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Matching Heterogeneous Event Data

Yu Gao, Shaoxu Song"“, Xiaochen Zhu, Jianmin Wang, Xiang Lian, and Lei Zou

Abstract—Identifying events from different sources is essential to various business process applications such as provenance guerying
of process mining. Distinct features of heterogeneous events, including opaque names and dislocated traces, prevent existing data
integration techniques from performing well. To address these issues, in this paper, (1) we propose an event similarity function by
iteratively evaluating similar neighbors. (2) In addition to event nodes, we further employ the similarity of edges (indicating relationships
among events) in event matching. We prove NP-hardness of finding the optimal event matching w.r.t. hode and edge similarities, and
propose an efficient heuristic for event matching. Experiments demonstrate that the proposed event matching approach can achieve
sighificantly higher accuracy than state-of-the-art matching methods. In particular, by considering the event edge similarity, our
heuristic matching algorithm further improves the matching accuracy without introducing much overhead.

Index Terms—Event similarity, event matching

1 INTRCDUCTION

WING to various mergers and acquisitions, information

systems (e.g., Enterprise Rescurce Planning (ERP) and
Office Automation (OA) systems), developed indepen-
dently in different branches or subsidiaries in large-scale
corporations, keep on generating heterogeneous event logs.
We surveyed a major bus manufacturer who recently
started a project on integrating their event data in the OA
systems of 31 subsidiaries. These OA systems have been
built independently on 5 distinct middleware products in
the past 20 years. More than 8,190 business processes are
implemented in these systems, among which 68.8 percent
are indeed different implementations of the same business
activities in different subsidiaries. For instance, in the
following Example 1, we illustrate two versions of part
manufacturing processes in different subsidiaries. Events
denoting the same business activities commonly exist in
these heterogeneous processes.

The company has started to integrate these heteroge-
neous event data into a unified business process data ware-
house [3], [4], where different types of analyses can be
performed, e.g., querying similar complex procedures or
discovering interesting event patterns in different subsidiar-
ies (complex event processing, CEP [6]), comparing busi-
ness processes in different subsidiaries to find commen
parts for process simplification and reuse [21], or obtaining
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a more abstract global picture of business processes (work-
flow views [1]) in the company. Without identifying the
correspondence among heterogeneous events, applications
such as query and analysis over the event data may not
yield meaningful results.

The event matching problem is to construct the similarity
and matching relationship of events from heterogeneous
sources, Manually identifying matching events is (1) obvi-
ously inefficient, and (2) could be contradictory. An auto-
matic approach is highly demanded for matching these
heterogeneous event data. Rather than manually matching
events with great effort, the user could simply confirm the
results returned by the automatic approaches. The major
benefit to the aforesaid bus company is that the user’s effort
is greatly reduced in the integration project.

Different from the conventional schema matching on
attributes in relational databases [7], events often appear
as sequences. The event data integration is challenging
due to the following features commonly cbserved in
event data (see examples below): (1) Event names could
be opaque, due to varicus encoding, syntax or language
conventions in heterogeneous systems; (2) Event traces
might be dislocated. Only a part (e.g., the beginning) of a
trace 1 corresponds to a distinct part (e.g., the end) of
another trace 2.

Example 1. Fig. 1 illusirates two example fragments of
event logs £, and £; for part manufacturing in two dif-
ferent subsidiaries of a bus manufacturer, respectively.
Two example traces are shown in each log, where each
trace denotes a sequence of events (steps) for processing
one part. An event log consists of many traces, among
which the sequences of events may be different, since
some of the events can be executed concurrently (e.g.,
Functional Detection (B} and Appearance Detection (C) in
£1), or exclusively (e.g., Production Line | {6) or Production
Line Il (7) in £g).

Note that opaque names exist in £y as shown in
Fig. 1b. The event E24T928AE(3} is collected from a
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(b) Event log £,

Fig. 1. Fragments of two event logs and their dependency graphs.

source whose encoding is distinct from others, which
makes the event name garbled. It indeed denotes a step
of “Appearance Testing”, and should corresponds to
Appearance Detection (C) in £;. The true event corre-
sponding relation between £, and £; is highlighted by
red dashed lines in Figs. la and 1b.

Dislocated matching exists between £, and £,. Event
Part Assembly (A) that appears at the beginning of traces
in £; corresponds to event Assembling (1), which appears
in the middle of traces in £y, having event Production
Line | (6} or event Production Line Il (7} before it.

Unfortunately, existing techniques cannot effectively
address the aforesaid challenges in event matching. A
straightforward idea of matching events is to compare their
names (a.k.a. event labels). String edit distance (syntactic
similarity) [20] as well as word stemming and the synonym
relation (semantic similarity) [22] are widely used in the
label similarity based approaches [5], [16], [21], [31]. As
shown in Example 1, such a typographical similarity cannot
address the identified Challenge 1, i.e., opaque event labels.

Structural similarity may be considered besides the typo-
graphical similarity. The idea is to construct a dependency
graph for describing the relationships among events, e.g.,
the frequency of appearing consecutively in an event log
[8]. Once the graphical structure is obtained, graph match-
ing techniques can be employved to identify the event
(behavioral/structural) similarities. Unfortunately, existing
graph matching techniques cannot handle well the dislo-
cated matching of events, ie., the aforesaid Challenge 2.
Both graph edit distance (GED) [5] for general graph data
and normal distance for matching with opaque names
(OPQ) [13], [14] concern a local evaluation of similar neigh-
bors for two events. However, dislocated matching events,
such as event A without preprocessor and event 1 with pre-
processor in Figs. 1c and 1d, may not have highly similar
neighbors (see more details below). In addition to local
neighbors, another type of 5imRank [12] like behavicral
similarity (BHV) [21] considers a global evaluation via prop-
agating similarities in the entire graph in multiple iterations.
Unfortunately, directly applying the global propagation

1. According to our survey on 5642 processes with redundancy
(68.8 percent of §190) provided by the aforesaid bus manufacturer,
mare than 44 percent of them involve dislocated event traces.

() Dependency Graph G, of L,

does not help in matching dislocated events that do not
have any predecessor, e.g., event A in Fig. 1c.

Example 2. Figs. 1c and 1d capture the statistical and struc-
tural information of £, and Lo, respectively (see Defini-
tion 1 for constructing ), and (3). Each vertex in the
directed graph denotes an event, while an edge between
two events (say AC in Fig. lc for instance) indicates that
they appear consecutively in at least one trace (e.g., trace
t2 in Fig. 1a). The numbers attached to edges represent
the normalized frequencies of consecutive event pairs.
For instance, 0.05 of AC means that A, C appear consecu-
tively in 5 percent of the traces in the event log,.

Since GED and OPQ) concern more about the local simi-
larity, e.g., the high similarity of (A, ¢} and (5, 7), an event
mapping M={4—5B—6C—7D—1} wil be
returned by GED with distance 0.139 and OPQ with score
6.133. The true mapping M'={A—1,B— 2,0 — 3,
D — 4} in ground truth shows a higher GED distance
0.183 (lower is better) and lower OPQ score 6.016 (higher
is better) instead. BHV does not help in capturing dislo-
cated mapping, e.g., between A and 1 with BHV similarity
0. Instead, A and 5 with no input neighbors have higher
similarity 1, i.e., unable tc find the dislocated matching,.

