
Improving Performance and Scalability of Algebraic
Multigrid through a Specialized MATVEC

Majid Rasouli∗, Vidhi Zala†, Robert M. Kirby‡ and Hari Sundar§
School of Computing, University of Utah

Salt Lake City, Utah
Email: ∗rasouli@cs.utah.edu, †vidhi.zala@utah.edu, ‡kirby@cs.utah.edu, §hari@cs.utah.edu

Abstract—Algebraic Multigrid (AMG) is an extremely popular
linear system solver and/or preconditioner approach for matrices
obtained from the discretization of elliptic operators. However,
its performance and scalability for large systems obtained from
unstructured discretizations seem less consistent than for geo-
metric multigrid (GMG). To a large extent, this is due to loss
of sparsity at the coarser grids and the resulting increased cost
and poor scalability of the matrix-vector multiplication. While
there have been attempts to address this concern by designing
sparsification algorithms, these affect the overall convergence.
In this work, we focus on designing a specialized matrix-vector
multiplication (MATVEC) that achieves high performance and
scalability for a large variation in the levels of sparsity. We
evaluate distributed and shared memory implementations of our
MATVEC operator and demonstrate the improvements to its
scalability and performance in AMG hierarchy and finally, we
compare it with PETSc.

I. INTRODUCTION

Many engineering applications use mathematical models
that have as one of their building blocks the solution of
elliptic partial differential equation (PDE) operators. In solid
mechanics, the stiffness matrix derived from linear elasticity
represents an elliptic operator that, when discretized with the
finite element method (FEM) yields a symmetric positive
definite system. In fluid mechanics, the viscous terms and
the pressure components of the incompressible Navier-Stokes
equations, when discretized, often lead to symmetric positive
definite systems. For large-scale systems that need to be solved
in parallel, iterative solvers with O(n) complexity and mesh-
independent convergence are preferred.

One success story in this regard has been geometric multi-
grid (GMG) methods when applied to matrices generated
from regular (often evenly-spaced) discretizations of elliptic
operators [1], [2], [3]. The mathematical predictability of the
benefits of the GMG approach combined with the ability
to exploit the regularity of the data structures (in terms of
indexing, coarsening, etc.) has made GMG, especially in
conjunction with preconditioned conjugate gradient (PCG) [4],
[5], the solver of choice when solving engineering applications
that require large-scale parallel solution approaches. The story
is more mixed when one moves to unstructured discretizations
and corresponding to algebraic multigrid (AMG), the commu-
nities alternative to GMG for such problems.

While AMG is very attractive due to its black-box nature
[6], [7], [8], it does not scale as well as GMG [9]. This is
primarily due to the loss of sparsity at coarser levels arising

from the Galerkin approximation [10], leading to poor scala-
bility, especially at the coarser levels. Therefore, although the
coarser grids (and correspondingly the discretized operators)
are smaller, they take significantly longer to evaluate compared
to the full-size or fine-grid problem [11]. While attempts have
been made to enforce sparsity at coarser levels [10], this
is usually at the cost of reduced rate of convergence. The
scalability issue is primarily due to the fact that we are solving
progressively denser, yet smaller matrices at the coarser levels.
Standard sparse matrix libraries, especially parallel ones, are
not able to ensure good performance across the range of
sparsities. Indeed, this problem is specific to AMG, and we
believe that AMG implementations should have specialized
MATVEC implementations that are optimal over a wide range
of sparsities. Analyzing the performance of MATVEC within
the context of AMG and developing methods to guarantee
performance and scalability across all levels is the central
contribution of this work.

In §I-A, we give a brief overview of AMG and the specific
choices our AMG code makes. This is followed by analysis of
different strategies to improve the performance and scalability
of the MATVEC in §II. Finally, in §III, experiments for the
new MATVEC at different AMG levels using all our proposed
methods are presented.

A. Background

We start with a brief description of our AMG framework.
AMG has been a popular method for solving the large-scale
and often sparse linear system one obtains from discretization
of elliptic partial differential equations. The linear system can
be written as

Ax = b (1)

in which, A ∈ Rn×n, x and b ∈ Rn.
AMG consists of a setup and a solve phase. The first step

of the setup phase is to aggregate the nodes of the equivalent
graph (G) of the matrix A. Every row of the matrix A is
considered as a node in the graph G and there is an edge
between nodes i and j if entry (i, j) is nonzero in A. After
aggregation, some nodes will be chosen as roots and the rest
of the nodes of the graph will be assigned to them. Multiple
aggregation methods for AMG have been introduced, such
as [12], [13], [14], [15]. For this paper, 2-distance maximal
independent set from [12], with some modifications, is used.



