥ 0 such that β0u+H1(u, v) is nondecreasing
in u and β0v +H2(u, v) is nondecreasing in v.

(A2) (Lipschitz condition) Hi (i = 1, 2) satisfies the Lipschitz condition for a ≤
(u, v) ≤ b. That is, there is a constant L > 0 such that for any a ≤ (φj , ψj) ≤
b,

|Hi(φ1, ψ1)−Hi(φ2, ψ2)| ≤ L(|φ1 − φ2|+ |ψ1 − ψ2|), i = 1, 2.

For convenience, we first recall the definition of a pair of coupled upper and lower
solutions of (2.2) (see for example [33]):

Definition 2.1. Φ = (φ1, φ2) and Φ = (φ
1
, φ

2
) ∈ X[a,b] are called a pair of upper

and lower solutions of Eq.(2.2), if Φ ≥ Φ and there exists a finite set T = {Ti ∈ R :

i = 1, 2, · · · , n} such that Φ̈(ξ), Φ̈(ξ) exist for ξ ∈ R\T , and Φ,Φ satisfy{
dφ̈1 − cφ̇1 +H1(φ1, φ2) ≤ 0 ≤ dφ̈

1
− cφ̇

1
+H1(φ

1
, φ2), ξ ∈ R\T,

φ̈2 − cφ̇2 +H2(φ1, φ2) ≤ 0 ≤ φ̈
2
− cφ̇

2
+H2(φ

1
, φ

2
), ξ ∈ R\T.

(2.3)

We have the following general existence result of solution of (2.2) using the upper-
lower solutions:

Theorem 2.2. Assume that (A1)-(A2) hold, and (2.2) has a pair of upper and
lower solutions (φ1, φ2) and (φ

1
, φ

2
) as defined in Definition 2.1 which also satisfy

φ̇i(ξ+) ≤ φ̇i(ξ−), φ̇
i
(ξ−) ≤ φ̇

i
(ξ+), ξ ∈ R, i = 1, 2, where φ̇(ξ±) = lim

t→ξ±
φ̇(t),

if φ(t) is differentiable in a deleted neighborhood of ξ. Then the system (2.2) has a
solution (φ1, φ2) satisfying (φ

1
, φ

2
) ≤ (φ1, φ2) ≤ (φ1, φ2).
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Proof. Define the operators Fi : X → X, i = 1, 2, by

F1(U, V ) = β0U +H1(U, V ), F2(U, V ) = β0V +H2(U, V ).

Obviously, F1(U, V ) is nondecreasing in U and nonincreasing in V and F2(U, V ) is
monotone nondecreasing in U and V . Then Eq.(2.2) is equivalent to the following
equation: {

dÜ(ξ)− cU̇(ξ)− β0U(ξ) + F1(U(ξ), V (ξ)) = 0,

V̈ (ξ)− cV̇ (ξ)− β0V (ξ) + F2(U(ξ), V (ξ)) = 0.

Define

λ1 =
1

2d
(c−

√
c2 + 4dβ0), λ2 =

1

2d
(c+

√
c2 + 4dβ0),

λ3 =
1

2
(c−

√
c2 + 4β0), λ4 =

1

2
(c+

√
c2 + 4β0),

and an operator P = (P1, P2) : X[a,b] → X as follows:

P1(U, V )(ξ) =
1

d(λ2 − λ1)

(∫ ξ

−∞
eλ1(ξ−s) +

∫ +∞

ξ

eλ2(ξ−s)

)
F1(U, V )(s)ds,

P2(U, V )(ξ) =
1

λ4 − λ3

(∫ ξ

−∞
eλ3(ξ−s) +

∫ +∞

ξ

eλ4(ξ−s)

)
F2(U, V )(s)ds.

(2.4)

Clearly, a fixed point of P = (P1, P2) is a solution of (2.2). We prove the existence
of the fixed point by using the Schauder’s fixed point theorem. The remaining part
of the proof is standard and similar to Lemma 3.2 of [33] and Lemma 3.2 of [29],
thus we omit it here.

Remark 2.3. A very general existence result of a traveling wave solution for a mixed
quasimonotone system was recently proved in [13]. However the upper and lower
solutions there are required to be smooth ones, while the upper and lower solutions
in Definition 2.1 may be not differentiable at finitely many points. On the other
hand, we do not specify the asymptotic behavior of the solution obtained in Theorem
2.2, as such behavior is often implied by the choices of upper and lower solutions.

2.2. Traveling wave solutions of (1.2). In this subsection, we seek for a traveling
wave solution of (1.2), which satisfies

dÜ(ξ)− cU̇(ξ) + U(ξ)(1− U(ξ))− AU(ξ)V (ξ)

U(ξ) + aV (ξ)
= 0, ξ ∈ R,

V̈ (ξ)− cV̇ (ξ) +BV (ξ)

(
1− V (ξ)

U(ξ)

)
= 0, ξ ∈ R,

(2.5)

with the boundary conditions:

lim
ξ→−∞

(U(ξ), V (ξ)) = (1, 0), lim
ξ→+∞

(U(ξ), V (ξ)) = (u∗, u∗).

Denote Hi(u, v), i = 1, 2 by

H1(u, v) = u(1− u)− Auv

u+ av
, H2(u, v) = Bv

(
1− v

u

)
.

We recall some well-known results for the Fisher equation on unbounded domain
[3].
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Considerzt(x, t) = Dzxx(x, t) +Rz(x, t)

(
1− z(x, t)

K

)
, x ∈ R, t > 0,

z(x, 0) = z0(x) ≥ 0, x ∈ R,
(2.6)

where D,R,K > 0 and z0(x) ≥ 0 is a bounded uniformly continuous function with
nonempty support set. Then the following results were proved in ([3], Corollary 1
and Proposition 2.1).

Lemma 2.4. Assume that z(x, t) is a solution of (2.6) in R × R1. Then for any

given ε ∈ (0, 2
√
DR),

lim
t→+∞

min
|x|<(2

√
DR−ε)t

z(x, t) = K.

