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Abstract—We present a scalable distributed memory
library for generating and computing using structured
dense matrices, such as those produced by the boundary
integral equation formulations. Such matrices are dense,
but has special structure that can be exploited to obtain
efficient storage and matrix-vector product evaluations and
consequently the fast solution of linear systems. At the core
of these methods we use is the observation that off-diagonal
matrix blocks of such matrices have a low numerical rank,
and that this property can be exploited in a multi-level
fashion. In this work we focus on the Hierarchically Semi-
Separable representation (HSS). We present algorithms for
building and using HSS representations that are paral-
lelized using MPI and CUDA to leverage state-of-the-art
heterogeneous clusters. The efficiency of our methods and
implementation is demonstrated on large dense matrices
obtained from an boundary integral equation formulation
of the Laplace equation with Dirichlet boundary condi-
tions. We demonstrate excellent (linear) scalability on up to
128 GPUs on 128 nodes. Our codes will be made available
publicly and lay the foundation for a fast direct solver for
elliptic problems.

I. INTRODUCTION

As we scale up to exascale machines, developing
software that has optimal runtime–O(n)–and is scalable–
O(n/p + log p)–is critical for furthering scientific dis-
covery. In addition, the ability for the software to be
used in a blackbox fashion (robustness) is essential
for widespread adoption and use by non-experts. We
focus on parallel solvers for discrete linear systems that
arise when solving elliptic partial differential equations
(PDEs) numerically, primarily for two reasons: Firstly,
elliptic PDEs are ubiquitous not only in engineering but
several data systems as well. Secondly, algorithms based
on integral equation formulations offer optimal storage
and work per digit of accuracy, especially those involving
complex geometries. They commonly provide favorable
conditioning and spectral clustering, and the resulting
linear systems can be solved in a few iterations when

classical iterative methods are used. These problems in
their discretized form can be represented by a linear
system, Au = f , where A is a structured dense matrix.
For discretizations based on PDEs, say using the finite
element method, this matrix is similar to the inverse
elliptic operator, that is again dense. The dense nature of
such operators leads to a storage and matrix-vector prod-
uct (matvec) evaluation complexity of O(n2) making
it impractical for large systems. The integral equations
community have tackled this problem by using efficient
methods such as the Fast Multipole Method (FMM) [1]
to evaluate the matvec in O(n) time.

The complexity of the FMM algorithm and its kernel-
dependent nature have limited its widespread use, in spite
of its sophistication. Research research has focused on
developing algebraic equivalents of the FMM by exploit-
ing the structure of the matrices, by building hierarchical
low-rank representations that reduces the complexity of
storage as well as matvec evaluation. Instead of relying
on analytic expressions for the low-rank representation
of well separated blocks, hierarchical matrix based ap-
proaches rely on linear algebra techniques to estimate
low-rank representations for off-diagonal blocks. This
makes it fairly expensive to build such representations,
but it is usually worthwhile if multiple matvecs need
to be evaluated, say while solving a linear system or
while solving PDE constrained optimization problems
where multiple solves might need to be performed.
Additionally, an approximate representation can be built
more efficiently that can be used as an preconditioner to
improve the convergence of iterative solvers. Therefore
these methods are highly relevant and the availability of
scalable and efficient implementation can have signifi-
cant impact. Our primary goal is to develop a scalable
library to build and use such hierarchical representation
of matrices. We will release out code via github under
an MIT license.

Our work targets large heterogeneous clusters. Meth-



ods such as hierarchical matrices are primarily needed
for problems where n is extremely large, necessitating
the need for large supercomputers. As our supercom-
puters are becoming increasingly heterogeneous, it is
important for large-scale software libraries to target
heterogeneity. Out hierarchical matrix library supports
multi-node CPUs as well as NVidia GPUs. Will demon-
strate good strong and weak scalability on the BigRed-II
cluster at Indiana University across 128 nodes, each with
one NVIDIA Tesla K20. To the best of our knowledge
ours is the first heterogeneous implementation for hier-
archical matrices.