Given a linear system we have n nodes in the graph G and
m nodes are chosen as the roots. We compute prolongation P
and Restriction R operators using the roots. The prolongation
operator has two applications. It can interpolate a vector v ∈
Rm to v′ ∈ Rn, such that m < n. The other application is
creating a coarse version of the operator A using the Galerkin
approximation:

Ac = R×A× P

such that Ac ∈ Rm×m. This operation is called coarsening.
The restriction operator is used similarly.

Progressively coarser versions of the matrix are created
during the setup phase corresponding to a hierarchy (i.e. multi-
level or “multigrid”) of data structures. An AMG hierarchy of
L + 1 levels consists of three categories of operators: coarse
matrices (As), prolongation matrices (Ps) and restriction
matrices (Rs).

The coarse matrices for each level are created similar to Ac:

As[l + 1] = Rs[l]×As[l]× Ps[l], l = 0, 1, ..., L

such that As[0] is the finest matrix A.
The next phase of AMG is the solve phase. To solve Ax =

b, we start with an initial guess for x.
The solution is computed in a recursive function vcycle

(Algorithm 1). Regular smoothers are used in the relaxation
part, such as Jacobi, Chebyshev, etc. Then, the residual r is
computed. Next, r is taken to the coarser level by using the
restriction operator (R). The function recurses until it reaches
the coarsest level (L + 1). At that level, the system will be
solved directly. The solution of that system is actually the
error, which will be interpolated by P . After that, the solution
will be corrected by subtracting the interpolated error from it.
Finally, the solution will be smoothed again.

Algorithm 1 vcycle(g, x, b, l)
Input: grid g, b, x, and level (l)
Output: solution (x)

1: if l = L+ 1 then
2: x← direct solver(g[L+ 1], x, b)
3: else
4: x← Smoother(g, x, b, l)
5: r ← As[l]× x− b
6: rc ← Rs[l]× r
7: yc ← vcycle(g, x, rc, l + 1)
8: y ← Ps[l]× yc
9: x← x− y

10: x← Smoother(g, x, b, l)
11: end if

Smoothed Aggregation AMG (SA-AMG)[7] is a modified
version of AMG, in which the prolongation and restriction
operators are smoothed to improve the convergence of AMG.
For this paper, the improved version of SA-AMG in [10] is
used.

II. METHODS

As motivated earlier, most AMG codes typically build on
existing sparse matrix codes, that are for general purpose and
therefore are unable to achieve the best possible performance
and scalability in the multi-level scenario typical of multigrid.
In this section, we identify four areas where generic sparse
matrix-vector multiplication (MATVEC) can be improved in
the context of AMG, and propose strategies to address these.
Although, several of these strategies will likely help for generic
MATVEC as well, the choices are tuned for AMG, so the
benefits might be less pronounced. Additionally, some of these
strategies have been explored by other researchers, but their
effective application to AMG codes is new and addresses a
major scalability and performance bottleneck for most AMG
codes [11].

We start by describing how our matrices and vectors are
partitioned across the processes, as all subsequent strategies
depend on this. Matrix A is partitioned row-wise across
processes (MPI tasks), as are vectors v and w in the basic
MATVEC, w = A× v.

Consider a generic MATVEC implementation using this
structure. Since we consider a row-wise partitioning of A, the
diagonal blocks and the corresponding entries of v are stored
on the same processor. For non-diagonal blocks, some entries
of v corresponding to rows owned by other processes need
to be communicated to perform the MATVEC. The expectation
is that if A is sufficiently sparse, then the number of remote
entries of v communicated are small.

