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Abstract
In 1967, Japanese physicist Morikazu Toda published a pair of seminal papers
in the Journal of the Physical Society of Japan that exhibited soliton solutions
to a chain of particles with nonlinear interactions between nearest neighbors.
In the fifty years that followed, Toda’s system of particles has been generalized
in different directions, each with its own analytic, geometric, and topological
characteristics. These are known collectively as the Toda lattice. This survey
recounts and compares the various versions of the finite nonperiodic Toda
lattice from the perspective of their geometry and topology. In particular, we
highlight the polytope structure of the solution spaces as viewed through the
moment map, and we explain the connection between the real indefinite Toda
flows and the integral cohomology of real flag varieties.

Keywords: Toda lattice, integrable systems, cohomology of flag varieties,
special issue

overview

In 1974, Henon [35] and Flaschka [24] announced the complete integrability of the (real,
finite, periodic) Toda lattice. This came seven years after the pivotal papers of Toda on vibra-
tions in chains with nonlinear interactions [73] and waves in anharmonic lattices [74]. Again
in 1974, Flaschka [24, 25], and also Manakov [56], showed that the periodic Toda lattice can
be written in Lax form through a change of variables, so that the constants of motion appear
as eigenvalues of the Lax matrix [53].
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Six years later, Moser [59] showed that the (real, finite) nonperiodic Toda lattice is com-
pletely integrable. In two different expressions of the equations, the flows obey a Lax equa-
tion on a set of real tridiagonal Lax matrices with positive subdiagonal entries. The matrices
are symmetric in one formulation and Hessenberg in the other—these are two different expres-
sions of the very same system. The flows exist for all time and preserve the spectrum of the
initial Lax matrix.

However, when we allow the entries on the subdiagonal to take on any real values, the tridi-
agonal symmetric and Hessenberg forms create two genuinely different dynamical systems.
In the symmetric case, the flows exist for all time and the isospectral manifolds are compact
[75], while in the Hessenberg form, the flows can blow up in finite time and the isospectral
manifolds are not compact (see e.g. [45, 46]). Shortly after this work, the flows on full sym-
metric real matrices in generic case were shown to be completely integrable [18] with the
introduction of additional constants of motion.

Section 2 describes these versions of the real, finite, nonperiodic Toda lattices with a focus
on their geometry and topology. This represents the work on real Toda lattices during roughly
the first twenty years after the Toda lattice was discovered in 1967.

By the time the Toda lattice had been known for 25 years, studies on nonperiodic com-
plex versions began to appear. These are the focus of section 3. This phase brings in the new
idea of compactifying the flows through embeddings into flag varieties. In a seminal paper,
Ercolani, Flaschka, and Haine [21] describe the Toda system on complex tridiagonal matrices
in Hessenberg form. The complex flows again blow up in finite (complex) time, but they differ
from the real in that they no longer preserve ‘signs’ of the subdiagonal entries. A theorem on
matrix factorizations [52] is used to embed the isospectral sets into a flag variety. There, the
flows enter lower-dimensional cells, called the Bruhat cells in the Bruhat decomposition of
the flag variety, at the blow-up times, where the singularity at a blow-up time is characterized
by the Bruhat cell [4, 13, 27].

Two years after [21], integrability was extended to the full Kostant—Toda lattice in [22],
where the system evolves on complex Hessenberg matrices with arbitrary entries everywhere
below the diagonal. On isospectral sets with distinct eigenvalues, the flows generate a diago-
nal torus action under the appropriate embedding into a flag variety. Similar embeddings,
derived from the companion and Jordan matrices of the spectrum, are helpful in understanding
nongeneric flows where eigenvalues coincide [69] and in describing the compactified complex
isospectral sets [70]. Coincidence of eigenvalues is seen in splittings of moment polytopes,
which allows for a description of monodromy around nongeneric isospectral sets in special
cases [66, 68].

Section 4 discusses other extensions of the finite nonperiodic Toda lattices. The Toda flow
in Lax form is introduced on an arbitrary diagonalizable matrix in [47] and is integrated by
inverse scattering (or equivalently, by factorization). The tridiagonal Hessenberg and sym-
metric Toda lattices, which are defined on the Lie algebra of type A (that is, s[,,), are extended
to semisimple Lie algebras using the Lie algebra splittings from the Gauss (or LU) and QR
factorizations, respectively [10, 11]. Related hierarchies are the Kac—van Moerbeke system,
which can be considered as a square root of the Toda lattice [33, 37], and the Pfaff lattice,
which evolves on symplectic matrices, and is connected to the indefinite Toda lattice [1, 43,
44].

Section 5 considers the full Kostant—Toda hierarchy in the real variables [50]. It classifies
the regular solutions of the hierarchy in terms of the rotally nonnegative parts of the flag vari-
ety G/B where G = SL(n,R) and B is the set of upper-triangular matrices. Using the moment
map, the full Kostant—Toda flows are defined on the appropriate weight space, and it is shown
that the closure of each flow forms an interesting convex polytope, which we call a Bruhat
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interval polytope (see also [76]). This section begins with a brief review of the totally non-
negative flag variety [49, 57]. The goal is to describe the topological structure of the regular
solutions of the full Kostant—Toda lattice for the real split algebra s, (R).

Section 6 describes how the singular structure of blow-ups in solutions of the indefinite
Toda lattice contains information about the integral cohomology of real flag varieties [14, 15].
We consider the moment polytope, the image of the moment map of the isospectral variety, for
the real split semi-simple Lie algebra of sl,(R). The vertices of the polytope are the orbit of
the Weyl group action [11, 28]. These vertices correspond to the fixed points of the Toda flows.
Each edge of the polytope can be considered as an orbit of the sl,(R) Toda lattice (the smallest
nontrivial lattice). An orbit may be regular (without blow-ups) or singular (with blow-ups).
One can then define a graph whose vertices are the fixed points and where two fixed points are
connected by an edge if and only if the sl(IR) flow between them is regular. This turns out
to be the incidence graph that gives the integral cohomology of the real flag variety. The total
number of blow-ups in the Toda flows is related to the polynomial associated with the rational
cohomology of a certain compact subgroup [9, 14, 15].

2. Early versions of the finite nonperiodic real Toda lattice

Consider n particles, each with mass 1, arranged along a line at positions ¢y, ..., g,. Between
each pair of adjacent particles, there is a force whose magnitude depends exponentially on the
distance between them. Letting p; denote the momentum of the kth particle, and noting that

%qk = py since each mass is 1, the total energy of the system is the Hamiltonian

n n—1
L ~(ars1—a0)
H:§;pk+;e 1 =) 2.1)

The equations of motion

daw _ OH  q9p _ OH

o o T o 22)
give the system of equations for the finite nonperiodic Toda lattice,
%" = Dk, k=1,..,n,

e — o~ (qer1—ax) —(g—q—1) — @3
D= —e + ek ak-1) k=1,..,n.

Here we sete™(41=9) = (Q and e~ (4+1~49) = () with the formal boundary conditions gy = —o0,

and qn+1 = OQ.

2.1. Symmetric form

There are two classic Lax forms of Equations (2.3): the symmetric form and the Hessenberg
form. For the symmetric form, we make the change of variables (Flaschka [24], Moser [59])

a = te r@n—a)  fp=1.n-1
(2.4)
b = —% pr. k=1,..n.

In these variables, the Toda system (2.3) becomes
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ddizk = ar(bk+1 — bi), k=1,..,n—1
2.5)
% = Z(a,% - a]%_1), k=1,..,n

with boundary conditions ay = 0 and a, = 0. Because the gy are real exponential functions,
they are strictly positive for all time.

Remark 2.1. Making a change in sign a; <> —a; for one or more values of k in definition
2.4 does not change equation (2.5). That is, the systems (Zay, by ) are equivalent for all choices
of signs.

The system (2.5) can be written in Lax form as

1) = Mo(L(0). ()] 26)

where L is the symmetric tridiagonal matrix, and II, (L) is the skew-symmetric projection of
L’

by a

=% and o (L) = (L)so — (L)<o- (2.7)
ap—1

an—1 bn

Here (L)~ (resp. (L)<o) is the strictly upper (resp. lower) triangular matrix of L.

Any equation in the Lax form %L = [B, L] for matrices L and B has the immediate con-
sequence that the flow preserves the spectrum of L. To check this, it suffices to show that
the function tr(Lk), the trace of LX, is constant for each k. One shows first by induction that
41* = [B,L*] and then observes that $[tr(L¥)] = tr[$ (L¥)] = tr[B, L] = 0. We now have
n — 1 independent invariant functions

Hi(L) = k% trL

The Hamiltonian (2.1) is related to H{(L) by H = 4H,(L) with the change of variables (2.4).

A property of real tridiagonal symmetric matrices (2.7) with a; # 0 for all & is that the
eigenvalues ); are real and distinct. Let A be a set of n real distinct eigenvalues, and let
Mp ={L in (2.7) : spec(L) = A}. Then M is a symplectic manifold. Each invariant func-
tion Hy(L) generates a Hamiltonian flow via the symplectic structure, and the flows are involu-
tive with respect to that structure (see [5] for the general framework and [26] for the Toda lattice
specifically). In section 2.5, we describe the Lie—Poisson structure for the equation (2.6).

Moser [59] analyzes the dynamics of the Toda particles, showing that for any initial con-
figuration, 9k+1 — 9k tends to oo as t — +oo. Thus, the off-diagonal entries of L tend to zero
as t — 400 so that L tends to a diagonal matrix whose diagonal entries are the eigenvalues.
We will order them as A\; < Ay < --- < \,. The analysis in [59] shows the sorting property
of the eigenvalues,

diag( Mgy An—1,- -, A1) ast — oo,

L(t) — ) 2.8)
diag(Ai, A, -+, ) ast — —oo.
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The physical interpretation of this is that as t = —oo, the particles g, approach the velocities
pr(—00) = =2, and as t — oo, the velocities are interchanged so that pg(00) = =2\, k1.
Asymptotically, the trajectories behave as

{qk(t) ~ )\kit + cki,
Pi(t) M
where A\, = Agand A = A\y_pp1e
Symes solves the Toda lattice using the QR factorization; his solution, which he verifies in
[72] and proves in a more general context in [71], is equivalent to the following. To solve (2.5)

with initial matrix L(0), take the exponential e’“(®) and use Gram—Schmidt orthonormalization
to factor it as

ast — +oo

Q

e = k(1)r (1), (2.9)
where k() € SO(n) and r(t) is upper triangular. Then the solution of (2.5) is
L(t) = k™' ()L(0)k(t) = r(t)L(0)r~ (1) . (2.10)

Since the Gram-Schmidt orthonormalization of e2(%) can be done for all ¢, this shows that the

solution of the Toda lattice equations (2.5) on the set of symmetric tridiagonal matrices L of
(2.7) is defined for all 1.