II. RELATED WORK

A significant basis for the work on Hierarchical matri-
ces stems from research done within the integral equa-
tions and FMM community. The initial work focused
on developing a kernel-independent variant [2] that does
not require the Green’s function. More recent work has
focused on developing the inverse FMM operators [3].
Recent work has also focused on developing algebraic
variants of the FMM, such as the H and H2 matrices
[4], [5], hierarchically semi-separable (HSS) [6], and
hierarchically off-diagonal low-rank (HODLR) matrices
[7]. These algebraic generalizations of the FMM can
perform addition, multiplication, and even factorization
of dense matrices with near linear complexity. A sig-
nificant work in this area has focused on developing
the numerical methods and consequently limited work
has been done on developing scalable software libraries.
There has been significant work in parallelizing FMM
and its kernel independent variants [2], [8]–[11]. There
has also been more recent work on parallelization of H-
matrices [12] as well as a substantial effort at developing
multifrontal solvers using similar concepts [13]–[15].
The closest work to ours is [16], where they develop MPI
parallel methods for computing HSS representations and
computing matvecs. Our work extends this work by
supporting heterogeneous clusters by parallelizing across
multiple GPUs. The basic mathematical background of
our work derives from [6] and additional details on the
core algorithms for building HSS representations can be
found in this paper. In the following section, we will give
a brief overview of Hierarchical matrix representations,
focusing on HSS.

III. HIERARCHICAL REPRESENTATIONS

Systems arising from the discretization of integral
equations or the inverse operators of discretized ellip-
tic differential equations, are dense but contain special

structure that can be exploited to compress their rep-
resentation and usage. At the core of these methods is
the observation that off-diagonal matrix blocks of such
matrices have a low numerical rank, and that this prop-
erty can be exploited in a multi-level fashion. While the
cost of storing and evaluating the matrix-vector product
(matvec) can be O(n2) for a n × n dense matrix,
such matrices can be represented in a hierarchical fash-
ion enabling O(n) or O(n log n) storage and matvec
computation. There is considerable computational cost
in building such representations, but these are appealing
when dealing with multiple right-hand sides or with ill-
conditioned problems. In this section, we summarize the
general approach to building hierarchical representations
of matrices and efficient computation of the matvec
using the HSS representation. Since these representations
rely on computing a low-rank approximation for sub-
blocks of the matrix, we first present a brief overview
of the approach we use for computing the low-rank
decomposition of matrices.

Low rank decomposition: An essential building block
for algorithms exploiting low-rank structure is the
method of choice to produce approximate low rank
decompositions of a matrix block B, given a desired tar-
get accuracy. The common choice in many hierarchical
matrix methods is the interpolative decomposition (ID)
[17]. The ID factors an m×n matrix B into a narrower
skeleton matrix Bc = B(:, Ic) of size m× k, consisting
of a subset of the columns of B indexed by Ic—the
so called column skeleton of B—and the interpolation
matrix T of size k× (n−k), representing the remaining
columns of B as a linear combination of columns of Bs.
Using Ps to represent a permutation matrix ordering the
indices Ic first followed by the remaining, we get

B = Bc [Ik T ]Ps + E = BcR+ E (1)

where ||E||2 ∼ σk+1 vanishes as we increase k [17],
Ik is the k × k identity matrix, σk+1 is the (k + 1)th

eigenvalue of B and R = [Ik T ]Ps is the restriction or
downsampling matrix. This is essentially a compression
of the matrix B controlled by some parameter ε that
controls the norm of E. We can represent this compres-
sion by [T, Ic] = ID(B, ε). A similar compression can
be performed for rows by applying the same operation
to BT to obtain B = LBr + Er, where L is an upsam-
pling interpolation matrix. Compression in both row and
columns can be obtained by a linear combination of the
submatrix of B corresponding to Ir and Ic, to obtain

B ≃ L B(Ir, Ic) R.
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Fig. 1. Blocking of the linear system Au = f into blocks (2) based
on spatial bisection of the domain. For this example, we consider
a circular domain (left) that is divided into 8 blocks (level l = 3).
Consider the source samples from block B6 shown in red and target
samples from block B3. Submatrix Aij represents the interaction
between these blocks.

Such a compression can be applied in a hierarchical fash-
ion, to produce a hierarchically semi-separable matrix.