Lemma 2.5. Assume that z(x, t) is the solution of (2.6), z̄(x, t) is bounded for
x ∈ R, t ≥ 0, twice differentiable in x ∈ R, differentiable in t > 0 and satisfies:z̄t(x, t) ≥ Dz̄xx(x, t) +Rz̄(x, t)

(
1− z̄(x, t)

K

)
, x ∈ R, t > 0,

z̄(x, 0) ≥ z0(x), x ∈ R.

Then z̄(x, t) ≥ z(x, t) for x ∈ R, t ≥ 0.

We first prove the existence of the semi-traveling wave solution by using Theorem
2.2. Define a set

X[M1,M2] , {(u, v) ∈ X : (θ0, 0) ≤ (u, v)(ξ) ≤ (1, 1)}, (2.7)

where M1 = (θ0, 0), and M2 = (1, 1), where θ0 < 1− A/a is a fixed small positive
constant. It is easy to check that the conditions (A1)-(A2) hold in the invariant
set X[M1,M2]. Now we construct a pair of upper and lower solutions.

Define

φ1(ξ) = 1, φ
1
(ξ) = max

{
1− A

a
, 1− a

A
er1ξ

}
,

φ2(ξ) = min
{

1,
a

A2
er2ξ

}
, φ

2
(ξ) = max

{
0,

a

A2
er2ξ − qeηr1ξ

}
,

(2.8)

where

r2 =
c−
√
c2 − 4B

2
, r1 = min

{
r2,

c

d

}
, η ∈

(
r2
r1
, min

{
c

2r1
,

2r2
r1

})
, (2.9)

and

q =
Ba3

−A4(a−A)(η2r21 − cηr1 +B)
+

a

A2
+ 1. (2.10)

Lemma 2.6. Suppose that c > 2
√
B and r1, r2, η, q are defined as in (2.9)-(2.10).

Let (φ1, φ2) and (φ
1
, φ

2
) be defined as in (2.8). Then (φ1, φ2), (φ

1
, φ

2
) ∈ X[M1,M2],

(φ
1
, φ

2
) ≤ (φ1, φ2), and (φ1, φ2) and (φ

1
, φ

2
) are a pair of upper and lower solutions

of the system (2.5).

Proof. Note that r1, r2, η > 0 are well-defined since c > 2
√
B, and it is easy to see

that (φ1, φ2), (φ
1
, φ

2
) ∈ X[M1,M2], and (φ

1
, φ

2
) ≤ (φ1, φ2).

Next we verify the conditions of upper and lower solutions separately.
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(i) Since φ1(ξ) = 1, then it is easy to verify that

dφ̈1 − cφ̇1 + φ1(1− φ1)−
Aφ1φ2
φ1 + aφ

2

= −
Aφ

2

1 + aφ
2

≤ 0.

(ii) One can see that

φ
1
(ξ) =


1− A

a
, ξ ≥ 2

r1
ln
A

a
,

1− a

A
er1ξ, ξ <

2

r1
ln
A

a
.

For ξ ≥ 2

r1
ln
A

a
, from φ

1
(ξ) = 1− A

a
, we get

dφ̈
1
− cφ̇

1
+ φ

1
(1− φ

1
)−

Aφ
1
φ2

φ
1

+ aφ2

=

(
1− A

a

)(
A

a
− Aφ2

1− A
a + aφ2

)
≥
(

1− A

a

)(
A

a
− A

a

)
= 0.

And for ξ <
2

r1
ln
A

a
, we have φ

1
(ξ) = 1− a

A
er1ξ, and

1− φ
1
− Aφ̄2
φ
1

+ aφ̄2
=
a

A
er1ξ − Aφ̄2

φ
1

+ aφ̄2

≥ a
A
er1ξ −

a
Ae

r1ξ

1− a
Ae

r1ξ + a2

A2 er1ξ
≥ a

A
er1ξ −

a
Ae

r1ξ

1− a
Ae

r1ξ + a
Ae

r1ξ
= 0,

according to that φ2(ξ) ≤ a

A2
er2ξ ≤ a

A2
er1ξ since r1 = min{r2, c/d}. Hence from

(2.9),

dφ̈
1
− cφ̇

1
+ φ

1
(1− φ

1
)−

Aφ
1
φ2

φ
1

+ aφ2

=− a

A
r1e

r1ξ(dr1 − c) + φ
1
(1− φ

1
)−

Aφ
1
φ2

φ
1

+ aφ2
≥ φ

1
(1− φ

1
)−

Aφ
1
φ2

φ
1

+ aφ2
≥ 0.

(iii) We have

φ2(ξ) =


1, ξ ≥ 1

r2
ln
A2

a
,

a

A2
er2ξ, ξ <

1

r2
ln
A2

a
.

For ξ ≥ 1

r2
ln
A2

a
, φ2(ξ) = 1. Then,

φ̈2 − cφ̇2 +Bφ2

(
1− φ2

φ1

)
= B(1− 1) = 0.

Otherwise for ξ <
1

r2
ln
A2

a
, φ2(ξ) =

a

A2
er2ξ ≤ 1, then from (2.9),

φ̈2 − cφ̇2 +Bφ2

(
1− φ2

φ1

)
=

a

A2
er2ξ(r22 − cr2 +B)− Ba2

A4
e2r2ξ = −Ba

2

A4
e2r2ξ ≤ 0.
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(iv) Note that

φ
2
(ξ) =


0, ξ ≥ 1

ηr1 − r2
ln

a

A2q
,

a

A2
er2ξ − qeηr1ξ, ξ <

1

ηr1 − r2
ln

a

A2q
.

For ξ ≥ 1

ηr1 − r2
ln

a

A2q
, φ

2
(ξ) = 0. Then

φ̈
2
− cφ̇

2
+Bφ

2

(
1−

φ
2

φ
1

)
= 0.