We mention also the 7-functions, which play a key role of the theory of integrable systems
(see for example [36, 58]). Let us first introduce the following symmetric matrix, called the
moment matrix,

M(1) = O = T (K" (0k(0)r(r) = r" (1) (1), (211

where 1’ denotes the transpose of r, and note that k” = k~!. The decomposition of a symmet-
ric matrix to an upper-triangular matrix times its transpose on the left is called the Cholesky
factorization. This factorization is used to find the matrix r, and then the matrix £ can be found
by k = ey~ The 7-functions, 7; for j = 1,...,n — 1, are defined by
J
7i(t) = det (Mj(1)) = [ [ ri(1)%, (2.12)
i=1
where M; is the j x j upper-left submatrix of M, and we denote diag(r) = diag(r; ..., r,). We
see from (2.10), i.e. L(¢)r(¢) = r(¢)L(0), that we have

ri+1(2)
i(t) =aj(0)—/——.
a/() a]( ) rk(t)
Since ri(t) # 0 for all k, the signs a;(f) remain the same. With (2.12) and (2.5), we obtain
T 1 ()71 (1) 1d 7(1)
(1) = a;(0) YLD d bi(t) = = —1 ] . (2.

One should note that the 7-functions are just defined from the moment matrix M = e ,and
the solutions (a;(t), b;(t)) are explicitly given by those T-functions without the factorization.

21L(0)

2.2. Hessenberg form

The symmetric matrix L in (2.7), when conjugated by the diagonal matrix
D = diag(1,ay,...,a,_1), gives a matrix ¥ = DLD~" in Hessenberg form:

5
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by 1
2
a
y=|“ (2.14)
1
aﬁ—l by,
The Toda equations (2.6) now take the Lax form for X := 2Y,
d
3X= (X, (X)<o] = [(X) 0, X], (2.15)
where (X)>0 = X — (X) <o is the upper-triangular part of X. Equation (2.15) with
ho1
x=|& - (2.16)
. . 1
8n—1 Ja
is called the Hessenberg form of the finite nonperiodic Toda lattice. Again, since the equa-
tions are in Lax form, the functions Hy(X) = ﬁ tr X**1 are constant in 7.

Notice that the Hessenberg and symmetric Lax formulations of (2.3) are simply different
ways of expressing the same system. The solutions exist for all time and exhibit the same
behavior as r — +00. However, when we allow the subdiagonal entries to assume any real
value, the symmetric and Hessenberg forms differ in their geometry and topology and in the
character of their solutions.

2.3. Isospectral manifolds in the real tridiagonal symmetric form

Here we consider the Lax equation (2.6) where the a; in the symmetric Lax matrix L may be
any real numbers. As mentioned in remark 2.1, the equations with different signs in the a are
the same. In particular, if a; 7 O for all k, then the eigenvalues are real and distinct.

Let Mp denote the set of n x n matrices of the form (2.7) with fixed eigenvalues
Al < A2 < -+ < Ap. My contains 2"~! components of dimension n — 1, where each comp-
onent consists of all matrices in M with a fixed choice of sign for each a;. The solution of
(2.6) with initial condition in a given component remains in that component for all 7, because
the solutions preserve the sign of each a;. Each lower-dimensional component, where one
or more «; is zero and the signs of the other a; are fixed, is also preserved by the Toda flow
through any initial matrix in that component. Tomei [75] shows that M, is a compact smooth
manifold of dimension n — 1 containing 2"~! open components, each diffeomorphic to R"~!
(see also [77]). On each component, a; # O for all k, and the sign of each g is fixed. The
components are glued together along the lower-dimensional sets where one or more ay, is zero.

For n = 3, there are four 2-dimensional components, denoted as M4, M4 _,M__, and
M__, according to the signs of a; and a,. The closure of each component is obtained by
adjoining the six diagonal matrices diag(\;, Aj, Ax) where all the a; vanish (these are the fixed
points of the Toda flows) and six 1-dimensional sets where exactly one ¢ is zero. The four
principal components are glued together along the loci of M where one or more @ vanish.
In figure 1, we illustrate the Tomei manifold M, for the s/(3, R) symmetric Toda lattice,

My=Miy UM _UM_LUM__,
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Figure 1. The Tomei manifold M for the symmetric tridiagonal s(3(R) Toda lattice.
The 3-tuples (i, ], k) on the vertices indicate the diagonal matrices L = diag(\;, Aj, Ak).
Each hexagon M, ., corresponds to the moment polytope (see section 3.1) for the Toda
lattice with the signs (e, ;) = (sgn(ay),sgn(az)). The boundaries correspond to the
s1(2,R) Toda lattices associated with either a; = 0 or a; = 0. M results from gluing
corresponding edges of the hexagons. For example, the edge between (1,2,3) and
(1,3,2) in M is glued with the same edge in M __, since this edge indicates a; = 0
and a; > 0. In the other gluing shown, a; = 0 and a; < 0.

where the cups include the specific gluing according to the signs of the a;. The resulting mani-
fold My is a connected sum of two tori, the compact Riemann surface of genus two. This can
be easily seen from figure 1 as follows: Gluing those four hexagons, M, consists of 6 vertices,
12 edges and 4 faces. Hence the Euler characteristic is given by x(Ma) =6 — 12 +4 = =2,
which implies that the manifold has genus g = 2 (recall x = 2 — 2g). The fact that M, is
orientable can be shown by giving an orientation for each hexagon so that the directions of two
edges in the gluing cancel each other. Since compact two-dimensional surfaces are completely
characterized by their orientability and Euler characters, we conclude that the manifold Mz
is a connected sum of two tori.

The Euler characteristic of M (for general n) is determined in [75] as follows. Let
L= diag()\c,(l), s Ag(n)) be a diagonal matrix in M, where o is a permutation of the num-
bers {1, ...,n}, and let (L) be the number of times that (k) is less than o (k 4 1). Denote by
E(n, k) the number of diagonal matrices in M with (L) = k. Then the Euler characteristic
of M, is the alternating sum of the E(n, k):

(M) = S (=DHEK)
k=0
An isospectral set where the eigenvalues are not distinct is not a manifold. For example, the
isospectral set with spectrum (1, 1, 3) has the shape of a figure eight [13, 75].

2.4. Indefinite Toda lattice in real tridiagonal Hessenberg form

We return to the Hessenberg form with X as in (2.16), and allow the g to assume arbitrary real val-
ues. Recall that in the formulation of the original Toda equations, all the g; were positive, so that
the eigenvalues were real and distinct. When g # 0 for some k, the eigenvalues may be complex
or may coincide. Even in the case where all the eigenvalues are real and distinct, the case with
some g; < 0 causes blow-ups in the flows so that the topology of the isospectral manifolds is very
different from the topology of the Tomei manifolds described in the previous section [23, 46].
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The matrices of the form (2.16) with g; # 0 for all k are partitioned into 2"~ different
Hamiltonian systems, each determined by a choice of signs of the g;. Letting oy = +1 for
k =1,...,n and taking the sign of g; to be 0x0x+1, Kodama and Ye [45] give the Hamiltonian
for the system with this choice of signs as

n n—1
1 2 — (X1 —Xk)
H= 5 kE,l Vi + kgl OkOfq1€ HHITH 2.17)

where the variables (f;, gx) in the Hessenberg form are given by

{k;yk, kil,...,l’l

(2.18)
8k = i0k0k+1 e~ (1= k=1,..,n—1.

The system (2.15) with the Hamiltonian H in (2.17) is called the indefinite Toda lattice. The
negative signs in (2.17) correspond to attractive forces between adjacent particles, which
causes the system to become undefined at finite values of ¢, as is seen in the solutions obtained
in [45] and [46] by inverse scattering.

The blow-ups in the solutions are also apparent in the factorization solution of the
Hessenberg form. To solve (2.15) with initial condition X(0), we consider the LU factoriza-
tion of the exponential eX(?),

™ = n(1)b(r), (2.19)

where n(t) is lower unipotent and b(t) is upper-triangular. Then, as shown in [61, 62] (see also
(34, 601),

X(t) = n ' (£)X(0)n(r) = b(t)X(0)b~ ' (1) (2.20)
solves (2.15). Notice that the factorization (2.19) is obtained by Gaussian elimination, which
multiplies ¢X(?) on the left by elementary row operations to put it in upper-triangular form.
This process works only when all principal minors (the determinants of upper left k x k
blocks, which are the 7-functions as defined in (2.12)) are nonzero. At particular values of
t € R, this factorization can fail, and the solution (2.20) becomes undefined.

The solutions ( f, gx) can be expressed in terms of the T-functions

k

7)== {ef’“(’)}k =[[ 4. (2.21)

=1
where [eX(9)]; is the k x k principal minor of eX(®), and diag(b) = diag(dj, . . .,d,). As in the
previous case of symmetric Toda, from (2.20), we have
Tt 1 (1) Te—1 (1) d 10|
Tt V)T 1) d =21

T(t)? and A0 =G 200

dt
Now it it clear that the factorization (2.19) fails if and only if 7 () = O for some k. Then a blow-
up (singularity) of the system (2.15) can be characterized by the zero sets of the 7-functions.

g(1) = gx(0)

) .22

Example 2.2. To see how blow-ups occur in the factorization solution, consider the initial

matrix
X0 — 1 1
07 \-1 -1/~
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When t # —1,

C%ZC+t t>:<a ?(IH {)
-t 1—t |1 0
and the solution evolves as in (2.20). The 7-function is given by 71(¢) = 1 4 ¢, and when

t = —1, this factorization does not work. However, we can multiply e ~*° on the left by a lower
unipotent matrix 7! (in this case the identity) to put it in the form wb, where w is a permuta-

tion matrix:
_x 0 -1 1 0 0 -1 1 2
e = = .
1 2 0 1 1 0 0 1

This example will be taken up again in section 3.2, where it is shown how the factorization
using a permutation matrix leads to a compactification of the flows.

In general, when the factorization (2.19) is not possible at time t = 7, eX(0)

as eX(©) = n(7) w b(7) for some permutation matrix w. In [21], this factorization is used to
complete the flows (2.20) through the blow-up times by embedding them into a flag variety.
We examine this further in the context of the complex tridiagonal Hessenberg form.

To describe the topology of a generic isospectral set M 4 in this version of the Toda lattice,
it is first shown that because of the blow-ups in X, M is a noncompact manifold of dimen-
sion n — 1 [46]. The manifold is compactified by completing the flows through the blow-up
times. The 2 x 2 case is basic to the compactification for general n. The set of 2 x 2 matrices
with fixed eigenvalues \; < Ay,

J— 1 1 .
MA{@lﬁ>ﬁh<M}, (2.23)

consists of two components, M with g; > 0 and M_ with g; < 0, together with two fixed

points,
(a1 (1
Xl—(o )\z)and Xz—(o /\1>.

Writing o, = A\ + X\, —fi and substituting this into the equation for the determinant,
fifa — g1 = A1 A2, shows that M) is the parabola

gr=—(h—=M)(fi —N). (2.24)

This parabola opens down, crossing the axis g; = 0 at f; = A;and f; = \,, corresponding to
the fixed points X; and X». For an initial condition with g; > 0, the solution is defined for all 7;
it flows away from X, toward X;. This illustrates what is known as the sorting property, which
says that as t — oo, the flow tends toward the fixed point with the eigenvalues in decreasing
order along the diagonal. The component with g; < 0 is separated into disjoint parts, one with
Jf1 < A1 and the other with f; > A,. The solution starting at an initial matrix with f; > X,
flows toward the fixed point X, as t — oo. For an initial matrix with f; < A, the solution flows
away from X, blowing up at a finite value of . By adjoining a point at infinity to connect these
two branches of the parabola, the flow is completed through the blow-up time and the resulting
manifold is the circle, S'.