Hierarchically Semi Separable structure: The rows
and columns of our matrices correspond to spatial dis-
cretization points from either the differential or integral
equation formulation. These can be recursively bisected
into a hierarchy of regions Bi corresponding to the nodes
of a tree T . Several algorithms exist for doing these
efficiently in parallel [18]–[21]. Let L be the set of boxes
B at a given level of this tree. This lends to a blocking
of our discretized system, Au = f , as∑

j∈L
Aijuj = fi, i ∈ L, (2)

where Aij is the sub-block corresponding to source
samples in Bj and target samples in Bi, and the vectors
u and f are partitioned accordingly. for clarity this is
illustrated in Figure 1

For a given target accuracy ε, a semi separable
representation of A can be obtained by building an
approximation for every off-diagonal block Aij at a
given level, (i ̸= j) of size mi ×mj of the form:

Aij = Li

mi×ki

Mij

ki×kj

Rj

kj×mj

, (3)

This is obtained by computing the ID for the set
of interactions of all boxes Bi with all other boxes
Bj except itself, i.e., all but the diagonal blocks Aii

of A. Here Li and Rj are interpolation operators, and
Mij is a sub-block of Aij corresponding to row and
column skeletons. Representing the diagonal block using
Di = Aii, we can write the block factorization of A for
level d as,

A = D(d) + L(d)M (d−1)R(d) (4)

Multi level structure: The key property that allows
dense matrix operations to be performed with less than
O(N2) complexity is that the low-rank structure in
(3) can be exploited recursively in the sense that the
matrix A(d−1) := M (d−1) in (4) itself is block-separable.
Specifically, we re-block the matrix A(d−1) by merging
2 × 2 sets of blocks from children nodes on the tree
T to form new larger blocks. The resulting matrix with
larger blocks is then itself semi-separable and admits
a factorization and compression. This is illustrated in
Figure 2 and can be recursively applied.

We say A is hierarchically semi-separable (HSS) if the
process of blocking and factorization can be continued
through all levels of the tree. In other words, we assume
that A(i) = D(i) + L(i)A(i−1)R(i) for i = d . . . 1, or,
more explicitly,

A(d) = D(d) + L(d)A(d−1)R(d),  
D(d−1) + L(d−1)A(d−2)R(d−1)  

D(d−2) + L(d−2)A(d−3)R(d−2)

. . .  
D(1) + L(1)A(0)R(1)

(5)

where d is the level to which the matrix was initially
blocked. This representation is called a telescoping fac-
torization and is is common to other hierarchical matrix
formats, such as those produced by the Fast Multipole
Method [1] (FMM) and H matrices [4], and may be used
to obtain and analyze fast arithmetic algorithms.

Storage Cost of HSS: The dense matrix A requires
O(n2) storage. The telescoping representation presented
requires only O(n) storage. This is easy to see as at
each level, we only need to store D,L and R. Assuming
a block size of k, we can see that the storage for D
is nk = O(n). Similarly, L and R are basically block
matrices requiring O(n) storage. At the lower levels, we
have smaller problems and without loss of generality, if
we assume that M is n/2× n/2, then the total storage
S(n) is

S(n) = O(n) + S(n/2) = O(n).

Matrix-Vector product using HSS: Recall that a
matvec with the original matrix A would require O(n2)
operations making it infeasible for large n. In addition
to reducing the storage costs to O(n), the HSS represen-
tation also allows us to compute a matvec with O(n)
complexity. Given the telescoping matrix factorization
(5), we can perform the matvec with O(n) complexity
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Fig. 2. Two levels of block-separable compression: blocks of M corresponding to children are merged and then off-diagonal interactions
are further compressed. The original dense matrix A is shown in red. The telescoping decomposition via HSS is shown to the right. Note
that only the blocks in blue are stored.

by interpreting the application of the block-diagonal
factors in two stages. These stages correspond to an
upward and downward traversal of the tree T .

1) Upward pass: In the upward pass, we start at the
leaf blocks of T and move up the tree, computing
equivalent source terms ûi using the downsampling
interpolation operators Ri at the skeleton sets and
by merging the data between sibling boxes

û(l) = R(l+1)û(l+1), (6)

where û(d) = u is the input vector with which we
wish to compute the matvec. Note that the overall
complexity of this step is O(n) as this involves
multiplication with a block diagonal matrix, R and
merging of a constant number of blocks.

