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Abstract
In 1967, Japanese physicist Morikazu Toda published a pair of seminal papers 
in the Journal of the Physical Society of Japan that exhibited soliton solutions 
to a chain of particles with nonlinear interactions between nearest neighbors. 
In the fifty years that followed, Toda’s system of particles has been generalized 
in different directions, each with its own analytic, geometric, and topological 
characteristics. These are known collectively as the Toda lattice. This survey 
recounts and compares the various versions of the finite nonperiodic Toda 
lattice from the perspective of their geometry and topology. In particular, we 
highlight the polytope structure of the solution spaces as viewed through the 
moment map, and we explain the connection between the real indefinite Toda 
flows and the integral cohomology of real flag varieties.

Keywords: Toda lattice, integrable systems, cohomology of flag varieties, 
special issue

1.  Historical overview

In 1974, Henon [35] and Flaschka [24] announced the complete integrability of the (real, 
finite, periodic) Toda lattice. This came seven years after the pivotal papers of Toda on vibra-
tions in chains with nonlinear interactions [73] and waves in anharmonic lattices [74]. Again 
in 1974, Flaschka [24, 25], and also Manakov [56], showed that the periodic Toda lattice can 
be written in Lax form through a change of variables, so that the constants of motion appear 
as eigenvalues of the Lax matrix [53].
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Six years later, Moser [59] showed that the (real, finite) nonperiodic Toda lattice is com-
pletely integrable. In two different expressions of the equations, the flows obey a Lax equa-
tion on a set of real tridiagonal Lax matrices with positive subdiagonal entries. The matrices 
are symmetric in one formulation and Hessenberg in the other—these are two different expres-
sions of the very same system. The flows exist for all time and preserve the spectrum of the 
initial Lax matrix.

However, when we allow the entries on the subdiagonal to take on any real values, the tridi-
agonal symmetric and Hessenberg forms create two genuinely different dynamical systems. 
In the symmetric case, the flows exist for all time and the isospectral manifolds are compact 
[75], while in the Hessenberg form, the flows can blow up in finite time and the isospectral 
manifolds are not compact (see e.g. [45, 46]). Shortly after this work, the flows on full sym-
metric real matrices in generic case were shown to be completely integrable [18] with the 
introduction of additional constants of motion.

Section 2 describes these versions of the real, finite, nonperiodic Toda lattices with a focus 
on their geometry and topology. This represents the work on real Toda lattices during roughly 
the first twenty years after the Toda lattice was discovered in 1967.

By the time the Toda lattice had been known for 25 years, studies on nonperiodic com-
plex versions began to appear. These are the focus of section 3. This phase brings in the new 
idea of compactifying the flows through embeddings into flag varieties. In a seminal paper, 
Ercolani, Flaschka, and Haine [21] describe the Toda system on complex tridiagonal matrices 
in Hessenberg form. The complex flows again blow up in finite (complex) time, but they differ 
from the real in that they no longer preserve ‘signs’ of the subdiagonal entries. A theorem on 
matrix factorizations [52] is used to embed the isospectral sets into a flag variety. There, the 
flows enter lower-dimensional cells, called the Bruhat cells in the Bruhat decomposition of 
the flag variety, at the blow-up times, where the singularity at a blow-up time is characterized 
by the Bruhat cell [4, 13, 27].

Two years after [21], integrability was extended to the full Kostant–Toda lattice in [22], 
where the system evolves on complex Hessenberg matrices with arbitrary entries everywhere 
below the diagonal. On isospectral sets with distinct eigenvalues, the flows generate a diago-
nal torus action under the appropriate embedding into a flag variety. Similar embeddings, 
derived from the companion and Jordan matrices of the spectrum, are helpful in understanding 
nongeneric flows where eigenvalues coincide [69] and in describing the compactified complex 
isospectral sets [70]. Coincidence of eigenvalues is seen in splittings of moment polytopes, 
which allows for a description of monodromy around nongeneric isospectral sets in special 
cases [66, 68].

Section 4 discusses other extensions of the finite nonperiodic Toda lattices. The Toda flow 
in Lax form is introduced on an arbitrary diagonalizable matrix in [47] and is integrated by 
inverse scattering (or equivalently, by factorization). The tridiagonal Hessenberg and sym-
metric Toda lattices, which are defined on the Lie algebra of type A (that is, sln), are extended 
to semisimple Lie algebras using the Lie algebra splittings from the Gauss (or LU) and QR 
factorizations, respectively [10, 11]. Related hierarchies are the Kac–van Moerbeke system, 
which can be considered as a square root of the Toda lattice [33, 37], and the Pfaff lattice, 
which evolves on symplectic matrices, and is connected to the indefinite Toda lattice [1, 43, 
44].

Section 5 considers the full Kostant–Toda hierarchy in the real variables [50]. It classifies 
the regular solutions of the hierarchy in terms of the totally nonnegative parts of the flag vari-
ety G/B where G = SL(n,R) and B is the set of upper-triangular matrices. Using the moment 
map, the full Kostant–Toda flows are defined on the appropriate weight space, and it is shown 
that the closure of each flow forms an interesting convex polytope, which we call a Bruhat 
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interval polytope (see also [76]). This section begins with a brief review of the totally non-
negative flag variety [49, 57]. The goal is to describe the topological structure of the regular 
solutions of the full Kostant–Toda lattice for the real split algebra sln(R).

Section 6 describes how the singular structure of blow-ups in solutions of the indefinite 
Toda lattice contains information about the integral cohomology of real flag varieties [14, 15]. 
We consider the moment polytope, the image of the moment map of the isospectral variety, for 
the real split semi-simple Lie algebra of sln(R). The vertices of the polytope are the orbit of 
the Weyl group action [11, 28]. These vertices correspond to the fixed points of the Toda flows. 
Each edge of the polytope can be considered as an orbit of the sl2(R) Toda lattice (the smallest 
nontrivial lattice). An orbit may be regular (without blow-ups) or singular (with blow-ups). 
One can then define a graph whose vertices are the fixed points and where two fixed points are 
connected by an edge if and only if the sl2(R) flow between them is regular. This turns out 
to be the incidence graph that gives the integral cohomology of the real flag variety. The total 
number of blow-ups in the Toda flows is related to the polynomial associated with the rational 
cohomology of a certain compact subgroup [9, 14, 15].

2.  Early versions of the finite nonperiodic real Toda lattice

Consider n particles, each with mass 1, arranged along a line at positions q1, ..., qn . Between 
each pair of adjacent particles, there is a force whose magnitude depends exponentially on the 
distance between them. Letting pk denote the momentum of the kth particle, and noting that 
d
dt qk = pk  since each mass is 1, the total energy of the system is the Hamiltonian

H =
1
2

n∑
k=1

p2k +
n−1∑
k=1

e−(qk+1−qk) .� (2.1)

The equations of motion

dqk
dt

=
∂H
∂pk

and
dpk
dt

= − ∂H
∂qk

� (2.2)

give the system of equations for the finite nonperiodic Toda lattice,



dqk
dt = pk, k = 1, ..., n,

dpk
dt = −e−(qk+1−qk) + e−(qk−qk−1), k = 1, ..., n.

� (2.3)

Here we set e−(q1−q0) = 0 and e−(qn+1−qn) = 0 with the formal boundary conditions q0 = −∞, 
and qn+1 = ∞.

2.1.  Symmetric form

There are two classic Lax forms of Equations (2.3): the symmetric form and the Hessenberg 
form. For the symmetric form, we make the change of variables (Flaschka [24], Moser [59])




ak = 1

2 e
− 1

2 (qk+1−qk), k = 1, ..., n− 1

bk = − 1
2 pk, k = 1, ..., n .

� (2.4)

In these variables, the Toda system (2.3) becomes
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



dak
dt = ak(bk+1 − bk), k = 1, ..., n− 1

dbk
dt = 2(a2k − a2k−1), k = 1, ..., n

� (2.5)

with boundary conditions a0  =  0 and an  =  0. Because the ak are real exponential functions, 
they are strictly positive for all time.

Remark 2.1.  Making a change in sign ak ↔ −ak  for one or more values of k in definition 
2.4 does not change equation (2.5). That is, the systems (±ak, bk) are equivalent for all choices 
of signs.

The system (2.5) can be written in Lax form as

d
dt
L(t) = [Πso(L(t)),L(t)]� (2.6)

where L is the symmetric tridiagonal matrix, and Πso(L) is the skew-symmetric projection of 
L,

L =




b1 a1

a1
. . . . . .
. . . . . . an−1

an−1 bn




and Πso(L) = (L)>0 − (L)<0.� (2.7)

Here (L)>0 (resp. (L)<0) is the strictly upper (resp. lower) triangular matrix of L.
Any equation in the Lax form ddt L = [B, L] for matrices L and B has the immediate con-

sequence that the flow preserves the spectrum of L. To check this, it suffices to show that 
the function tr(Lk), the trace of Lk, is constant for each k. One shows first by induction that 
d
dt L

k = [B, Lk] and then observes that d
dt [tr(L

k)] = tr[ ddt (L
k)] = tr[B, Lk] = 0. We now have 

n  −  1 independent invariant functions

Hk(L) =
1

k + 1
trLk+1.

The Hamiltonian (2.1) is related to H1(L) by H  =  4H1(L) with the change of variables (2.4).
A property of real tridiagonal symmetric matrices (2.7) with ak �= 0 for all k is that the 

eigenvalues λk  are real and distinct. Let Λ be a set of n real distinct eigenvalues, and let 
MΛ = {L in (2.7) : spec(L) = Λ}. Then MΛ is a symplectic manifold. Each invariant func-
tion Hk(L) generates a Hamiltonian flow via the symplectic structure, and the flows are involu-
tive with respect to that structure (see [5] for the general framework and [26] for the Toda lattice 
specifically). In section 2.5, we describe the Lie–Poisson structure for the equation (2.6).

Moser [59] analyzes the dynamics of the Toda particles, showing that for any initial con-
figuration, qk+1 − qk tends to ∞ as t → ±∞. Thus, the off-diagonal entries of L tend to zero 
as t → ±∞ so that L tends to a diagonal matrix whose diagonal entries are the eigenvalues. 
We will order them as λ1 < λ2 < · · · < λn. The analysis in [59] shows the sorting property 
of the eigenvalues,

L(t) −→

{
diag(λn,λn−1, · · · ,λ1) as t → ∞,

diag(λ1,λ2, · · · ,λn) as t → −∞.
� (2.8)
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The physical interpretation of this is that as t → −∞, the particles qk approach the velocities 
pk(−∞) = −2λk , and as t → ∞, the velocities are interchanged so that pk(∞) = −2λn−k+1. 
Asymptotically, the trajectories behave as

{
qk(t) ≈ λ±

k t + c±k ,

pk(t) ≈ λ±
k ,

as t → ±∞

where λ−
k = λk and λ+

k = λn−k+1.
Symes solves the Toda lattice using the QR factorization; his solution, which he verifies in 

[72] and proves in a more general context in [71], is equivalent to the following. To solve (2.5) 
with initial matrix L(0), take the exponential etL(0) and use Gram–Schmidt orthonormalization 
to factor it as

etL(0) = k(t)r(t),� (2.9)

where k(t) ∈ SO(n) and r(t) is upper triangular. Then the solution of (2.5) is

L(t) = k−1(t)L(0)k(t) = r(t)L(0)r−1(t) .� (2.10)

Since the Gram–Schmidt orthonormalization of etL(0) can be done for all t, this shows that the 
solution of the Toda lattice equations (2.5) on the set of symmetric tridiagonal matrices L of 
(2.7) is defined for all t.

We mention also the τ-functions, which play a key role of the theory of integrable systems 
(see for example [36, 58]). Let us first introduce the following symmetric matrix, called the 
moment matrix,

M(t) := e2tL(0) = rT(t)kT(t)k(t)r(t) = rT(t)r(t),� (2.11)

where rT denotes the transpose of r, and note that kT = k−1. The decomposition of a symmet-
ric matrix to an upper-triangular matrix times its transpose on the left is called the Cholesky 
factorization. This factorization is used to find the matrix r, and then the matrix k can be found 
by k = etL(0)r−1. The τ-functions, τj for j = 1, . . . , n− 1, are defined by

τj(t) := det (Mj(t)) =
j∏

i=1

ri(t)2,� (2.12)

where Mj is the j× j upper-left submatrix of M, and we denote diag(r) = diag(r1 . . . , rn). We 
see from (2.10), i.e. L(t)r(t) = r(t)L(0), that we have

aj(t) = aj(0)
rk+1(t)
rk(t)

.