For general n, the manifold M with spectrum A contains z! fixed points of the flow, where
the eigenvalues are arranged along the diagonal. These vertices are connected to each other by

can be factored

9
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incoming and outgoing edges analogous to the flows connecting the two vertices when n = 2.
The result is nonorientable for n > 2. For n = 3, it is a connected sum of two Klein bottles.
Figure 2 illustrates the compactification of M for the sl3(R) indefinite Toda lattice. With
this gluing, the compactified manifold M has Euler characteristic x (M) = —2 as in the
case of the Tomei manifold (see figure 1). The non-orientability is seen in the non-cancellation
of the given orientations of the hexagons.

Casian and Kodama [10] (see also [12]) show that the compactified isospectral mani-
fold is identified as a connected completion of the disconnected Cartan subgroup of
G = Ad(SL(n,R)¥). It is diffeomorphic to a toric variety in the flag variety of G. We give
more details in section 6.2.

2.5. Full symmetric real Toda lattice

In 1986, the paper [18] by Deift, Li, Nanda, and Tomei brought a radical departure from the
tridiagonal Toda lattices that had been heretofore studied, by expanding the phase space to the
set of full symmetric matrices. Consider the symmetric Toda equation

d
at =
as in (2.6), where L is now a full symmetric matrix with distinct eigenvalues. The authors of
[18] show that (2.25) remains completely integrable for the generic case. They present a suffi-
cient number of constants of motion in involution and construct the associated angle variables.
The additional constants of motion are found by a chopping construction on the matrix that
was later extended in [22] to the complex full Kostant—Toda lattice, which we describe in more
detail in section 3.3.
The Lie—Poisson structure on the space of symmetric real matrices is the Kostant—Kirillov
form (as explained in [18]), with respect to which the Toda flows (2.25) may be expressed in
Hamiltonian form as

[Meo(L), L] with  Ieo(Z) = (L)s0 — (L)<0 (2.25)

gL:{HI,L}(L) with Hl(L):ltr(Lz).

dr 2
Using the Poisson structure, we may extend (2.25) to define the Toda lattice hierarchy gen-
erated by the Hamiltonians Hy(L) = k_}_—ltr(Lk“):
0
a—tL = {Hy,L}(L) = 15, VH, L] for k=1,2,...,n—1 (2.26)
k

where tr(XVf) = lim._,o /(L + €X) so that VH, = L*. Each flow stays on a co-adjoint
orbit in the phase space of the symmetric Toda, which is Sym(n) := {L € sl,(R) : LT = L}.
The Poisson structure is nondegenerate when restricted to a co-adjoint orbit, and the level sets
of the integrals found in [18] are the generic co-adjoint orbits.

In [42], Kodama and McLaughlin give the explicit solution of the Toda lattice hierarchy
(2.26) on full symmetric matrices with distinct eigenvalues by solving the inverse scattering
problem of the system

0
LP=®dA and —®=1I,("®
8tk
with A = diag(\y, ..., \,). Since L is symmetric, the matrix ® of eigenvectors is taken to be

orthogonal:

10
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Figure 2. The compactification of the isospectral manifold M, for the indefinite sl3(R)
Toda lattice. Each hexagon indicates the moment polytope associated with an indefinite
Toda lattice. The signs (€;, €2) in M, , are those of (g;, g2) as  — —oo, and the signs
in the hexagons indicate the signs of (g1,g2). The gluing rule according to the sign
changes of g; is the same as that in the Tomei manifold, but the pattern is now different.
For example, the edge between (2,3, 1) and (3,2, 1) in M__ is now glued with that in
M _. The solid and dashed lines in the hexagons show the points where the solutions
blow up; 71 = 0 (solid) and 7 = 0 (dashed). The numbers in the sections indicate the
number of blow-ups along the flow from r = —co to 400 (see section 6.2).

L=3A®"
with @ = [@p(A1), ..., p(A,)], where the ¢()y) is the normalized eigenvector of L with eigen-
value \;.

The indefinite extension of the full symmetric Toda lattice is studied in [42], where explicit
solutions of ¢(\, #) are obtained by the method of inverse scattering. The authors also give
an alternative derivation of the solution using the factorization method of Symes [72], where
() is factored into a product of a pseudo-orthogonal matrix times an upper triangular matrix
(the HR-factorization).

3. Complex Toda lattices

Here we consider complex version of Toda lattices and introduce a powerful new tool for
understanding the geometry of the iso-spectral varieties, namely, embeddings of the isospec-
tral sets into the flag varieties. Under these mappings, the Toda flows generate group actions
and blow-ups are compactified. The geometry and topology of the compactified isospectral
sets can then be described in terms of the moment map and moment polytope of the flag
variety.

3.1. The moment map

Let G be a complex semisimple Lie group, H a Cartan subgroup of G, and B a Borel subgroup
containing H. If P is a parabolic subgroup of G that contains B, then G/P can be realized as the
orbit of G through the projectivized highest weight vector in the projectivization, P(V), of an
irreducible representation V of G. Let A be the set of weights of V, counted with multiplicity;
the weights belong to b, the real part of the dual of the Lie algebra b of H. Let {v,, : a € A}
be a basis of V consisting of weight vectors. A point [X] in G/P, represented by X € V, has

1
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homogeneous coordinates 7, (X), where X =} 4 7o (X)va. The moment map as defined
in [39] sends G/P into bp:

po: G/P — br
> | (X)Pa 3.1

acA

X = S
ac A

(also see e.g. [30, 31]). Its image is the weight polytope of V, also referred to as the moment
polytope of G/P.

The fixed points of H in G/P are the points in the orbit of the Weyl group W through the
projectivized highest weight vector of V; they correspond to the vertices of the polytope under
the moment map. Let H - [X] be the closure of the orbit of H through [X]. Its image under p
is the convex hull of the vertices corresponding to the fixed points contained in H - [X]; these
vertices are the weights {a € W - oV : 7, (X) # 0}, where o is the highest weight of V [6].
In particular, the image of a generic orbit, where no m,, vanishes, is the full polytope. The real
dimension of the image is equal to the complex dimension of the orbit.

For G = SL(n, C), B the upper triangular subgroup, and H the diagonal torus. The choice
of B determines a splitting of the root system into positive and negative roots and a system
A of simple roots. The simple roots are L; — L1, where i = 1, ...,n — 1and L; is a weight of
the standard representation of s, i.e. for h = diag(hy,...,h,) € b, L;(h) = h;. Then let hj
denote the dual of b,

b := Spang { Ly,...,L, ZLj:o ~ R (3.2)
j=1
The Weyl group W = S, acts by permuting the weight L;, and the moment polytope of G/B
is the convex hull of the weights L;, . ; for (i1,...,i,) =7(1,...,n) with 7 € S,,, which is
given by
Li.iy = (= DLy + (n =2)L;, + -+ L;,_, (3.3)

where the highest weight is L,
dron, which is given by

». This moment polytope is referred to as the permutohe-

,,,,,

Perm, = Conv{L,(i. ) € bg |7 € S, }. (3.4)

3.2. Complex tridiagonal Hessenberg form

Let M be the set of complex tridiagonal Hessenberg matrices of the form (2.16), where the
Jr and g are arbitrary complex numbers. As before, the Toda flow is defined by (2.15) and
the eigenvalues (equivalently, the traces of the powers of X) are constants of motion. The

Hamiltonian Hy(X) = k-&%l tr (X**!) generates the flow

19).4

5 = X (VH) <ol = X, (%)co] = ()50, X]. (3.5)
The solution of (3.5) can be found by the LU factorization as in (2.19). That is, with
enX'(0) = n(t)b(1 ), we have

X(1) = n~ ()X (0)n(t) = b(t)X(0)b~ (). (3.6)

12
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Fix the eigenvalues );, and consider the level set My consisting of all matrices in M
with spectrum A = {\y, ..., A\, } (we often identify A = diag()y, ..., \)). In contrast to the real
tridiagonal flows described in section 2.4, when X is complex, M 4 is no longer partitioned by
signs of the g;. There is only one maximal component where no g; vanishes. The n — 1 flows
through any initial X with g # 0 for all k generates the whole component.

In the case of distinct eigenvalues, Ercolani, Flaschka and Haine in [21] construct a mini-
mal nonsingular compactification of M on which the flows (3.5) extend to global holomor-
phic flows. The compactification is induced by an embedding of M, into the flag variety
SL(n,C)/B with B, the set of weakly upper-triangular matrices. The embedding depends on
the following factorization by Kostant [52] of X € M. Let €5 be the matrix with (A, ..., \,)
on the diagonal, 1’s on the superdiagonal, and 0’s elsewhere. Then every X € M, can be
conjugated to €5 by a unique element n € N, the set of lower-triangular unipotent matrices:

X =nexn—!. 3.7
This defines a map of M into G/B:
ja: Mpa — G/B

3.8
X +— n'lmodB. 38

This mapping is an embedding [51], and the closure, jj (M), of its image is a nonsingular
and minimal compactification of M. Let ny be the unique lower unipotent matrix such that
X(0) = noeAnO_]. Then the solution (3.6) is X () = n_l(tk)noeAnO_ln(tk), where no_'n(tk) is
lower unipotent. The Toda flow X(#;) is mapped into the flag variety as

aX(%) = ny'n(t) mod B

ny "X ) mod B . 3:9)

Even at values of f; where the first expression in (3.9) is not defined because the LU factor-
ization of eX'(®) is not possible, the second expression in (3.9) is defined. In this way, the
embedding of X(#) into G/B completes the flows through the blow-up times. This used in [21]
to study the nature of the blow-ups of X(#;).

To illustrate this in a simple case, consider example 2.2 from section 2.4. The isospectral
set of 2 x 2 Hessenberg matrices with both eigenvalues zero is embedded into the flag variety
SL(2,C)/B, which has the cell decomposition

SL(2,C)/B= NB/B U N ((1) _01) B/B, (3.10)

where N is the set of lower triangular matrices with 1’s in the diagonals. The big cell, NB/B,
contains the image of the flow X(7) whenever this flow is defined, that is, whenever the factor-
ization €™ = n(t)b(t)is possible. At = —1, where X(¢) is undefined, the embedding jx com-
pletes the flow through the singularity. The image Jjx (X(f)) passes through the flag u; 'e =%
at time r = —1, which is the cell on the right in (3.10).

The cell decomposition (3.10) is a special case of the cell stratification of G/B known as the

Bruhat decomposition. This decomposition is defined in terms of the Weyl group W as

G/B= | | NwB/B,
wew

(3.11)

where N is the unipotent group of lower triangular matrices, and each component NwB/B is
called the Bruhat cell associated with w € W. Here w is the representation of w € W on G.
For G = SL(n,C), W is the symmetric group of permutations S,, and w is the permutation

13
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matrix corresponding to w € S,. Thus, the Bruhat decomposition partitions flags according to
which permutation matrix w is needed to perform the factorization g = nwb for g € G with
n € N and b € B. At all values of #; for which the flow X(#) is defined, j, sends X(#) into
the big cell of the Bruhat decomposition, since w is the identity matrix. When the factoriza-
tion e"X'(0) = n(t:)b(t) is not possible at time 7, = 7, the group element g = ™' () can be
factored as

eX O = n(Phwb(7), (3.12)

for some permutation matrix w. In this case, the flow (3.9) enters the Bruhat cell NwB/B at
time #; = ¢. Ercolani ef al in [21] characterize the Laurent expansion of each pole of X(¢;) in
terms of the Bruhat cell that the solution enters at the blow-up time.