2) Downward pass: In the downward pass, we start at
the root of the tree T and proceed to deeper levels.
We apply the dense diagonal blocks Di (basically
a block matvec) to obtain the results f̂ l

i followed
by interpolation to the deeper level using Li that
maps data from the parent to the child index sets.

f̂ (l) = D(l)û(l) + L(l)f̂ (l−1), (7)

where f̂ (d) = f is the desired output vector. Note
that the complexity of this step is again O(n)
requiring multiplication with two block-diagonal
matrices, D and L and one addition of length n
vectors.

IV. PARALLEL HSS

A. Parallelization across a GPU

We first describe our parallelization of the HSS factor-
ization and matvec computation on a single GPU. Our

single GPU experiments were performed on the latest
Nvidia Pascal architecture; e.g. Titan X GPU mentioned
in V-A has 3096 cores running at 1.08 GHz and 12 GB of
memory. NVIDIA GPU cards support Single instruction,
multiple threads (SIMT) execution model [22] and also
supports CUDA framework [22] for general purpose
computing on the GPU. Since NVIDIA GPUs support
SIMT, it’s important that all of the threads do the same
work (same intruction) on different data at the same time.
CUDA kernel functions give control to the programmer
on how many threads to use, how to use shared memory
and how the computation should be done.

1) Factorization: We divide the input matrix tree into
diagonal and off-diagonal blocks using the tree T [6].
This approach can be generalized into non-complete
binary trees by ignoring nodes in a level where the node
has no sibling. Since the computations done on each
node of the same level are independent of each other,
this is relatively simple to parallelize across a GPU. The
fact that these computations are the same on different
data fits the SIMT execution model of NVIDIA GPUs.

To compute the HSS factorization on the GPU, first
the matrix is randomized by multiplying it with a random
matrix generated using CURAND [23] and multiplied
using the CUBLAS library. Then an upward pass on the
tree T creates the HSS representation. On each node,
matrix-multiplications and interpolative decompositions
(ID) are computed. In our ID implementation, we first
randomize the matrix, compute a pivoted QR factoriza-
tion using householder transformations and subsequently
perform a triangular solve to obtain the components of
the interpolative decomposition.
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Fig. 3. HSS tree with the subtrees given to 8 processors

2) Matrix-vector multiplication: Matrix-vector mul-
tiplication using a HSS matrix is performed using an
up and a down sweep as explained earlier. During
the upward pass (6), we perform a set of blockwise
matvecs and in the downward pass (7), we perform a
set of blockwise matvecs and additions. These matrices
are of the size of the upper bound k of the low rank
of the off-diagonal block. The CUBLAS library [24]
provides routines to perform BLAS operations on the
GPU in a batched mode. Based on our experiments, for
matrices smaller than 64, a specialized CUDA kernel
function performs better than CUBLAS and was used
for small matrix sizes. For smaller matrices, CUDA
kernel functions assigned each block on the grid to a
node from T for computation and each block utilized
k CUDA threads to compute the products. For matrix-
matrix multiplication, where only the first matrix is a
HSS matrix, each block is assigned a vector from the
second matrix and a node in the HSS tree T .

B. Parallelization across nodes

We now descibe our strategy for parallizing the
HSS computation and matvec across nodes. For a dis-
tributed memory system, data needs to be communicated
amongst nodes to do the computation. CUDA aware
MPI implementations, such as MPICH [25], are efficient
when communication needs to happen between GPU
buffers. For intra-node communication, GPU buffers
are copied directly from one GPU to another using
NVIDIA’s GPUDirect for P2P technology. For inter-node
communication, GPU buffers can be directly sent from
the GPU to the network adaptor without going through
host memory.

1) Factorization: Using the observation that a subtree
of the HSS tree can be computed with only the data

Algorithm 1: Factorization of HSS matrix
input : Matrix A of size N ×N divided into

chunks of rows and distributed among
p = 2q processors
An upper bound for the HSS-rank k of
A.
A tree T on the index vector [1, 2, ..., N ].

output: Matrices Lτ , Rτ , Dν1,ν2
that form an

HSS factorization of A.
Let Ip be the index vector for the pth node on

level q of the tree and Ap be the chunk of rows
of A in processor p

Generate a random seed on rank 0 and broadcast
it.