On the other hand, for ξ <
1

ηr1 − r2
ln

a

A2q
, we have φ

2
(ξ) =

a

A2
er2ξ − qeηr1ξ.

Then,

φ̈
2
− cφ̇

2
+Bφ

2

(
1−

φ
2

φ
1

)
= φ̈

2
− cφ̇

2
+Bφ

2
−
Bφ2

2

φ
1

≥ a

A2
er2ξ(r22 − cr2 +B)− qeηr1ξ(η2r21 − cηr1 +B)−

B( a
A2 e

r2ξ − qeηr1ξ) a
A2 e

r2ξ

1− A
a

≥− qeηr1ξ(η2r21 − cηr1 +B)− Ba3

A4(a−A)
e2r2ξ

≥eηr1ξ
(
−q(η2r21 − cηr1 +B)− Ba3

A4(a−A)

)
≥ 0,

by using the facts that φ
1
(ξ) ≥ 1−A/a and φ2

2
(ξ) ≤ a

A2
φ
2
(ξ)er2ξ, (2.9) and (2.10).

Now from (i)-(iv), (φ1, φ2) and (φ
1
, φ

2
) are a pair of upper and lower solutions

of the system (2.5).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. 1. It is sufficient to show that there exists a traveling wave
solution for all c > 2

√
B. The case of c = 2

√
B can be proved by letting c ↓ 2

√
B

(for the validity of such a limiting argument we refer readers to the proof of [28,
Theorem 4.1] or [45, Theorem 4.2]). In the following, we prove the existence of

traveling wave solution when c > 2
√
B in two steps.

Step 1. We claim that there exists a semi-traveling wave solution (φ1(ξ), φ2(ξ))
satisfying lim

ξ→−∞
(φ1(ξ), φ2(ξ)) = (1, 0).

From Lemma 2.6, there exists a pair of upper and lower solutions (φ1, φ2) and
(φ

1
, φ

2
) for the system (2.5). Then from Theorem 2.2, there exists a solution

(φ1(ξ), φ2(ξ)) of Eq.(2.5) satisfying (φ
1
, φ

2
) ≤ (φ1, φ2) ≤ (φ1, φ2). It is clear that

1 = lim
ξ→−∞

φ
1
(ξ) ≤ lim

ξ→−∞
φ1(ξ) ≤ lim

ξ→−∞
φ1(ξ) = 1,

0 = lim
ξ→−∞

φ
2
(ξ) ≤ lim

ξ→−∞
φ2(ξ) ≤ lim

ξ→−∞
φ2(ξ) = 0,

hence lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = (1, 0).

Step 2. Next we show that lim
ξ→+∞

(φ1(ξ), φ2(ξ)) = (u∗, u∗).
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Denote

u1 = lim sup
ξ→+∞

φ1(ξ), u1 = lim inf
ξ→+∞

φ1(ξ),

u2 = lim sup
ξ→+∞

φ2(ξ), u2 = lim inf
ξ→+∞

φ2(ξ).

Let (u(x, t), v(x, t)) = (φ1(x+ ct), φ2(x+ ct)). Then (u(x, t), v(x, t)) is a solution of
Eq.(1.2).

Clearly, we have that

φ1(ξ) ≥ φ
1
(ξ) ≥ 1− A

a
> 0, for ξ ∈ R. (2.11)

That is,

u1 = lim inf
ξ→+∞

φ1(ξ) ≥ 1− A

a
> 0. (2.12)

Consequently by the second equation of (1.2), we have thatvt(x, t) ≥ vxx(x, t) +Bv(x, t)

(
1− v(x, t)

1− A
a

)
, x ∈ R, t > 0,

v(x, 0) = φ2(x), x ∈ R.

Hence, by Lemmas 2.4 and 2.5, u2 = lim inf
ξ→+∞

φ2(ξ) ≥ 1−A/a > 0.

From the definition of limit superior and limit inferior, for ε > 0 sufficiently small,

we choose N =
1

λ1
ln
−εd(λ2 − λ1)λ1

β0
> 0, then there exist a pair of constants

M1 > 0 and ξ1 > M1 +N satisfying

φ1(ξ) < u1 + ε, φ2(ξ) > u2 − ε, for ξ ≥M1, φ1(ξ1) > u1 − ε.
Since (φ1(ξ), φ2(ξ)) is a fixed point of P defined by (2.4) and based on the mixed

monotonicity of F1 and F2, we have the following inequality:

u1 − ε <φ1(ξ1) =
1

d(λ2 − λ1)

(∫ ξ1−N

−∞
eλ1(ξ1−s)F1(φ1, φ2)(s)ds

+

∫ ξ1

ξ1−N
eλ1(ξ1−s)F1(φ1, φ2)(s)ds+

∫ +∞

ξ1

eλ2(ξ1−s)F1(φ1, φ2)(s)ds

)

≤F1(u1 + ε, u2 − ε)
d(λ2 − λ1)

(∫ ξ1

ξ1−N
eλ1(ξ1−s)ds+

∫ +∞

ξ1

eλ2(ξ1−s)ds

)

+
F1(1, 0)

d(λ2 − λ1)

∫ ξ1−N

−∞
eλ1(ξ1−s)ds

≤F1(u1 + ε, u2 − ε)
d(λ2 − λ1)

(∫ ξ1

−∞
eλ1(ξ1−s)ds+

∫ +∞

ξ1

eλ2(ξ1−s)ds

)
− β0e

λ1N

d(λ2 − λ1)λ1

=− F1(u1 + ε, u2 − ε)
dλ1λ2

+ ε

=
1

β0

(
β0(u1 + ε) + (u1 + ε)(1− u1 − ε)−

A(u1 + ε)(u2 − ε)
u1 + ε+ a(u2 − ε)

)
+ ε.