The compactification of M where eigenvalues need not be distinct is studied in [70] by a
modification of the embedding (3.8) where the Hessenberg matrix X is conjugated to a Jordan
matrix J of the spectrum (see [69]). Since the Jordan matrix of X has one block for each eigen-
value, all elements of M, are conjugate. Under the Jordan embedding, the maximal torus
generated by the flows is diagonal if the eigenvalues are distinct and a product of a diagonal
torus and a unipotent group when eigenvalues coincide. Via the Jordan embedding, the n — 1
flows X(#;) = n~!(t)X(0)n(t) in (3.6), with the appropriate choice of X(0), generate an
action of the centralizer of J in G = SL(n, C) on the flag variety G/B. As shown in [69], this
group is a semi-direct product of the diagonal torus obtained by setting all the entries above
the diagonal equal to zero, and the unipotent group obtained by setting all the diagonal entries
equal to 1. This group action, together with the moment map of the maximal torus, is used in
[70] to identify each component in the boundary of the image of M in G/B with a face of
the moment polytope.

3.3. The full Kostant—Toda lattice

In this version of the Toda lattice, Ercolani, Flaschka, and Singer [22] connect the expanded

phase space with its additional constants of motion introduced by Deift, Li, Nanda and Tomei

in [18] (see section 2.5) and the geometrically enlightening idea of embeddings of the isospec-

tral sets into flag varieties introduced by Ercolani, Flaschka and Haine in [21] (see section 3.2).
The full Kostant—Toda lattice evolves on the set of full complex Hessenberg matrices

* 1 0 0
x % 1 0
X=1: & -~ (3.13)
* k% 1
* kX *

with arbitrary complex entries below the diagonal. The set of all such X is denoted € + b_,
where ¢ is the matrix with 1’s on the superdiagonal and zeros elsewhere and b_ is the set of
lower triangular complex matrices. Note the decomposition [, = b_ @ ny where n4 is the
set of strictly upper triangular matrices.

With respect to the symplectic structure on € + b_ (defined below), the Toda hierarchy
(3.5) with X as in (3.13) is completely integrable on the generic leaves. The complete integra-
bility is found in [22] by extending the techniques in [18] to € 4+ b_. For complete integrability
when n > 3, we need additional constants of motion independent of the eigenvalues of the
initial matrix. These integrals, and the Casimirs (where the flows are trivial) are computed

14
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by a chopping construction on €+ b_ that creates matrices ¢x(X) € GL(n — 2k,C) for
0<k< [@] The coefficients of the polynomial det(\ — ¢4 (X)) are constants of motion

referred to as the k-chop integrals [22]; they are equivalent to the traces of the powers of ¢ (X).
The Hamiltonian system generated by an integral 1(X) is
d

X =X (VIX)<o] (3.14)

The level sets of the k-chop integrals live on the leaves of a symplectic structure on
€ + b_. The symplectic structure can be defined as follows. Write sl, = n_ & by where n_
and by are the strictly lower triangular and the upper triangular subalgebras. With a nonde-
generate inner product (A, B) = tr(AB) on sl,,(C), we have an isomorphism sl,, 2 s[;;, where
sl =n* @ b% = by ®nt. With the isomorphisms b}, & nt =b_and n* = b =n,, we
have

e+b_=0b7,

which is the phase space of the full Kostant—Toda lattice. On b*, the Lie—Poisson structure is
the Kostant—Kirillov form,

{/f.8}(X) = (X, [IIy Vf, 1y, Vg]) ~ for X €bl,

which stratifies it into symplectic leaves [22].

Consider the isospectral set (e + b_), with fixed eigenvalues A. Using (3.7), there is a
unique lower unipotent matrix n € N such that for X € (e +b_), X =nC an— !, where Cy
is the companion matrix of X:

0 1 0 0
0o 0 1 0

Ca=1: ] (3.15)
0 0 0 1
Pn Pn-1 - p2 O

where the p;’s are the symmetric polynomials of the eigenvalues });, that is,

n

det()\I - X) = H()\ - )\1) =\ - Zn:pj)\n_j.

j=1 j=2
The mapping
[N (e—l—b,)A — SL(n,(C)/B

(3.16)
X — n~! modB

is an embedding [51], referred to as the companion embedding. Its image is open and dense in

the flag variety. Under this embedding, the n — 1 flows of the O-chop integrals %trX" generate

the action of the centralizer of Cy in SL(n, C) (the group acts by multiplication on the left).
When the eigenvalues ); are distinct, Cy = VAV ™!, where A = diag(Af, ..., \,) and Vis

a Vandermonde matrix V = ()\J’Z*I), and we have

X=nVAV 'n!.
This gives an embedding
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Uy : (e+b)p — SL(n,C)/B
(3.17)
X — V= 'n~! mod B,
under which the group generated by Hamiltonian flows of Hy = (1/(k + 1))tr(X**!) for
k=1,...,n — 1is the maximal diagonal torus. W, is called the rorus embedding.

When the values of the integrals are sufficiently generic (in particular, when the eigenval-
ues of each k-chop are distinct), the flows of the k-chop integrals can be organized in the flag
variety by the torus embedding as follows [22]. (The companion embedding gives a similar
structure, but the torus embedding is more convenient since the group action is diagonal.)

Let SL(m, C)/P denote the quotient of SL(m, C) by the parabolic subgroup P of SL(m, C)
whose entries below the diagonal in the first column and to the left of the diagonal in the last
row are zero. Ercolani et al [22] builds a tower of fibrations where the k-chop flows generate
a level set of the (k4 1)-chop integrals in the partial flag variety SL(n — 2k,C)/P and the
(k + 1)-flows act as a torus action along the fiber, SL(n — 2(k + 1), C)/B. In the end, the clo-
sure of a level set of all the k-chop integrals in SL(n, C)/B is realized as a product of closures
of generic torus orbits in the product of partial flag varieties.

SL(n,C)/P x SL(n —2,C)/P x --- x SL(n — 2M,C) /P (3.18)

where M is largest k for which there are k-chop integrals.

In [29], Gekhtman and Shapiro generalize the full Kostant-Toda flows and the k-chop
construction of the integrals to arbitrary simple Lie algebras, showing that the Toda flows on
a generic coadjoint orbit in a simple Lie algebra g are completely integrable. A key observa-
tion in making this extension is that the 1-chop matrix ¢;(X) can be obtained as the middle
(n —2) x (n — 2) block of Adpx)(X), where I'(X) is a special element of the Borel subgroup
of G. This allows one to use the adjoint action of a Borel subgroup, followed by a projection
onto a subalgebra, to define the appropriate analog of the 1-chop matrix.

Finally, we note that full Kostant—Toda lattice has a symmetry of order two induced by
the nontrivial automorphism of the Dynkin diagram of the Lie algebra s[,(C). In terms of the
matrices in € + b_, the involution is reflection along the anti-diagonal. It is shown by Shipman
in [67] that this involution preserves all the k-chop integrals and thus defines an involution on
each level set of the constants of motion. In the flag variety, the symmetry interchanges the
two fixed points of the torus action that correspond to antipodal vertices of the moment poly-
tope under the moment map (3.1).

3.4. Nongeneric full Kostant—Toda flows

When eigenvalues of the initial matrix in € + b_ coincide, the torus embedding (3.17) is not
defined since each matrix in € 4+ b_ has one Jordan block for each eigenvalue. In the most
degenerate case, when all eigenvalues are zero, [65] uses the companion embedding (3.16) to
study the geometry of the flows.

If eigenvalues of each k-chop matrix ¢ (X) are distinct but one or more eigenvalues of
¢i(X) and ¢;11(X) coincide for some j, then the torus orbits generated by the k-chop integrals
in the product (3.18) degenerate into unions of nongeneric orbits [69]. This is reflected in split-
tings of the moment polytopes of the partial flag varieties in (3.18).

From [69], let F be a variety in SL(n, C)/P defined by fixing the values of the 1-chop int-
egrals 7,1, including the Casimir, where the values are chosen so that exactly one eigenvalue,
say A, of X is also an eigenvalue of ¢;(X). Then F is the union of the closures of two non-
generic torus orbits such that the images of their closures under the moment map are obtained
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Figure 3. Left: the moment polytope of SL(4, C)/P where the vertices are the weights
L; — L;, e.g. 2110 means L; — Ly = 2L; + L, + Ls. Right: complementary polytopes
obtained by splitting the moment polytope of SL(4, C)/P along an interior hexagon.

by splitting the moment polytope of SL(n, C)/P along an interior face. An example with n = 4
is illustrated in figure 3.

This extends to degeneracies in k-chop flows for all k [69]. When a level set of the con-
stants of motion is split into two or more nongeneric torus orbits, separatrices appear in the
Toda flows that generate the torus action. The faces along which the polytope is split are the
images under the moment map of lower-dimensional torus orbits (the separatrices) that form
the interface between the nongeneric orbits of maximum dimension.

For n = 4, Shipman in [68] determines the monodromy of generic level sets around the sin-
gular fibers in the fiber bundle of level sets where the spectrum of the initial matrix is fixed and
the single 1-chop integral I is allowed to vary. The flow generated by I produces a C*-bundle
with singular fibers over the values of 1. The singularities occur at two types of coincidences:
(1) at values of I where an eigenvalue of the 1-chop matrix coincides with an eigenvalue of
the original matrix and (2) at values of I where the two eigenvalues of the 1-chop matrix
coincide. In a neighborhood of a singular fiber of the first kind, the monodromy is character-
ized by a single twist of the noncompact cycle around the cylinder C*. Near a singular fiber
of the second kind, the monodromy creates two twists of the noncompact cycle. This double
twist appears in the simplest case when n = 2, around the level set where the two eigenvalues
coincide [66].

4. Other extensions of the Toda lattice

In [47], Kodama and Ye consider an iso-spectral deformation of an arbitrary diagonalizable
matrix L. The evolution equation is

EL = [P, L] with P=(L)so— (L)<o-

dt (4.1)
The complete integrability of (4.1) is shown in [47] using inverse scattering; it generalizes
the method used in [42] to solve the full symmetric real Toda lattice. The method yields an
explicit solution to the initial-value problem. The general context of the flow (4.1) includes
as special cases the Toda lattices on other classical Lie algebras in addition to sl,(IR), which
is most closely associated with Toda’s original system. In this regard, Bogoyavlensky in [§]
formulated the Toda lattice on the real split semisimple Lie algebras, which are defined as
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follows (the formulation below is in the Hessenberg (or Kostant) form, see also [34, 60]): Let
{ha;> €40, : I =1,...,1} be the Chevalley basis of the algebra g of rank /, that is,

[hoe;’ haj] =0, [hom eiaj} = :I:Cjieioz,, [ea,” e—a/-] = 6ijha,-a
where (Cj)1<ij<i is the Cartan matrix and Cjj = «;(hq,). Then the (nonperiodic) Toda lattice
associated with the Lie algebra g is governed by the Lax equation

dL

yri [A, L], 4.2)

where L is a Jacobi element of g and A is the projection of L onto n_, as

L0 = 3 0o, + 32 (8i0) o, Hec,),
i=1 z_ll (43)
A(t) = -1, _L(t) = — ; gi(t)e_q,.