Generate N × (k + 10) Gaussian random matrix
(Ωr) on all processors using the seed;

Generate an (N/p)× (k + 10) Gaussian random
matrix (Ωcp) on each processor p

begin
Srp = Ap · Ωr
Scp = Ap · Ωcp
Reduce Scp using sum operator across all

processors and scatter
Ωrp = Ωr(Ip, :)

Ã = Ap(:, Ip)
h = Ip(0)
/* Calculation on the GPU */
pth processor will process all nodes in the

subtree rooted at the pth node of level q
for l = L,L− 1, ..., q do

Calculate Lrow
τ , Lcol

τ , Dν1,ν2
, Dν2,ν1

as in
original algorithm using
Srp, Scp,Ωrp,Ωcp, Ã which contains the
parts of Sr, Sc,Ωr,Ωc, A needed.

end
/* Calculation in the CPU */
for l = q − 1, q − 2, ..., 1 do

ν2 sends Ĩν2
,Ωrow

ν2
, Srow

ν2
,Ωcol

ν2
, Scol

ν2
to ν1

ν1 receives Dν1,ν2
and Dν2,ν1

from the
other processors.

Calculate Lrow
τ , Lcol

τ , Dν1,ν2
, Dν2,ν1

Processor processing ν1 will process τ in
next level

end
end



corresponding to the diagonal block of the subtree, the
computation can be done in a distributed system with
each node having a GPU. In other words all diagonal
blocks are initially distributed across the GPUs. This is
illustrated in Figure IV-B1.

When distributing the matrix, it is important to dis-
tribute A(Ir, Ir) to node r to reduce communication.
Therefore, the matrix is partitioned by rows, each node
getting a block of rows. Recall that we need to compute
the ID for the matrix A as well as AT , to obtain Ir
and Ic. This involves computing random projections with
the matrix A. Different blocks need to be multiplied
by the same set of random matrices (for both the rows
and columns). In order to avoid exchanging data, we
only exchange the seed for the pseudorandom number
generator and generate (the same) random matrix on all
nodes. Then each node computes the random projection
by multiplying its matrix block with the generated ran-
dom matrix. As mentioned in the single GPU case, we
compute a pivoted QR factorization on this randomized
projection to get the indices [Ir, Ic] and the interpolation
matrices L and R according to (1).

Once the factorization is done for the subtree (that is
stored on a single GPU), the rest of the computations
in the upward pass is performed on the CPU. While it
would be faster to do these on the GPUs, it is not worth
it due to the data movement costs. The main task is
to merge the blocks, therefore the left child of a node
is promoted as the parent and the right child sends the
data for the computation. This proceeds in a reduction-
tree like fashion. The overall algorithm for computing the
HSS factorization on a heterogeneous cluster is given in
Algorithm 1.

2) Matrix-vector multiplication: For matrix multipli-
cation a similar approach was used. For the subtrees
corresponding to the blocks given to each node, local
computation was done on the GPU. During the upward
pass, merging of the blocks were done on the left child
and sent up the HSS tree. During the downward pass,
vectors generated by the parent are passed to the children
until the subtrees corresponding to the blocks of the
nodes are reached. The remainder of the downward
sweep is performed on the GPU and the resulting vector
is a distributed vector across all nodes, just as the input
vector. Note that the overall algorithm involves minimal
communication, primarily up and down the tree and
is therefore very efficient. The overall algorithm for
computing the matvec, given the HSS factorization, on
a heterogeneous cluster is given in Algorithm 2.