By the arbitrariness of ε, we have that

u1(1− u1)− Au1u2
u1 + au2

≥ 0. (2.13)
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Similarly we can prove that

u1(1− u1)− Au1u2
u1 + au2

≤ 0, (2.14)

u2

(
1− u2

u1

)
≥ 0, (2.15)

u2

(
1− u2

u1

)
≤ 0. (2.16)

From (2.13) and (2.16) and u1, u2 > 0, we have,

1− u1 ≥
Au2

u1 + au2
≥ Au1
u1 + au1

.

That is,

u1 − u12 + au1 − au1u1 −Au1 ≥ 0. (2.17)

In the same way, we have from (2.14) and (2.15),

− u1 + u1
2 − au1 + au1u1 +Au1 ≥ 0. (2.18)

Adding (2.17) and (2.18), we have,

(u1 − u1)(1− a+A− u1 − u1) ≥ 0. (2.19)

Since the condition (H2) holds, we have

u1 + u1 ≥ 2u1 ≥ 2

(
1− A

a

)
> 1− a+A.

That is,

1− a+A− u1 − u1 < 0,

which, combining (2.19) and u1 ≥ u1, implies u1 = u1.
By (2.15) and (2.16) again, we have that,

u1 = u1 = u2 = u2 , x∗. (2.20)

Substituting (2.20) into (2.13) and (2.14) induces that

x∗ ≤ 1− A

1 + a
, x∗ ≥ 1− A

a+ 1
.

That is,

u1 = u1 = 1− A

1 + a
= u∗, u2 = u2 = u∗.

This completes the proof of existence of a traveling wave solution connecting (1, 0)
and (u∗, u∗).

2. If the statement is false, then there exists c0 satisfying 0 < c0 < c∗ = 2
√
B such

that the system (1.2) has a positive solution (u(x, t), v(x, t)) = (φ1(x+ c0t), φ2(x+
c0t)) satisfying

lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = (1, 0), lim
ξ→+∞

(φ1(ξ), φ2(ξ)) = (u∗, u∗). (2.21)

By the continuity of φ1(ξ) and (2.21), there exists a δ > 0 such that φ1(ξ) > δ
for ξ ∈ R. Hence, from the second equation of (1.2) again, we have thatvt(x, t) ≥ vxx(x, t) +Bv(x, t)

(
1− v(x, t)

δ

)
, x ∈ R, t > 0,

v(x, 0) = φ2(x) > 0, x ∈ R.
(2.22)
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By Lemmas 2.4 and 2.5, we have, for any ε ∈ (0, 2
√
B),

lim
t→∞

min
|x|<(2

√
B−ε)t

v(x, t) ≥ δ > 0. (2.23)

We choose θ0 ∈ (0, 1) such that c0 < 2
√
θ0B since c0 < 2

√
B. We let x(t) =

−2
√
θ0Bt and ε =

√
B−
√
θ0B. Then |x| = 2

√
θ0Bt < (2

√
B− ε)t. Then by (2.23),

we have

lim
t→∞

inf
|x|=2

√
θ0Bt

v(x, t) ≥ δ > 0.

On the other hand, x(t) + c0t = (c0 − 2
√
θ0B)t → −∞, (2.21) implies that

lim inf
ξ→−∞

φ2(ξ) = 0, which is a contraction. Thus (1.2) has no positive traveling

wave solution connecting (1, 0) and (u∗, u∗).

3. Existence of wave train solutions. In this section, we prove Theorem 1.2.
To achieve that, we first give the following two lemmas.

Lemma 3.1. Assume (H1) and (H3) or (H3’) hold. Then B <
A

(a+ 1)2
.

Proof. From (H3) or (H3’) and A < 1 + a, we observe that

(a+ 1)2

a+ 2
(B + 1) < 1 + a,

which is equivalent to the inequality B < 1/(a+ 1). That is,

B + 1

a+ 2
−B =

−B(1 + a) + 1

a+ 2
> 0.

Thereby, A >
(a+ 1)2(B + 1)

a+ 2
> B(a+ 1)2.

Consider a quartic polynomial equation:

λ4 + P1(d)λ3 + P2(d)λ2 + P3(d)λ+ P4(d) = 0, (3.1)

where Pi(d) (1 ≤ i ≤ 4) are continuously differentiable functions of a parameter d.

Lemma 3.2. Assume (3.1) has a pair of simple imaginary roots λ = ±iω with
ω > 0 at d = d0. Then

Re

(
dλ

dd

)−1 ∣∣∣∣∣
d=d0

=
2P3(d0)g′(d0)

MP 2
1 (d0)

,

where

M = (P ′4(d0)− ω2P ′2(d0))2 + (P ′3(d0)− ω2P ′1(d0))2ω2,

g(d) = P 2
3 (d)− P1(d)P2(d)P3(d) + P 2

1 (d)P4(d).

Proof. Let λ = ±iω with ω > 0 be a pair of roots of Eq.(3.1) at d = d0. Then

ω4 − P1(d0)ω3i− P2(d0)ω2 + P3(d0)ωi+ P4(d0) = 0.

Separating the real and imaginative parts leads to

ω2 =
P3(d0)

P1(d0)
, ω4 − P2(d0)ω2 + P4(d0) = 0. (3.2)
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Then g(d0) = 0 and

g′(d0) =2P3(d0)P ′3(d0)− P ′1(d0)P2(d0)P3(d0)− P1(d0)P ′2(d0)P3(d0)

− P1(d0)P2(d0)P ′3(d0) + 2P1(d0)P ′1(d0)P4(d0) + P 2
1 (d0)P ′4(d0).

(3.3)

Differentiating (3.1) results in the following equality:(
dλ

dd

)−1 ∣∣∣∣∣
d=d0

= − λ(4λ2 + 3P1(d)λ+ 2P2(d)) + P3(d)

P ′1(d)λ3 + P ′2(d)λ2 + P ′3(d)λ+ P ′4(d)

∣∣∣∣∣
d=d0

.