The complete integrability is based on the existence of the Chevalley invariants of the algebra,
and the geometry of the isospectral variety has been discussed in terms of the representation
theory of Lie groups by Kostant in [52] for the cases where g; are real positive, or complex.
The general case for real g;’s is studied by Casian and Kodama [10, 11], which extends the
results in the sl,(IR) Toda lattice in the Hessenberg form (see section 2.4) to the Toda lattice
for any real split semisimple Lie algebra.

The Lax equation (4.2) then gives

I
dfi dgi

- =& d —=- uli | &i
a8 . dr ,—21 Cili | 8

from which the T-functions are defined as

1

)= S, el =0 [L30) @)

j=1

In the case of g = sl,(R), those equations are (2.22). Note here that the superdiagonal of L(r)
is diag(fi — foofo — f35- - -»fi —fir1) with n =1+ 1. Those extensions have been discussed
by many authors (see for example [34, 60]). One should note that Bogoyavlensky in [8] also
formulates those Toda lattices for affine Kac—Moody Lie algebras, and they give the periodic
Toda lattice. There has been much progress in understanding these periodic Toda lattices, but
we will not cover the subject in this paper (see, for example [2, 3, 20, 62, 63]).

From the viewpoint of Lie theory, the underlying structure of the integrable systems is
based on the Lie algebra splitting, e.g. 5, = b_ @ s0, (the QR factorization) for the symmet-
ric Toda lattice, and sl, = b4 @ n_ (the LU factorization) for the Hessenberg form of Toda
lattice. Then one can also consider the following form of the evolution equation,

%L =[0, L] with Q=1 (L), 4.5)
where g is a subalgebra in the Lie algebra splitting sl,, = g; & go. In this regard, we mention
here the following two interesting systems directly connecting to the Toda lattice.
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4.1. The Kac—van Moerbeke system

Kac—van Moerbeke [37]: We take g; = s02,, and consider the equation for L € so,,. Since
L*=1 € 50,,, the even flows are all trivial. Let L be given by a tridiagonal form,

0 o 0 0
—y 0 o 0
L=\ : | € sou(R).
o o0 - 0 Q2n1
0 0 -+ —ap O

Then the even flows are the Kac—van Moerbeke hierarchy, (%/_ = [0 (L¥), L], where the first
member of #,-flow gives

9
% =0l —ady,),  k=1,....2n—1,
2

with ag = ap, = 0. This system is equivalent to the symmetric Toda lattice which can be writ-
ten as (4.5) for the square L*. Note here that L? is a symmetric matrix given by

10 0 0
2 _ () @
P=T ®(0 O>+T ®<0 1),

where T, for i = 1,2, are n x n symmetric tridiagonal matrices given by

R R
asi) bg) agi) e 0
7O = | S - .
0 0 b,
0 0 - a” Y
with a,El) = Qok—1004 b,gl) =—a}_,— 3 a,((z) = anrooiy1, and b,(cz) =—a3_,— a3

(see [33]). Then one can show that each T) gives the symmetric Toda lattice, that is, the
Kac—van Moerbeke hierarchy for L? matrix splits into two Toda lattices,

oT®

= [[L,(T¥)7, 7" for i=1,2.
atzj[()’] or i=1,

The equations for 7 are connected by the Miura-type transformation, with the functions
(a,(('), b,El) ), through the Kac—van Moerbeke variables oy (see [33]).

4.2. The Pfaff lattice for a symplectic matrix

References [1, 43, 44]: The Pfaff lattice is defined in the same form with g; = sp,, and L in
the Hessenberg form with 2 x 2 block structure. In particular, we consider the case L € sp,,
having the form,
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0 g1 0 0 0
bl 0 aq 0 2
0 O 0 o,
0,
L=| @ 0 | b O € spy,(R),
0 o,
0 0 b, O

where 0, is the 2 X 2 zero matrix. The variables (ay, b;) and o, = %1 are those in the indefi-
nite Toda lattice in (2.15) through f; = oyby and g = akakHa,%. It should be noted again that
the odd members are trivial (since L*~! € sp,,), and the even members give the indefinite
Toda lattice hierarchy [44]. Here one should note that L? can be written as

- 1 0 ~ 00
2 _jT
L*=L ®<0 O) +L®<O 1>,

where L = D~'XD with D = diag(1, 024y, . ..,0,a,—1). Then one can show that the genera-
tor O,; of the Lax equation is given by

. - 1 0 ~ 00
sz—ﬂsp(Lz’)—Bf@’(o o)+Bj®<0 1)’

where B; = 1[(L/)>0 — (L) <o} Then the hierarchy &L = [Q,;, L] gives the indefinite Toda
lattice hierarchy (see section 2.4 and [45, 46]).

5. The full Kostant-Toda lattice in real variables

Here we consider the full Kostant—Toda hierarchy (3.5) in real variables, where we write

ox
8tk

We let t := (¢#,...,1,—1) denote the multi-time variables for the flows in the hierarchy. As is
the case of the complex full Kostant—Toda lattice, the solution space can be described by the
flag variety G/B. Here we consider the asymptotic behavior of the solutions for the regular
flows of the full Kostant—Toda hierarchy. Those regular solutions are associated to points in
the rotally nonnegative (tnn) flag variety, denoted by (G/B)>o. Then we discuss the moment
map images of the regular flows of the full Kostant-Toda hierarchy. This section is a brief
review of [50] which provides a geometric structure of the iso-spectral variety for the full
Kostant—Toda flows including nongeneric cases.

=[(X")s0, X]  for k=1,2,...,n—1. (5.1

5.1. Totally nonnegative parts of flag varieties

We begin with a brief review of the tnn parts of the flag variety, (G/B) o where G = SL(n,R).
For each 1 < i < n — 1 we have a homomorphism ¢; : SL(2,R) — SL(n, R) such that
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€ SL(n,R),

QU™

a b
¢i<c d>_

o

1

a

that is, ¢; replaces a 2 x 2 block of the identity matrix with ( fi) where a is at the

c
(i,1)-entry. We have 1-parameter subgroups of G defined by

m

1 1 0
xi(m) = &; (0 1) and y;(m) = ¢; (m 1) , where m € R. (5.2)

1 0

any w € W can be expressed as a product w = s;,5;, . . . 8;, with £ = £(w) factors. Here £(w)
denotes the length of w. We set w = §;,8y, . . . §j,.
There are two opposite Bruhat decompositions of G/B:

0 -1
The simple reflections s; € W = S, are given by s; := ;T where s; := ¢; ), and

G/B= | | BvB/B = | | NvB/B.
wew veWw

We define the intersection of opposite Bruhat cells
R,w = (BWB/B) N (NVB/B),

which is nonempty precisely when v < w. The strata R, ,, are often called Richardson varieties.
Now we define the totally nonnegative part of the flag.

Definition 5.1 ([55]). The mn part N> of N is defined to be the semigroup in N generated
by the yj,) for p € Ry in (5.2). The tmn part (G/B) > of G/B is defined by

(G/B)>0 = {l’lB | nec N}O },
where the closure is taken inside G/B in its real topology. We sometimes refer to (G/B)x as
the mn flag variety.

Lusztig [54, 55] introduced a natural decomposition of (G/B)>¢: Forv,w € W withv < w,
let

Rv>w(3 = RV,W n (G/B))o.

Then the tnn part of the flag variety G/B has the decomposition,

(G/B)=o= || [ R (5.3)
weWw \v<w
Letw:=s;, ...s;, be a reduced expression for w € W. A subexpression v of w is a word

obtained from the reduced expression w by replacing some of the factors with the identity e,
simply denoted by ‘1’. For example, consider a reduced expression in the symmetric group Sa,
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say §35251535253. Then 15, 1 155 53 s a subexpression of s35251535253. Given a subexpression
Vv, we set v to be the product of the leftmost k factors of v, if k > 1, and vy = 1. To para-
metrize each component of R>>%, we need the following definition of the subexpressions of w:

Definition 5.2 ([19, 57]). Given a subexpression v of w = s;,s;, . . . 5;,, We define
Jy={ke{l,...,m}| Vir—1) < V(k)},
J‘J,r = {k S {1,...,m} | Vk—1) = V(k)},
J; = {k S {1, . ,m} | V(k—1) > V(k)}.

The subexpression v is called nondecreasing if v(j_1y < v forall j=1,...,m, e.g. if
Jy = 0. It is called distinguished if we have v(;) < v(j_yys; forall j € {1,...,m}. In other
words, if right multiplication by s; decreases the length of v(;_y), then in a distinguished
subexpression we must have v(;) = v(;_)s;,. Finally, v is called a positive distinguished sub-
expression (or a PDS for short) if v(;_1) < v(;_pys; forall j € {1,...,m}. In other words, it
is distinguished and nondecreasing.

It is then quite important to note that given v < w and a reduced expression w for w, there
is a unique PDS V4 for v contained in w [49, 57]. The following theorem then provides a
parameterization of the tnn part of the flag variety.

Theorem 5.3 ([57, proposition 5.2, theorem 11.3]). Choose a reduced expression
W=y ...8;, for wwith {(w) =m. To v < w we associate the unique PDS V+ for v in w.
Then J3. = 0. We define

=y 1f€€Jj‘,
8¢ =ie(pe) } (5.4)

g0 =5, if ¢ eJe,

G?f,w = {g = 8182 8m

where each py ranges over Rsq. The set G f,w lies in Nv N BWB, Gv>+0,W = Ri((v)v )4@), and the
map g — gB defines an isomorphism

>0 ~ >0
G — Ry

Vi,.W

5.1.1. The Grassmannian and its tnn part. The real Grassmannian Gr(k,n) is the space of
all k-dimensional subspaces of R". An element of Gr(k, n) can be viewed as a full-rank k x n
matrix A modulo left multiplication by nonsingular k X k matrices. In other words, two k X n
matrices are equivalent, i.e. they represent the same point in Gr(k, n), if and only if they can
be obtained from each other by row operations.

Let ([Z]) be the set of all k-element subsets of [n] := {1,...,n}. For I € ([Z]), let A;(A) be
the Pliicker coordinate, that is, the maximal minor of the k X n matrix A located in the col-
umn set . The map A ++ (A;(A)), where I ranges over (), induces the Pliicker embedding
Gr(k, n) — RP() 1,

Just as for the flag variety, one may identify the Grassmannian with a homogeneous
space. Let Py be the parabolic subgroup which fixes the k-dimensional subspace spanned
by ey, ..., e (This is a block upper-triangular matrix containing B.) Then we may identify
Gr(k, n) with the space of cosets G/P.