1.1 Contributions

We notice that the event matching problem consists of two
steps: 1) computing the pairwise similarities of events, and
2) determining the matching correspondences of events.
While the preliminary version of this paper [32] focuses on
computing the event similarities, summarized in Section 3,
we further study the second event matching determination
problem, i.e., Section 4. In particular, we indicate in Exam-~
ples 6 and 7 that considering the edge similarities among
events in dependency graphs is also essential in event
matching. Unlike the matching with only event node simi-
larity, the matching problem with event edge similarity is
generally hard. Therefore, an efficient heuristic is studied
for event matching. Our major contributions in this paper
are summarized as follows.

(1)  We formally define the iteratively computed, dislo-
cated matching aware event similarity function.
Please refer to the preliminary conference version of
this paper [32] for the convergence analysis of itera-

tive similarity computation (in Section 3.3), pruning
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TABLE 1

Frequently Used Notations
Symbol Description
veV an event vin event set V
GV E, f) an event dependency graph
¥ an artificial event
sy, ve the pre/post set of an event
8™ vy, vz) the similarity between events v; and v, after the

nth iteration

i{v1) the longest distance from X to
M event matching
L{v) local neighbors of event v

(in Section 3.4) and the detailed algorithm (in Section
3.6).

We study the optimal event matching problem, over
the aforesaid computed event similarities. In addi-
tion to event node similarities, we show that the
edge similarities among events could help in event
matching. The problem of finding the optimal event
matching w.r.t. node and edge similarities is proved
to be NP-hard. An efficient heuristic is thus devised
by gradually considering the local optimal matching
of events.

We report an extensive experimental evaluation on
both real and synthetic datasets. The results demon-
strate that our proposed matching methods achieve
higher accuracy than state-of-the-art methods.

The remainder of this paper is organized as follows. We
introduce the problem in Section 2, provide a detailed anal-
ysis of existing solutions in Section 3, propose the updated
solution in Section 4, and provide an empirical evaluation
in Section 5.

2

3

2 OVERVIEW OF EVENT MATCHING

We formalize syntax and definitions for the event matching
problem. Table 1 lists the frequently used notations in this
paper. Let V be a set of events, ie, events that can be
recorded in a log. A trace is a finite sequence of evenis from
V. An event log £ is a multi-set of traces from V.

2.1 Capturing Structural Information
Detecting correspondences on raw logs is difficult, since the
event names could be “opaque”. Other than typographic
similarity, we can exploit the structural information for
matching events.

Following the same line of [13], we employ a simple
graph model, namely a dependency graph, which consists of
both dependency relations and frequencies.

Definition 1 (Event Dependency Graph). An event
dependency graph G is a labeled direcied graph (V| E, f),
where each vertex in 'V corresponds to an event, E is an edge
set, and f is a labeling function of normalized frequencies.

(1) Foreachv eV, f(v,v) is the normalized frequency of
event v, i.e., the fraction of traces in L that contain v.
Each edge (v,u} € E denotes that events vu occur con-

secutively at least once in the traces. f(uv,u) is the

(2)

C
(a) Dependency Graph G, of £,

(b) Dependency Graph G, of L,

Fig. 2. Dependency graphs with arificial events.

normalized frequency of consecutive events vu, i.e., the

[fraction of traces in which vu oceur consecutively.
(3)  Otherwise, for v # u, (v,u) & E, we have f(v, u} = 0.
For any veV, the preset of v is defined as

ev ={ul{u,v) € E} and the post-set of v is defined as
ve = {ul{v,u) € E}.

With the presence of dislocated matching, any event in
an event log can be a starting/ending event. That is, a trace
can start/end with any event v, ignoring those events
before/after v in the dependency graph. Based on this intui-
tion, we extend the dependency graph & by adding an arti-
ficial event v¥ and several artificial edges as follows.

(1)  Anartificial event v* is added to V, which denotes the
virtual beginning/end of all traces in an event log,.
For each event v € V except v¥, we add two artificial
edges (v,v%} and (v¥, v), i.e.,, each event can be a vir-
tual start (edge (v¥,v)) and a virtual end (edge
(v,u%}). Moreover, we associate f(v¥,v) = f(v,v¥)
flv) based on the intuition that a trace can start/end
with event v at all the locations where v occurs.

@

Example 3. In order to support dislocated matching, we
add artificial events and edges to dependency graphs,
denoted by vertices and edges in dashed lines in Figs. 2a
and 2b. As the virtual beginning/end of all traces, v and
v connect to all the events in V] and V3, respectively. The
weight on each artificial edge is assigned by the normal-
ized frequency of the occurrence of each event. For
instance, since event €' appears in all the traces of £;, we
have f(v, (') = 1.0. Event 5 only appears in 40 percent of
the traces of £5, which indicates f(vE,5) = 0.4.

2.2 Computing Pair-Wise Event Similarity

Based on the dependency graphs of two event logs, G1 (W,
By, fi} and G(Va, B, fy), the similarity on each event pair,
denoted as S{vy, t2}, 11 € Vi, v € Vi, can be computed. Moti-
vated by the unique features of heterogeneous events as indi-
cated in the introduction, we propose a similarity measure by
iteratively utilizing structural information (see Section 3).

2.3 Determining Event Matching

Once all the pair-wise similarities are obtained between two
event logs (dependency graphs), we determine the matching
of events referring to the event similarities (see details in
Section 4). It is worth noting that the event pairs containing

2. The proposed measure is extensible by integrating with other
similarities such as typographic or linguistic similarities [22]. See the
preliminary version of this paper [32].
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either vf( or vf should be omitted since these two events are

introduced artificially and do not actually exist in event logs.

3 COMPUTING EVENT SIMILARITY

Three categories of techniques may be considered for evalu-
ating event similarities: (1) content-based such as typo-
graphic similarities [22], (2) structure-based similarities
which concern local structures such as GED [5] and OPQ
[13], [14], and (3) structure-based similarities with a global
view of the entire graph like SimRank [12]. Unfortunately, as
illustrated in the introduction, content based similarities
often fail to perform owing to opaque event names, while
GED and OPQ cannot handle dislocated matching well. On
the other hand, the widely used SimRank [12] is not effective,
since it does not take edge similarities into consideration,
which are the key properties of consecutive occurrence
between events. (See experimental evaluation in Section 5.)

In this section, we present an adaption of SimRank like
structural similarity function for matching events. Conver-
gence and efficient pruning of unnecessary similarity
updates based on early convergence and fast (one iteration)
estimation of similarities are presented in the preliminary
conference version of this paper [32].

3.1 Structural Similarity Function

Intuitively, following the same line of SimRank, an event,
say v € V1, is similar to event vy € V5, if they frequently
share similar predecessors (in-neighbors). We use s(uy, vg)
to denote how often a predecessor u; of vi, i.e, u; € sv;, can
find a similar uy € sug, i.e., predecessor of uz. Note that this
s measure is asymmetric, having s(vi, 19} # s{ts, 01}

Next, to adapt SimRank like evaluation for event similar-
ity, we further take edge similarities into consideration.
Although the predecessors u; and us of v and vy, respec-
tively, have high similarity, if the frequency of (u;, v ) devi-
ates far from the frequency of (ug,vg), the similarity of u,
and wug will have less effect on the similarity of v; and vs.

Following these intuitions, we define a forward similar-
ity w.r.t. predecessors. (Backward similarity on successors
can be defined similarly as discussed in Section 3.6 in the
preliminary version of this paper [32].)