Thus, by using (3.2) and (3.3), we have that

Re

(
dλ

dd

)−1 ∣∣∣∣∣
d=d0

=− Re

{
iω(−4ω2 + 3P1(d0)iω + 2P2(d0)) + P3(d0)

P ′4(d0)− P ′2(d0)ω2 + iω(P ′3(d0)− ω2P ′1(d0))

}
=

1

M

(
3P1(d0)ω2 − P3(d0))(P ′4(d0)− ω2P ′2(d0)

)
− ω2

M
(2P2(d0)− 4ω2)(P ′3(d0)− ω2P ′1(d0))

=
2P3(d0)

MP 2
1 (d0)

(
P ′4(d0)P 2

1 (d0)− P1(d0)P ′2(d0)P3(d0) + P ′1(d0)P2(d0)P3(d0)

− P1(d0)P2(d0)P ′3(d0)− 2P 2
3 (d0)P ′1(d0)

P1(d0)
+ 2P3(d0)P ′3(d0)

)

=
2P3(d0)

MP 2
1 (d0)

(g′(d0) + 2P ′1(d0)P2(d0)P3(d0))

− 4P3(d0)P ′1(d0)

KP 3
1 (d0)

(P 2
1 (d0)P4(d0) + P 2

3 (d0))

=
2P3(d0)

MP 2
1 (d0)

(
g′(d0)− 2P ′1(d0)

P1(d0)
g(d0)

)
=

2P3(d0)g′(d0)

MP 2
1 (d0)

.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We use the Hopf bifurcation theorem to prove the existence
of small amplitude periodic solutions of (2.5), which is equivalent to wave train
solutions of (1.2). For that purpose, we convert (2.5) to a system of first order

ODEs. We set U̇(ξ) = W (ξ), V̇ (ξ) = X(ξ) and rewrite the system (2.5) as follows:

U̇(ξ) = W (ξ),

Ẇ (ξ) =
c

d
W (ξ)− U(ξ)(1− U(ξ))

d
+

AU(ξ)V (ξ)

d(U(ξ) + aV (ξ))
,

V̇ (ξ) = X(ξ),

Ẋ(ξ) = cX(ξ)−BV (ξ)

(
1− V (ξ)

U(ξ)

)
.

(3.4)

The system (3.4) has two equilibria E1(1, 0, 0, 0) and E2(u∗, 0, u∗, 0).
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The Jaccobian matrix of the linearization of Eq.(3.4) at E(U, 0, V, 0) is given by
0 1 0 0
α c/d β 0
0 0 0 1
r 0 µ c


where

α =
1

d

(
2U − 1 +

AaV 2

(U + aV )2

)
, r = −BV

2

U2
,

β =
AU2

d(U + aV )2
, µ = −B

(
1− 2V

U

)
,

and the corresponding characteristic equation is given as follows:

Q(λ, d) = λ4 − c
(

1 +
1

d

)
λ3 +

(
c2

d
− α− µ

)
λ2 + c

(µ
d

+ α
)
λ+ αµ− βr = 0.

Hence at the equilibrium E2(u∗, 0, u∗, 0), the corresponding characteristic polyno-
mial is

Q2(λ, d) =λ4 − c
(

1 +
1

d

)
λ3 +

(
c2

d
−B − 1

d

(
1− A(a+ 2)

(a+ 1)2

))
λ2

+
c

d

(
B + 1− A(a+ 2)

(a+ 1)2

)
λ+

Bu∗

d
= 0.

(3.5)

We define

ρ = B + 1− A(a+ 2)

(a+ 1)2
, θ = c2 −B(d− 1).

Then (3.5) is simplified to

Q2(λ, d) = λ4 − c
(

1 +
1

d

)
λ3 +

θ − ρ
d

λ2 +
cρ

d
λ+

Bu∗

d
= 0. (3.6)

To obtain the existence of periodic solutions induced by Hopf bifurcation, we seek
for a pair of pure imaginary roots of (3.6). Let λ = iω (ω > 0) be a root of Eq.
(3.6). Then

ω4 + c

(
1 +

1

d

)
ω3i− θ − ρ

d
ω2 +

cρ

d
ωi+

Bu∗

d
= 0. (3.7)

Separating the real and imaginary parts in (3.7), we obtain
ω4 − θ − ρ

d
ω2 +

Bu∗

d
= 0,

c

(
1 +

1

d

)
ω2 = −cρ

d
.

(3.8)

From (3.8), we have

ω =

√
− ρ

d+ 1
> 0, (3.9)

as (H3) or (H3’) implies that ρ < 0. Substituting (3.9) into (3.8), we find that

B

(
A

(a+ 1)2
−B

)
(d+ 1)2 + ρ(c2 + 2B)(d+ 1)− ρ2 = 0. (3.10)

By Lemma 3.1, (3.10) has a unique root d = d(c) > −1 given by (1.3) with ∆
defined as in (1.4).
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To show that d(c) is indeed positive, we analyze the dependence of d(c) on the
wave speed c. One can observe that d(c) is strictly increasing on c, and

d(0) =
(a+ 1)2

2B(A−B(a+ 1)2)

(
−2ρB − 2ρ

√
AB

a+ 1

)
− 1

=
a+ 1

A−B(a+ 1)2

(
A− (a+ 1) +

(
A(a+ 2)

(a+ 1)2
−B − 1

)√
A

B

)
.

Therefore, if (H3) holds, then d(0) ≥ 0 and consequently d(c) > 0 for c > 0. On
the other hand, if (H3’) holds, d(0) < 0, then there exists a unique c∗ > 0 such
that d(c∗) = 0, and d(c) > 0 for c > c∗. In either case, we have shown that, when
d = d(c), (3.6) has a pair of pure imaginary roots ±iω where ω is given by (3.9).

From the characteristic equation (3.6), P3(d) = cρ/d < 0 and g′(d(c)) > 0, then
by Lemma 3.2, the transversity condition holds. That is,

Re

(
dλ

dd

) ∣∣∣∣∣
d=d(c)

=
2cρg′(d(c))

d(c)P 2
1 (d(c))M

< 0. (3.11)

Now from the standard Hopf bifurcation theorem [20], we obtain the result of The-
orem 1.2.