There is a natural projection 7 : G/B — Gr(k,n). One may equivalently express this
projection as the map 7 : G/B — G/Py, where mi(gB) = gPy. Abusing notation, we sim-
ply write mx(g) = Ax with Ay € Gr(k,n) = G/Py instead of mx(gB) = gPi. Concretely, for
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g € G, m(g) is represented by the k X n matrix Ay consisting of the leftmost k columns of g,
i.e. m(g) = Ag implies

g1 gk o 8w
: . : : : 811 0 8kl 8al
g=|8k1 - 8kk - Zknm — A= . : - (5.5)
: : : : 8k o 8kk &k
8nl 0 8nk " 8na

Thisis equivalent to the following formula using the Pliicker embedding into the projectivization
of the wedge product space P(\* R") = RP() =" with the standard basis {e;:i=1,...,n},

gregN---Nep = Z Ail,...,ik(Ak) €, /\~~~/\e,-,(. (56)

1< < <ig<n
The Pliicker coordinates A;, . ; (Ax) are then given by
Aii(Ak) = (e, Ao~ Nejy, g-er A=+ Neg),

where (-, -) is the usual inner product on \* R".
Now the tnn part of the Grassmannian is then defined as follows:

Definition 5.4. The tmn part of the Grassmannian Gr(k,n)xo is the image 7((G/B)>0).
Equivalently, Gr(k,n) o is the subset of Gr(k, n) such that all Pliicker coordinates are non-
negative.

Let Wy = (s1,...,8,...,S,—1) be a parabolic subgroup of W = S, obtained by deleting
the transposition s; from the generating set. Let W* denote the set of minimal-length coset
representatives of W/W;. Recall that a descent of a permutation z is a position j such that
z(j) > z(j + 1). Then W¥ is the subset of permutations which have at most one descent, and
if it exists, that descent must be in position k.

Rietsch in [64] shows that the tnn part of the Grassmannian Gr(k,n)>o has a cellular
decomposition (see (5.3)),

Gr(k,n)>o = |_| |_| P (5.7

weWk v<w

where P70 = m(R;)).

VW

Definition 5.5. Let M be an n X n matrix with real entries. Any determinant of a k x k
submatrix (for 1 < k < n) is called a flag minor if its set of columns is precisely {1,2,...,k},
the leftmost k columns of M. Let A’,‘k (M) denote the flag minor where I = {ij, ..., i} is the
set of rows. And we say that M is flag nonnegative if all of its flag minors are nonnegative.

Note that the flag minors of g € G are precisely the Pliicker coordinates of the projections
of gB to the various Grassmannians 7 (gB) for 1 < k < n. Then, one can show [50] that any
g€Gy f’w is a flag nonnegative. That is, the Pliicker coordinates in (5.6) are all nonnegative
when Ay is given by the matrix g € G

For any z € W we define the ordered set z - [k] = {z(1),...,z(k)}. (By ordered set, we
mean that we sort the elements of z - [k] according to their value.) Then we have the following.

Lemma 5.6 ([50]). Let v<w be elements in W =38, and choose z € S, arbitrarily.
Choose a reduced subexpression W for w; this determines the PDS V+ for v in w. Choose any
g€ G‘ZO’W. Then we have
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if and only if
vz w.

This lemma is a key to determine the polytope structure of nongeneric flows of the full
Kostant-Toda hierarchy.

5.2. Full Kostant-Toda flows with totally nonnegative initial data

Let us recall that the solution of the full Kostant—Toda can be found by the companion embed-
ding (3.16) with the factorization exp(Oxo (t)) = n(t)b(t) where Oxo(t) := ij_ll (X®)7t; with
the initial matrix X = X(0). Then we have the solution X(t) = n~!(t)X%n(t). This can be
stated in the following diagram [10, 28, 50]:

X0 C—A> ng B
Adnm,ll l
non(t) B (5-8)
X(t) —2- =ngexp(Oxo(t)) B
= exp(O¢, (t))ng B

where X0 = ny 'c wno. That is, the initial matrix X° = X (0) determines the element ny € N,
and each full Kostant-Toda flow corresponds to an exp(Oc, (t))-orbit on the flag variety with
the initial point nyB.

We now associate to each matrix g € Gv>£w (representing a point of R}, 0 an initial matrix
X? for the full Kostant—Toda hierarchy. First we note that the 7-functions for the hierarchy can
be also found in the same form as in (2.21), i.e.

Ti(t) = [exp (Oxo(t))], for k=1,....,n— L (5.9)
We then express the 7-functions with the initial matrix X° in terms of g.

Recall that CAV = VA where V is the Vandermonde matrix V = ()\;_l), and that [M]
denotes the kth principal minor of the matrix M. Then, for each matrix g € Gv>+0,W we can
associate an initial matrix X® € Fa, defined by X = ny 'c 'Ang, where ng € N and by € B are
uniquely determined by the equation Eg = ngby (this decomposition is true when g € Gv>£w).
Then, the 7-functions for the full Kostant-Toda hierarchy with initial matrix X are given by

Ti(t) = [exp(Oc, (t))no]k = di [V exp (O4(t)) g, » (5.10)
where di = [by '

Remark 5.7. The formula exp(Oc, (t))ng = Eexp(O4(t))gh, ' implies that the full Ko-
stant—Toda flow gives a (noncompact) torus action on the flag variety. More precisely, the
torus (R~¢)" acts by exp(©, (t)) on the basis vectors consisting of the columns of the Vander-
monde matrix V, that is, we have exp(Oxo (t))noB = V exp(©Ox(t))gB.
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Then using the Binet—-Cauchy lemma to (5.10) and A; = m(g), the 7-function can be writ-
ten as

T(t) =di Y A(ADEN(Y),

0 (5.11)
where E;(t) for I = {iy, ..., i} is defined by
E(t):= [, = ) [ E() with  Ej(t) =% (5.12)

£<m JEl

Since g € G7', is a flag nonnegative, ie. Ay (A;) >0 for all I € ([Z]), the 7-
function is sign-definite. This implies that the full Kostant-Toda flow is complete for all

t=(t1,...,t,_1) € R""!, when the initial matrix X° comes from a point in GV>+0’W.

Remark 5.8. The 7function in (5.11) has the Wronskian structure, that is, if we define the
functions {fi,...,fi} by

(Fi(t),. . fi(t) == (Er(t),... . Ex(1) AL,
then we have

Te(t) = dpe Wr(fi(t), .. .. fi(t)),

where the Wronskian is for the 7;-variable. Furthermore, if we identify the first three variables
ast; =x, tp =y and t3 =t in (5.11), then we obtain the 7-function for the KP equation [38]
which gives rise to soliton solutions of the KP equation from the Grassmannian Gr(k, n) [48]
(see [41] for a review of the KP solitons). That is, 74 is associated with a point of the Grass-
mannian Gr(k,n). Then the set of 7-functions (1, ..., 7,—1) is associated with a point of the
flag variety, and the solution space of the full Kostant—Toda hierarchy is naturally given by the
complete flag variety.

5.3. Asymptotic behavior of the full Kostant—Toda lattice

Here we consider the asymptotics of the solution X(t) to the full Kostant-Toda lattice where
X(0) = X is the initial matrix associated with g € G7° ., i.e. the tnn part of the flag variety.

Vi ,w?
Recall that we have a fixed order A\; < --- < A, on the eigenvalues, and that z - [k] denotes

the ordered set {z(1),z(2),...,z(k)}. Since Ay = m(g) and g € Nv N BwB (by theorem 5.3),
the lexicographically maximal and minimal elements in M(Ay) are respectively given by

w - [k]and v - [k]. Because of the order A < - - - < \,, we have the following with E;(z) = e%)
in (5.12),
EE<EK---KE, as t— oo,
Ex>E>--->E, as t— —o,
This implies that each 73 (¢)-function from (5.11) has the following asymptotic behavior:
Ew-[k] (t) as t— oo
T(t) —
Ev-[k] (l‘) as t— —oo.
Then the diagonal element f;(7) in X(7) in the form (2.22) can be calculated as
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d Tk
)=—In— 5 2] =SB, = A t— 0.
) =g 27 A By dr 0 T ey 8 TTO0

This implies that X () approaches a fixed point of the full Kostant-Toda flow as r — oo,

{e+diag(/\w(1),)\w(2),...,)\W(,,)) as t— o0

X() —

€+ diag(/\v(l), /\v(2)’ e, )‘v(n)) as t— —oo.

This can be extended to the asymptotic properties for the full Kostant—Toda hierarchy as fol-
lows: First note that for any permutation z € S, one can find a multi-time ¢ = (cy,...,c,—1)
€ Rr—! such that E (;y(c) > E,5)(€) > - -+ > E,,)(c). This can be shown by considering the
functions ¢; : R x R"~! = R,

G(to,t) =to+ Nty + Nt + -+ N T =10+ 0i(t) = (tos 11y ta1) - Vi,

where V; is the ith column vector of the Vandermonde matrix V. Then one can find a
point (f,¢) such that £,)(to,€) > £ (2)(to,€) > -+ > L (to, €), which also implies that
E1)(e) > Eo)(€) > -+ > Eyy)(c).

Now assume that v < z < w. Then recall lemma 5.6 which says A’Z‘,[k] (g) >0 for all
k=1,...,n— 1. Note that E_.(c) dominates the other exponentials in the 7;-function (5.11)
at the point ¢. Then, in the direction t(s) = s¢ with the limit s — oo, we have

T(t(s)) = deAL g (8)E.(t(s)) as s — oo,

Now using the formula of fi(t) in (2.22) with 7= 1, one can see that fi(t(s)) — A ) as
s — 00, i.e. X(t(s)) approaches the fixed point as s — 00, i.e.

X(t(s)) — e+diag(A1),..-» Am)) as s — oo. (5.13)

5.4. The moment polytope of the full Kostant—Toda lattice

We now present the image of the moment map on the full Kostant—Toda flows coming from
the tnn flag variety and construct certain convex polytopes that generalize the permutohedron
Perm,, of (3.4).

Recall that L; denotes a weight of the standard representation of sl,, and by rep-
resents the dual of the Cartan subalgebra hgr, see (3.2). For I = {ij,... ik}, we set
L(I) =L, + L, +--- + L;, € bj. The moment map for the Grassmannian p : Gr(k,n) — hi
is defined by

IpORNEVCNIRT
S SITU T e

Ie M(Ay)

(see (3.1), also [30, 31)).

We recall the following fundamental result of Gelfand—Goresky—MacPherson—Serganova
[30] on the moment map for the Grassmannian (which in turn uses the convexity theorem of
Atiyah [6] and Guillemin—Sternberg [32]).
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Theorem 5.9 ([30, section 2]). If Ay € Gr(k,n) and we consider the action of the torus
(C*)" on Gr(k,n) (which rescales columns of the matrix representing Ay), then the closure of
the image of the moment map applied to the torus orbit of Ay is a convex polytope

T pa) = Conv{L(I) | Ar(Ax) #0 ie. 1€ M(Ap)} (5.15)

called a matroid polytope, whose vertices correspond to the fixed points of the action of the
torus.

Remark 5.10. In representation theory, this polytope is a weight polytope of the fundamen-
tal representation of sl, on /\k V, where V is the standard representation.