The distributed MATVEC consists of three parts:

1) local loop: multiplication of the diagonal blocks with
the local entries of vector v

2) communication: sending and receiving the vector ele-
ments required for the multiplication with off-diagonal
blocks of the matrix

3) remote loop: multiplication of the off-diagonal blocks
with the received entries of vector v

Now, several performance optimizations are possible for
these steps, most importantly it is possible to overlap step
2 with step 1. But our focus in this work is to improve
the performance and scalability in the context of AMG, and
for this it is important to identify two characteristics of
the MATVEC applied to AMG. Firstly, the multi-level nature
of AMG implies that we are performing the MATVEC at
multiple scales, similar to a strong scaling experiment. It is
important that the MATVEC is capable of performing in an
extreme strong-scaling sense. Secondly, the coarse matrices,
Ac = RAP , obtained via Galerkin approximation, incur fill-
in–effectively reducing the sparsity of coarser matrices. The
combination of these two effects is the main bottleneck for
large-scale AMG codes. Since, these issues are very specific to
AMG and not sparse-matrices in general, we focus only on the
AMG-MATVEC and not on the generic MATVEC. Additionally,
while there are approaches to sparsify the coarse matrices
[10], these do affect the overall convergence and the focus



of this work is to improve the performance without making
any algorithmic changes.

We now describe the four improvements we propose to
the AMG-MATVEC. For each of these improvements, we will
demonstrate the effects using matrices from the SuiteSparse
Matrix Collection [16], focusing on only the MATVEC. A set
of matrices was selected based on their sparsity and size.
Several of the results presented in this section use matrix ID
1883. These matrices were specifically selected to highlight
the issues faced during large-scale scaling.

The experiments for both this section and Section III are
done on Comet. It is a dedicated eXtreme Science and Engi-
neering Discovery Environment (XSEDE) cluster designed by
Dell and SDSC (San Diego Supercomputer Center at UC San
Diego) delivering 2.76 peak petaflops. The standard compute
nodes consist of Intel Xeon E5-2680v3 processors and 128
GB DDR4 DRAM (64 GB per socket).

A. Process Shrinking

In Figure 1, we present the time for MATVEC for different
levels of multigrid. Level 0 is the full-size matrix A, and
the other levels are obtained via Galerkin approximation as
described in §I-A. In this case, the communication of remote
values of v is overlapped with the local MATVEC computation.

0 1 2 3 4 5 6
0.00E+00
2.00E-05
4.00E-05
6.00E-05
8.00E-05
1.00E-04
1.20E-04

7.39E-04 3.10E-03 3.02E-03

Communication
Remote
Local

Multigrid Levels

tim
e 
(s)

Fig. 1. Average time of one MATVEC for 6 levels of multigrid for matrix ID
1883, on 4 nodes, 96 MPI tasks. The values on levels 4 and 5 bars are the
communication time.

We can see that the communication costs rise rapidly after
level 2, to the effect that these end up being more expensive
than level 0. This is primarily due to increased fill-in at the
coarser levels thereby requiring increased data-exchange, as
well as an increasing number of processes to exchange data
with. In addition, at the coarser levels, the time for the local-
loop goes down (strong-scaling), making it harder to efficiently
overlap communication with the local-loop. The key idea here
is that performing a small MATVEC on a very large number of
processes is inefficient, so it is preferable to use only a small
subset of processes to perform the MATVEC at the coarser
levels, with the number of active processes dependent on the
size of the coarser grid. We call this process shrinking. Note
that it is important to not be over-aggressive with process
shrinking, as this could increase the processing time for the
local and remote loops. The improvement as a result of process

shrinking is shown in Figure 2. Shrinking was applied at levels
3, 4 and 5.

0 1 2 3 4 5 6
0.00E+00
2.00E-05
4.00E-05
6.00E-05
8.00E-05
1.00E-04
1.20E-04

Communication
Remote
Local

Multigrid Levels

tim
e 
(s)

Fig. 2. Average time of one MATVEC for 6 levels of multigrid for matrix ID
1883, after process shrinking at level 4, by a factor 16. (on 4 nodes, 96 cores,
96 MPI tasks,1 OpenMP thread)

The process shrinking is done by reducing the number of
processes by a factor, let’s call it a. If there are p processes
at the current level, the ones with rank ak, in which k =
0, 1, ..., ⌊ pa⌋, become roots. Processes with rank ak + 1, ak +
2, ..., ak + (a − 1) will send their data to rank ak processes,
which are their roots.

To decide when the process shrinking should happen, some
factors, including some machine-dependent ones, play part.
We implement a dummy MATVEC for each multigrid level
and evaluate its performance. Based on this approximation of
total time, computation time or communication time of the
current level comparing with the previous level, the decision
is being made about shrinking. If the total time for the coarse
MATVEC increases compared to the current level, as a result
of increased communication costs, then we enforce process
shrinking.