Since rk(t) �= 0 for all k, the signs aj(t) remain the same. With (2.12) and (2.5), we obtain

aj(t) = aj(0)

√
τj+1(t)τj−1(t)

τj(t)
and bj(t) =

1
2
d
dt

ln

(
τj(t)
τj−1(t)

)
.� (2.13)

One should note that the τ-functions are just defined from the moment matrix M = e2tL(0), and 
the solutions (aj(t), bj(t)) are explicitly given by those τ-functions without the factorization.

2.2.  Hessenberg form

The symmetric matrix L in (2.7), when conjugated by the diagonal matrix 
D = diag(1, a1, . . . , an−1), gives a matrix Y  =  DLD−1 in Hessenberg form:
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Y =




b1 1

a21
. . . . . .
. . . . . . 1

a2n−1 bn




.� (2.14)

The Toda equations (2.6) now take the Lax form for X := 2Y ,

d
dt
X = [X, (X)<0] = [(X)�0,X],� (2.15)

where (X)�0 = X − (X)<0 is the upper-triangular part of X. Equation (2.15) with

X =




f1 1

g1
. . . . . .
. . . . . . 1

gn−1 fn




� (2.16)

is called the Hessenberg form of the finite nonperiodic Toda lattice. Again, since the equa-

tions are in Lax form, the functions Hk(X) = 1
k+1 tr Xk+1 are constant in t.

Notice that the Hessenberg and symmetric Lax formulations of (2.3) are simply different 
ways of expressing the same system. The solutions exist for all time and exhibit the same 
behavior as t → ±∞. However, when we allow the subdiagonal entries to assume any real 
value, the symmetric and Hessenberg forms differ in their geometry and topology and in the 
character of their solutions.

2.3.  Isospectral manifolds in the real tridiagonal symmetric form

Here we consider the Lax equation (2.6) where the ak in the symmetric Lax matrix L may be 
any real numbers. As mentioned in remark 2.1, the equations with different signs in the ak are 
the same. In particular, if ak �= 0 for all k, then the eigenvalues are real and distinct.

Let MΛ denote the set of n× n matrices of the form (2.7) with fixed eigenvalues 
λ1 < λ2 < · · · < λn. MΛ contains 2n−1 components of dimension n  −  1, where each comp
onent consists of all matrices in MΛ with a fixed choice of sign for each ak. The solution of 
(2.6) with initial condition in a given component remains in that component for all t, because 
the solutions preserve the sign of each ak. Each lower-dimensional component, where one 
or more ak is zero and the signs of the other ak are fixed, is also preserved by the Toda flow 
through any initial matrix in that component. Tomei [75] shows that MΛ is a compact smooth 
manifold of dimension n  −  1 containing 2n−1 open components, each diffeomorphic to Rn−1 
(see also [77]). On each component, ak �= 0 for all k, and the sign of each ak is fixed. The 
components are glued together along the lower-dimensional sets where one or more ak is zero.

For n  =  3, there are four 2-dimensional components, denoted as M++,M+−,M−+, and 
M−−, according to the signs of a1 and a2. The closure of each component is obtained by 
adjoining the six diagonal matrices diag(λi,λj,λk) where all the ak vanish (these are the fixed 
points of the Toda flows) and six 1-dimensional sets where exactly one ak is zero. The four 
principal components are glued together along the loci of MΛ where one or more ak vanish. 
In figure 1, we illustrate the Tomei manifold MΛ for the sl(3,R) symmetric Toda lattice,

MΛ = M++ ∪M+− ∪M−+ ∪M−−,

J. Phys. A: Math. Theor. 51 (2018) 353001
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where the cups include the specific gluing according to the signs of the ak. The resulting mani-
fold MΛ is a connected sum of two tori, the compact Riemann surface of genus two. This can 
be easily seen from figure 1 as follows: Gluing those four hexagons, MΛ consists of 6 vertices, 
12 edges and 4 faces. Hence the Euler characteristic is given by χ(MΛ) = 6− 12+ 4 = −2, 
which implies that the manifold has genus g  =  2 (recall χ = 2− 2g). The fact that MΛ is 
orientable can be shown by giving an orientation for each hexagon so that the directions of two 
edges in the gluing cancel each other. Since compact two-dimensional surfaces are completely 
characterized by their orientability and Euler characters, we conclude that the manifold MΛ 
is a connected sum of two tori.

The Euler characteristic of MΛ (for general n) is determined in [75] as follows. Let 
L = diag(λσ(1), ...,λσ(n)) be a diagonal matrix in MΛ, where σ is a permutation of the num-
bers {1, ..., n}, and let r(L) be the number of times that σ(k) is less than σ(k + 1). Denote by 
E(n, k) the number of diagonal matrices in MΛ with r(L) = k . Then the Euler characteristic 
of MΛ is the alternating sum of the E(n, k):

χ(MΛ) =

n∑
k=0

(−1)kE(n, k) .

An isospectral set where the eigenvalues are not distinct is not a manifold. For example, the 
isospectral set with spectrum (1, 1, 3) has the shape of a figure eight [13, 75].

2.4.  Indefinite Toda lattice in real tridiagonal Hessenberg form

We return to the Hessenberg form with X as in (2.16), and allow the gk to assume arbitrary real val-
ues. Recall that in the formulation of the original Toda equations, all the gk were positive, so that 
the eigenvalues were real and distinct. When gk �= 0 for some k, the eigenvalues may be complex 
or may coincide. Even in the case where all the eigenvalues are real and distinct, the case with 
some gk  <  0 causes blow-ups in the flows so that the topology of the isospectral manifolds is very 
different from the topology of the Tomei manifolds described in the previous section [23, 46].

Figure 1.  The Tomei manifold MΛ for the symmetric tridiagonal sl3(R) Toda lattice. 
The 3-tuples (i, j, k) on the vertices indicate the diagonal matrices L = diag(λi,λj,λk). 
Each hexagon Mε1,ε2 corresponds to the moment polytope (see section 3.1) for the Toda 
lattice with the signs (ε1, ε2) = (sgn(a1), sgn(a2)). The boundaries correspond to the 
sl(2,R) Toda lattices associated with either a1  =  0 or a2  =  0. MΛ results from gluing 
corresponding edges of the hexagons. For example, the edge between (1, 2, 3) and 
(1, 3, 2) in M++ is glued with the same edge in M−+, since this edge indicates a1  =  0 
and a2  >  0. In the other gluing shown, a2  =  0 and a1  <  0.
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The matrices of the form (2.16) with gk �= 0 for all k are partitioned into 2n−1 different 
Hamiltonian systems, each determined by a choice of signs of the gk. Letting σk = ±1 for 
k = 1, ..., n and taking the sign of gk to be σkσk+1, Kodama and Ye [45] give the Hamiltonian 
for the system with this choice of signs as

H =
1
2

n∑
k=1

y2k +
n−1∑
k=1

σkσk+1e−(xk+1−xk),� (2.17)

where the variables ( fk, gk) in the Hessenberg form are given by
{
fk = − 1

2 yk, k = 1, ..., n

gk = 1
4 σkσk+1 e−(xk+1−xk), k = 1, ..., n− 1 .

� (2.18)

The system (2.15) with the Hamiltonian H in (2.17) is called the indefinite Toda lattice. The 
negative signs in (2.17) correspond to attractive forces between adjacent particles, which 
causes the system to become undefined at finite values of t, as is seen in the solutions obtained 
in [45] and [46] by inverse scattering.

The blow-ups in the solutions are also apparent in the factorization solution of the 
Hessenberg form. To solve (2.15) with initial condition X(0), we consider the LU factoriza-
tion of the exponential etX(0),

etX(0) = n(t)b(t),� (2.19)

where n(t) is lower unipotent and b(t) is upper-triangular. Then, as shown in [61, 62] (see also 
[34, 60]),

X(t) = n−1(t)X(0)n(t) = b(t)X(0)b−1(t)� (2.20)

solves (2.15). Notice that the factorization (2.19) is obtained by Gaussian elimination, which 
multiplies etX(0) on the left by elementary row operations to put it in upper-triangular form. 
This process works only when all principal minors (the determinants of upper left k × k  
blocks, which are the τ-functions as defined in (2.12)) are nonzero. At particular values of 
t ∈ R, this factorization can fail, and the solution (2.20) becomes undefined.

The solutions ( fk, gk) can be expressed in terms of the τ-functions

τk(t) :=
[
etX(0)

]
k
=

k∏
j=1

dj(t),� (2.21)

where [etX(0)]k is the k × k  principal minor of etX(0), and diag(b) = diag(d1, . . . , dn). As in the 
previous case of symmetric Toda, from (2.20), we have

gk(t) = gk(0)
τk+1(t)τk−1(t)

τk(t)2
and fk(t) =

d
dt

ln

(
τk(t)
τk−1(t)

)
.� (2.22)

Now it it clear that the factorization (2.19) fails if and only if τk(t) = 0 for some k. Then a blow-
up (singularity) of the system (2.15) can be characterized by the zero sets of the τ-functions.

Example 2.2.  To see how blow-ups occur in the factorization solution, consider the initial 
matrix

X0 =

(
1 1

−1 −1

)
.

J. Phys. A: Math. Theor. 51 (2018) 353001
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When t �= −1,

etX0 =

(
1+ t t
−t 1− t

)
=

(
1 0
−t
1+t 1

) (
1+ t t
0 1

1+t

)
,

and the solution evolves as in (2.20). The τ-function is given by τ1(t) = 1+ t, and when 
t  =  −1, this factorization does not work. However, we can multiply e−X0 on the left by a lower 
unipotent matrix n−1 (in this case the identity) to put it in the form wb, where w is a permuta-
tion matrix:

e−X0 =

(
0 −1
1 2

)
=

(
1 0
0 1

)(
0 −1
1 0

) (
1 2
0 1

)
.

This example will be taken up again in section 3.2, where it is shown how the factorization 
using a permutation matrix leads to a compactification of the flows.

In general, when the factorization (2.19) is not possible at time t = t̄ , et̄X(0) can be factored 
as et̄X(0) = n(̄t) w b(̄t) for some permutation matrix w. In [21], this factorization is used to 
complete the flows (2.20) through the blow-up times by embedding them into a flag variety. 
We examine this further in the context of the complex tridiagonal Hessenberg form.

To describe the topology of a generic isospectral set MΛ in this version of the Toda lattice, 
it is first shown that because of the blow-ups in X, MΛ is a noncompact manifold of dimen-
sion n  −  1 [46]. The manifold is compactified by completing the flows through the blow-up 
times. The 2× 2 case is basic to the compactification for general n. The set of 2× 2 matrices 
with fixed eigenvalues λ1 < λ2,

MΛ =

{(
f1 1
g1 f2

)
: λ1 < λ2

}
,� (2.23)

consists of two components, M+ with g1  >  0 and M− with g1  <  0, together with two fixed 
points,

X1 =

(
λ1 1
0 λ2

)
and X2 =

(
λ2 1
0 λ1

)
.

Writing f2 = λ1 + λ2 − f1 and substituting this into the equation  for the determinant, 
f1f2 − g1 = λ1λ2, shows that Mλ is the parabola

g1 = −( f1 − λ1)( f1 − λ2) .� (2.24)

This parabola opens down, crossing the axis g1  =  0 at f1 = λ1 and f1 = λ2, corresponding to 
the fixed points X1 and X2. For an initial condition with g1  >  0, the solution is defined for all t; 
it flows away from X2 toward X1. This illustrates what is known as the sorting property, which 
says that as t → ∞, the flow tends toward the fixed point with the eigenvalues in decreasing 
order along the diagonal. The component with g1  <  0 is separated into disjoint parts, one with 
f1 < λ1 and the other with f1 > λ2. The solution starting at an initial matrix with f1 > λ2 
flows toward the fixed point X2 as t → ∞. For an initial matrix with f1 < λ1, the solution flows 
away from X1, blowing up at a finite value of t. By adjoining a point at infinity to connect these 
two branches of the parabola, the flow is completed through the blow-up time and the resulting 
manifold is the circle, S1.

For general n, the manifold MΛ with spectrum Λ contains n! fixed points of the flow, where 
the eigenvalues are arranged along the diagonal. These vertices are connected to each other by 
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incoming and outgoing edges analogous to the flows connecting the two vertices when n  =  2. 
The result is nonorientable for n  >  2. For n  =  3, it is a connected sum of two Klein bottles. 
Figure 2 illustrates the compactification of MΛ for the sl3(R) indefinite Toda lattice. With 
this gluing, the compactified manifold MΛ has Euler characteristic χ(MΛ) = −2 as in the 
case of the Tomei manifold (see figure 1). The non-orientability is seen in the non-cancellation 
of the given orientations of the hexagons.