It should be noted that if Ay € Gr(k,n) and we consider the action of the positive torus
(Rs0)" on Gr(k, n), the conclusion of theorem 5.9 still holds.
The moment map for the flag variety 1 : G/B — b in (3.1) can be written in the form,

n—1
p(g) ==Y m(Ac),  where A =m(g).
k=1

Let us now compute the image of the moment map p when applied to the full Kostant-Toda
flow exp(O¢, (t)) on the point nyB of the flag variety described in (5.8).
First recall CAV = VA and Vg = ngby. Then we have

exp(O¢, (t)ng-e1 A+ Nep = v efar® gbal et AN Aeg
= Z VeOrWe, Ao Nejlen A Ney,gby' et A Aex)

1< < <ig<n
=dy Z VeOrWe Ao Ney e, N Nei,g-er A+ Aeg)
1< <+ <ix<n
:dk Z Ai|,---,ik (Ak)Ve@A(t)ei, VANRIERIAN @ik
1< < <ig<n
=dj Z Aj i (AP NV A A,
1< < <ixg<n
where di = [by 'xand Vi = Ve; = (1, A, ..., AP DT
We now define ¢(t; g) := p(exp(Oc, (t))ng)and i (t; g) := 1 (Are®r ) withmi(g) = Ay
Then we have

n—1
p(tg) => wltig)  with @(tig)= Y af(tg) L)
k=1 Ie M (Ay)
(AI(AkeeA(t)))z (5.16)

Z (A,(Ake@/\(t)))2'
JeM(Ar)

and At g) =

Note here that 0 < aj(t;g) < 1and 35, (s, @1 (t:8) = 1 for each k.
Definition 5.11. We define the moment map image of the full Kostant-Toda flow for
g € G7J to be the set

Q=Teltg) [te R T} = |J oltio)

teRrR—!
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Here the closure is taken using the usual topology of the Euclidian norm on b = R"~!.

Then we can show [50] that for each k, the image Qf := {¢x(t: ¢) | t € R"~!} is the corre-
sponding matroid polytope from (5.15), i.e.

Q]; =T ama Where Ay = mi(g).
Now we have the following proposition [50]:

Proposition 5.12. Ler g € fow. Then the moment map image Qg of the full Kostant—

B

Toda flow for g is a Minkowski sum of matroid polytopes. More specifically, for Ay = m(g),
k=1,...,n—1, we have

n—1
Qg = ZFM(Ak)-
k=1

We also define a certain polytope which sits inside the permutohedron Perm,, of (3.4).

Definition 5.13. Let v and w be two permutations in S, such that v < w. We define the
Bruhat interval polytope associated to (v, w) to be the following convex hull:

Py :=Conv{lL, € by | v < z < w}.
In other words, this is the convex hull of all permutation vectors corresponding to permuta-

tions z lying in the Bruhat interval [v, w]. In particular, if w = wy and v = e, then we have
Pe.w, = Perm,. (See [76] for the further discussion on the Bruhat interval polytopes.)

Finally we have the following theorem for the moment polytope of the full Kostant-Toda
flow [50].

Theorem 5.14. Lerg € Gy f,w. Then the moment map image of the full Kostant—Toda flow
for g is the Bruhat interval polytope P, i.e.

Qg = Pv,w~

Note that from proposition 5.12 and theorem 5.14, we have the following remark:

Remark 5.15. The Bruhat interval polytope P,,, is a Minkowski sum of matroid polytopes

n—1
Pow =3 Ta.
k=1

Here M is the matroid defining the cell of Gr(k,n)>o that we obtain by projecting the cell
Rv>v3 of (G/B)> to Gr(k,n)>o.

We note that each weight vector L;, . ; defined in (3.3) can be associated to the ordered
set of eigenvalues,

Li1,...,in < ()\il’>\i2” . ")\in)'

This means that each vertex of the Bruhat interval polytope can be labeled by the ordered set
of eigenvalues. For example, the highest weight for the permutohedron of (3.4) is given by
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3124

3412

4312

4321

2413

4213

Figure 4. Some moment polytopes from the sl;(R) full Kostant-Toda hierachy. Each
4-digit number represents the order of the eigenvalues, e.g. 2413 = (A2, A4, A1, A3). Left:
the permutohedron P.,, = Permy with e = 1234 and wy = 4321. Right: the Bruhat
interval polytope P, ,, with w = 5535251 and v = s3, equivalently, they are represented
asw =4132 and v = 1243.

n

Ligew= (m—kbL <= (A
k=1

which corresponds to the asymptotic form of diag(L) with v = e for t — —oo. The permutohe-
dron P,,,, with the longest element w( for SL(4,R)/B is illustrated in figure 4 (Left).
Example 5.16. Consider the sly(R) full Kostant-Toda hierarchy. We take

w = 85535281 and v = s3,

which gives

w-(1,2,3,4) = (4,1,3,2) and v-(1,2,3,4) = (1,2,4,3).

There are eight permutations z satisfying v < z < w, i.e.

V=253, 83852, 8283, 8351, §38281, 828381, 28382, W = 82838257

We illustrate the moment polytopes in figure 4. The vertices are labeled by the index set
‘i1ipi3i4” of the eigenvalues (A, A, Aiy, Ay, ). The vertex with the white circle indicates the
asymptotic form of diag(L) for t — —oo (i.e. (1,2,4,3) = v- (1,2,3,4) in the right figure),
and the black one indicates the asymptotic form for r — oo (i.e. (4,1,3,2) = w- (1,2,3,4) in
the right figure).

Remark 5.17. The moment polytopes of the full symmetric Toda hierarchy can be shown

to have the same structure as these of the full Kostant—Toda hierarchy on the tnn flag variety
(see [7, 17, 50]).
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6. The Toda lattice and integral cohomology of real flag varieties

Here we explain how one can find the integral cohomology of real flag variety from the iso-
spectral variety of the Toda lattice (this is an invitation to the papers [14, 15]). We consider
the Toda lattice hierarchy (3.5) on the real split semi-simple Lie algebra sl,,(R), and assume
X € sl,(R) to be a generic element in the tridiagonal Hessenberg form of (2.16), that is, it has
all real and distinct eigenvalues (see [14, 15], for the general case associated with real split
semisimple Lie algebra).

6.1. Integral cohomology of G/B

We begin with a brief summary of the cohomology of G/B as a background for the next sec-
tion where we explain how one gets the cohomology of G/B from the isospectral variety of the
Toda lattice associated with real split semisimple Lie group G.

Let us first recall the Bruhat decomposition of G/B,

G/B=| |9  with Q) =NwB/B.
wew

Each Bruhat (or Schubert) cell 22, is labeled by the element w € W and codim (,,) = ¢(w), the
length of w. Let o, denote the Schubert class associated to the Schubert variety €2,, = U,y 2.
Here the Bruhat order is defined as w < w'iff 2,, D €0,,». Then we can define the chain complex,

£(wo)

cr=@ct  with = > Zo,,
k=0

L(w)=k
where wy is the longest element of W, and the coboundary operators & : C< — C**!is given
by
oi(ow) = Z w:w]ow,
£(w)=k+1

where [w : w'] is the incidence number associated with o, N o, It has been known (see
[16, 40]) that the incidence number is either O or £2 for the real flag variety G/B of real split
semi-simple Lie group G. Then the cohomology of G/B can be calculated from the incidence
graph G /p defined as follows:

Definition 6.1. The incidence graph Gg/p consists of the vertices labeled by w € W and
the edges = defined by

w=w iff < (ii) {(w'

The incidence number for each edge is either O or 2 (see [16]). The integral cohomology is
then calculated from the graph.

Example 6.2. In the case of G = SL(3, R), the incidence graph and the integral cohomol-
ogy are given by
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e
2] [1] [3]
z N ) (]
[23] [21] [12] [13] [32]
N Z 720
[213] [121]  [232] [321] [123] [132]
Ny ¢ 7 N
[1231] [2132] [2321] [1232] [1321]
U l N 4
[12312] [23212] [12321]
wo =[123121]

Figure 5. The incidence graph Gg/p for the real flag variety SL(4,R)/B. The Schubert
class oy, is denoted by [ij . . . k] for w = s;s; . .. sx. wo = [123121] is the longest element
of W = &,. The incidence numbers associated with the edges = are +2 (see also
example 8.1 in [16]).

a ¢ o H(G/B.,7Z) 7

) i - H'(G/B,Z) = 0

[12] 21] H*(G/B,Z) = Z,®7,
[121] H3(G/B,Z) = LZ.

Here the Schubert classes are denoted by [ij] for w=s;s;, e.g. 6;[2] = £2[21] for
510}2 = :l:ZUSZSV

In figure 5, we show the incidence graph for G/B with G = SL(4,R), from which one can
compute the integral cohomology [16] as

H(G/B,Z) = Z

H'(G/B,Z) = 0

H*(G/B,7) = 7y ®7Zr® 7
H3G/B,Z) = ZOZ®L®ZLy
H*(G/B,7) = 7, D7,
H(G/B,Z) = 7y ®Zy® 7y
H(G/B.,7Z) Z.

The incidence graph for the general case of real split semisimple G can be found in [16].
Then the integral cohomology of G/B can be computed from the incidence graph with the
incidence numbers [w : w'] being 0 or +2.

For the rational cohomology, we have

H*(G/B,Q) = H*(K/T,Q) = H" (K, Q), (6.1)

where K is the maximal compact subgroup of G, and T is the maximal torus of G, e.g. for
G =SL(n,R), K = SO(n), and T = diag(+1,...,£1) (see proposition 6.3 in [15]). It is well
known that the cohomology ring H*(K, Q) of compact connected group K of rank / is given
by the exterior product algebra,
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H*(Ks Q) = /\Q{xmlsxmz’ AR 9-xm1}’

where {x,,,...,x,} are the generators of the exterior product representation with
deg(x,,,) = m; (odd) for i =1,...,1 and m; + - - - + m; = dim(K) (see for example [9]). In
the case of K = SO(n), we have,

(a) forn =2m + 1,

H*(SO(2m+ 1),@) = /\Q(X3,X7, e ,X4m_1)
(b) for n = 2m,

H*(S0(2m),Q) = /\ (X3, %7, . o Xam—s, Yom—1)-

Note here that the generators include the additional y,,,_;. For example, H*(SO(4), Q) is
generated by two elements x3, y; of the same degree, V = Qxz + Qyzand A2V = Qx3 A y3.

We also note that the number of points on the finite Chevalley group K(F,) of the compact
connected group K is given by certain polynomial of g. Here I, is a finite field with g ele-
ments. Although this polynomial can be computed by using the Lefschetz fixed point theorem
for the Frobenius map ® : K(F,) — K(F,), x — x4, we here give an elementary calculation
to find those polynomials for K = SO(n) (see also [14]). As we show in the next section, those
polynomials are also related to the indefinite Toda lattice of section 2.4 [45, 46].

Let us first assume that g is a power of a prime number p # 2, such that in I, the polyno-
mial x> + 1 is not irreducible, i.e. v/—1 € F,. Then we have the following results for|S"(F,)|,

the number of I, points on S":

m—1( m .
. g (g" - 1) if n=2m-1,
IS"E )l =1 . .
q"(g"+ 1) if  n=2m.
This can be shown as follows: Let us first consider the case n = 1, i.e.
S'Fy) = {(x.y) €Fs 1 x +y* =1}
Then using the formulae for the stereographic projection, ( = 1122%’ y= Zi—;})

and u = we have a bijection between the sets {(x,y) € IF%I ty#1} and

X
177),7
{u € F, : u* + 1 # 0}. Since /—1 € F,, we have 2 pointsin {z#*> + 1 = 0}. Counting the point
(x =0,y = 1), the north pole, we have |S'(F,)| = ¢ — 2+ 1 = ¢ — 1. Now consider the case

2 2
I 3 M 3 P 2”] — 2”2 I ul+u2_l
n = 2, where we have the stereographic projection, (x = T i) T Tt T e

and (u1 =15 = l%), which leads a bijective between the sets {(x,y,z) € F; : z # 1}
and  {(uj,u) €F;:uf +us+17#0}. The second set gives [{(u,ur) € F2:
W +u3+1+#0} =¢*—(g—1) points (note (¢—1) is the number of points in
Wi+ +1=0, ie with w=+v=1Tvi, {(vi.v2) €F}:vi+v]=1}=S5"(F,).
We now add the points of the north pole (x,y,1) with x> +y> =0, which gives
Hey, 1) i x> 4+y> =0} =2(¢g — 1) + 1, where 2(g—1) for x=+/—1y#0 and 1
for (0,0,1). Then we have [S*(F,)|=¢*>—(¢g—1)+2(q—1)+1=g(g+1). Using
the induction, one can show that the number of points in the north pole is given by
{(xn o oxome) €L ixg o403, =0} =¢*% and  [{(x1,..., %) € F2":
A 4ad, =0} =¢" ' +¢" —¢"". Then we obtain the formula |§"*(F,)| by
computing
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IS"(F,)| = ¢" — |S"~"(F,)| + (number of the points in the north pole).