B. Optimizing local and remote Loops

As a result of process shrinking, we observe that the local
and remote loops dominate the cost, especially the local loop
(see Figure 2). In this section, we propose methods to optimize
the local and remote loops. Note that the local and remote
loops are node local, so this stage only involves shared-
memory parallelism, i.e., OpenMP in our case. The AMG
specific aspect here is that the sparsity–especially of the off-
diagonal blocks–changes as we get coarser. We implemented
four variations for performing the local loop1 of MATVEC and
evaluated their performance across different AMG levels.

While evaluating w = Av, there are two choices regarding
the traversal depending on whether multiple passes are made
over v or w. If we read from v multiple times, we only write to
w once, and if we read from v once, we write to w multiple
times. The entries of A need to be arranged depending on
which traversal we choose. We consider 4 variations (S1−S4)
on implementing the shared-memory MATVEC depending on
this choice.

1the local and remote part are similar in structure, except for the sparsity



1) S1: Column-Major: Our first implementation uses the
column-major ordering for A, i.e., we perform a single read
on v and multiple writes to w. We start from the first nonzero
column of the matrix (say column j) and multiply all entries
of that column by v[j], and add to the corresponding entries
of w. The loop is parallelized over the entries of v using
OpenMP with a reduction at the end to add local copies
of w together (see figure 3).

Fig. 3. S1: Column-wise order is considered on the matrix. v in being iterated
once. Local copies of w are computed by each thread followed by a reduction.

2) S2: Row-Major: Our second implementation uses the
entries of A stored in the row-major order. This is the
obvious implementation of the MATVEC. The multiplication
accumulates in w[i] the product of all nonzero entries of
row i of A with the corresponding entries of v, i.e., w[i] =∑

j∈Ji
A[i, j]v[j], where Ji are the column indices of nonzero

entries in row i.
3) S3: Staggered Row-Major: This is an optimized version

of S2. Note that if the block is dense, the probability of
different threads trying to access the same entry of v at the
same time is high. In figure 4 (left), three threads are shown
as an example. It is possible that all three threads start from
the same sub-block of the matrix. So, all of them will try
to access the same part of vector v at the same time, causing
memory contention. Since, this is a read-only access, the effect
is likely minimal, but we still wanted to evaluate the effect. The
algorithm is similar to the one in S2, but the starting blocks for
the threads are distributed. Let’s say three threads are being
used. We will partition the local part of vector v to three parts
and the multiplication on each thread starts at its corresponding
part of v. Figure 4 illustrates how this algorithms operates.

4) S4: Column-Major with optimized reduction: Since we
observed S1 performing very poorly, we traced it to the

Fig. 4. S3: The left figure shows all the threads may access the same part of
vector v at the same time. The right figure shows changing the starting entry
on the threads can reduce the possibility of the access competition.

MATRIX1
(6 Threads)

MATRIX1
(12 Threads)

MATRIX2
(6 Threads)

MATRIX2
(12 Threads)

0

0.001

0.002

0.003

0.004

0.005

0.0084

S1
S2
S3
S4

tim
e 
(s)

Fig. 5. Comparison between the 4 methods for local part of MATVEC from
Section II-B. It is done on 384 cores, 32 MPI tasks, 6 and 12 OpenMP threads

vector reduction2, and implemented a parallel reduction
ourselves, not relying on the OpenMP reduction. This simply
adds two intermediate vectors at a time in a binary-tree fashion
to perform the vector reduction.

5) Comparing the four variants: Four experiments are done
to compare these methods. The matrices are chosen from
SuiteSparse Matrix Collection: Matrix1 and Matrix2 IDs are
1883 and 1364, respectively.

Based on our experiments, method S3 is sometimes slightly
better than S2, but most of the times they are close to
each other, so since S2 is simpler we prefer this one. S1 is
usually the worst implementation. For lower number of threads
method S4 is usually the best one. Higher number of threads
helps methods S2 and S3 more than the other ones.

The local loop has been discussed in this subsection. To
improve the remote loop, the S4 method is used in our solver.
The reason is that to perform MATVEC, whole column j of the
matrix should be multiplied by entry j of the vector. If that
entry needs to be communicated to this processor, it is more
efficient to communicate it once for the whole vector, so the
column-major order is the better choice for the remote loop
(S1 and S4) and S4 is the improved version of S1.