Definition 2 (Event Similarity). The forward similarity of
two events is

Sluy, ) = —S(vl‘ ) ;r 2" )

where s(v, va ) and s(va, v1) are one-side similarities

i)
=— max C{uy, vy, ug, va)S(ur, un ),

s(vp,vg)

given that

Cluy,v1, ug, 1) = ¢+ (1 _ | filur, v) — folus, Uz)|)‘

Jilun,w) + falus, va)
where ¢ is a constant having 0 < ¢ < 1.

We now explain how these formulas implement our intu-
ition. In the formula of s{vy, v}, for each in-neighbor w; of
v, we find an event uy; with the highest similarity to

among, all the in-neighbors of v3. Besides the node similarity
Slui, ug), evaluating how similar «; and us are, we also con-
sider the similarity of the edges (ui,v1) and (ug,v5}, ie,
C(u1, 1, v2, uz). Recall that edges denote the consecutive
occurring relationships of events. Obviously, if (u;, v} and
(ug,v7) have similar normalized frequencies, C'(vy, wp, vg, ug)
is close to ¢; otherwise close to 0, where ¢ gives the rate of
similarity decay across edges.

3.2 [terative Computation

To compute S(v,vs) from predecessors, we present an
iteration method by iteratively applying the formulas in
Definition 2. Let 8™(v1,v3) denote the forward similarity of
(w1, ve) after the nth iteration. The computation has two
steps: the initialization step which assigns 50(1}1, vg) for
every event pair (v, 1}, and the iteration step which com-
putes the value of S™(v), 1,) by using S" (v, ») according
to Definition 2, whenn > 1.

321

For the artificial events v and vf, the initial similarities
S%(wff, v} 1s set to 1.0 since both of them are defined as the
virtual beginning and ending of traces. We set S°(uff,u)
and &° (v1, vf) to 0 for any v € Vi, vy € V5 that are not artifi-
cial. Similarly, for any other event pair {v;,vs), S°(v1, 1) is
set to 0, since there is no a priori knowledge for assigning
nonzero values as initial similarities.

initiafization

3.2.2
In each iteration, we refresh § for each event pair (v, v;)
using the similarities of their neighbors in the previous iter-
ation. For instance, according to Definition 2, & which

{teration

denotes the forward similarity of (1, v;) after the nth itera-
tion can be computed by:
2 T
1 . €Y
5" v 1) =—— max Cluy, vr, Us, v2)8™  (ur, ug).
| b | U €U uptey
1 2l

The similarities involving artificial events (e.g., S(vf(, va),

S(vr,v3) and S(uf, v)) are not updated during the itera-

tion. The algorithm stops when the difference between

S™(vy, v} and S™ vy, vz) for all event pairs (vi,v;) is less

than a predefined threshold.

Example 4 (Example 2 Continued). Initially, 8 (v v¥} is
assigned with 1.0, and 8" (v1, v;) is assigned with 0 for any
other event pairs where v, # v or v # vf. Consider the
event pair (A4, 5}. In the first iteration, we have |e 4| =1,
Clof, Ao 5) = 1.0 — [28=04 | = 0.571 and §%(vf v ) = 1.0,
so that s'(4,5)= ﬁrC’(vf, A v 58 (v uf) = 0.571.
sH(5, A) = "—15|C‘(1)f(,5, vy, A)8% (v, vy = 0.571 can be got
in the same way. sa 8'(A,5) = 0.5 x (s*( A4, 5) + s(5,A)) =
0.571. For the event pair (4,1}, we have s'(4,1)=
DG, Ao, 1S (o, u) = 1.0 and 81(1, 4) = gy (€0,
Lof, A8 o) + €6, 1,1, A)S 6, 1) + O(7, 1,07, ST,
vi))= 0333, so that S'(4,1)=05x (1.0+0.333) =
0.666. [t is notable that A and 1 have higher similarity than
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A and 5, which solves the problem of dislocated matching.
Indeed, by aggregating the event similarities specified in a
matching (e.g., by summation in Definition 3), the true
mapping M’ in Example 2 has a higher (better) score 2.652
than that of M (ie., 1.539).

The time complexity of computing forward similarity is
O(k|V1||Va|daye ), where k is the number of iterations and dyye
is the average degree of all the events in the dependency
graph. When the density of the dependency graph as well
as the numbers of iterations is high (i.e,, d,,, and & are high),
the iterative computation is time-consuming,

3.3 Estimation

We further impreve the efficiency by intreducing an esti-
mation of each S(uvi, 1) with fewer iterations, e.g., even
with only one iteration. Thereby, the estimation has an
O(|Vi||Va]) time complexity in an exireme case that only
one iteration is conducted, or conduct more iterations to
make the estimated similarity closer to the exact similarity.
It can be interpreted as trading the accuracy for efficiency.

First, we rewrite the formula of §™(v;,va) as follows:

1 1
)= [

+ X

ug Eongy {ogt}

(O(”UIY, v, v S (U, vy

(C(vf(, v, X, u) S, vf)

max Cluy, vy, ug, ?Jz)SWI (ur, UZ))
Up Eevy

+
‘!‘Ug‘

+ Z max C(ul,vl,uz,vg)sn’l(ul,ug))]

wenn g T

For simplicity, we denote ' as C(v, v, v, v), A as | e v,
and B as | ® v7]. The formula is further derived.

S{un, 1) & Sgy(vn, ve)
_ ¢(24AB— A— B)
- 2AB
Letg = 5(% and a = Y5 o Tt follows

2AB

6 o, T2

Ve .

82 (v, v2) = ¢S (v, v2) + a
g8 (v ) = S ur, vg) + ag

§ IS (v we) = 07T SE (w1, ve) + ag™ Y,

where I =0,...,n — 1 denotes the number of iterations. By
eliminating the corresponding items on the left and the right
sides, it implies

Sg(vr,un) = S (o, 02) + 6L+ g+ 4 g,
By summing the geometric sequence, S (11, 14} is given by

a(l— q“’*')‘

Sh(vy,vy) = ¢ SL(vy, va) + T—7g

@

According to the early convergence proposed in Section 3.4
in the preliminary version of this paper [32], n should not be
greater than A = min(l{v;),{1s)) (or n could be oo, if {(v; } or

5

{{vs} is co). Thereby, the estimation of S{v1,vs} is Sig_(m, va).
Noting, that [ is a constant number of iterations of exact com-
putation before estimation, S%(v1, ;) can be replaced by the
exact value 8 (v1, v2). Tt provides a trade-off between accu-
racy and time. The larger the iteration 7 is, the closer the esti-
mation values and the exact values are. The corresponding
time costs are higher as well (see the experiments in Section 5
for the effect of varying 7). In addition, { should be no greater
than h according to early convergence.

Example 5. Referring to the estimation formula, given7 =0,
the value of S(4,5) can be estimated by SL(4,5)=
C(u¥, A,v5, 5) = 0.571, which is equal to the exact value of
S(A,B). However, for the event pair (D 1), having
h = min(i(D), (1)) = 3,if weset I = 1, the estimated value
§% (D, 1} is 0.605, while the exact similarity is 0.397. This is
because the estimation fermula treats the similarity of
events D and 1 as the similarity of their ancestors. When
we set I = 2, the estimated similarity of event pair (D, 1} is
§%.(D, 1) = 0520, whichis closer to the exact value.

4 DETERMINING EVENT MATCHING

Once the pair-wise similarities of events are computed, in this
section, we study the preblem of generating an event match-
ing. We formalize the optimal event matching problem, ana-
lyze its hardness, and present an efficient heuristic algorithm.