Figure 1 shows the graphs of the Hopf bifurcation curve d = d(c) for two examples
satisfying (H3) and (H3’). Note that the transversality condition (3.11) suggests
that when d decreases across d(c), the real part of one pair of eigenvalues changes
from negative to positive, hence for smaller diffusion coefficient d, there exists time-
periodic oscillations.

0 1 2 3 4 5
0

10

20

30

40

50

60

c

d

 

 

(c,d)

d=d(c)

(A)

0 2 4 6
0

2

4

6

8

10

12

14

c

d

c*

(B)

(c,d)

d=d(c)

Figure 1. Hopf bifurcation curves of (3.4). Left: A = 1.9, B =
0.3, a = 1 (satisfying (H3)); Right: A = 1.75, B = 0.3, a = 1
(satisfying (H3’)).

4. Distributed delay systems. In this section, we investigate the existence of
traveling wave solution and periodic traveling waves of the system (1.1) with dis-
tributed delay when τ is small by using the geometric singular theory [14].
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Similar to Section 2, we know that (U(x + ct), V (x + ct)) is a traveling wave
solution of (1.1) if and only if (U(ξ), V (ξ)) is a solution of the following integro-
differential system:

dÜ(ξ)− cU̇(ξ) + U(ξ)(1− (G ∗ U)(ξ))− AU(ξ)V (ξ)

U(ξ) + aV (ξ)
= 0,

V̈ (ξ)− cV̇ (ξ) +BV (ξ)

(
1− V (ξ)

U(ξ)

)
= 0.

(4.1)

We only consider in detail the case that the distribution kernel is a strong one, that

is, G(t) =
t

τ2
e−

t
τ .

Define

Y (ξ) = (G ∗ U)(ξ) =

∫ +∞

0

t

τ2
e−

t
τ U(ξ − ct)dt,

Z(ξ) =

∫ +∞

0

1

τ
e−

t
τ U(ξ − ct)dt.

(4.2)

Differentiating Y, Z with respect to ξ and further denoting

U̇ = W, V̇ = X, (4.3)

we obtain from (4.1) and (4.2):

U̇(ξ) = W (ξ),

Ẇ (ξ) =
c

d
W (ξ)− U(ξ)(1− Y (ξ))

d
+

AU(ξ)V (ξ)

d(U(ξ) + aV (ξ))
,

V̇ (ξ) = X(ξ),

Ẋ(ξ) = cX(ξ)−BV (ξ)

(
1− V (ξ)

U(ξ)

)
,

cτ Ẏ (ξ) = Z(ξ)− Y (ξ),

cτ Ż(ξ) = U(ξ)− Z(ξ).

(4.4)

Or equivalently, we make a coordinate change δ = ξ/τ , and obtain that

U ′ = τW,

W ′ = τ

(
c

d
W − U(1− Y )

d
+

AUV

d(U + aV )

)
,

V ′ = τX,

X ′ = τ

(
cX −BV

(
1− V

U

))
,

cY ′ = Z − Y,
cZ ′ = U − Z,

(4.5)

where ′ denotes the derivative in δ. When τ > 0, the slow ODE system (4.4) and the
fast ODE system (4.5) are equivalent and have the same equilibria E1(1, 0, 0, 0, 1, 1)
and E2(u∗, 0, u∗, 0, u∗, u∗).

Next we prove the existence of a heteroclinic orbit connecting E1 and E2 for
sufficiently small τ > 0. Notice that when τ → 0, the slow system (4.4) is reduced
into a limit system (3.4). On the other hand, when τ → 0, the fast system (4.5)
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has the limit form: 

U ′ = 0,

W ′ = 0,

V ′ = 0,

X ′ = 0,

Y ′ =
Z

c
− Y

c
,

Z ′ =
U

c
− Z

c
.

(4.6)

The set M(0) = {(U,W, V,X, Y, Z) ∈ R6 : Y = Z and Z = U} is a four-dimensional
invariant manifold of (4.6). The linearization of (4.6) at any point in M0 has a
zero eigenvalue with multiplicity 4 and two negative eigenvalues λ = −1/c. From
Fenichel’s First Theorem [14], M(0) is a normally hyperbolic invariant manifold.
By the geometric singular perturbation theory [14, 30], we know that there exists
an invariant set M(τ) for (4.4) with τ > 0 small enough, defined by

M(τ) = {(U,W, V,X, Y, Z) ∈ R6 : Y = Z + g(U,W, V,X, τ)

and Z = U + h(U,W, V,X, τ)},
(4.7)

where g, h will be determined later and satisfy

g(U,W, V,X, 0) = h(U,W, V,X, 0) = 0.

Substituting (4.7) into the (4.4) induces

cτ

(
U̇

(
1 +

∂g

∂U
+
∂h

∂U

)
+ Ẇ

(
∂g

∂W
+

∂h

∂W

)
+V̇

(
∂g

∂V
+
∂h

∂V

)
+ Ẋ

(
∂g

∂X
+
∂h

∂X

))
= −g,

cτ

(
U̇

(
1 +

∂h

∂U

)
+ Ẇ

∂h

∂W
+ V̇

∂h

∂V
+ Ẋ

∂h

∂X

)
= −h.

We write the Taylor expansion of g, h on τ as follows:

g(U,W, V,X, τ) = τg1(U,W, V,X) + τ2g2(U,W, V,X) +O(τ3),

h(U,W, V,X, τ) = τh1(U,W, V,X) + τ2h2(U,W, V,X) +O(τ3).

Comparing the coefficients of τ leads to the results:

g1(U,W, V,X) = h1(U,W, V,X) = −cW,

g2(U,W, V,X) = 2c2
(
c

d
W − U(1− U)

d
+

AUV

d(U + aV )

)
= 2h2(U,W, V,X).