Casian and Kodama [10] (see also [12]) show that the compactified isospectral mani-
fold is identified as a connected completion of the disconnected Cartan subgroup of 
G = Ad(SL(n,R)±). It is diffeomorphic to a toric variety in the flag variety of G. We give 
more details in section 6.2.

2.5.  Full symmetric real Toda lattice

In 1986, the paper [18] by Deift, Li, Nanda, and Tomei brought a radical departure from the 
tridiagonal Toda lattices that had been heretofore studied, by expanding the phase space to the 
set of full symmetric matrices. Consider the symmetric Toda equation

d
dt
L = [Πso(L), L] with Πso(L) = (L)>0 − (L)<0� (2.25)

as in (2.6), where L is now a full symmetric matrix with distinct eigenvalues. The authors of 
[18] show that (2.25) remains completely integrable for the generic case. They present a suffi-
cient number of constants of motion in involution and construct the associated angle variables. 
The additional constants of motion are found by a chopping construction on the matrix that 
was later extended in [22] to the complex full Kostant–Toda lattice, which we describe in more 
detail in section 3.3.

The Lie–Poisson structure on the space of symmetric real matrices is the Kostant–Kirillov 
form (as explained in [18]), with respect to which the Toda flows (2.25) may be expressed in 
Hamiltonian form as

d
dt
L = {H1, L}(L) with H1(L) =

1
2
tr(L2).

Using the Poisson structure, we may extend (2.25) to define the Toda lattice hierarchy gen-

erated by the Hamiltonians Hk(L) = 1
k+1 tr(L

k+1):

∂

∂tk
L = {Hk, L}(L) = [Πso∇Hk, L] for k = 1, 2, . . . , n− 1� (2.26)

where tr(X∇f ) = limε→0
d
dε f (L+ εX) so that ∇Hk = Lk . Each flow stays on a co-adjoint 

orbit in the phase space of the symmetric Toda, which is Sym(n) := {L ∈ sln(R) : LT = L}. 
The Poisson structure is nondegenerate when restricted to a co-adjoint orbit, and the level sets 
of the integrals found in [18] are the generic co-adjoint orbits.

In [42], Kodama and McLaughlin give the explicit solution of the Toda lattice hierarchy 
(2.26) on full symmetric matrices with distinct eigenvalues by solving the inverse scattering 
problem of the system

LΦ = ΦΛ and
∂

∂tk
Φ = Πso(Lk) Φ

with Λ = diag(λ1, . . . ,λn). Since L is symmetric, the matrix Φ of eigenvectors is taken to be 
orthogonal:
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L = ΦΛΦT

with Φ = [φ(λ1), ...,φ(λn)], where the φ(λk) is the normalized eigenvector of L with eigen-
value λk .

The indefinite extension of the full symmetric Toda lattice is studied in [42], where explicit 
solutions of φ(λk, t) are obtained by the method of inverse scattering. The authors also give 
an alternative derivation of the solution using the factorization method of Symes [72], where 
etL(0) is factored into a product of a pseudo-orthogonal matrix times an upper triangular matrix 
(the HR-factorization).

3.  Complex Toda lattices

Here we consider complex version of Toda lattices and introduce a powerful new tool for 
understanding the geometry of the iso-spectral varieties, namely, embeddings of the isospec-
tral sets into the flag varieties. Under these mappings, the Toda flows generate group actions 
and blow-ups are compactified. The geometry and topology of the compactified isospectral 
sets can then be described in terms of the moment map and moment polytope of the flag 
variety.

3.1. The moment map

Let G be a complex semisimple Lie group, H a Cartan subgroup of G, and B a Borel subgroup 
containing H. If P is a parabolic subgroup of G that contains B, then G/P can be realized as the 
orbit of G through the projectivized highest weight vector in the projectivization, P(V), of an 
irreducible representation V  of G. Let A be the set of weights of V , counted with multiplicity; 
the weights belong to h∗R, the real part of the dual of the Lie algebra h of H. Let {vα : α ∈ A} 
be a basis of V  consisting of weight vectors. A point [X] in G/P, represented by X ∈ V , has 

Figure 2.  The compactification of the isospectral manifold MΛ for the indefinite sl3(R) 
Toda lattice. Each hexagon indicates the moment polytope associated with an indefinite 
Toda lattice. The signs (ε1, ε2) in Mε1,ε2 are those of (g1, g2) as t → −∞, and the signs 
in the hexagons indicate the signs of (g1, g2). The gluing rule according to the sign 
changes of gi is the same as that in the Tomei manifold, but the pattern is now different. 
For example, the edge between (2, 3, 1) and (3, 2, 1) in M−− is now glued with that in 
M+−. The solid and dashed lines in the hexagons show the points where the solutions 
blow up; τ1 = 0 (solid) and τ2 = 0 (dashed). The numbers in the sections indicate the 
number of blow-ups along the flow from t = −∞ to +∞ (see section 6.2).
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homogeneous coordinates πα(X), where X =
∑

α∈A πα(X)vα. The moment map as defined 
in [39] sends G/P into h∗R:

µ : G/P −→ h∗R

[X] �−→
∑

α∈A
|πα(X)|2α

∑
α∈A

|πα(X)|2 ,
� (3.1)

(also see e.g. [30, 31]). Its image is the weight polytope of V , also referred to as the moment 
polytope of G/P.

The fixed points of H in G/P are the points in the orbit of the Weyl group W through the 
projectivized highest weight vector of V ; they correspond to the vertices of the polytope under 
the moment map. Let H · [X] be the closure of the orbit of H through [X]. Its image under μ 
is the convex hull of the vertices corresponding to the fixed points contained in H · [X]; these 
vertices are the weights {α ∈ W · αV : πα(X) �= 0}, where αV  is the highest weight of V  [6]. 
In particular, the image of a generic orbit, where no πα vanishes, is the full polytope. The real 
dimension of the image is equal to the complex dimension of the orbit.

For G = SL(n,C), B the upper triangular subgroup, and H the diagonal torus. The choice 
of B determines a splitting of the root system into positive and negative roots and a system 
Δ of simple roots. The simple roots are Li − Li+1, where i = 1, ..., n− 1 and Li is a weight of 
the standard representation of sln, i.e. for h = diag(h1, . . . , hn) ∈ h, Li(h) = hi. Then let h∗R 
denote the dual of h,

h∗R := SpanR


L1, . . . , Ln

∣∣∣
n∑

j=1

Lj = 0




∼= Rn−1.� (3.2)

The Weyl group W = Sn acts by permuting the weight Li, and the moment polytope of G/B 
is the convex hull of the weights Li1,...,in for (i1, . . . , in) = π(1, . . . , n) with π ∈ Sn, which is 
given by

Li1,...,in := (n− 1)Li1 + (n− 2)Li2 + · · ·+ Lin−1� (3.3)

where the highest weight is L1,2,...,n . This moment polytope is referred to as the permutohe-
dron, which is given by

Permn = Conv{Lπ(1,...,n) ∈ h∗R | π ∈ Sn}.� (3.4)

3.2.  Complex tridiagonal Hessenberg form

Let M be the set of complex tridiagonal Hessenberg matrices of the form (2.16), where the 
fk and gk are arbitrary complex numbers. As before, the Toda flow is defined by (2.15) and 
the eigenvalues (equivalently, the traces of the powers of X) are constants of motion. The 

Hamiltonian Hk(X) = 1
k+1 tr

(
Xk+1

)
 generates the flow

∂X
∂tk

= [X, (∇Hk)<0] = [X, (Xk)<0] = [(Xk)�0, X] .� (3.5)

The solution of (3.5) can be found by the LU factorization as in (2.19). That is, with 
etkX

k(0) = n(tk)b(tk), we have

X(tk) = n−1(tk)X(0)n(tk) = b(tk)X(0)b−1(tk).� (3.6)
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Fix the eigenvalues λj, and consider the level set MΛ consisting of all matrices in M 
with spectrum Λ = {λ1, ...,λn} (we often identify Λ = diag(λ1, . . . ,λ)). In contrast to the real 
tridiagonal flows described in section 2.4, when X is complex, MΛ is no longer partitioned by 
signs of the gk. There is only one maximal component where no gk vanishes. The n  −  1 flows 
through any initial X with gk �= 0 for all k generates the whole component.

In the case of distinct eigenvalues, Ercolani, Flaschka and Haine in [21] construct a mini-
mal nonsingular compactification of MΛ on which the flows (3.5) extend to global holomor-
phic flows. The compactification is induced by an embedding of MΛ into the flag variety 
SL(n,C)/B with B, the set of weakly upper-triangular matrices. The embedding depends on 
the following factorization by Kostant [52] of X ∈ MΛ. Let εΛ be the matrix with (λ1, . . . ,λn) 
on the diagonal, 1’s on the superdiagonal, and 0’s elsewhere. Then every X ∈ MΛ can be 
conjugated to εΛ by a unique element n ∈ N , the set of lower-triangular unipotent matrices:

X = nεΛn−1 .� (3.7)

This defines a map of MΛ into G/B:

jΛ : MΛ → G/B

X �→ n−1 mod B .
� (3.8)

This mapping is an embedding [51], and the closure, jΛ(MΛ), of its image is a nonsingular 
and minimal compactification of MΛ. Let n0 be the unique lower unipotent matrix such that 
X(0) = n0εΛn−1

0 . Then the solution (3.6) is X(tk) = n−1(tk)n0εΛn−1
0 n(tk), where n−1

0 n(tk) is 
lower unipotent. The Toda flow X(tk) is mapped into the flag variety as

jΛ(X(tk)) = n−1
0 n(tk) mod B

= n−1
0 etkX

k(0) mod B .
� (3.9)

Even at values of tk where the first expression in (3.9) is not defined because the LU factor-
ization of etkX

k(0) is not possible, the second expression in (3.9) is defined. In this way, the 
embedding of X(tk) into G/B completes the flows through the blow-up times. This used in [21] 
to study the nature of the blow-ups of X(tk).

To illustrate this in a simple case, consider example 2.2 from section 2.4. The isospectral 
set of 2× 2 Hessenberg matrices with both eigenvalues zero is embedded into the flag variety 
SL(2,C)/B, which has the cell decomposition

SL(2,C)/B = NB/B � N
(
0 −1
1 0

)
B/B,� (3.10)

where N is the set of lower triangular matrices with 1’s in the diagonals. The big cell, NB/B, 
contains the image of the flow X(t) whenever this flow is defined, that is, whenever the factor-
ization etX0 = n(t)b(t) is possible. At t  =  −1, where X(t) is undefined, the embedding jΛ com-
pletes the flow through the singularity. The image jΛ(X(t)) passes through the flag u−1

0 e−X(0) 
at time t  =  −1, which is the cell on the right in (3.10).

The cell decomposition (3.10) is a special case of the cell stratification of G/B known as the 
Bruhat decomposition. This decomposition is defined in terms of the Weyl group W as

G/B =
⊔
w∈W

NẇB/B,� (3.11)

where N is the unipotent group of lower triangular matrices, and each component NẇB/B is 
called the Bruhat cell associated with w ∈ W . Here ẇ is the representation of w ∈ W  on G. 
For G = SL(n,C), W is the symmetric group of permutations Sn, and ẇ is the permutation 
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matrix corresponding to w ∈ Sn. Thus, the Bruhat decomposition partitions flags according to 
which permutation matrix ẇ is needed to perform the factorization g = nẇb for g ∈ G with 
n ∈ N  and b ∈ B. At all values of tk for which the flow X(tk) is defined, jΛ sends X(tk) into 
the big cell of the Bruhat decomposition, since ẇ is the identity matrix. When the factoriza-

tion etkX
k(0) = n(tk)b(tk) is not possible at time tk = t̄ , the group element g = et̄X

k(0) can be 
factored as

et̄X
k(0) = n(̄t)ẇb(̄t),� (3.12)

for some permutation matrix ẇ. In this case, the flow (3.9) enters the Bruhat cell NẇB/B at 
time tk = t̄ . Ercolani et al in [21] characterize the Laurent expansion of each pole of X(t1) in 
terms of the Bruhat cell that the solution enters at the blow-up time.