4.1 Problem Statement and Analysis

A matching M of events between two dependency graphs
Gi(Vi, By, fi} and G4(Vy, Bn, fo} is a mapping M : Vi — V5,
where no two events in V] are mapped to the same event in
V3, ie., no conflict. (Without loss of generality, we assume
[Vi| <|¥;].) For an event v € Vi, v9 = M(v:) is called the
corresponding event of vy, and v — vy is called a matched/
corresponding event pair.

Intuitively, the larger the similarities between captured
events, the better the matching M will be. We may employ
the following node matching score to measure the magni-
tude of the event similarities captured by M.

Definition 3 (Node Matching Score). The node matching
score of M is defined as:

Dy(M) =" Dy (v, M(v)),
vEV]
where Dy(v, M(v)} = S(v, M(v)) denotes the similarity
between events (nodes).

Unfortunately, the aforesaid measure treats events as a
set in an event log, without considering the structure among
events in the dependency graphs. Irrational matching could
be generated following this measure.

Example 6 (Node Matching Score). Consider two depen-
dency graphs ¢ and (&3 in Fig. 3 (the artificial events are
omitted in matching). Let M ={4—9 B—2C — 3,
D—4,FE—5F—7G—6} be a possible matching
with node matching score Dy (M} = 6.2 according to Def-
inition 3. Such a matching is obviously irrational referring
to the structure among events. As shown in Fig. 3, event F
occurs before G in dependency graph (1, while event 7
(corresponding to F in M) occurs after 6 (corresponding
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Fig. 3. Dependency graphs for matching.

to G) in (. Indeed, the true matching M’ = {4 — 1, B —
2,0 —3,D—4,FE—5F—6,F— 7T} has a lower node
matching score Dy (M') = 6.1.

To capture the structural information, we consider the
graph matching score below, which involves similarity on
edges of events, in addition to event node similarities,
between two dependency graphs Gi(Vi,Ei, £} and
Ga(Va, B, f2).

Definition 4 (Graph Matching Score). The graph matching
score of M is defined as:

De(M)= > Delv,u, M(v), M(u}),

Buehy

where Dg(v, u, M (v}, M(w))

S{v, M{v}) fo=u
= g 1 e dle s if w u, (v, u) € By
0 if v#w, (v,u) € B

For v # u, we denote 1 — %%? the similarity

of edges {v,u) and (M (v}, M(u)}) on frequency. If (v,u} ¢ E;
or ((M(v), M(u)} ¢ Es, it means fi(v,u} =0 or f(M(v),
M(u)} =0, which leads to Dg{v, v, M (v}, M(u}} =0.

Example 7 (Graph Matching Score)}. Consider again the
matching M= {AHQ,B—) 2,0%3,D—>4,E—> 5,F—>7,
(7 — 6} in Example 6. For the aforesaid irrational match-
ing FF — 7,d — 6, we have D(F,G,7,6) = 0, L.e., the low-
est edge similarity. Consequently, according to Definition
4, the graph matching score of M is Dg(M) = 8.2, which
is lower than Dg(M'} = 12.1 of the true matching M.

The event matching problem is thus to find a matching
with the highest node/graph matching score.

Problem 1 (Optimal Event Matching Problem). Given
two dependency graphs Gy and Gy with the pair-wise event
similarity S computed, the optimal event matching problem is
to find a matching M such that Do (MY} is maximized.

When the simple node matching score Dy (M} in Defini-
tion 3 is considered, the optimal matching problem can be
efficiently solved by Kuhn-Munkres algorithm (a.k.a. the
Hungarian algorithm) [15] in O(/¥3]°) time (assuming
[Vi| < [Va]). That is, for each pair of events v; € V1, vs € V5,
we define the weight of matching as D(v1,v9) = S(vr, vg),
the similarity computed in Section 3. It is thus to find an
optimal matching M between Vi and V; w.r.t the pair-wise
matching weights.

However, if the advanced graph matching score Dg(M)
in Definition 4 is considered, the optimal matching problem
is generally hard.

Theorem 1. Given two dependency graphs G, and G with the
pair-wise event similarity S computed, and a constant k, the
problemt to determine whether there exists an event matching
M such that De(M)} > kis NP-complete.

Proof. The problem is clearly in NP. Given an event match-
ing M between the two dependency graphs, D (M} in
Definition 4 can be calculated in O([V;|%).

To prove NP-hardness of the matching problem, we
show a reduction from the subgraph isomorphism prob-
lem, which is known to be NP-complete [9]. Given two
graphs G1(V1, E1) and Gy = (Va, Es}, the subgraph iso-
merphism problem is to determine whether there is a
subgraph Gy(Vo, Bn) : Vo C Vo, By € B5 N (Vy x Vi) such
that Gy 22 (7}, i.e., whether there exists an m: 1], — 1}
such that (v, u) € B & (m(v),m(u)} € Ey.

Given two graphs G1(V1, E1), Ga(Vs, Ba), we create
two corresponding dependency graphs G (Wi, Er, f1)
and G3(Va, By, f2} by associating each vertex and edge
appearing (1 and (3 with frequency 1. The similarity of
any pair of vertices/edges between ) and & is 1.

We show that there exists an m : V| — V) such that
(v,u) € By & (m(v), m{u}) € Ey, if and only if there is an
event matching M :V; — Vs such that Dg(M) >k
where k = [Vi| + |E|.

First, if such an m exists, we consider m exactly as M.
Each edge (v, u) € E; corresponds to (m(v},m{u}} € Ey,
both with frequency 1. Referring to Definition 4, we have
Do(M) — Vi| + | 2| — &

Conversely, suppose that there is a matching A{ with
De(M) > [Vi| + |E1| = k. Referring to S{v, M(v)} = 1 and

1- %% =1 for any event and edge, it is a

matching M with Dg(M) = Vi|+|E1| = k, where each
vertex (and edge) is matched. It corresponds to
m : V1 — Vysuch that (v,u) € By & (m(v),m(u)) € Ey. O

4.2 Heuristic Algorithm

Recognizing the hardness in Thecrem 1, in this section, we
propose to devise efficient heuristics. Specifically, we study
the local optimal matching w.r.t. an event. Then, it is to
gradually improve the matching by finding the local opti-
mal matchings of various events.

4.2.1

Algorithm 1 presents the pseude code of heuristic match-
ing. To initialize, the algorithm starts from a feasible match-
ing without conflicts in Line 1, for instance, by using the
Kuhn-Munkres algorithm with node matching score as
introduced in the paragraph after Problem 1.

Let M oy be the current matching,. In each iteration, Algo-
rithm 1 considers the local optimal matchings w.r.t. all the
events v € V], in Line 1. Among them, it finds the local optimal
matching M e with the maximum graph matching score.

The iteration carries on, until the improvement from
Mo to Myeq is not significant, ie., less than a preset
threshold n, Pg(Mues ) — P (Mprey) = 5. (See an evaluation
on # in Fig. 11 in Section 5.3.)
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Fig. 4. Dependency graphs with matching.

Algorithm 1. MATCHING(G, G2, )

Input: two dependency graphs G and (3, and a threshold # of
minimum improvement
Qutput: event matching M
1 Mo == KM(V1,13)

2: repeat

3: Mot = Mo

4. foreachv eV, do

5: Mlocal = LDCAL(Gl 5 Gz, Mcun; D)
6: if DG(Mlocal) = DG<Mnext) then
7 Mieyt == Miseal

8 Mpey = Moy

Qi oMiggi= My
10: until Do M) — DG(MpreV) =17
11: return M.