Algorithm 2: Distributed HSS matrix-vector
multiplication

input : Matrices Lτ , Rτ , Dν1,ν2
that form an

HSS factorization of A.
Vector x divided into same sized chunks
as A was and distributed among the
processors

output: Vector y = A · x distributed among the
processors

begin
/* Calculation on the GPU */
pth processor will process all nodes in the

subtree rooted at the pth node of level q
for l = L,L− 1, ..., q do

Calculate x̃τ
end
/* Calculation in the CPU */
for l = q − 1, q − 2, ..., 1 do

ν2 sends x̃τ to ν1
Calculate x̃τ on ν1
Processor processing ν1 will process τ in

next level
end
/* Calculation on the CPU */
for l = 1, 2, ..., q − 1 do

Calculate b̃ν1

Calculate b̃ν2
and send it to ν2

end
/* Calculation in the GPU */
for l = q, q + 1, ..., L− 1 do

Calculate b̃ν1
and b̃ν2

end
Calculate b(Iτ )

end

V. RESULTS

A. Experimental Setup

In this section, we present the experimental setup that
we used to carry out experiments described in section
V-B. We have used 3 different setups to perform our
experiments.

• single node : All the single node computations
(i.e. Using only 1 GPU), were performed on a
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with a
NVIDIA GeForce GTX TITAN X with 3584 CUDA
cores.

• Indiana’s BIGRED2 : Big Red II features a hybrid
architecture based on two Cray, Inc., supercom-



puter platforms. Big Red II comprised 344 XE6
(CPU-only) compute nodes and 676 XK7 ”GPU-
accelerated” compute nodes, all connected through
Cray’s Gemini scalable interconnect, providing a
total of 1,020 compute nodes, 21,824 processor
cores (with combined CPU and GPU cores), and
43,648 GB of RAM. Each XE6 node has two
AMD Opteron 16-core Abu Dhabi x86 64 CPUs
and 64 GB of RAM; each XK7 node has one
AMD Opteron 16-core Interlagos x86 64 CPU, 32
GB of RAM, and one NVIDIA Tesla K20 GPU
accelerator.

• Utah’s KINGSPEAK: KINGSPEAK consists of 48
dual socket Intel Xeon (Sandybridge/Ivybridge E5-
2670 and Haswell) processors, and addition for
CPU nodes consists of 8 Nvidia Tesla P100 GPUs
with 4.7T flops each.

B. Results

In this section, we present a detailed description of
experiments that we have performed and the results
presented in this paper. We mainly focus on the execution
time of HSS factorization, performing MATVEC &
MATMAT multiplication operations based on computed
HSS factorizations using single as well as multiple
GPUs across multiple nodes. We also present a compar-
ison of distributed MATVEC & MATMAT multiplication
operations for the same input matrices performed without
HSS factorization.

1) Input matrices for HSS Factorization: In general,
there are two main constraints that needed to be satisfied
by a given matrix A in order for A to be hierarchically
semi-separable. Those constraints can be listed as, off-
diagonal blocks of matrix A needs to be rank deficient,
and we should be able to compute the interpolative de-
composition of off-diagonal blocks hierarchically. These
constraints need to be considered when we generate
input matrices to test the scalability of heterogeneous
implementation of HSS factorization. We generated
our input matrices A based on the integral equation
formulation for Laplace equation on a unit sphere with
Dirichlet boundary conditions.

We present factorization results using a single GPU
(see Figure 4), and weak scaling in two GPU architec-
tures (i.e Indiana’s BIGRED2& Utah’s KINGSPEAK ) in
Figures 6 & 9.

2) MATVEC & MATMAT operations: Numerical
schemes such as finite difference & finite element meth-
ods used to solve Partial Differential Equations (PDEs)
will result in large linear systems, which are solved by
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Fig. 4. Runtime to perform the HSS factorization using a 1 GPU
(Nvidia Titan X), with varying matrix sizes(see Table I).

iterative schemes such as CG or GMRES. When using
iterative methods to solve linear systems we need to
compute a large number of MATVEC operations until
the convergence. Since the overall runtime of iterative
solvers, largely dominated by the time complexity of the
MATVEC or MATMAT operations we present results to
perform above-mentioned operations, using HSS factors
of the input matrix. The key point it since we need to per-
form large number of MATVEC or MATMAT operations,
it might be efficient to perform the HSS factorization
once, and use it to perform matrix operations such as
MATVEC in O(n) time.