(4.8)

Hence the slow system (4.4) is reduced into an equivalent system:

U̇ = W,

Ẇ =
c

d
W − U(1− U)

d
+

AUV

d(U + aV )
+
U

d
(τ(h1 + g1) + τ2(h2 + g2)),

V̇ = X,

Ẋ = cX −BV
(

1− V

U

)
,

(4.9)

where g1, g2, h1, h2 are defined by (4.8). It is easy to check when τ > 0, the system
(4.9) still has critical points E1(1, 0, 0, 0) and E2 = (u∗, 0, u∗, 0). In Sections 2 and
3, we have shown that, the system (1.2) (τ = 0) has a heteroclinic orbit connecting
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between E1 and E2 for c ≥ c∗ = 2
√
B if (H2) holds, and has a small amplitude

periodic traveling wave train at d = d(c) if (H1), and (H3) or (H3’) hold. Then
by the geometric singular perturbation theory, there is a sufficiently small τ0 > 0
such that for each 0 < τ < τ0, these orbits persist as solutions of the full system
(4.9).

For the weak kernel G(t) =
1

τ
e−t/τ , define

Y (ξ) = (G ∗ U)(ξ) =

∫ +∞

0

1

τ
e−t/τU(ξ − ct)dt.

Then combining (4.1) and (4.3), we obtain the four-dimensional slow system

U̇(ξ) = W (ξ),

Ẇ (ξ) =
c

d
W (ξ)− U(ξ)(1− Y (ξ))

d
+

AU(ξ)V (ξ)

d(U(ξ) + aV (ξ))
,

V̇ (ξ) = X(ξ),

Ẋ(ξ) = cX(ξ)−BV (ξ)

(
1− V (ξ)

U(ξ)

)
,

cτ Ẏ (ξ) = U(ξ)− Y (ξ).

The proof is similar to the one for the strong kernel thus we omit it here. This
completes the proof of Theorem 1.3.

5. Numerical simulations. We present some numerical simulations to illustrate
our main results in Sections 2 and 4. We choose parameters d = 0.1, a = 1, A =
0.4, B = 0.01 such that the condition (H2) holds. Then the system (1.2) admits a
boundary equilibrium E1(1, 0) and a positive equilibrium E2(0.8, 0.8). In order to
perform numerical simulation of (1.2), we truncate the infinite domain R to finite
domain [−L,L], where L is sufficiently large, and we use a homogeneous Neumann
boundary condition at both ends and we choose an initial condition close to a wave
profile. The corresponding solution profiles of the initial value problem (1.2) for
t = 40, t = 80 and t = 120 are given in Figure 2. Note that the solution exhibits a
traveling wave profile which moves at a constant speed close to 2

√
B.
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Figure 2. Wave profiles for prey (A) and predator (B) of the
traveling wave solutions of (1.2) with d = 0.1, a = 1, A = 0.4, B =
0.01.
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Figure 3. Wave profiles for prey (A) and predator (B) of the
traveling wave solutions of (1.1) with d = 0.1, a = 1, A = 0.4, B =
0.01 and τ = 1.
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Figure 4. Wave profiles for prey (A) and predator (B) of the
traveling wave solutions of (1.1) with d = 0.1, a = 1, A = 0.4, B =
0.01 and τ = 1.5.

To carry out numerical simulation for the system with distributed delay Eq.(1.1)

with the strong kernel G(t) =
t

τ2
e−

t
τ , we define

X(x, t) = (G ∗ u)(x, t) =

∫ t

−∞

t− s
τ2

e−
t−s
τ u(x, s)ds,

Y (x, t) =

∫ t

−∞

1

τ
e−

t−s
τ u(x, s)ds.

Then Eq.(1.1) can be recast as a system of four reaction-diffusion equations without
delay: 

ut(x, t) = duxx + u(x, t)(1−X(x, t))− Au(x, t)v(x, t)

u(x, t) + av(x, t)
,

Xt(x, t) =
1

τ
(Y (x, t)−X(x, t)),

Yt(x, t) =
1

τ
(u(x, t)− Y (x, t)),

vt(x, t) = vxx(x, t) +Bv(x, t)

(
1− v(x, t)

u(x, t)

)
.

(5.1)

We simulate the solution of (5.1) (which is equivalent to that of (1.1)) by carefully
choosing the initial conditions. Figure 3 shows the wave profile of the traveling
wave solutions for the distributed delay model (1.1) with the strong kernel and

τ = 1. Both Figures 2 and 3 show that the spreading speed c ≈ 0.2 = 2
√
B, and in

both cases the traveling wave solutions appear to be monotone in ξ. Note that our
existence results do not guarantee the monotonicity of the wave solutions. However
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when τ increases to 1.5, Figure 4 shows that the wave profile does not persist, so
the system (1.1) may not have a stable traveling wave solution with larger τ .

6. Conclusion. In this paper, we study the spatiotemporal patterns of a reaction-
diffusion predator-prey system with ratio-dependent Holling-Tanner type interaction
and a distributed delay in the prey species growth. We rigorously prove the exis-
tence of traveling wave and traveling wave train solutions for both the non-delay
system (1.2) and also the delayed case (1.1) with a small mean delay. We ap-
ply mathematical tools of upper-lower solution method, Hopf bifurcation theorem
and geometric singular perturbation methods to achieve our results. Note that the
first two methods can be applied to many other similar models of spatiotemporal
resource-consumer type models arising from biological, chemical and physical mo-
dels, while the geometric singular perturbation methods can only be applied to the
models with weak or strong type distribution kernels. The existence of these types
of solutions for (1.1) with other distribution kernels and/or larger mean delays re-
main as interesting open questions. Another challenging mathematical question is
the stability of traveling wave and traveling wave train solutions obtained here.