Example 8. Consider again the two dependency graphs &,
and 3 in Fg 3. Let M ={4A—9,B—2C—3, D—
4,F — 5, F — 7,( — 6} be the initialized matching, rep-
resented by black dashed arrows in Fig, 4. In the iteration,
suppose that Be V) is the currently considered event,
which is mapped to 5¢ V5. By the LocaL function (see
details below) in Line 5 in Algorithm 1, a local optimal
matching M ={A—-1B—2 C—3D—4F—
5,F — 6,G — T} is found, which maps F (adjacent to the
current event E) to 6 (adjacent to 5) and correspondingly
G — 7 to avoid conflict. Similarly, event A (adjacent to E
as well) is mapped to 1 (adjacent to 5). Since M'is already
the optimal matching with the maximum graph matching
score, no further improvement could be made in the next
iteration. The algorithm terminates and returns M.

4.2.2 lLocal Optimal Matching
Given a current matching M, we propose to improve M by
finding the local optimal matching M* w.r.t. an event v. In
the following, we (1) define the local matching score w.r.t. v
in Definition 5, (2) formalize the local optimal matching
problem w.r.t. v in Problem 2, and (3) show that the problem
is solvable again by the Kuhn-Munkres algorithm.

Let L(v) = ev U we denote all the local neighbors of v. We
study the matching scores over v and its neighbors.

Definition 5 (Local Matching Score). The local matching
score of M over an event v is defined as:

Dp(M,v) = > (Da(v,u, M(v), M(u))
wEL{v)

+ Dglu, v, M(u}, M(v))
+ Dig(u, u, M(w), M(u)})
+ Dglv, v, M (v}, M{v))

7

u1
& y wy
N =
e o s
w2

{a) before

Fig. 5. Local optimal mateching and conflict solving.

wheve Dg(-,-, -, -} is the same as in Definition 4.

Given the current matching M, the improvement of M w.
r.t. event v is thus to find a matching M™ with the maximum
local matching score Dp(M*, v) over v.

Problem 2 (Local Optimal Matching Problem). Given
two dependency graphs (1 and (i3 with the pair-wise
event similarity S computed, a current matching A/ and
an event v € ¥, the local optimal matching problem is to
find a matching M over L(v) such that Dg(M", v} is max-
imized and M*(v) = M(v}.

To solve the local optimal matching problem, we again
employ the Kuhn-Munkres algorithm. That is, for each pair
of events u, € L(v},uy € L(M(v}), we define the weight of
matching as Dy (u, tg) = S{uy, ug} + Dgluy, v, us, M (v}) +
Dig(v, uy, M(v},ug). It is thus to find an optimal node match-
ing M* between L(v) and L(M{v}) with the aforesaid pair-

wise matching weights.

4.2.3 Resolving Conflicts

The aforesaid local optimal matching M* specifies only the
mapping over L(v). To form an improved matching of M
over all the events in ¥}, we simply assign M*(w) = M(w)
for all w¢ L{v}U{v}. The problem is that some
w € L(v) U {v} and aforesaid w may be mapped to the same
event in V4, i.e, conflict in matching M*. To resolve such
conflicts, we manage to modify the mapping on w.

Claim 2. During conflict resolving, there are at most two events
w,wi € Vi mapped to the same uy € Va, having M*(w ) =
M (w1} = g, where one event must belong to L(v) U {v}, say
uy € L(v) U {v}, and the other w, & L(v) U {v}.

Case 1: If w; has M™(u1) = w2 # we = M(w), as illustrated in
Fig. 5, we assign M*(w;} = wy such that the conflict
is resolved.

Case 2: Otherwise, referring to V| < [V3], there must exist
some wy € V4 which is not matched in M, we assign
M*{w1) = w,y such that the conflict is resolved.

Proef of Claim 2. First, referring to the local optimal
matching, no conflict will be introduced between events
inside Z{v}U {v}. And the mapping on events ouiside
L{v) U {w} is not changed from M to M*. Therefore, con-
flicts may occur only between u; € L{v} U {v} and w; ¢
L{vy U {v}.

During conflict resolving, Case 1 assigns M*(w: ) = wy
where wy = M(u,). If there exists some v3 € L(v) U {v}
having Af*(v3) = w,, the conflict still appears between
vy € L{v) U {v} and w; ¢ L{v} U {v}. On the other hand,
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if there does not exist v;e€ L{v)jU{v} having
M*(v3) = wy, it means that no other event is mapped to
wy except wy due to M™(u1) = wy # wy = M(w) in Case
1. That is, no conflict will be introduced.

Case 2 assigns M™(w;) = w; on an unmatched w; € V5,

i.e., no conflict will be introduced. O

Algorithm 2 presents the pseudo code of finding the local
optimal matching M* w.r.t. an event v as the improvement
of existing matching M. It first initializes the local optimal
matching over (v} by calling again the Kuhn-Munkres
algorithm as presented at the end of Section 4.2.2. Each iter-
ation resolves a conflict referring to the aforesaid two cases.
While new conflicts may be introduced in iterations, as
illustrated in Proposition 3, it is guaranteed to eliminate all
the conflicts eventually.

Algorithm 2. Locan(Gy, Gy, M, v)

Input: two dependency graphs | and (7, an event matching
M, and an event v
Output: the local optimal matching M* w.rt event v as the
improvement of M
s M* = KM(L(v), L{M(v)))
s M {wy) = M{w) forallw, € Vi \ {L{v) U {v})
: repeat
let uy € L{v),uwq € L(v) be two events in conflict having
MM w) = M (un)
if M*(Ul) 7£ M(ul) then
M*(un ) == M(w)
else
let wy € V5 be an unmatched event
M*{w) == wy
: until there is no conflict in A"
11: return A"

R

& 1 Goud iy B

—

Example 9. (Example 8 continued). M = {4 — 9,B — 2,
¢—3D—4,E—5F—7G—6} be the current
matching, denoted by black dashed arrows in Fig. 4. We
illustrate the procedure of finding the local optimal
matching for event E. Referring to the dependency graph
G4, we have L(E} = {4, F}. Similatly, for M(E) =5, we
have L{b} = {1,6}. By calling the Kuhn-Munkres algo-
rithm in Line 2 in Algorithm 2, we obtain a matching
M*={A—1,F — 6} between L(E) and L(5). Line 2 fur-
ther initializes M* on remaining events in | by M, ie.,
M={A—->1,B—>2,—>3D—-4FE—5F—6G—6}

It is notable that conflict exists in M*, having F' — 6,
(G — 6. For F € L(E), we have M*(F} =6# 7= M(F),
i.e, Case 1. By assigning M* ()} = 7in Line 2, the conflict
is resolved. Since no further conflict is found, the
updated M= {A—) I,BH 2,0—»3,DH4,E—>5,F—> 6,
(¢ — T} is returned.

4.2.4 Performance Analysis

We first show in Proposition 3 that Algorithm 2 always
returns a feasible matching without conflicts, and then ana-
lyze the complexity of Algorithm 1 for event matching in
Proposition 4.

Proposition 3. Algorithm 2 returns a local optimal matching
which is feasible and maximal, ie., no conflicts and all events
in V are matched (assuming |Vi| < |Va|), and runs in O(dgvg)

time, where do,. is the average degree of oll the events in the
dependency graph.