The compactification of MΛ where eigenvalues need not be distinct is studied in [70] by a 
modification of the embedding (3.8) where the Hessenberg matrix X is conjugated to a Jordan 
matrix J of the spectrum (see [69]). Since the Jordan matrix of X has one block for each eigen-
value, all elements of MΛ are conjugate. Under the Jordan embedding, the maximal torus 
generated by the flows is diagonal if the eigenvalues are distinct and a product of a diagonal 
torus and a unipotent group when eigenvalues coincide. Via the Jordan embedding, the n  −  1 
flows X(tk) = n−1(tk)X(0)n(tk) in (3.6), with the appropriate choice of X(0), generate an 
action of the centralizer of J in G = SL(n,C) on the flag variety G/B. As shown in [69], this 
group is a semi-direct product of the diagonal torus obtained by setting all the entries above 
the diagonal equal to zero, and the unipotent group obtained by setting all the diagonal entries 
equal to 1. This group action, together with the moment map of the maximal torus, is used in 
[70] to identify each component in the boundary of the image of MΛ in G/B with a face of 
the moment polytope.

3.3. The full Kostant–Toda lattice

In this version of the Toda lattice, Ercolani, Flaschka, and Singer [22] connect the expanded 
phase space with its additional constants of motion introduced by Deift, Li, Nanda and Tomei 
in [18] (see section 2.5) and the geometrically enlightening idea of embeddings of the isospec-
tral sets into flag varieties introduced by Ercolani, Flaschka and Haine in [21] (see section 3.2).

The full Kostant–Toda lattice evolves on the set of full complex Hessenberg matrices

X =




∗ 1 0 · · · 0
∗ ∗ 1 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · 1
∗ ∗ ∗ · · · ∗




� (3.13)

with arbitrary complex entries below the diagonal. The set of all such X is denoted ε+ b−, 
where ε is the matrix with 1’s on the superdiagonal and zeros elsewhere and b− is the set of 
lower triangular complex matrices. Note the decomposition sln = b− ⊕ n+ where n+ is the 
set of strictly upper triangular matrices.

With respect to the symplectic structure on ε+ b− (defined below), the Toda hierarchy 
(3.5) with X as in (3.13) is completely integrable on the generic leaves. The complete integra-
bility is found in [22] by extending the techniques in [18] to ε+ b−. For complete integrability 
when n  >  3, we need additional constants of motion independent of the eigenvalues of the 
initial matrix. These integrals, and the Casimirs (where the flows are trivial) are computed 
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by a chopping construction on ε+ b− that creates matrices φk(X) ∈ GL(n− 2k,C) for 

0 � k � [ (n−1)
2 ]. The coefficients of the polynomial det(λ− φk(X)) are constants of motion 

referred to as the k-chop integrals [22]; they are equivalent to the traces of the powers of φk(X). 
The Hamiltonian system generated by an integral I(X) is

d
dt
X = [X, (∇I(X))<0] .� (3.14)

The level sets of the k-chop integrals live on the leaves of a symplectic structure on 
ε+ b−. The symplectic structure can be defined as follows. Write sln = n− ⊕ b+ where n− 
and b+ are the strictly lower triangular and the upper triangular subalgebras. With a nonde-
generate inner product 〈A,B〉 = tr(AB) on sln(C), we have an isomorphism sln ∼= sl∗n , where 
sl∗n = n∗− ⊕ b∗+ = b⊥+ ⊕ n⊥−. With the isomorphisms b∗+ ∼= n⊥− = b− and n∗− ∼= b⊥+ = n+, we 
have

ε+ b− ∼= b∗+,

which is the phase space of the full Kostant–Toda lattice. On b∗+, the Lie–Poisson structure is 
the Kostant–Kirillov form,

{ f , g}(X) = 〈X, [Πb+∇f ,Πb+
∇g]〉 for X ∈ b∗+,

which stratifies it into symplectic leaves [22].
Consider the isospectral set (ε+ b−)Λ with fixed eigenvalues Λ. Using (3.7), there is a 

unique lower unipotent matrix n ∈ N  such that for X ∈ (ε+ b−)Λ, X = nCΛn−1, where CΛ 
is the companion matrix of X:

CΛ =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
pn pn−1 · · · p2 0




,� (3.15)

where the pj’s are the symmetric polynomials of the eigenvalues λj, that is,

det(λI − X) =
n∏

j=1

(λ− λj) = λn −
n∑

j=2

pjλn−j.

The mapping

cΛ : (ε+ b−)Λ −→ SL(n,C)/B

X �−→ n−1 mod B
� (3.16)

is an embedding [51], referred to as the companion embedding. Its image is open and dense in 
the flag variety. Under this embedding, the n  −  1 flows of the 0-chop integrals 1k trX

k generate 
the action of the centralizer of CΛ in SL(n,C) (the group acts by multiplication on the left).

When the eigenvalues λi are distinct, CΛ = VΛV−1, where Λ = diag(λ1, . . . ,λn) and V  is 

a Vandermonde matrix V = (λi−1
j ), and we have

X = nVΛV−1n−1.
This gives an embedding
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ΨΛ : (ε+ b−)Λ −→ SL(n,C)/B

X �−→ V−1n−1 mod B,
� (3.17)

under which the group generated by Hamiltonian flows of Hk = (1/(k + 1))tr(Xk+1) for 
k = 1, ..., n− 1 is the maximal diagonal torus. ΨΛ is called the torus embedding.

When the values of the integrals are sufficiently generic (in particular, when the eigenval-
ues of each k-chop are distinct), the flows of the k-chop integrals can be organized in the flag 
variety by the torus embedding as follows [22]. (The companion embedding gives a similar 
structure, but the torus embedding is more convenient since the group action is diagonal.)

Let SL(m,C)/P denote the quotient of SL(m,C) by the parabolic subgroup P of SL(m,C) 
whose entries below the diagonal in the first column and to the left of the diagonal in the last 
row are zero. Ercolani et al [22] builds a tower of fibrations where the k-chop flows generate 
a level set of the (k + 1)-chop integrals in the partial flag variety SL(n− 2k,C)/P and the 
(k + 1)-flows act as a torus action along the fiber, SL(n− 2(k + 1),C)/B. In the end, the clo-
sure of a level set of all the k-chop integrals in SL(n,C)/B is realized as a product of closures 
of generic torus orbits in the product of partial flag varieties.

SL(n,C)/P× SL(n− 2,C)/P× · · · × SL(n− 2M,C)/P� (3.18)

where M is largest k for which there are k-chop integrals.
In [29], Gekhtman and Shapiro generalize the full Kostant–Toda flows and the k-chop 

construction of the integrals to arbitrary simple Lie algebras, showing that the Toda flows on 
a generic coadjoint orbit in a simple Lie algebra g are completely integrable. A key observa-
tion in making this extension is that the 1-chop matrix φ1(X) can be obtained as the middle 
(n− 2)× (n− 2) block of AdΓ(X)(X), where Γ(X) is a special element of the Borel subgroup 
of G. This allows one to use the adjoint action of a Borel subgroup, followed by a projection 
onto a subalgebra, to define the appropriate analog of the 1-chop matrix.

Finally, we note that full Kostant–Toda lattice has a symmetry of order two induced by 
the nontrivial automorphism of the Dynkin diagram of the Lie algebra sln(C). In terms of the 
matrices in ε+ b−, the involution is reflection along the anti-diagonal. It is shown by Shipman 
in [67] that this involution preserves all the k-chop integrals and thus defines an involution on 
each level set of the constants of motion. In the flag variety, the symmetry interchanges the 
two fixed points of the torus action that correspond to antipodal vertices of the moment poly-
tope under the moment map (3.1).

3.4.  Nongeneric full Kostant–Toda flows

When eigenvalues of the initial matrix in ε+ b− coincide, the torus embedding (3.17) is not 
defined since each matrix in ε+ b− has one Jordan block for each eigenvalue. In the most 
degenerate case, when all eigenvalues are zero, [65] uses the companion embedding (3.16) to 
study the geometry of the flows.

If eigenvalues of each k-chop matrix φk(X) are distinct but one or more eigenvalues of 
φj(X) and φj+1(X) coincide for some j, then the torus orbits generated by the k-chop integrals 
in the product (3.18) degenerate into unions of nongeneric orbits [69]. This is reflected in split-
tings of the moment polytopes of the partial flag varieties in (3.18).

From [69], let F  be a variety in SL(n,C)/P defined by fixing the values of the 1-chop int
egrals Ir1, including the Casimir, where the values are chosen so that exactly one eigenvalue, 
say λi0, of X is also an eigenvalue of φ1(X). Then F  is the union of the closures of two non-
generic torus orbits such that the images of their closures under the moment map are obtained 
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by splitting the moment polytope of SL(n,C)/P along an interior face. An example with n  =  4 
is illustrated in figure 3.

This extends to degeneracies in k-chop flows for all k [69]. When a level set of the con-
stants of motion is split into two or more nongeneric torus orbits, separatrices appear in the 
Toda flows that generate the torus action. The faces along which the polytope is split are the 
images under the moment map of lower-dimensional torus orbits (the separatrices) that form 
the interface between the nongeneric orbits of maximum dimension.

For n  =  4, Shipman in [68] determines the monodromy of generic level sets around the sin-
gular fibers in the fiber bundle of level sets where the spectrum of the initial matrix is fixed and 
the single 1-chop integral I is allowed to vary. The flow generated by I produces a C∗-bundle 
with singular fibers over the values of I. The singularities occur at two types of coincidences: 
(1) at values of I where an eigenvalue of the 1-chop matrix coincides with an eigenvalue of 
the original matrix and (2) at values of I where the two eigenvalues of the 1-chop matrix 
coincide. In a neighborhood of a singular fiber of the first kind, the monodromy is character-
ized by a single twist of the noncompact cycle around the cylinder C∗. Near a singular fiber 
of the second kind, the monodromy creates two twists of the noncompact cycle. This double 
twist appears in the simplest case when n  =  2, around the level set where the two eigenvalues 
coincide [66].

4.  Other extensions of the Toda lattice

In [47], Kodama and Ye consider an iso-spectral deformation of an arbitrary diagonalizable 
matrix L. The evolution equation is

d
dt
L = [P, L] with P = (L)>0 − (L)<0.

� (4.1)
The complete integrability of (4.1) is shown in [47] using inverse scattering; it generalizes 
the method used in [42] to solve the full symmetric real Toda lattice. The method yields an 
explicit solution to the initial-value problem. The general context of the flow (4.1) includes 
as special cases the Toda lattices on other classical Lie algebras in addition to sln(R), which 
is most closely associated with Toda’s original system. In this regard, Bogoyavlensky in [8] 
formulated the Toda lattice on the real split semisimple Lie algebras, which are defined as 

Figure 3.  Left: the moment polytope of SL(4,C)/P where the vertices are the weights 
Li − Lj, e.g. 2110 means L1 − L4 = 2L1 + L2 + L3. Right: complementary polytopes 
obtained by splitting the moment polytope of SL(4,C)/P along an interior hexagon.
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follows (the formulation below is in the Hessenberg (or Kostant) form, see also [34, 60]): Let 
{hαi , e±αi : i = 1, . . . , l} be the Chevalley basis of the algebra g of rank l, that is,

[hαi , hαj ] = 0, [hαi , e±αj ] = ±Cjie±αj , [eαi , e−αj ] = δijhαj ,

where (Cij)1�i,j�l is the Cartan matrix and Cij = αi(hαj). Then the (nonperiodic) Toda lattice 
associated with the Lie algebra g is governed by the Lax equation

dL
dt

= [A, L],� (4.2)

where L is a Jacobi element of g and A is the projection of L onto n−, as




L(t) =
l∑

i=1
fi(t) hαi +

l∑
i=1

(gi(t) e−αi + eαi),

A(t) = −Πn−L(t) = −
l∑

i=1
gi(t) e−αi .

� (4.3)

The complete integrability is based on the existence of the Chevalley invariants of the algebra, 
and the geometry of the isospectral variety has been discussed in terms of the representation 
theory of Lie groups by Kostant in [52] for the cases where gi are real positive, or complex. 
The general case for real gi’s is studied by Casian and Kodama [10, 11], which extends the 
results in the sln(R) Toda lattice in the Hessenberg form (see section 2.4) to the Toda lattice 
for any real split semisimple Lie algebra.

The Lax equation (4.2) then gives

dfi
dt

= gi, and
dgi
dt

= −




l∑
j=1

Cijfj


 gi

from which the τ-functions are defined as

fi(t) =
d
dt

ln τi(t), gi(t) = gi(0)
l∏

j=1

(τj(t))−Cij .� (4.4)

In the case of g = sln(R), those equations are (2.22). Note here that the superdiagonal of L(t) 
is diag( f1 − f2, f2 − f3, . . . , fl − fl+1) with n  =  l  +  1. Those extensions have been discussed 
by many authors (see for example [34, 60]). One should note that Bogoyavlensky in [8] also 
formulates those Toda lattices for affine Kac–Moody Lie algebras, and they give the periodic 
Toda lattice. There has been much progress in understanding these periodic Toda lattices, but 
we will not cover the subject in this paper (see, for example [2, 3, 20, 62, 63]).