Table I shows the runtime for HSS factorization &
MATVEC multiplication. HSS factorization is linear
and HSS based MATVEC is sub-linear. As expected,
dense format MATVEC is quadratic as the algorithm in
CUBLAS is O(N2). HSS based MATVEC is better
than a linear algorithm which means that the GPU
is not utilized fully for smaller matrix sizes and as
matrix sizes grow it is utilized better leading to increase
in performance. This can be confirmed by looking at
timings for MATMAT multiplication in table I. Since the
matrix has 100 columns, parallelism is multiplied 100-
fold and makes the multiplication routine utilize the GPU
more leading to a linear graph.

We present results for performing MATVEC & MAT-
MAToperations using both HSS based, and dense format
base for both single GPU (see Figure 5), and weak
scaling in two different GPU architectures similar to
factorization results in Figures 7 , 8 & 10. Note the we
had to limit weak scalability results for Nvidia Tesla
p100 at 8 GPUs due lack of availability.



matrix size HSS
time(ms)

MATVEC (HSS )
time(ms)

MATVEC (dense)
time (ms)

MATMAT (HSS )
time(ms)

MATMAT (dense)
time (ms)

32 32 0.065 0.161 0.066 0.164
64 68 0.066 0.055 0.092 0.171

128 98 0.127 0.184 0.177 0.308
256 135 0.128 0.315 0.227 0.393
512 165 0.152 0.368 0.507 0.68

1024 197 0.178 0.644 0.76 2.124
2048 241 0.218 0.798 1.214 7.635
4096 292 0.257 2.278 2.06 32.888
8192 383 0.291 8.004 3.825 91.844
16384 633 0.352 25.139 7.534 365.964

TABLE I
RUNTIME FOR HSS FACTORIZATION FOR A GIVEN INPUT MATRIX RANK 16 APPROXIMATION FOR OFF-DIAGONAL BLOCKS AND

PERFORMING, MATVEC & MATMAT OPERATIONS BASED ON HSS FACTORS AND USING THE DENSE REPRESENTATION OF THE INPUT
MATRICES, USING A SINGLE GPU(NVIDIA GEFORCE GTX TITAN X).

matrix size # GPUs HSS
time(ms)

MATVEC (HSS )
time(ms)

MATVEC (dense)
time (ms)

1024 1 181.189 0.313 0.894
2048 2 187.564 0.335 0.824
4096 4 195.951 0.336 0.719
8192 8 214.312 0.343 1.012

16384 16 245.603 0.358 1.818
32768 32 308.729 0.362 2.932
65536 64 439.41 0.366 5.176

131072 128 700.293 0.382 9.574

TABLE II
WEAK SCALING RESULTS FOR HSS FACTORIZATION, MATVEC MATMAT OPERATIONS, FOR BOTH HSS BASED AND DENSE

REPRESENTATION BASED, IN INDIANA’S BIGRED2WITH A GRAIN SIZE OF 1024 = 32× 32 PER EACH PROCESS.

matrix size # GPUs HSS
time(ms)

MATVEC (HSS )
time(ms)

MATVEC (dense)
time (ms)

1024 1 40.98 0.164 0.75
2048 2 43.2 0.185 1.313
4096 4 49.997 0.253 0.839
8192 8 58.11 0.227 0.895

TABLE III
WEAK SCALING RESULTS FOR HSS FACTORIZATION, MATVEC MATMAT OPERATIONS, FOR BOTH HSS BASED AND DENSE

REPRESENTATION BASED, IN UTAH’S KINGSPEAK NVIDIA TESLA P100 GPUS WITH A GRAIN SIZE OF 1024 = 32× 32 PER EACH
PROCESS.

VI. CONCLUSION

We presented a scalable heterogeneous library for
computing hierarchical semi-separable factorization of
dense matrices arising from integral equation formula-
tion of elliptic operators. The use of HSS representation
allows us to reduce the complexity of storage as well as
the evaluation of the matrix-vector product from O(n2)
to O(n). We demonstrated good weak scalability of our
implementation. We will make our code available freely
so that other researchers can benefit from our imple-
mentation. For future work, we are currently working

on reducing the cost of building the HSS factorization
and integrating with FMM methods so that the HSS
representation can be built directly using FMM. We
would also like to use this work to develop a fast direct
solver, that takes a sparse forward operator, such as those
produced by the finite element method and generate the
HSS representation for the inverse operator.
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