Proof. First, all the events in Vi are mapped, according to
Line 2 in Algorithm 2. A conflict assignment of u; is made
either by M"(wi} = ug, wy € L(v) U {v} in initialization or
by M"(u1} = ug, w1 € L{v}U{v} in Case 1. In particular,
the new conflict in Case 1 is caused only by the preceding,
conflict in initialization. That is, once the conflict on wy is
solved, it will not appear again. Referring to at most
O(d,.} events v that may have conflicts, the iteration in
Algorithm 2 runs in O(d,y,) time to resolve all the con-
flicts. Given the number of neighbors of an event v,
O(dzye ), the Kuhn-Munkres algerithm in Line 1 in Algo-

rithm 2 needs O(dgvg) time. Consequently, Algorithm 2
has time complexity O, }. O

Proposition 4. Algorithm 1 returns a feasible and maximal
matching, i.e., no conflicts and all events in V. are matched
{assuming |Vi| < [Vo|), and runs in O(max{|V5|*, M‘%‘@
[Vi] - divg}) time, where dye is the average degree of all the
events in the dependency graph.

Proof. First, referring to the Kuhn-Munkre algorithm in Line
1in Algerithm 1 and Propesition 3, it is easy to see the feasi-
ble and maximal matching. The Kuhn-Munkre algorithm
runs in O(|V4|*) time. In each iteration, we call LocaL. alge-
rithm for each v e Vi, with total cost O(|Vy]-di}. The
threshold # in Line 1 in Algorithm 1 indicates that each
iteration improves the matching score at least #. Referring
to Definition 4 of matching score, we have Dg(M) <

[Vi| + |E\|. That is, Algorithm 1 runs at most M‘iqlﬂ itera-
tions, with total iteration cost O(Jﬁ%‘ﬂ Wl dgvg). ]
4.2.5 Filtering on Edge Similarity

Recall that in addition to the event node similarity in Defini-
tion 3, the graph matching similarity in Definition 4 further
considers the event edge similarity between dependency
graphs. To maximize the graph matching similarity, it is not
surprising that those high similarity edge pairs will make
the major contribution. Intuitively, to efficiently evaluate a
matching, we may consider only those edge pairs
(w1,u1) € By and (ve,uz) € Ey with high similarity, having
Dg(vy,up,ve,uz) > 6 greater than a preset threshold
# € [0,1]. When 6 = 0, all the edge pairs will be considered
without filtering. On the other hand, # = 1 means that no
edge pair will be taken into account.

Proposition 5. If the edge similarity threshold 6 is 1, then the
graph matching score in Definition 4 is equivalent to the node
matching score in Definition 3, and Algorithm 1 returns the
optimal solution.

Proof. The edge similarity in Definition 4 always has
0<1— %ﬁ#&%)ﬂ < 1. Given the edge similarity
threshold 6 = 1, only the event node similarity S{v, M(v))
will be taken into account, ie., equivalent to the node
matching score in Definition 3. Referring to the discussion
after Problem 1, the Kuhn-Munkres algorithm in Line 1 in
Algorithm 1 already obtains the optimal matching w.r.t.

the node matching score. 0
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Fig. 6. Evaluating event similarity.

In this sense, the edge similarity filtering provides a
trade-off between effectiveness (considering more precise
edge similarities) and efficiency (polynomial time solvable
without edge similarities). See Fig. 10 for a detailed evalua-
tion on threshold 6.

5 EVALUATION

In this section, we report an experimental evaluation on
comparing cur method with state-of-the-art event matching
approaches, graph edit distance (GED) 5], opagque name match-
ing (OPQ) [13], [14] and behavioral similarity (BHV) [21].

5.1 Experimental Settings
5.1.1 Dala Sels

We employ a real data set of 103 event log pairs, which are
extracted from 10 different functional areas in the OA sys-
tems of two subsidiaries of a bus manufacturer. Each event
log pair denotes two event logs doing the same or similar
works in two subsidiaries, respectively. The matching rela-
tionships in event log pairs are manually identified.

To study the performance on dislocations, we categerize
the dataset into 3 testbeds w.r.t. matching positions. The
first one, namely DS-F, consists of 23 event log pairs where
the dislocated events appear at the end of traces between
two logs. In the second testbed, namely DS-B with 22 event
log pairs, those dislocated events locate in the beginning of
traces between two logs. Finally, DS-FB may involve dislo-
cated events at both the beginning and the end of traces.

The number of distinct events in the employed 103 log
pairs ranges from 3 to 38, and the total number of traces is
3,000. It is worth noting that the number of distinct events
in a log is often not very large in practice [30]. Real process
specifications often have events less than 60, according to
the recent survey [28]. Referring to the process modeling
guidelines [18], business process models should be decom-
posed if they have more than 50 elements, so that they are
easier to read and understand. Nevertheless, to evaluate the
approaches over a larger number of events, we consider a
synthetic dataset with up to 100 events (in Fig. 7).

To generate the synthetic dataset, an open source toolkit
BeehiveZ using existing generating approaches [17], [19] is

—%— GED —=— OPQ —&— BHV
{8) Hmeasure

100000
10000
1000
100
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1%
TR R R b
10 20 30 40 50 €0 70 80 BO 100 10 20 30 40 50 60 70 80 80 100
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measure
2 o o
=
Z;
Time cost {ms)

Fig. 7. Scalability on the number of events over synthetic data.

employed to generate the models and logs. First, we gener-
ate 10 groups of random process specifications by varying
event sizes ranging from 10 to 100. Each event size contains
20 distinct process specifications. For each process specifica-
tion, we randomly generate 2 event logs, which form an
event log pair. Therefore, we have 20 event log pairs on
each distinct event size. Events in two logs with the same
name correspond to each other.

5.1.2 Criteria

The ground truth, i.e., the true matching of events among
103 event log pairs, is supplied by 49 subject-matter experts
in MIS (Management Information Systems) departments of
each subsidiary of the bus manufacturer during a long-
period deliberation. Let found denote the matching corre-
spondences produced by event matching approaches. We
use the f-measure of precision and recall to evaluate the

accuracy of event matching, given by precision = %@7
recall = IMNMOIUNS] o\ £ meqsure = 2 - Zecmonreedi A Jorger

precisiontrecadl”
f-measure indicates a higher matching accuracy. Besides the
accuracy performance, we also evaluate time costs of match-
ing approaches.
Our programs are implemented in Java. All experiments
were performed on a PC with Intel(R) Core(TM) i7-2600
3.40 GHz CPU and 8§ GB memory.

5.2 Evaluating Event Similarity

We first report the experimental results on computing
event similarity. The compared appreoaches include our
proposed event matching similarity (EMS) and its estima-
tion EMS+es with I =5 proposed in Section 3. The nede
matching score in Definition 3 is considered for matching
which is equivalent to Kuhn-Munkres algorithm [15] as
discussed in Section 4 (more advanced matching algo-
rithms are evaluated in Section 5.3 below). The competitors
are the existing approaches GED, OPQ and BHV.

Fig. 6 presents the average accuracy and time costs of
event matching. The number of events ranges from 3 to 38
in the 103 log pairs. First, the accuracy of our proposed EMS
is higher than all the existing methods in all the testbeds.
The rationale is that GED and OPQ concern local similarity,
while dislecated events often have distinct neighbors and
prevent these two approaches performing well as explained
in Example 2. Moreover, BHV performs better than GED
and OPQ on testbed DS-F, where the correspondences of
events at the beginning of traces can be addressed by the
forward similarity of BHV. However, BHV's accuracy is
much lower on testbed DS-B compared with DS-F, since it
only considers one-direction similarity and cannot handle
well the dislocated events at the beginning of traces (in
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Fig. 8. Performance on handling dislocated events.