From the viewpoint of Lie theory, the underlying structure of the integrable systems is 
based on the Lie algebra splitting, e.g. sln = b− ⊕ son (the QR factorization) for the symmet-
ric Toda lattice, and sln = b+ ⊕ n− (the LU factorization) for the Hessenberg form of Toda 
lattice. Then one can also consider the following form of the evolution equation,

d
dt
L = [Q, L] with Q = Πg1(L),� (4.5)

where g1 is a subalgebra in the Lie algebra splitting sln = g1 ⊕ g2. In this regard, we mention 
here the following two interesting systems directly connecting to the Toda lattice.
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4.1. The Kac–van Moerbeke system

Kac–van Moerbeke [37]: We take g1 = so2n, and consider the equation for L ∈ so2n. Since 
L2k−1 ∈ so2n, the even flows are all trivial. Let L be given by a tridiagonal form,

L =




0 α1 0 · · · 0
−α1 0 α2 · · · 0
...

...
. . . · · · · · ·

0 0 · · · 0 α2n−1

0 0 · · · −α2n−1 0




∈ so2n(R).

Then the even flows are the Kac–van Moerbeke hierarchy, ∂L∂t2j
= [Πso(L2j), L], where the first 

member of t2-flow gives

∂αk

∂t2
= αk(α

2
k−1 − α2

k+1), k = 1, . . . , 2n− 1,

with α0 = α2n = 0. This system is equivalent to the symmetric Toda lattice which can be writ-
ten as (4.5) for the square L2. Note here that L2 is a symmetric matrix given by

L2 = T(1) ⊗
(
1 0
0 0

)
+ T(2) ⊗

(
0 0
0 1

)
,

where T(i), for i = 1, 2, are n× n symmetric tridiagonal matrices given by

T(i) =




b(i)1 a(i)1 0 · · · 0

a(i)1 b(i)2 a(i)2 · · · 0
...

...
. . . . . .

...

0 0 · · · b(i)n−1 a(i)n−1

0 0 · · · a(i)n−1 b(i)n




,

with a(1)k = α2k−1α2k, b
(1)
k = −α2

2k−2 − α2
2k−1, a

(2)
k = α2kα2k+1, and b(2)k = −α2

2k−1 − α2
2k 

(see [33]). Then one can show that each T(i) gives the symmetric Toda lattice, that is, the 
Kac–van Moerbeke hierarchy for L2 matrix splits into two Toda lattices,

∂T(i)

∂t2j
= [Πso(T(i)) j, T(i)] for i = 1, 2.

The equations  for T(i) are connected by the Miura-type transformation, with the functions 

(a(i)k , b(i)k ), through the Kac–van Moerbeke variables αk (see [33]).

4.2. The Pfaff lattice for a symplectic matrix

References [1, 43, 44]: The Pfaff lattice is defined in the same form with g1 = sp2n and L in 
the Hessenberg form with 2× 2 block structure. In particular, we consider the case L ∈ sp2n 
having the form,
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L =




0 σ1
b1 0

0 0
a1 0

· · · 02

0 0
a1 0

0 σ2

b2 0
· · · 02

...
...

. . .
...

02 02 · · · 0 σn

bn 0




∈ sp2n(R),

where 02 is the 2× 2 zero matrix. The variables (ak, bk) and σk = ±1 are those in the indefi-
nite Toda lattice in (2.15) through fk = σkbk and gk = σkσk+1a2k. It should be noted again that 
the odd members are trivial (since L2k−1 ∈ sp2n), and the even members give the indefinite 
Toda lattice hierarchy [44]. Here one should note that L2 can be written as

L2 = L̃T ⊗
(
1 0
0 0

)
+ L̃⊗

(
0 0
0 1

)
,

where L̃ = D̃−1XD̃ with D̃ = diag(1,σ2a1, . . . ,σnan−1). Then one can show that the genera-
tor Q2j of the Lax equation is given by

Q2j = Πsp(L2j) = −B̃T
j ⊗

(
1 0
0 0

)
+ B̃j ⊗

(
0 0
0 1

)
,

where B̃j =
1
2 [(L̃

j)>0 − (L̃ j)<0]. Then the hierarchy ddt L = [Q2j, L] gives the indefinite Toda 
lattice hierarchy (see section 2.4 and [45, 46]).

5. The full Kostant–Toda lattice in real variables

Here we consider the full Kostant–Toda hierarchy (3.5) in real variables, where we write

∂X
∂tk

= [(Xk)�0, X] for k = 1, 2, . . . , n− 1.� (5.1)

We let t := (t1, . . . , tn−1) denote the multi-time variables for the flows in the hierarchy. As is 
the case of the complex full Kostant–Toda lattice, the solution space can be described by the 
flag variety G/B. Here we consider the asymptotic behavior of the solutions for the regular 
flows of the full Kostant–Toda hierarchy. Those regular solutions are associated to points in 
the totally nonnegative (tnn) flag variety, denoted by (G/B)�0. Then we discuss the moment 
map images of the regular flows of the full Kostant–Toda hierarchy. This section is a brief 
review of [50] which provides a geometric structure of the iso-spectral variety for the full 
Kostant–Toda flows including nongeneric cases.

5.1. Totally nonnegative parts of flag varieties

We begin with a brief review of the tnn parts of the flag variety, (G/B)�0 where G = SL(n,R).
For each 1 � i � n− 1 we have a homomorphism φi : SL(2,R) → SL(n,R) such that
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φi

(
a b
c d

)
=




1
. . .

a b
c d

. . .
1




∈ SL(n,R),

that is, φi replaces a 2× 2 block of the identity matrix with 
(
a b
c d

)
, where a is at the 

(i, i)-entry. We have 1-parameter subgroups of G defined by

xi(m) = φi

(
1 m
0 1

)
and yi(m) = φi

(
1 0
m 1

)
, where m ∈ R.� (5.2)

The simple reflections si ∈ W = Sn are given by si := ṡiT  where ṡi := φi

(
0 −1
1 0

)
, and 

any w ∈ W  can be expressed as a product w = si1si2 . . . si� with � = �(w) factors. Here �(w) 
denotes the length of w. We set ẇ = ṡi1 ṡi2 . . . ṡi�.

There are two opposite Bruhat decompositions of G/B:

G/B =
⊔
w∈W

BẇB/B =
⊔
v∈W

Nv̇B/B.

We define the intersection of opposite Bruhat cells

Rv,w := (BẇB/B) ∩ (Nv̇B/B),

which is nonempty precisely when v � w. The strata Rv,w are often called Richardson varieties.
Now we define the totally nonnegative part of the flag.

Definition 5.1 ([55]).  The tnn part N�0 of N is defined to be the semigroup in N generated 
by the yi(p) for p ∈ R�0 in (5.2). The tnn part (G/B)�0 of G/B is defined by

(G/B)�0 := { nB | n ∈ N�0 },

where the closure is taken inside G/B in its real topology. We sometimes refer to (G/B)�0 as 
the tnn flag variety.

Lusztig [54, 55] introduced a natural decomposition of (G/B)�0: For v,w ∈ W  with v � w, 
let

R>0
v,w := Rv,w ∩ (G/B)�0.

Then the tnn part of the flag variety G/B has the decomposition,

(G/B)�0 =
⊔
w∈W


⊔

v�w

R>0
v,w


 .� (5.3)

Let w := si1 . . . sim be a reduced expression for w ∈ W . A subexpression v of w  is a word 
obtained from the reduced expression w  by replacing some of the factors with the identity e, 
simply denoted by ‘1’. For example, consider a reduced expression in the symmetric group S4, 
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say s3s2s1s3s2s3. Then 1 s2 1 1 s2 s3 is a subexpression of s3s2s1s3s2s3. Given a subexpression 
v, we set v(k) to be the product of the leftmost k factors of v, if k � 1, and v(0) = 1. To para-
metrize each component of R>0

v,w , we need the following definition of the subexpressions of w:

Definition 5.2 ([19, 57]).  Given a subexpression v of w = si1si2 . . . sim, we define

J◦v := {k ∈ {1, . . . ,m} | v(k−1) < v(k)},
J+v := {k ∈ {1, . . . ,m} | v(k−1) = v(k)},
J•v := {k ∈ {1, . . . ,m} | v(k−1) > v(k)}.

The subexpression v is called nondecreasing if v( j−1) � v( j) for all j = 1, . . . ,m, e.g. if 
J•v = ∅. It is called distinguished if we have v( j) � v( j−1) sij  for all j ∈ {1, . . . ,m}. In other 
words, if right multiplication by sij  decreases the length of v( j−1), then in a distinguished 
subexpression we must have v( j) = v( j−1)sij . Finally, v is called a positive distinguished sub-
expression (or a PDS for short) if v( j−1) < v( j−1)sij for all j ∈ {1, . . . ,m}. In other words, it 
is distinguished and nondecreasing.

It is then quite important to note that given v � w and a reduced expression w  for w, there 
is a unique PDS v+ for v contained in w  [49, 57]. The following theorem then provides a 
parameterization of the tnn part of the flag variety.

Theorem 5.3 ([57, proposition 5.2, theorem 11.3]).  Choose a reduced expression 
w = si1 . . . sim  for w with �(w) = m. To v � w we associate the unique PDS v+ for v in w . 
Then J•v+ = ∅. We define

G>0
v+,w :=

{
g = g1g2 · · · gm

∣∣∣∣
g� = yi�( p�) if � ∈ J+v ,
g� = ṡi� if � ∈ J◦v ,

}
,� (5.4)

where each p� ranges over R>0. The set G>0
v+,w lies in Nv̇ ∩ BẇB, G>0

v+,w
∼= R�(w)−�(v)

>0 , and the 
map g �→ gB defines an isomorphism

G>0
v+,w

∼−→ R>0
v,w.

5.1.1. The Grassmannian and its tnn part.  The real Grassmannian Gr(k, n) is the space of 
all k-dimensional subspaces of Rn. An element of Gr(k, n) can be viewed as a full-rank k × n 
matrix A modulo left multiplication by nonsingular k × k  matrices. In other words, two k × n 
matrices are equivalent, i.e. they represent the same point in Gr(k, n), if and only if they can 
be obtained from each other by row operations.

Let 
(
[n]
k

)
 be the set of all k-element subsets of [n] := {1, . . . , n}. For I ∈

(
[n]
k

)
, let ∆I(A) be 

the Plücker coordinate, that is, the maximal minor of the k × n matrix A located in the col-
umn set I. The map A �→ (∆I(A)), where I ranges over 

(
[n]
k

)
, induces the Plücker embedding 

Gr(k, n) ↪→ RP(
n
k)−1.

Just as for the flag variety, one may identify the Grassmannian with a homogeneous 
space. Let Pk be the parabolic subgroup which fixes the k-dimensional subspace spanned 
by e1, . . . , ek. (This is a block upper-triangular matrix containing B.) Then we may identify 
Gr(k, n) with the space of cosets G/Pk.

There is a natural projection πk : G/B → Gr(k, n). One may equivalently express this 
projection as the map πk : G/B → G/Pk, where πk(gB) = gPk. Abusing notation, we sim-
ply write πk(g) = Ak with Ak ∈ Gr(k, n) ∼= G/Pk instead of πk(gB) = gPk. Concretely, for 
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g ∈ G, πk(g) is represented by the k × n matrix Ak consisting of the leftmost k columns of g, 
i.e. πk(g) = Ak implies

g =




g1,1 · · · g1,k · · · g1,n
...

. . .
...

...
...

gk,1 · · · gk,k · · · gk,n
...

...
...

...
...

gn,1 · · · gn,k · · · gn,n




�−→ Ak =



g1,1 · · · gk,1 · · · gn,1
...

. . .
...

...
...

g1,k · · · gk,k · · · gn,k


 .� (5.5)

This is equivalent to the following formula using the Plücker embedding into the projectivization 

of the wedge product space P(
∧k Rn) ∼= RP(

n
k)−1 with the standard basis {ei : i = 1, . . . , n},

g · e1 ∧ · · · ∧ ek =
∑

1�i1<···<ik�n

∆i1,...,ik(Ak) ei1 ∧ · · · ∧ eik .� (5.6)

The Plücker coordinates ∆i1,...,ik(Ak) are then given by

∆i1,...,ik(Ak) = 〈ei1 ∧ · · · ∧ eik , g · e1 ∧ · · · ∧ ek〉,

where 〈·, ·〉 is the usual inner product on 
∧k Rn.

Now the tnn part of the Grassmannian is then defined as follows:

Definition 5.4.  The tnn part of the Grassmannian Gr(k, n)�0 is the image πk((G/B)�0). 
Equivalently, Gr(k, n)�0 is the subset of Gr(k, n) such that all Plücker coordinates are non-
negative.