C. Load-balance & Communication-cost trade-off

Our implementation like most sparse-matrix implementa-
tions, partitions the matrix A across processes by keeping
the number of non-zeros (nnz) roughly equal3 across the
partitions. At deeper levels of the AMG hierarchy, as the nnz
per line increases, this partitioning scheme results in having a
large difference in the number of rows on different processors.
The number of vector elements stored on each processor is
equivalent to the number of rows of the matrix, which means
that the communication costs for some processors increases
significantly.

Given that the cost of data movement across the network
(inter-node data movement) is significantly higher than com-
putation (intra-node data movement), it would make sense to
reduce the cost of communication even if the local work is
increased. To this effect, we have implemented a dynamic
work-balance algorithm, consisting of two schemes:

2gnu/4.9.2 is used for this experiment.
3we keep all entries of a row on the same process.



4 5 6 7
0

0.00001

0.00002

0.00003

0.00004

0.00005
equi-NNZ
equi-row

Multigrid Level

tim
e 
(s)

Fig. 6. Comparison of work-balance based on nonzeros with work-balance
based on rows after level 4 of matrix A1883. For sparser levels equi-NNZ is
better, for denser ones equi-row is faster. This is done on Comet using 1728
MPI tasks.

1) work-balance based on number of nonzeros (equi-NNZ)
2) work-balance based on number of rows (equi-row)
The solver starts with a equipartition on nnzs, and automat-

ically switches to an equipartition on the number of rows based
on the density of the coarse matrices. The exact threshold
at which this switch happens is empirically determined by
profiling on the target machine. During the AMG setup once
the coarse matrix is constructed, we determine the density and
decide the appropriate partitioning scheme to employ.

Work-balance based on nnz improves the performance of
MATVEC loops, and work-balance based on the number of
rows reduces the communication cost. At first, the loops are
usually the dominant part of MATVEC, so the partitioning is
based on the number of nonzeros. At the deeper levels, the
communication part becomes the bottleneck, so the solver
switches to the second partitioning method. Figure 6 compares
the two work-balance schemes after level 4 of the AMG
hierarchy. For levels 4 and 5 as we explained the one with the
same number of nonzeros works better. After reaching a denser
matrix, having the same number of rows on the processes is
faster. The decision when to switch from equi-nnz to equi-row
is made based on the sparsity of the matrix in the multigrid
hierarchy. Check Section III to see an example applying this
method.

D. Sparse to Dense MATVEC

When the coarse matrices become sufficiently dense, all
processes are sending data to all other processes. This has two
problems. First, for p processes this amounts to p2 messages
being sent, and secondly each process has to store the entire
vector v in memory. Both of these issues can be addressed
by switching to a dense representation for the matrix and
performing the MATVEC differently. The dense matrix is still
partitioned row-wise, so that the partitioning remains the same
for v. However, the matrix is stored in blocks corresponding
to the partitioning of v. In order to perform the MATVEC we
perform p − 1 rounds of overlapped communication and
computation. In the first round, each process multiplies its
portion of v with the corresponding block, and accumulates
the result in its portion of w. It then sends its v vector to the
next process and receives a new v from the previous process,
in a cyclic fashion. This continues until the MATVEC is

4915 9830 14745 19660 24575 29490 34405 39320 44235 49150
0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

sparse 
dense 

bandwidth of the band-matrix

tim
e (

s)

153 306 459 612 765 918 1071 1224 1377 1530
0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

sparse
dense

tim
e(

s)

Fig. 7. Comparison of the average time for one sparse and one dense
MATVEC for a band matrix with different bandwidth values. up: matrix size:
1536× 1536, 1 node, 24 MPI tasks; down: matrix size: 49152× 49152, 8
nodes, 192 MPI tasks

complete after p − 1 rounds. The communication can be
easily overlapped with the local block-MATVEC as shown in
Algorithm 2. The dense MATVEC addresses both our problems,
as it only requires O(n/p) storage, where n is the length of
v and it only sends O(p) messages.

Algorithm 2 Overlapped Dense MATVEC
Input: A, v
Output: w
1: y ← v
2: for k = myrank : myrank + nprocs do
3: x← Irecv v from right neighbor
4: Isend(y) to left neighbor
5: for i ∈ local rows do
6: for j ∈ index set of owner of v do
7: w[i] + = A[i, j] ∗ y[j]
8: end for
9: end for

10: wait for Isend and Irecv to finish
11: swap(x, y)
12: end for

For this part’s experiments (Figure 7), a band matrix is
generated and MATVEC is computed for different bandwidth
values. So, the matrix size is fixed, but the sparsity of the
matrix changes based on its bandwidth. The same process is
applied for the same matrix, but in a dense data structure.