We can now find the number of F, points of finite Chevalley group SO(n, F,): First recall
that SO(n + 1)/SO(n) = S". Then we obtain

[l

1SO(n, Fy)| = ] 15" (F,)
k=1

which leads to the results [9]:
(a) For n = 2m,
S02m,F,)| = 2¢"" "V (¢* = 1)(¢* = 1)--- (¢ > = 1)(¢" — 1).
(b) Forn =2m + 1,

1SOQ2m + 1,F,)| = 2¢" (* — 1)(¢* — 1) -+ (¢" — 1),

In general, the number of I, points on the compact group K can be expressed by (see e.g.

(9D

!
K(F,)| =dq plg)  with p(q) =[] (" - 1), 6.2)
i=1
where d;’s are degree of basic Weyl group invariant polynomials for K givenby d; = (m; + 1)/2,
and r = dim(K) — deg( p(g)). In the next section, we show that those polynomials can be
reproduced by counting the blow-ups in the solution of the indefinite Toda lattice (see [14] for
the general case).

6.2. Blow-ups of the indefinite Toda lattice on G and the cohomology of G/B

Now we show how to obtain the cohomology of G/B from the moment polytope of the indefi-
nite Toda lattice of section 2.4.

First note that the T-functions can change their signs if some (but not all) of ;s are nega-
tive. This can be seen from (2.18), and implies that the solution blows up for some time #; = 1,
(see also (2.22)). The explicit form of the 7-functions can be obtained from (2.21), and they
are expressed by (see also proposition 3.1 in [46]),

k
nt)= Y o0 K(jts-- i) exp (Z /\,-it) , 6.3)
i=1

I < <jksn
where K(ji, .. .,Jjx) are positive and given by
1 1P
K(Gi-od) = (°O) )| 1 5| >0
)\]’fl—l )\]’Fk—l

As the simplest case, let us consider the sl,(R) indefinite Toda lattice: We have one 7-function,

1 (Z‘) = 0'1p1eA't + 02pge)‘2’.
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If cj0p = —1, 71(¢) has zero at a time ¢ = )\zl/\l In(E}), that is, we have a blow-up in the

solution. The image of the moment map p(7) is given by a line segment whose end points
correspond to the weights L; and L, = —L;. Although the dynamics are so different in the
cases 0102 > 0 and 070, < 0, the moment polytope (a line segment) is independent of the
signs of the o;’s.

In order to find the general pattern of the sign changes in (g (¢), . . ., g,—1(¢)) of the matrix X
in (2.16) with (2.18), we first recall that the isospectral variety is characterized by the moment
polytope M. whose vertices are given by the orbit of Weyl group action. Here the set of signs
€ = (€1,...,€,—1)is defined by the signs of g; for r — —oo. From the ordering A\; < - -+ < A,
we first see that 74 (t) ~ o7 - - - %K (1, ..., k) exp((A1 + - - - + X)?). Then from the definition
of gi(?) in (2.22), 1.e. g = Tk_lTkH/Tkz, the sign of gy(¢) for t — —oo is given by

ek:sgn(gk):0k0k+1 for k:l,...,n—l.

Then from the moment map (3.1), one notes that the moment polytope given as the image of
the moment map (M) is independent of the sign set e. However the dynamics of the Toda
lattice with a different e is quite different, and the solution with at least one ¢, < 0 has a blow-
up at some ¢ € R.

We now consider each edge of the polytope which corresponds to an sl (R) indefinite
Toda lattice, that is, where g; # 0 for only one j. This edge can be also expressed by a simple
reflection s; € W. Since the simple reflection s; exchanges o; and oj 1, we have an action of s;
on all the signs e, s : € — €,

€1€k—1 if j=k—1
€ = sj(ex) = < €€t if j=k+1
€x if j=kor|j—kl>1
which can be also shown directly from the form of 7;(¢) in (6.3). This formula can be extended

to the indefinite Toda lattice on any real split semisimple Lie algebras, and we have (see (4.4)
and proposition 3.16 in [10]):
Proposition 6.3. Let ¢; = sgn(g;) for j=1,...,n — L Then the Weyl group action on the
signs is given by
—Cy
Sj €k — 6k€j 5

where (Cij)i1<ij<n—1 1S the Cartan matrix of sl,(R).

With this W-action on the signs € = (ey, ..., €,—1) with ¢, = sgn(gy) at each vertex of the
polytope, we now define the relation between the vertices labeled by w and w' = ws; as fol-
lows: Notice that if ¢; = +, then (e;,- - , €,—1) remains the same under s;-action. Then we
write

w=w with w' = ws;.

The following definition gives the number of blow-ups in the Toda orbit from the top vertex e
to the vertex labeled by w € W: Choose a reduced expression w = s;, - - - 5j,, and consider the
sequence of the signs at the orbit given by w-action,

€ — S € — S,5E —> o —> wle.

We then define the function 7(w, €) as the number of — which are not of the form =-. The num-
ber 7(wy, €) for the longest element w gives the total number of blow-ups along the Toda flow
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Wo=[123121] wo=[123121]

Figure 6. The moment polytope M___ for the sl4(R) indefinite Toda lattice (the
right figure is the back view of the left one). The divisors defined by the set of zero
points for the 7-functions are shown by the dotted curve for {r; = 0}, by the light
curve for {7, = 0}, and by the dark one for {73 = 0}. The double circles indicate the
divisors with {; = 0} N {7; = 0}, which are all connected at the center of the polytope
corresponding to the point with {7 = 7, = 73 = 0}. The numbers in the polytope
indicate the number of blow-ups along the flow. An example of a path from the top
vertex e to the bottom vertex wy, the longest element of Sy, is shown by directed edges.

in the polytope of M.. Whenever € = (—, ..., —), we just denote n(w, €) = n(w). This num-
ber n(w, €) does not depend on the choice of the reduced expression of w (see corollary 5.2 in
[14]). Hence the number of blow-up points along the trajectories in the edges of the polytope is
independent of the trajectory parametrized by the reduced expression. In figure 2, we illustrate
the numbers n(w, €) for the sl3(R) indefinite Toda lattice. For example, on M__, we have
n(e) = 0,n(s1) = n(s2) = n(s152) = n(s2s1) = 1 and n(s1s251) = 2, i.e the total number of
blow-upsis 2. We alsoillustrate this for the sl4(R) Todalattice in figure 6. Along the path shown in
this figure, wehaven(e) = 0,7([2]) = n([21]) = n([213]) = 1,7([2132]) = 2,7([21323]) =3
and n(wo) = 4, where [ij - - - k] = s;s; - - - sx, and note [21323] = [12312].

In general, the total number of blow-ups 7(wg,€) depends only the initial signs
€= (€1,...,e,—1) with €; = sgn(g;(¢)) for t = —oo, which is given by €; = 0;0i+1. Then in
the case of sl,(R) indefinite Toda lattice, the number 1(wy, €) = m(n — m) where m is the total
number of negative o;’s (proposition 3.3 in [46]). In particular, the maximum number of blow-
ups occurs in the case where € = (—, ..., —), and it is given by [(n + 1)/2](n — [(n + 1)/2]).
Those numbers 7)(wy, €) are related to the polynomials given in (6.2) appearing in F, points on
certain compact groups K.

We now introduce polynomials in terms of the numbers 7(w, €), which play a key role for
counting the number of blow-ups and give a surprising connection to the rational cohomology
of the maximal compact subgroup SO(n) (definition 3.1 in [14]).

Definition 6.4. We define a monic polynomial associated to the polytope M.,
plg.e) = (1)1 37 (—1) e gnime),

wew

Notice that the degree of p(g, €), denoted by deg( p(g, €)), is the total number of blow-ups, i.e.
n(wo, €) = deg(p(g,€)). For the case e = (—, ..., —), we simply denote it by p(q).
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Example 6.5. 1In the case of the sl;(R) Toda lattice,

(a) for e = (+), we have e = s; which gives p(g,+) = 0,
(b) for e = (—), we have a blow-up between e and sy, hence p(¢,—) = ¢ — 1.

Recall from the previous section that the polynomial p(g) =p(g,—) appears in
SOR.F,)| =g 1.
In the case of the sl3(R) Toda lattice, from figure 2,

(a) for all the cases of € = (€1, &) except (—, —), we have p(g,€) = 0.
(b) for € = (—, —), we have p(¢q) = ¢* — 1.

Note again that the polynomial p(q) appears in|SO(3,F,)| = q(¢* — 1).
In the case of sl4(R), we have, from figure 6,

(a) for all € = (ey, €2, €3) except (—, —, —), p(g,€) = 0.
(b) fore = (=, —, =), p(q) = ¢* = 24> + 1= (¢* = 1)*.

Again note that |[SO(4,F,)| = ¢*(¢* — 1)

Casian and Kodama prove that the polynomial p(q) for M, with e = (—,..., —) in defini-
tion 6.4 agrees with the polynomial p(g) in |K(F,)|in (6.2) where K is the maximal compact
subgroup of real split semisimple Lie group G for the Toda lattice (theorem 6.5 in [14]).

Thus the polynomial p(g) contains all the information on the F, points on the compact sub-
group K of G, which is also related to the rational cohomology, i.e. H*(K,Q) = H*(G/B,Q)
(see (6.1)). Now recall that the integral cohomology of the real flag variety G/B is obtained
by the incidence graph Gg /g in definition 6.1. In [14], Casian and Kodama also show that the
graph G/ can be obtained from the blow-ups of the Toda flow. They define a graph G, associ-
ated to the blow-ups as follows:

Definition 6.6. The graph G, consists of vertices labeled by the elements of the Weyl group
W and oriented edges =>. The edges are defined as follows:

(a) w; < wy (Bruhat order)
(b) £(wy) = £(wy) + 1
(c) n(wi.€) = n(wa. €)
(d)

wy = wy iff

-1 _ -1
d)w e=w, e

When e = (—,...,—), we simply denote G = G..

Then they prove that G, with € = (—, ..., —) is equivalent to Gg/p (theorem 3.5 in [14]
which is the main theorem in the paper). For example, the graph G associated with figure 6
agrees with the incidence graph G¢/p given in figure 5. The proof of the equivalence G /5 = G
contains several technical steps, which are beyond the scope of this review.
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