Let Wk = 〈s1, . . . , ŝk, . . . , sn−1〉 be a parabolic subgroup of W = Sn obtained by deleting 
the transposition sk from the generating set. Let Wk denote the set of minimal-length coset 
representatives of W/Wk. Recall that a descent of a permutation z is a position j such that 
z( j) > z( j+ 1). Then Wk is the subset of permutations which have at most one descent, and 
if it exists, that descent must be in position k.

Rietsch in [64] shows that the tnn part of the Grassmannian Gr(k, n)�0 has a cellular 
decomposition (see (5.3)),

Gr(k, n)�0 =
⊔

w∈Wk

⊔
v�w

P>0
v,w� (5.7)

where P>0
v,w = πk(R>0

v,w).

Definition 5.5.  Let M be an n× n matrix with real entries. Any determinant of a k × k  
submatrix (for 1 � k � n) is called a flag minor if its set of columns is precisely {1, 2, . . . , k}, 
the leftmost k columns of M. Let ∆k

Ik(M) denote the flag minor where Ik = {i1, . . . , ik} is the 
set of rows. And we say that M is flag nonnegative if all of its flag minors are nonnegative.

Note that the flag minors of g ∈ G are precisely the Plücker coordinates of the projections 
of gB to the various Grassmannians πk(gB) for 1 � k � n. Then, one can show [50] that any 

g ∈ G>0
v+,w is a flag nonnegative. That is, the Plücker coordinates in (5.6) are all nonnegative 

when Ak is given by the matrix g ∈ G>0
v+,w.

For any z ∈ W  we define the ordered set z · [k] = {z(1), . . . , z(k)}. (By ordered set, we 
mean that we sort the elements of z · [k] according to their value.) Then we have the following.

Lemma 5.6 ([50]).  Let v � w be elements in W = Sn, and choose z ∈ Sn arbitrarily. 
Choose a reduced subexpression w  for w; this determines the PDS v+ for v in w . Choose any 

g ∈ G>0
v+,w. Then we have
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∆k
z·[k](g) > 0 for 1 � k � n

if and only if

v � z � w.

This lemma is a key to determine the polytope structure of nongeneric flows of the full 
Kostant–Toda hierarchy.

5.2.  Full Kostant–Toda flows with totally nonnegative initial data

Let us recall that the solution of the full Kostant–Toda can be found by the companion embed-

ding (3.16) with the factorization exp(ΘX0(t)) = n(t)b(t) where ΘX0(t) :=
∑n−1

j=1 (X
0) jtj with 

the initial matrix X0 = X(0). Then we have the solution X(t) = n−1(t)X0n(t). This can be 
stated in the following diagram [10, 28, 50]:

� (5.8)

where X0 = n−1
0 CΛn0. That is, the initial matrix X0 = X(0) determines the element n0 ∈ N , 

and each full Kostant–Toda flow corresponds to an exp(ΘCΛ(t))-orbit on the flag variety with 
the initial point n0B.

We now associate to each matrix g ∈ G>0
v+,w (representing a point of R>0

v,w ) an initial matrix 
X0 for the full Kostant–Toda hierarchy. First we note that the τ-functions for the hierarchy can 
be also found in the same form as in (2.21), i.e.

τk(t) = [exp (ΘX0(t))]k for k = 1, . . . , n− 1.� (5.9)

We then express the τ-functions with the initial matrix X0 in terms of g.

Recall that CΛV = VΛ where V  is the Vandermonde matrix V = (λi−1
j ), and that [M]k 

denotes the kth principal minor of the matrix M. Then, for each matrix g ∈ G>0
v+,w we can 

associate an initial matrix X0 ∈ FΛ, defined by X0 = n−1
0 CΛn0, where n0 ∈ N  and b0 ∈ B are 

uniquely determined by the equation Eg = n0b0 (this decomposition is true when g ∈ G>0
v+,w). 

Then, the τ-functions for the full Kostant–Toda hierarchy with initial matrix X0 are given by

τk(t) = [exp(ΘCΛ
(t))n0]k = dk [V exp (ΘΛ(t)) g]k ,� (5.10)

where dk = [b−1
0 ]k.

Remark 5.7.  The formula exp(ΘCΛ(t))n0 = E exp(ΘΛ(t))gb−1
0  implies that the full Ko-

stant–Toda flow gives a (noncompact) torus action on the flag variety. More precisely, the 
torus (R>0)

n acts by exp(ΘΛ(t)) on the basis vectors consisting of the columns of the Vander-
monde matrix V , that is, we have exp(ΘX0(t))n0B = V exp(ΘΛ(t))gB.
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Then using the Binet–Cauchy lemma to (5.10) and Ak = πk(g), the τ-function can be writ-
ten as

τk(t) = dk
∑

I∈([n]k )

∆I(Ak)EI(t),
� (5.11)

where EI(t) for I = {i1, . . . , ik} is defined by

EI(t) :=
∏
�<m

(λim − λi�)

n∏
j∈I

Ej(t) with Ej(t) = eθj(t).� (5.12)

Since g ∈ G>0
v+,w is a flag nonnegative, i.e. ∆Ik(Ak) � 0 for all Ik ∈

(
[n]
k

)
, the τ-

function is sign-definite. This implies that the full Kostant–Toda flow is complete for all 

t = (t1, . . . , tn−1) ∈ Rn−1, when the initial matrix X0 comes from a point in G>0
v+,w.

Remark 5.8.  The τ-function in (5.11) has the Wronskian structure, that is, if we define the 
functions { f1, . . . , fk} by

( f1(t), . . . , fk(t)) := (E1(t), . . . ,En(t))AT
k ,

then we have

τk(t) = dk Wr( f1(t), . . . , fk(t)),

where the Wronskian is for the t1-variable. Furthermore, if we identify the first three variables 
as t1 = x, t2 = y and t3  =  t in (5.11), then we obtain the τ-function for the KP equation [38] 
which gives rise to soliton solutions of the KP equation from the Grassmannian Gr(k, n) [48] 
(see [41] for a review of the KP solitons). That is, τk is associated with a point of the Grass-
mannian Gr(k, n). Then the set of τ-functions (τ1, . . . , τn−1) is associated with a point of the 
flag variety, and the solution space of the full Kostant–Toda hierarchy is naturally given by the 
complete flag variety.

5.3.  Asymptotic behavior of the full Kostant–Toda lattice

Here we consider the asymptotics of the solution X(t) to the full Kostant–Toda lattice where 

X(0) = X0 is the initial matrix associated with g ∈ G>0
v+,w, i.e. the tnn part of the flag variety.

Recall that we have a fixed order λ1 < · · · < λn on the eigenvalues, and that z · [k] denotes 
the ordered set {z(1), z(2), . . . , z(k)}. Since Ak = πk(g) and g ∈ Nv̇ ∩ BẇB (by theorem 5.3), 
the lexicographically maximal and minimal elements in M(Ak) are respectively given by 
w · [k] and v · [k]. Because of the order λ1 < · · · < λn, we have the following with Ei(t) = eθi(t) 
in (5.12),

E1 � E2 � · · · � En, as t → ∞,

E1 � E2 � · · · � En, as t → −∞,

This implies that each τk(t)-function from (5.11) has the following asymptotic behavior:

τk(t) −→

{
Ew·[k](t) as t → ∞

Ev·[k](t) as t → −∞.

Then the diagonal element fk(t) in X(t) in the form (2.22) can be calculated as
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fk(t) =
d
dt

ln
τk
τk−1

−→ d
dt

ln
Ew·[k]

Ew·[k−1]
=

d
dt

lnEw(k) = λw(k) as t → ∞.

This implies that X(t) approaches a fixed point of the full Kostant–Toda flow as t → ±∞,

X(t) −→

{
ε+ diag(λw(1),λw(2), . . . ,λw(n)) as t → ∞

ε+ diag(λv(1),λv(2), . . . ,λv(n)) as t → −∞.

This can be extended to the asymptotic properties for the full Kostant–Toda hierarchy as fol-
lows: First note that for any permutation z ∈ Sn, one can find a multi-time c = (c1, . . . , cn−1)

∈ Rn−1 such that Ez(1)(c) > Ez(2)(c) > · · · > Ez(n)(c). This can be shown by considering the 
functions �i : R× Rn−1 → R,

�i(t0, t) = t0 + λit1 + λ2
i t2 + · · ·+ λn−1

i tn−1 = t0 + θi(t) = (t0, t1, . . . , tn−1) · Vi,

where Vi is the ith column vector of the Vandermonde matrix V . Then one can find a 
point (t0, c) such that �z(1)(t0, c) > �z(2)(t0, c) > · · · > �z(n)(t0, c), which also implies that 
Ez(1)(c) > Ez(2)(c) > · · · > Ez(n)(c).

Now assume that v � z � w. Then recall lemma 5.6 which says ∆k
z·[k](g) > 0 for all 

k = 1, . . . , n− 1. Note that Ez·[k](c) dominates the other exponentials in the τk-function (5.11) 
at the point c. Then, in the direction t(s) = sc with the limit s → ∞, we have

τk(t(s)) ≈ dk∆k
z·[k](g)Ez·[k](t(s)) as s → ∞.

Now using the formula of fk(t) in (2.22) with t  =  t1, one can see that fk(t(s)) → λz(k) as 
s → ∞, i.e. X(t(s)) approaches the fixed point as s → ∞, i.e.

X(t(s)) −→ ε+ diag(λz(1), . . . ,λz(n)) as s → ∞.� (5.13)

5.4. The moment polytope of the full Kostant–Toda lattice

We now present the image of the moment map on the full Kostant–Toda flows coming from 
the tnn flag variety and construct certain convex polytopes that generalize the permutohedron 
Permn of (3.4).

Recall that Li denotes a weight of the standard representation of sln, and h∗R rep-
resents the dual of the Cartan subalgebra hR, see (3.2). For I = {i1, . . . , ik}, we set 
L(I) = Li1 + Li2 + · · ·+ Lik ∈ h∗R. The moment map for the Grassmannian µk : Gr(k, n) → h∗R 
is defined by

µk(Ak) :=

∑
I∈M(Ak)

|∆I(Ak)|2 L(I)

∑
I∈M(Ak)

|∆I(Ak)|2
,� (5.14)

(see (3.1), also [30, 31]).
We recall the following fundamental result of Gelfand–Goresky–MacPherson–Serganova 

[30] on the moment map for the Grassmannian (which in turn uses the convexity theorem of 
Atiyah [6] and Guillemin–Sternberg [32]).
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Theorem 5.9 ([30, section 2]).  If Ak ∈ Gr(k, n) and we consider the action of the torus 
(C∗)n on Gr(k, n) (which rescales columns of the matrix representing Ak), then the closure of 
the image of the moment map applied to the torus orbit of Ak is a convex polytope

ΓM(Ak) = Conv{L(I) | ∆I(Ak) �= 0 i.e. I ∈ M(Ak)}� (5.15)

called a matroid polytope, whose vertices correspond to the fixed points of the action of the 
torus.

Remark 5.10.  In representation theory, this polytope is a weight polytope of the fundamen-
tal representation of sln on 

∧k V , where V  is the standard representation.

It should be noted that if Ak ∈ Gr(k, n) and we consider the action of the positive torus 
(R>0)

n on Gr(k, n), the conclusion of theorem 5.9 still holds.
The moment map for the flag variety µ : G/B → h∗R in (3.1) can be written in the form,

µ(g) :=
n−1∑
k=1

µk(Ak), where Ak = πk(g).

Let us now compute the image of the moment map μ when applied to the full Kostant–Toda 
flow exp(ΘCΛ(t)) on the point n0B of the flag variety described in (5.8).

First recall CΛV = VΛ and Vg = n0b0. Then we have

exp(ΘCΛ
(t))n0 · e1 ∧ · · · ∧ ek = V eΘΛ(t) gb−1

0 · e1 ∧ · · · ∧ ek

=
∑

1�i1<···<ik�n

VeΘΛ(t)ei1 ∧ · · · ∧ eik〈ei1 ∧ · · · ∧ eik , gb
−1
0 · e1 ∧ · · · ∧ ek〉

=dk
∑

1�i1<···<ik�n

VeΘΛ(t)ei1 ∧ · · · ∧ eik〈ei1 ∧ · · · ∧ eik , g · e1 ∧ · · · ∧ ek〉

=dk
∑

1�i1<···<ik�n

∆i1,...,ik(Ak)VeΘΛ(t)ei1 ∧ · · · ∧ eik

=dk
∑

1�i1<···<ik�n

∆i1,...,ik(AkeΘΛ(t))Vi1 ∧ · · · ∧ Vik ,

where dk = [b−1
0 ]k and Vi = Vei = (1,λi, . . . ,λn−1

i )T .
We now define ϕ(t; g) := µ(exp(ΘCΛ(t))n0) and ϕk(t; g) := µk(AkeΘΛ(t)) with πk(g) = Ak. 