Switching to the dense structure happens in the final levels
of the hierarchy, in which the size of the matrix is small
and also not all processors are active. That is the reason the
comparison between the sparse and dense MATVEC are done
here on smaller matrices and for fewer number of processors.
When the coarse matrices in the multigrid hierarchy pass a
sparsity threshold, our solver switches to the dense MATVEC.

E. Summary

We choose one of four variants for performing the local
MATVEC depending on the machine. We also perform process
shrinking based on the approximate MATVEC that is computed



in the setup phase, to ensure good balance between compu-
tation and communication. Additionally, we switch between
two different load-balancing strategies, and finally switch to
a dense representation when sparsity decreases significantly,
which again gets decided in the setup part.

III. NUMERICAL RESULTS

In this section, we present experiments and results demon-
strating the efficacy of our methods. First we present the
improvement in the MATVEC scalability for a typical multigrid
hierarchy. We use a combination of the proposed methods
based on our experiments on the target machine, and evaluate
the MATVEC performance for three scenarios,

1) Applying only loop optimizations, without any shrinking
or changes to load-balancing,

2) Applying loop-optimizations and switching to equi-row
partitioning and dense MATVEC after level 4

3) Same as #2 above, but additionally shrink processes at
levels 3 and 4.

These results are presented in Figure 8, where one can see
the benefits of the proposed changes to the MATVEC on the
overall performance across all levels. When the matrices in the
multigrid levels pass a sparsity threshold at a specific level,
load-balance will be switched from equi-NNZ to equi-row for
all the levels after that. In addition to that, instead of sparse
MATVEC, dense MATVEC will be used beyond that level. Also,
process shrinking happens based on a MATVEC approximation
at each level, considering the computation and communication
costs at the current level and comparing them with the ones
of the previous level.

Comparing the first and second approaches, we see that
beyond level 5, it is better to use dense MATVEC. Also, we
can observe that it can be detrimental to switch to dense-
MATVEC too early, e.g. at level 4 . Finally, we can observe
that combining all these methods removes the bump, and also
demonstrates that these methods are successful in improving
the performance and scalability significantly.

0 1 2 3 4 5 6
0.00E+00
1.00E-06
2.00E-06
3.00E-06
4.00E-06
5.00E-06
6.00E-06
7.00E-06
8.00E-06

No Shrink, All Sparse
No Shrink, Dense After 4
Shrink, Dense After 4

Multigrid Levels

tim
e 
(s)

Fig. 8. Average time for one MATVEC for A1883 on 1728 cores, 42 nodes.
This figure shows how different methods discussed here can improve the
performance of MATVEC at different levels of the multigrid hierarchy.

Next, we compare our solver with PETSc (Figure 9). To
avoid any bias due to the coarsening strategy used by the
AMG methods, we use the multigrid hierarchy generated by

our code, and pass the matrix at each level to PETSc to
perform MATVEC using PETSc data structures and functions.
Since PETSc does not fully support OpenMP, to have a fair
comparison, we haven’t used OpenMP for our solver either.
Both codes operate using only MPI. While the performance
of PETSc and our solver are comparable at the finer grids, the
performance of PETSc deteriorates at coarser levels, whereas
our optimizations ensure that our performance is stable.

0 1 2 3 4 5 6
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

PETSc
Our Solver

Multigrid Level

tim
e 
(s)
 (l

og
-sc

ale
)

Fig. 9. Comparison between PETSc and our solver: Average time for one
MATVEC for A1883 at different levels of the multigrid hierarchy, on 1008
MPI tasks.

Finally, Figure 10 shows the weak and strong scaling plots
for solving the 3D Poisson problem.

48 96 192 384 768
0

5

10

15
Weak Scaling
Strong Scaling

Number of Processors

tim
e (

s)

Fig. 10. The strong scaling is done on a 3D Poisson matrix with 4M degree
of freedom and 27.4M nonzeros. For the weak scaling, the biggest matrix
has 8M degree of freedom and 55M nonzeros.