DS-B as well as DS-FB) as indicated in Example 1. Our EMS
considers similarities in both directions (as indicated in
Section 3.1) and employs the artificial event to reduce the
impact of distinct neighbors of dislocated events. Conse-
quently, EMS outperforms BHV on all the testbeds.

The corresponding time cost of EMS is no more than the
double of BHV's and significantly lower than that of GED
and OPQ. It is not surprising owing to the high complexity
of computing graph edit distance in GED or normal dis-
tance in OPQ. Most importantly, the similarity estimation
approach (EMS+es, with 5 iterations) shows the lowest time
cost among all the evaluated approaches. Although the
improvement in terms of time by EMS+es is not great com-
pared with BHV, the accuracy of EMS+es outperforms BHV
significantly (especially in DS-B and DS-FB).

Fig. 7 reports the results of scalability on the number of
events (up to 100 events).? As shown in Fig, 7a, the accuracy
of all the approaches decreases along with the increase of
event size. It is not surprising since more choices of events
lead to a higher chance of mismatching. Remarkably, the
accuracy decrease is not as significant as other approaches,
which means the EMS methed is more reliable in event logs
with a large number of distinct events. The time costs of all
approaches increase heavily in Fig. 7b. OPQ cannot even
finish the matching of events in 1000 s under large event
sizes, due to the highest time complexity O(n!). Neverthe-
less, EMS+es always achieves the lowest time cost in all the
tests with the number of events ranging from 10 to 100.

Fig. § evaluates the performance over various sizes of
dislocated events (in the synthetic dataset of 100 events). To
simulate the different sizes of dislocated events presented
in Example 1, we synthetically remove the first m events of
each trace in one event log for every event log pair. By
increasing m, i.e., the number of dislocated events, the accu-
racy of all the approaches drops. In particular, BHV's accu-
racy drops fast, with performance as poor as GED when the
dislocated event size is large. Our proposed EMS shows the
highest and relatively steady accuracy. These results verify
again the superiority and demonstrate scalability of EMS in
handling a larger number of dislocated events.

5.3 Evaluating Event Matching

In this experiment, we illustrate the further improvement on
event matching by using the graph matching algorithm pro-
posed in Section 4. The compared approaches are

3 Real event logs, however, often have the number of events
bounded by about 60, according to the recent survey [28]. Indeed, refer-
ring to the process modeling guidelines [18], workflows should be
decomposed if they have more than 50 events, so that they are easier to
read and understand.
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Fig. 9. Evaluating matching algorithms.

(1) Node+EMS and Node+EMS+es using the node
matching in Definition 3, ie., the best approaches
presented in the aforesaid experiments in Section
5.2, and

(2) Graph+EMS and Graph+EMS+es using the

advanced graph matching in Definition 4.

Given the clearly better results of the (Node+)EMS+es
method in the aforesaid experiments, we omit reporting the
same resulis of other existing methods again.

Fig. 9 presents the results by different matching algo-
rithms. As shown in Figs. 9a, 9b, and 9c the accuracy of
Graph matching is always higher than the corresponding
Node matching methods in all the testbeds. Since the Graph
matching further considers the edge similarity in addition
to node similarity of events, the time costs of Graph match-
ing are a bit higher in Fig. 9d.

In addition to edge frequency filtering, as presented in
Section 4.2.5, we may also introduce edge similarity filtering,.
Fig. 10 reports the results by varying the edge similarity 6
from 0 to 1. A threshold 6 = 0 means to consider all the edge
similarity pairs between two dependency graphs. The corre-
sponding matching accuracies are high, as well as the match-
ing time costs. With the increase of threshold, both accuracy
and time cost drop. When # = 1, as illustrated in Fig. 10a,
Node and Graph matching approaches have the same accu-
racy. The corresponding time costs are similar as well. The
results verify the analysis in Proposition 5 that graph match-
ing is equivalent to node matching in such a case.

Fig. 11 evaluates various thresholds 5 of matching score
improvement in the iteration of Algorithm 1. Recall that the
heuristic algorithm ignores all the matching with non-sig-
nificant improvement (< 5). The larger the improvement
requirement 7 is, the less the iterations will be. Thereby, in

Node+EMS ~ —— Graph+EMS Node+EMS+es —— Graph+EMS-+es
(#) Hmgasure {b) tima cost
1 200
095 1 g 180p E
09 |- B 180 2 P
] s s S VARV RVR E’ 140 - Sl
8 osf g te E
E o7l 4 o WL 7
L oo7f 4 E Wg 5
nest ] F el p
o L WE Ly
%% %% % %% 0% %% %% %% % %% %% %
Simllartty threshokd Simllartty threshold

Fig. 10. Matching algorithms with various edge similarity filtering 6.
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Fig. 11. Matching algorithms with various improvement requirements # in
iteration.
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Fig. 12. Scalability of matching algorithms over synthetic data.

Fig. 11b, the matching time cost drops with the increase of #.
Since some non-significant improvement is ignored, the cor-
responding matching accuracy with large #» is lower as well.
It is notable that an extreme large 1 (denoted by MAX in
Fig. 11) simply ignores all the improvements by considering
edge similarity, i.e., the Graph matching is equivalent to
Node matching again.

In short, all the thresholds on edge similarity (in Fig. 10),
and matching improvement (in Fig. 11) provide trade-off
between matching effectiveness and efficiency. The effects
by edge similarity and matching improvement controls are
not as significant as on edge frequency. The reason is that
they do not affect similarity computation which takes the
majority of event matching overhead.

Fig. 12 illustrates the scalability of matching algorithms
over various sizes of events. Again, the accuracies of Graph
matching approaches are generally higher than those of
Node matching methods in all the event sizes. Most impor-
tantly, the increase of time costs due to Graph matching is
not significant compared to Nede matching, especially in
larger data sizes in Fig. 12b. The reason is that the computa-
tion of event similarity by EMS (or EM5+es) is the most time-
consuming part in the process of events matching. Conse-
quently, the results demensirate that the advanced Graph
matching approaches can increase the matching accuracy
but without introducing significant computation overhead.

Finally, analogous to Fig. 8, we evaluate the matching
algorithms on handling various sizes of dislocated events.
As shown in Fig. 13, by increasing the number of dislocated
events, the accuracy of all approaches drops as well as the
corresponding time cost, which is similar to Fig. 8 The
same relationships of Graph and Node matching results are
abserved again as in the aforesaid Fig. 12.

5.4 Experiments on Hospital Log
To further illustrate that the proposed solution is generic,
we employ another real-world dataset, the hospital log,*

4 http:/ /data4tunl/repository/uuid:d9769£3d-0ab0-4{b8-803b-
0d1120ffcf54
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Fig. 13. Matching algorithms on handling dislocated events.
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Fig. 14. Performance on matching singleton events over hospital log.

which is publicly available. The data set consists of 1,143
distinct traces over 36 distinct events, collected by a Dutch
academic hospital. We randomly sample 80 percent traces
from the dataset to form a log. A total number of 200 logs
are extracted. Event matching is then applied between these
logs. Again, as described in Section 5.1.1, three cases of dis-
located events, DS-F, DS-B and DS-FB, are considered, at
the beginning, end and both sides, respectively.