Then we have

ϕ(t; g) =
n−1∑
k=1

ϕk(t; g) with ϕk(t; g) =
∑

I∈M(Ak)

αk
I (t; g) L(I),

and αk
I (t; g) =

(
∆I(AkeΘΛ(t))

)2
∑

J∈M(Ak)

(
∆J(AkeΘΛ(t))

)2 .
� (5.16)

Note here that 0 < αk
I (t; g) < 1 and 

∑
I∈M(Ak)

αk
I (t; g) = 1 for each k.

Definition 5.11.  We define the moment map image of the full Kostant–Toda flow for 
g ∈ G>0

v,w to be the set

Qg = {ϕ(t; g) | t ∈ Rn−1} :=
⋃

t∈Rn−1

ϕ(t; g).
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Here the closure is taken using the usual topology of the Euclidian norm on h∗R ∼= Rn−1.

Then we can show [50] that for each k, the image Qk
g := {ϕk(t; g) | t ∈ Rn−1} is the corre

sponding matroid polytope from (5.15), i.e.

Qk
g = ΓM(Ak) where Ak = πk(g).

Now we have the following proposition [50]:

Proposition 5.12.  Let g ∈ G>0
v+,w. Then the moment map image Qg of the full Kostant–

Toda flow for g is a Minkowski sum of matroid polytopes. More specifically, for Ak = πk(g), 
k = 1, . . . , n− 1, we have

Qg =

n−1∑
k=1

ΓM(Ak).

We also define a certain polytope which sits inside the permutohedron Permn of (3.4).

Definition 5.13.  Let v and w be two permutations in Sn such that v � w. We define the 
Bruhat interval polytope associated to (v,w) to be the following convex hull:

Pv,w := Conv{Lz ∈ h∗R | v � z � w}.

In other words, this is the convex hull of all permutation vectors corresponding to permuta-
tions z lying in the Bruhat interval [v,w]. In particular, if w  =  w0 and v = e, then we have 
Pe,w0 = Permn. (See [76] for the further discussion on the Bruhat interval polytopes.)

Finally we have the following theorem for the moment polytope of the full Kostant–Toda 
flow [50].

Theorem 5.14.  Let g ∈ G>0
v+,w. Then the moment map image of the full Kostant–Toda flow 

for g is the Bruhat interval polytope Pv,w, i.e.

Qg = Pv,w.

Note that from proposition 5.12 and theorem 5.14, we have the following remark:

Remark 5.15.  The Bruhat interval polytope Pv,w is a Minkowski sum of matroid polytopes

Pv,w =

n−1∑
k=1

ΓMk .

Here Mk  is the matroid defining the cell of Gr(k, n)�0 that we obtain by projecting the cell 
R>0

v,w  of (G/B)�0 to Gr(k, n)�0.

We note that each weight vector Li1,...,in defined in (3.3) can be associated to the ordered 
set of eigenvalues,

Li1,...,in ⇐⇒ (λi1 ,λi2 , . . . ,λin).

This means that each vertex of the Bruhat interval polytope can be labeled by the ordered set 
of eigenvalues. For example, the highest weight for the permutohedron of (3.4) is given by
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L1,2,...,n =
n∑

k=1

(n− k)Lk ⇐⇒ (λ1,λ2, . . . ,λn)

which corresponds to the asymptotic form of diag(L) with v = e for t → −∞. The permutohe-
dron Pe,w0 with the longest element w0 for SL(4,R)/B is illustrated in figure 4 (Left).

Example 5.16.  Consider the sl4(R) full Kostant–Toda hierarchy. We take

w = s2s3s2s1 and v = s3,

which gives

w · (1, 2, 3, 4) = (4, 1, 3, 2) and v · (1, 2, 3, 4) = (1, 2, 4, 3).

There are eight permutations z satisfying v � z � w, i.e.

v = s3, s3s2, s2s3, s3s1, s3s2s1, s2s3s1, s2s3s2, w = s2s3s2s1.

We illustrate the moment polytopes in figure  4. The vertices are labeled by the index set 
‘i1i2i3i4’ of the eigenvalues (λi1 ,λi2 ,λi3 ,λi4). The vertex with the white circle indicates the 
asymptotic form of diag(L) for t → −∞ (i.e. (1, 2, 4, 3) = v · (1, 2, 3, 4) in the right figure), 
and the black one indicates the asymptotic form for t → ∞ (i.e. (4, 1, 3, 2) = w · (1, 2, 3, 4) in 
the right figure).

Remark 5.17.  The moment polytopes of the full symmetric Toda hierarchy can be shown 
to have the same structure as these of the full Kostant–Toda hierarchy on the tnn flag variety 
(see [7, 17, 50]).

3124
1324

1234

2134

2143

1342

3142

3412

4312

4321

4231

4213
2413

1432

1423

1243

4132

4123 2143

1342

3142

1423

1243

4123

4132

1432

Figure 4.  Some moment polytopes from the sl4(R) full Kostant–Toda hierachy. Each 
4-digit number represents the order of the eigenvalues, e.g. 2413 = (λ2,λ4,λ1,λ3). Left: 
the permutohedron Pe,w0 = Perm4 with e  =  1234 and w0  =  4321. Right: the Bruhat 
interval polytope Pv,w with w = s2s3s2s1 and v = s3, equivalently, they are represented 
as w  =  4132 and v = 1243.
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6. The Toda lattice and integral cohomology of real flag varieties

Here we explain how one can find the integral cohomology of real flag variety from the iso-
spectral variety of the Toda lattice (this is an invitation to the papers [14, 15]). We consider 
the Toda lattice hierarchy (3.5) on the real split semi-simple Lie algebra sln(R), and assume 
X ∈ sln(R) to be a generic element in the tridiagonal Hessenberg form of (2.16), that is, it has 
all real and distinct eigenvalues (see [14, 15], for the general case associated with real split 
semisimple Lie algebra).

6.1.  Integral cohomology of G/B

We begin with a brief summary of the cohomology of G/B as a background for the next sec-
tion where we explain how one gets the cohomology of G/B from the isospectral variety of the 
Toda lattice associated with real split semisimple Lie group G.

Let us first recall the Bruhat decomposition of G/B,

G/B =
⊔
w∈W

Ω◦
w with Ω◦

w = NwB/B.

Each Bruhat (or Schubert) cell Ω◦
w is labeled by the element w ∈ W  and codim (Ωw) = �(w), the 

length of w. Let σw denote the Schubert class associated to the Schubert variety Ωw = ∪w�w′Ω◦
w′. 

Here the Bruhat order is defined as w � w′ iff Ωw ⊃ Ωw′. Then we can define the chain complex,

C∗ =

�(w0)⊕
k=0

Ck with Ck =
∑

�(w)=k

Zσw,

where w0 is the longest element of W, and the coboundary operators δk : Ck → Ck+1 is given 
by

δk(σw) =
∑

�(w′)=k+1

[w : w′]σw′ ,

where [w : w′] is the incidence number associated with σw
δk−→ σw′. It has been known (see 

[16, 40]) that the incidence number is either 0 or ±2 for the real flag variety G/B of real split 
semi-simple Lie group G. Then the cohomology of G/B can be calculated from the incidence 
graph GG/B defined as follows:

Definition 6.1.  The incidence graph GG/B consists of the vertices labeled by w ∈ W  and 
the edges ⇒ defined by

w ⇒ w′ iff




(i) w � w′

(ii) �(w′) = �(w) + 1

(iii) [w : w′] �= 0.

The incidence number for each edge is either 0 or ±2 (see [16]). The integral cohomology is 
then calculated from the graph.

Example 6.2.  In the case of G = SL(3,R), the incidence graph and the integral cohomol-
ogy are given by
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e
[1] [2]
⇓ ⇓
[12] [21]

[121]

and





H0(G/B,Z) = Z
H1(G/B,Z) = 0

H2(G/B,Z) = Z2 ⊕ Z2

H3(G/B,Z) = Z.

Here the Schubert classes are denoted by [ij] for w = sisj , e.g. δ1[2] = ±2[21] for 
δ1σs2 = ±2σs2s1.

In figure 5, we show the incidence graph for G/B with G = SL(4,R), from which one can 
compute the integral cohomology [16] as




H0(G/B,Z) = Z
H1(G/B,Z) = 0

H2(G/B,Z) = Z2 ⊕ Z2 ⊕ Z2

H3(G/B,Z) = Z⊕ Z⊕ Z2 ⊕ Z2

H4(G/B,Z) = Z2 ⊕ Z2

H5(G/B,Z) = Z2 ⊕ Z2 ⊕ Z2

H6(G/B,Z) = Z.

The incidence graph for the general case of real split semisimple G can be found in [16]. 
Then the integral cohomology of G/B can be computed from the incidence graph with the 
incidence numbers [w : w′] being 0 or ±2.

For the rational cohomology, we have

H∗(G/B,Q) = H∗(K/T ,Q) = H∗(K,Q),� (6.1)

where K is the maximal compact subgroup of G, and T is the maximal torus of G, e.g. for 
G = SL(n,R), K = SO(n), and T = diag(±1, . . . ,±1) (see proposition 6.3 in [15]). It is well 
known that the cohomology ring H∗(K,Q) of compact connected group K of rank l is given 
by the exterior product algebra,

Figure 5.  The incidence graph GG/B for the real flag variety SL(4,R)/B. The Schubert 
class σw is denoted by [ij . . . k] for w = sisj . . . sk. w0  =  [123121] is the longest element 
of W = S4. The incidence numbers associated with the edges ⇒ are ±2 (see also 
example 8.1 in [16]).
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H∗(K,Q) =
∧

Q{xm1 , xm2 , . . . , xml},

where {xm1 , . . . , xml} are the generators of the exterior product representation with 
deg(xmi) = mi (odd) for i = 1, . . . , l and m1 + · · ·+ ml = dim(K) (see for example [9]). In 
the case of K = SO(n), we have,

	 (a)	�for n  =  2m  +  1,

H∗(SO(2m+ 1),Q) =
∧

Q(x3, x7, . . . , x4m−1)

	(b)	�for n  =  2m,

H∗(SO(2m),Q) =
∧

Q(x3, x7, . . . , x4m−5, y2m−1).

		 Note here that the generators include the additional y2m−1. For example, H∗(SO(4),Q) is 
generated by two elements x3, y3 of the same degree, V = Qx3 +Qy3 and ∧2V = Qx3 ∧ y3.

We also note that the number of points on the finite Chevalley group K(Fq) of the compact 
connected group K is given by certain polynomial of q. Here Fq is a finite field with q ele-
ments. Although this polynomial can be computed by using the Lefschetz fixed point theorem 
for the Frobenius map Φ : K(Fq) → K(Fq), x �→ xq, we here give an elementary calculation 
to find those polynomials for K = SO(n) (see also [14]). As we show in the next section, those 
polynomials are also related to the indefinite Toda lattice of section 2.4 [45, 46].

Let us first assume that q is a power of a prime number p �= 2, such that in Fq the polyno-
mial x2  +  1 is not irreducible, i.e. 

√
−1 ∈ Fq. Then we have the following results for |Sn(Fq)|, 

the number of Fq points on Sn:

|Sn(Fq)| =

{
qm−1(qm − 1) if n = 2m− 1,

qm(qm + 1) if n = 2m.

This can be shown as follows: Let us first consider the case n  =  1, i.e.

S1(Fq) = {(x, y) ∈ F2
q : x

2 + y2 = 1}.

Then using the formulae for the stereographic projection, 
(
x = 2u

u2+1 , y =
u2−1
u2+1

)
 

and u = x
1−y, we have a bijection between the sets {(x, y) ∈ F2

q : y �= 1} and 

{u ∈ Fq : u2 + 1 �= 0}. Since 
√
−1 ∈ Fq, we have 2 points in {u2  +  1  =  0}. Counting the point 

(x = 0, y = 1), the north pole, we have |S1(Fq)| = q− 2+ 1 = q− 1. Now consider the case 

n  =  2, where we have the stereographic projection, 
(
x = 2u1

u21+u22+1 , y =
2u2

u21+u22+1 , z =
u21+u22−1
u21+u22+1

)
 

and 
(
u1 = x

1−z , u2 =
y

1−z

)
, which leads a bijective between the sets {(x, y, z) ∈ F3

q : z �= 1} 

and {(u1, u2) ∈ F2
q : u

2
1 + u22 + 1 �= 0}. The second set gives |{(u1, u2) ∈ F2

q :

u21 + u22 + 1 �= 0}| = q2 − (q− 1) points (note (q− 1) is the number of points in  
u21 + u22 + 1 = 0, i.e. with ui =

√
−1vi , {(v1, v2) ∈ F2

q : v
2
1 + v22 = 1} = S1(Fq)).  