IV. CONCLUSION

We presented various strategies to improve the performance
and scalability of the matrix-vector product in the context
of large-scale multiscale iterative algorithms like AMG. Our
methods are tuned for the target architecture and the ap-
propriate variant is determined during the setup phase. Our
optimizations allow us to keep the cost of MATVEC stable for
a wide range of matrix sizes and sparsities. In future work,
we would like to improve the performance of our AMG code,
especially by incorporating sparsification algorithms. We are
also currently working on reducing the setup cost of our AMG
code so that an end-to-end comparison with other AMG codes
can be made.



V. ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation grants ACI-1464244 and CCF-1643056 and Army
Research Office W911NF1510222 (Program Manager Dr.
Mike Coyle). This research used resources of the Extreme
Science and Engineering Discovery Environment (XSEDE)
allocation TG-PHY180002.

REFERENCES

[1] Y. Maday and R. Muñoz, “Spectral element multigrid. II. Theoretical
justification,” Journal of scientific computing, vol. 3, no. 4, pp. 323–353,
1988.

[2] J. H. Bramble and X. Zhang, “The analysis of multigrid methods,” in
Handbook of numerical analysis, Vol. VII, ser. Handb. Numer. Anal.,
VII. Amsterdam: North-Holland, 2000, pp. 173–415.

[3] S. C. Brenner, “Smoothers, mesh dependent norms, interpolation and
multigrid,” Applied Numerical Mathematics, vol. 43, no. 1-2, pp. 45–56,
2002, 19th Dundee Biennial Conference on Numerical Analysis (2001).

[4] D. Braess, “On the combination of the multigrid method and conjugate
gradients,” in Multigrid Methods II, W. Hackbusch and U. Trottenberg,
Eds. Berlin: Springer–Verlag, 1986, pp. 52–64.

[5] O. Tatebe and Y. Oyanagi, “Efficient implementation of the multigrid
preconditioned conjugate gradient method on distributed memory ma-
chines,” in Supercomputing’94. Proceedings. IEEE, 1994, pp. 194–203.

[6] J. E. Dendy, Jr., “Black box multigrid,” Journal of Computational
Physics, vol. 48, no. 3, pp. 366–386, 1982.

[7] P. Vanek, J. Mandel, and M. Brezina, “Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic problems,” Denver, CO,
USA, Tech. Rep., 1995.

[8] P. Vaněk, M. Brezina, J. Mandel et al., “Convergence of algebraic
multigrid based on smoothed aggregation,” Numerische Mathematik,
vol. 88, no. 3, pp. 559–579, 2001.

[9] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler,
“Parallel geometric-algebraic multigrid on unstructured forests of
octrees,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012,
pp. 43:1–43:11. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2388996.2389055

[10] E. Treister and I. Yavneh, “Non-galerkin multigrid based on sparsified
smoothed aggregation,” SIAM Journal on Scientific Computing, vol. 37,
no. 1, pp. A30–A54, 2015.

[11] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder,
“Reducing parallel communication in algebraic multigrid through spar-
sification,” SIAM Journal on Scientific Computing, vol. 38, no. 5, pp.
S332–S357, 2016.

[12] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained parallelism
in algebraic multigrid methods,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. C123–C152, 2012.

[13] Y. Notay, “An aggregation-based algebraic multigrid method,” Electronic
transactions on numerical analysis, vol. 37, no. 6, pp. 123–146, 2010.

[14] H. Guillard and P. Vanek, “An aggregation multigrid solver for
convection-diffusion problems on unstructured meshes.” Tech. Rep.,
1998.

[15] Y. Notay, “Aggregation-based algebraic multilevel preconditioning,”
SIAM J. Matrix Analysis Applications, vol. 27, no. 4, pp. 998–1018,
2006.

[16] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049663

http://dl.acm.org/citation.cfm?id=2388996.2389055
http://dl.acm.org/citation.cfm?id=2388996.2389055
http://doi.acm.org/10.1145/2049662.2049663

	Introduction
	Background

	Methods
	Process Shrinking
	Optimizing local and remote Loops
	S1: Column-Major
	S2: Row-Major
	S3: Staggered Row-Major
	S4: Column-Major with optimized reduction
	Comparing the four variants

	Load-balance & Communication-cost trade-off
	Sparse to Dense matvec
	Summary

	Numerical Results
	Conclusion
	Acknowledgment
	References