Fig. 14 shows the average accuracy and time cost of our
proposed approaches EMS with Node matching and Graph
matching, compared to the existing methods GED and BHV.
The results of OPQ are omitted owing to the extremely
higher time costs over the large number of events, which is
not surprising referring to Fig. 7b. Generally, the results are
similar to Figs. 6 and 9 over the first dataset from the bus
manufacturer. That is, our proposed EMS similarity with
Graph matching can always achieve the highest accuracy.
The result confirms that our proposed approach is generic
over different real-world data.

5.4.1 Integrating with Typographical Similarity

It is highly possible to combine the dependency graph
based evaluation with the typographical similarity of event
names/labels (if available). Indeed, the combination has
been studied in Definition 2 in the previous conference ver-
sion [32] and omitted in this study. That is, the similarity of
two events defined in Definition 2 could be S(u,») =
a(s(vr, v} + s{o, v ))/2 4+ (1 — )8 oy, vy), where S%(vy, 1))
is the label similarity of events v and w, w<[0,1] is a
weight, s{vi,vs) and s{wq,v;} are the structural similarities
computed from dependency graphs. The results in Fig. 4 in
[32] show that by integrating the label similarity of events,
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Fig. 15. Performance with typographic similarity.

the matching accuracy is improved. Nevertheless, we report
again the results evaluated over the second dataset. To sim-
ulate the event name differences among logs, we randomly
modify (60 percent) characters. Cosine similarity with
g-grams [10] is employed to compute the label similarity.

Fig. 15 presents the results by integrating structural simi-
larities with typographic similarities (string similarity of
event names). In general, the resulits are very similar to
Fig. 14 without considering the typographic similarity.
Maoreover, by considering the similarity of event names, all
the methods have higher matching accuracy compared to
the methods without typographic similarities in Fig. 14.
That is, considering event name similarity (if possible) could
indeed improve the accuracy.

5.4.2 Handling Composite Evenis

Similarity matching of composite events (e.g., two events
Check Inventory and Validate may correspond te one com-
posite event Inventory Checking Validation) is discussed in
the preliminary version of this paper [32]. Owing to the
limited space, we focus on the matching of singleton
events in this study. For composite events, once the simi-
larities over composite events are identified (as in Section 4
in [32]), the matching between composite events could be
similarly determined by either the existing Hungarian
algorithm [15] or the edge-similarity-aware Algorithm 1
proposed in Section 4 in this study.

Fig. 16 shows that our proposal (Graph+EMS) still achieves
better matching accuracy than the existing Hungarian algo-
rithm (Node) and the graph similarity based methods (GED
and BHV) in matching composite events. Indeed, the results
are very similar to Fig. 14 of matching singleton events.

5.5 Discussion

As presented in the Introduction, one of the motivations of
this study is to handle dislocated events. The results in Fig. §
show that with a moderate number of dislocated events, our
EMS is more effective compared to the existing graph simi-
larity based approach (GED). It demonstrates the superiority
of our proposal. However, with the further increase of dislo-
cated events, e.g., the extremely large 50 dislocated events (a

Fig. 16. Evaluation over composite events.

half of the total events), the structural information are insuffi-
clent for matching events. The accuracy of the proposed
method drops and tends to be similar to GED.

6 RELATED WORK

Graphs are often employed to represent the structural infor-
mation among events. While vertices usually denote events,
the edges in the graph are associated with various semantics
exploited from event logs in different perspectives. Ferreira
et al. [8] used a graphical form of Markov transition matrix
whose edges are weighted by the conditional probability of
one event directly followed by another. However, the condi-
tional probability cannot tell the significance of the edge. In
this paper, we employ the dependency graph proposed in
[13] by weighting vertices and edges with normalized fre-
quencies, since it distinguishes the significance of distinct
edges, and is easy to interpret. An important difference
from [13] is the novel artificial node +¥ introduced in the
dependency graph for matching dislocated events.

Schema matching techniques [23], as a fundamental prob-
lem in many database application domains, can be employed
to evaluate event similarities. Kang et al. [13], [14] study the
matching on opaque data (OPQ). However, as discussed in
Example 2, OPQ concerns a direct evaluation of similar
neighbors, while dislocated matching events may have dis-
tinct neighbors which prevents OPQ performing well. In
contrast, our proposed iterative similarity function concerns
the global evaluation via propagating similarities and thus
overcome the effect of neighbor distinctness. Moreover, [13],
[14] need to enumerate a large number of possible matching
correspondences and select the one with the highest normal
distance, which is extremely time-consuming. Consequently,
the time cost of [13], [14] is high as illusirated in the experi-
mental evaluation in Section 5.

SimRank [12] like behavioral similarity [21] is employed
by iteratively considering the predecessor similarities of
two events. Unfortunately, this behavioral similarity (BHV)
fails to consider the distinct feature of dislocated events.
Therefore, as illustrated in the experimental evaluation in
Section 5, our proposed similarity measure with the consid-
eration of dislocation shows higher matching accuracy.
Another graph based similarity is graph edit distance
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(GED) [5] which falls short in matching dislocated events.
As illustrated in Section 5, both the matching accuracy and
time performance of GED are not as good as our proposal.

Once the pair-wise similarities between events in two logs
are calculated, the event similarity relationships can be rep-
resented as a bipartite graph. To find a matching with the
highest similarity, classical algorithms such as Kuhn-
Munkres algorithm [15] can be directly applied. As illus-
trated at the end of Section 4.1, bipartite graph matching
method is indeed a special case of our Optimal Event Match-
ing Problem, where only event node similarity is considered.
Experimental results in Section 5.3 demonstrate that the
event matching accuracy of our proposal is higher than that
of the node similarity based Kuhn-Munkres algorithm.

Subgraph isomorphism [2], [24] could be considered for
graph-structure based matching. However, in the dislocated
event scenario, one graph may not simply “contain” another
graph, but overlap (match) only on some nodes. Hoffmann
et al. [11] find the maximum common subgraph instead.
Event specific information, such as event occurrence fre-
quency, consecutive occurrence frequency or event label
similarity (if available), are not considered.

Event matching with additional knowledge has also been
studied. Rodriguez et al. [25] employ crowdsourcing and
experts to confirm the matching. Automatic matching
approaches (including our proposal) could suggest better
candidates and thus are complementary to the matching
with human intelligence. More complicated event patterns
are also considered as distinguishing features for matching
[27]. The results heavily rely on how sirong the distinguish-
ing power of the specified event patterns is.

7 CONCLUSIONS

In this paper, we first identify the unique features that often
exist in heterogeneous event logs, such as opaque and dislo-
cated events. Since possibly opaque event names prevent
most existing typographic or linguistic similarities from per-
forming well, we focus on the structural information for
matching. In particular, an iterative similarity function is
introduced with the consideration of dislocation issues. We
also propose a fast estimation of similarities with only a con-
stant number (including 0) of iterations. For event matching,
in addition to event node similarity between two depen-
dency graphs, we further consider the similarity on edges
(denoting the consecutive occurrences of events). The hard-
ness and efficient heuristic of event matching with edge
similarity are studied.

Experimental results demensirate that our event similar-
ity shows significantly higher accuracy than state-of-the-art
matching approaches. The similarity estimation can signifi-
cantly reduce time costs while keeping matching accuracy
higher/comparable with existing approaches. The event
matching with the consideration of edge similarity further
improve the accuracy, without introducing much extra
overhead.

While the dislocated events could be interpreted as miss-
ing events in a log, other event data quality issues such as
erronecus events [29] or imprecise timestamps [26] also
emerge in practice. Fellowing this intuition, a promising
direction is thus to enable event matching with tolerance to

13

such noises (errors), in addition to the dislocated (missing)
cases.
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