We now add the points of the north pole (x, y, 1) with x2 + y2 = 0, which gives 
|{(x, y, 1) : x2 + y2 = 0}| = 2(q− 1) + 1, where 2(q− 1) for x = ±

√
−1y �= 0 and 1 

for (0, 0, 1). Then we have |S2(Fq)| = q2 − (q− 1) + 2(q− 1) + 1 = q(q+ 1). Using 
the induction, one can show that the number of points in the north pole is given by  
|{(x1, . . . , x2m−1) ∈ F2m−1

q : x21 + · · ·+ x22m−1 = 0}| = q2m−2 and |{(x1, . . . , x2m) ∈ F2m
q : 

x21 + · · ·+ x22m = 0}| = q2m−1 + qm − qm−1. Then we obtain the formula |Sn(Fq)| by 
computing
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|Sn(Fq)| = qn − |Sn−1(Fq)|+ (number of the points in the north pole).

We can now find the number of Fq points of finite Chevalley group SO(n,Fq): First recall 
that SO(n+ 1)/SO(n) ∼= Sn. Then we obtain

|SO(n,Fq)| =
n∏

k=1

|Sn−k(Fq)|,

which leads to the results [9]:

	 (a)	�For n  =  2m,

|SO(2m,Fq)| = 2qm(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm − 1).

	(b)	�For n  =  2m  +  1,

|SO(2m+ 1,Fq)| = 2qm
2
(q2 − 1)(q4 − 1) · · · (q2m − 1).

In general, the number of Fq points on the compact group K can be expressed by (see e.g. 
[9])

|K(Fq)| = qr p(q) with p(q) =
l∏

i=1

(qdi − 1),� (6.2)

where di’s are degree of basic Weyl group invariant polynomials for K given by di = (mi + 1)/2, 
and r = dim(K)− deg( p(q)). In the next section, we show that those polynomials can be 
reproduced by counting the blow-ups in the solution of the indefinite Toda lattice (see [14] for 
the general case).

6.2.  Blow-ups of the indefinite Toda lattice on G and the cohomology of G/B

Now we show how to obtain the cohomology of G/B from the moment polytope of the indefi-
nite Toda lattice of section 2.4.

First note that the τ-functions can change their signs if some (but not all) of σi’s are nega-
tive. This can be seen from (2.18), and implies that the solution blows up for some time t1 = t̄1, 
(see also (2.22)). The explicit form of the τ-functions can be obtained from (2.21), and they 
are expressed by (see also proposition 3.1 in [46]),

τk(t) =
∑

1�j1<···<jk�n

σj1 · · ·σjk K( j1, . . . , jk) exp

(
k∑

i=1

λji t

)
,� (6.3)

where K( j1, . . . , jk) are positive and given by

K( j1, . . . , jk) =
(
ϕ0(λj1) · · ·ϕ0(λjk)

)2
∣∣∣∣∣∣∣∣

1 · · · 1
...

. . .
...

λk−1
j1 · · · λk−1

jk

∣∣∣∣∣∣∣∣

2

> 0.

As the simplest case, let us consider the sl2(R) indefinite Toda lattice: We have one τ-function,

τ1(t) = σ1ρ1eλ1t + σ2ρ2eλ2t.
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If σ1σ2 = −1, τ1(t) has zero at a time t = 1
λ2−λ1

ln(ρ1
ρ2
), that is, we have a blow-up in the 

solution. The image of the moment map µ(τ1) is given by a line segment whose end points 
correspond to the weights L1 and L2 = −L1. Although the dynamics are so different in the 
cases σ1σ2 > 0 and σ1σ2 < 0, the moment polytope (a line segment) is independent of the 
signs of the σi’s.

In order to find the general pattern of the sign changes in (g1(t), . . . , gn−1(t)) of the matrix X 
in (2.16) with (2.18), we first recall that the isospectral variety is characterized by the moment 
polytope Mε whose vertices are given by the orbit of Weyl group action. Here the set of signs 
ε = (ε1, . . . , εn−1) is defined by the signs of gi for t → −∞. From the ordering λ1 < · · · < λn, 
we first see that τk(t) ≈ σ1 · · ·σkK(1, . . . , k) exp((λ1 + · · ·+ λk)t). Then from the definition 
of gk(t) in (2.22), i.e. gk = τk−1τk+1/τ

2
k , the sign of gk(t) for t → −∞ is given by

εk = sgn(gk) = σkσk+1 for k = 1, . . . , n− 1.

Then from the moment map (3.1), one notes that the moment polytope given as the image of 
the moment map µ(Mε) is independent of the sign set ε. However the dynamics of the Toda 
lattice with a different ε is quite different, and the solution with at least one εk < 0 has a blow-
up at some t ∈ R.

We now consider each edge of the polytope which corresponds to an sl2(R) indefinite 
Toda lattice, that is, where gj �= 0 for only one j. This edge can be also expressed by a simple 
reflection sj ∈ W . Since the simple reflection sj exchanges σj and σj+1, we have an action of sj 
on all the signs εk , sj : εk → ε′k ,

ε′k = sj(εk) =




εkεk−1 if j = k − 1

εkεk+1 if j = k + 1

εk if j = k, or |j− k| > 1

which can be also shown directly from the form of τk(t) in (6.3). This formula can be extended 
to the indefinite Toda lattice on any real split semisimple Lie algebras, and we have (see (4.4) 
and proposition 3.16 in [10]):

Proposition 6.3.  Let εj = sgn(gj) for j = 1, . . . , n− 1. Then the Weyl group action on the 
signs is given by

sj : εk �−→ εkε
−Ckj
j ,

where (Cij)1�i,j�n−1 is the Cartan matrix of sln(R).

With this W-action on the signs ε = (ε1, . . . , εn−1) with εk = sgn(gk) at each vertex of the 
polytope, we now define the relation between the vertices labeled by w and w′ = wsi  as fol-
lows: Notice that if εi = +, then (ε1, · · · , εn−1) remains the same under si-action. Then we 
write

w =⇒ w′ with w′ = wsi.

The following definition gives the number of blow-ups in the Toda orbit from the top vertex e 
to the vertex labeled by w ∈ W : Choose a reduced expression w = sj1 · · · sjk , and consider the 
sequence of the signs at the orbit given by w-action,

ε −→ sj1ε −→ sj2sj1ε −→ · · · −→ w−1ε.

We then define the function η(w, ε) as the number of → which are not of the form ⇒. The num-
ber η(w0, ε) for the longest element w0 gives the total number of blow-ups along the Toda flow 
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in the polytope of Mε. Whenever ε = (−, . . . ,−), we just denote η(w, ε) = η(w). This num-
ber η(w, ε) does not depend on the choice of the reduced expression of w (see corollary 5.2 in 
[14]). Hence the number of blow-up points along the trajectories in the edges of the polytope is 
independent of the trajectory parametrized by the reduced expression. In figure 2, we illustrate 
the numbers η(w, ε) for the sl3(R) indefinite Toda lattice. For example, on M−−, we have 
η(e) = 0, η(s1) = η(s2) = η(s1s2) = η(s2s1) = 1 and η(s1s2s1) = 2, i.e the total number of 
blow-ups is 2. We also illustrate this for the sl4(R) Toda lattice in figure 6. Along the path shown in 
this figure, we have η(e) = 0, η([2]) = η([21]) = η([213]) = 1, η([2132]) = 2, η([21323]) = 3 
and η(w0) = 4, where [ij · · · k] = sisj · · · sk, and note [21323]  =  [12312].

In general, the total number of blow-ups η(w0, ε) depends only the initial signs 
ε = (ε1, . . . , εn−1) with εi = sgn(gi(t)) for t → −∞, which is given by εi = σiσi+1. Then in 
the case of sln(R) indefinite Toda lattice, the number η(w0, ε) = m(n− m) where m is the total 
number of negative σi’s (proposition 3.3 in [46]). In particular, the maximum number of blow-
ups occurs in the case where ε = (−, . . . ,−), and it is given by [(n+ 1)/2](n− [(n+ 1)/2]). 
Those numbers η(w0, ε) are related to the polynomials given in (6.2) appearing in Fq points on 
certain compact groups K.

We now introduce polynomials in terms of the numbers η(w, ε), which play a key role for 
counting the number of blow-ups and give a surprising connection to the rational cohomology 
of the maximal compact subgroup SO(n) (definition 3.1 in [14]).

Definition 6.4.  We define a monic polynomial associated to the polytope Mε,

p(q, ε) = (−1)�(w0)
∑
w∈W

(−1)�(w)qη(w,ε).

Notice that the degree of p(q, ε), denoted by deg( p(q, ε)), is the total number of blow-ups, i.e. 
η(w0, ε) = deg( p(q, ε)). For the case ε = (−, . . . ,−), we simply denote it by p(q).

1

1

1

2

2

4
3

3
e

3

3

4

3

2

w  =[123121]w  =[123121]0 0

Figure 6.  The moment polytope M−−− for the sl4(R) indefinite Toda lattice (the 
right figure  is the back view of the left one). The divisors defined by the set of zero 
points for the τ-functions are shown by the dotted curve for {τ1 = 0}, by the light 
curve for {τ2 = 0}, and by the dark one for {τ3 = 0}. The double circles indicate the 
divisors with {τi = 0} ∩ {τj = 0}, which are all connected at the center of the polytope 
corresponding to the point with {τ1 = τ2 = τ3 = 0}. The numbers in the polytope 
indicate the number of blow-ups along the flow. An example of a path from the top 
vertex e to the bottom vertex w0, the longest element of S4, is shown by directed edges.
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Example 6.5.  In the case of the sl2(R) Toda lattice,

	 (a)	�for ε = (+), we have e ⇒ s1 which gives p(q,+) = 0,
	(b)	�for ε = (−), we have a blow-up between e and s1, hence p(q,−) = q− 1.

Recall from the previous section  that the polynomial p(q) = p(q,−) appears in 
|SO(2,Fq)| = q− 1.

In the case of the sl3(R) Toda lattice, from figure 2,

	 (a)	�for all the cases of ε = (ε1, ε2) except (−,−), we have p(q, ε) = 0.
	(b)	�for ε = (−,−), we have p(q)  =  q2  −  1.

Note again that the polynomial p(q) appears in |SO(3,Fq)| = q(q2 − 1).
In the case of sl4(R), we have, from figure 6,

	 (a)	�for all ε = (ε1, ε2, ε3) except (−,−,−), p(q, ε) = 0.
	(b)	�for ε = (−,−,−), p(q) = q4 − 2q2 + 1 = (q2 − 1)2.

Again note that |SO(4,Fq)| = q2(q2 − 1)2.

Casian and Kodama prove that the polynomial p(q) for Mε with ε = (−, . . . ,−) in defini-
tion 6.4 agrees with the polynomial p(q) in |K(Fq)| in (6.2) where K is the maximal compact 
subgroup of real split semisimple Lie group G for the Toda lattice (theorem 6.5 in [14]).

Thus the polynomial p(q) contains all the information on the Fq points on the compact sub-
group K of G, which is also related to the rational cohomology, i.e. H∗(K,Q) = H∗(G/B,Q) 
(see (6.1)). Now recall that the integral cohomology of the real flag variety G/B is obtained 
by the incidence graph GG/B in definition 6.1. In [14], Casian and Kodama also show that the 
graph GG/B can be obtained from the blow-ups of the Toda flow. They define a graph Gε associ-
ated to the blow-ups as follows:

Definition 6.6.  The graph Gε consists of vertices labeled by the elements of the Weyl group 
W and oriented edges ⇒. The edges are defined as follows:

w1 ⇒ w2 iff





(a) w1 � w2 (Bruhat order)

(b) �(w1) = �(w2) + 1

(c) η(w1, ε) = η(w2, ε)

(d) w−1
1 ε = w−1

2 ε.

When ε = (−, . . . ,−), we simply denote G = Gε.

Then they prove that Gε with ε = (−, . . . ,−) is equivalent to GG/B (theorem 3.5 in [14] 
which is the main theorem in the paper). For example, the graph G  associated with figure 6 
agrees with the incidence graph GG/B given in figure 5. The proof of the equivalence GG/B = G  
contains several technical steps, which are beyond the scope of this review.
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