The rigorous mathematical results proved here have profound biological meaning.
The existence of traveling wave solutions with specific wave speeds for a realistic
predator-prey model provides theoretical basis for the biological invasion of pre-
dator species. Numerical simulations show that the spreading speed is exactly the
minimal speed of the traveling wave solutions. Note that for monotone systems such
as diffusive cooperative or two-species competition systems, there have been algo-
rithms for determining the spreading speeds, but these methods cannot be applied
to predator-prey systems.
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lege of William and Mary in 2015-2016, and she would like to thank CWM for warm
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[17] L. R. Ginzburg and H. R. Akçakaya, Consequences of ratio-dependent predation for steady-

state properties of ecosystems, Ecology, 73 (1992), 1536–1543.

[18] S. A. Gourley, Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed
delays, Math. Comput. Modelling, 32 (2000), 843–853.

[19] S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease

spread, In Nonlinear Dynamics and Evolution Equations, Volume 48 of Fields Inst. Commun.,
pages 137-200, Amer. Math. Soc., Providence, RI, 2006.

[20] B. D. Hassard, N. D. Kazarinoff and Y.-H, Wan, Theory and Applications of Hopf Bifurcation,
Cambridge Univ. Press, Cambridge-New York, 1981.

[21] A. Hastings, K. Cuddington and K. F. Davies, et.al., The spatial spread of invasions: new

developments in theory and evidence, Ecol. Lett., 8 (2005), 91–101.
[22] C. S. Holling, The functional response of predators to prey density and its role in mimicry

and population regulation, Mem. Ent. Soc. Can., 97 (1965), 5–60.

[23] C.-H. Hsu, C.-R. Yang, T.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for
diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040–3075.

[24] J.-H. Huang, G. Lu and S.-G. Ruan, Existence of traveling wave solutions in a diffusive

predator-prey model, J. Math. Biol., 46 (2003), 132–152.
[25] W.-Z. Huang, Traveling waves connecting equilibrium and periodic orbit for reaction-diffusion

equations with time delay and nonlocal response, J. Differential Equations, 244 (2008), 1230–

1254.
[26] W.-Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Dif-

ferential Equations, 24 (2012), 633–644.
[27] W.-Z. Huang, A geometric approach in the study of traveling waves for some classes of non-

monotone reaction–diffusion systems, J. Differential Equations, 260 (2016), 2190–2224.

[28] W.-Z. Huang and M.-A. Han, Non-linear determinacy of minimum wave speed for a Lotka-
Volterra competition model, J. Differential Equations, 251 (2011), 1549–1561.

[29] Y.-L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and
one predator, J. Math. Anal. Appl., 418 (2014), 163–184.

[30] C. K. R. T. Jones, Geometric singular perturbation theory, In Dynamical Systems (Monte-

catini Terme, 1994), volume 1609 of Lecture Notes in Math., pages 44–118, Springer, Berlin,

1609.
[31] M. Kot, M. A. Lewis and P. van den Driessche, Dispersal data and the spread of invading

organisms, Ecology, 77 (1996), 2027–2042.
[32] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone

semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40.

[33] G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96

(2014), 47–58.
[34] G. Lin, W.-T. Li and M.-J. Ma, Traveling wave solutions in delayed reaction diffusion systems

with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010),
393–414.

[35] X.-B. Lin, P.-X. Weng and C.-F. Wu, Traveling wave solutions for a predator-prey system

with sigmoidal response function, J. Dynam. Differential Equations, 23 (2011), 903–921.
[36] S.-W. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theo-

rem, J. Differential Equations, 171 (2001), 294–314.

[37] S. M. Merchant and W. Nagata, Wave train selection behind invasion fronts in reaction-
diffusion predator-prey models, Phys. D, 239 (2010), 1670–1680.

http://www.ams.org/mathscinet-getitem?mr=MR3274366&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3503044&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR524817&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR527914&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR730001&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1792102&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2223351&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR603442&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2871792&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1963069&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2392511&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2964797&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3427664&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2813889&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3198872&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2270161&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3143801&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2601236&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2859945&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1818651&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2684622&return=pdf


1200 WENJIE ZUO AND JUNPING SHI

[38] K. Mischaikow and J. F. Reineck, Travelling waves in predator-prey systems, SIAM J. Math.
Anal., 24 (1993), 1179–1214.

[39] M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion, Bull.

Math. Biol., 63 (2001), 655–684.
[40] R. Peng and M.-X. Wang, Positive steady states of the Holling-Tanner prey-predator model

with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149–164.
[41] S. Petrovskii, A. Morozov and B.-L. Li, Regimes of biological invasion in a predator-prey

system with the Allee effect, Bull. Math. Biol., 67 (2005), 637–661.

[42] J. A. Sherratt, Periodic traveling waves in a family of deterministic cellular automata, Phys.
D, 95 (1996), 319–335.

[43] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University

Press, 1997.
[44] J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations,

Ecology, 56 (1975), 855–867.

[45] A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Sys-
tems, Transl. Math. Monogr. Amer. Math. Soc., 1994.

[46] Z.-C. Wang, W.-T. Li and S.-G. Ruan, Travelling wave fronts in reaction-diffusion systems

with spatio-temporal delays, J. Differential Equations, 222 (2006), 185–232.
[47] H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal.,

13 (1982), 353–396.
[48] W.-J. Zuo and Y.-L. Song, Stability and bifurcation analysis of a reaction-diffusion equation

with spatio-temporal delay, J. Math. Anal. Appl., 430 (2015), 243–261.

Received February 2017; revised August 2017.

E-mail address: zuowjmail@163.com

E-mail address: shij@math.wm.edu

http://www.ams.org/mathscinet-getitem?mr=MR1234011&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3363426&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2119846&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2215557&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1406288&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1297766&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2200751&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR653463&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3347212&return=pdf
mailto:zuowjmail@163.com
mailto:shij@math.wm.edu

	1. Introduction
	2. Traveling wave solutions
	2.1. Preliminaries
	2.2. Traveling wave solutions of (1.2)

	3. Existence of wave train solutions
	4. Distributed delay systems
	5. Numerical simulations
	6. Conclusion
	Acknowledgements
	REFERENCES

