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Abstract Shifts in the frequency of typical meteorological patterns in an ocean basin, over 
interannual to decadal time scales, cause shifts in the patterns of wave generation. Therefore, 
ocean basin-scale climate shifts produce shifts in the wave climates aff ecting the coastlines of the 
basin. We present a hybrid methodology for downscaling observed (or predicted) climate shifts into 
local nearshore wave climates and then into the associated coastline responses. A series of 
statistical analyses translate observed 
(or predicted) distributions of meteorological states into the deep water wave climate aff ecting a 
coastal region and dynamical modeling combined with statistical analyses transform the deep water 
wave climate into the nearshore wave climate aff ecting a particular coastline. Finally, dynamical 
modeling of coastline evolution hindcasts (or predicts) how coastline shapes respond to climate 
shifts. As a case study, 
we downscale from meteorological hindcast in the North Atlantic basin since 1870 to the responses 
of the shape of the coast of the Carolinas, USA. We test the hindcasts using shoreline change rates 
calculated from historical shorelines, because shifts in coastline shape equate to changes in the 
alongshore pattern of shoreline change rates from one historical period to another. Although limited 
by the availability 
of historical shorelines (and complicated by historical inlet openings), the observations are consistent 
with the predicted signal of ocean basin-scale climate change. The hybrid downscaling methodology, 
applied to the output of global climate models, can be used to help forecast future patterns of 
shoreline change related to future climate change scenarios. 

 

 
1. Introduction 
Approximately 10% of the world’s population lives in the coastal zone below 10 m elevation (Nicholls 
& Cazenave, 2010), in environments that are among the most dynamic on Earth. Natural processes 
that shape these environments represent hazards to humans and infrastructure, including both acute 
storm hazards (e.g., storm surge flooding and storm waves) and chronic shoreline erosion. Earth’s 
climate exhibits cycles, including seasonal, sequencing, and clustering of storm events, and 
interannual and decadal oscillations of various sorts. These cycles are superimposed on an 
accelerating background climate change arising from human activities (Intergovernmental Panel on 
Climate Change, 2013), which could involve shifts in the statis- tics of climate cycles. All of these 
climate shifts — the cycles and the trend — will tend to cause shifts in coastline position and plan 
view shape. This work addresses some of the processes that cause long-term (decadal and longer) 
changes in shoreline location. Although sea level rise, and related cross-shore sediment transport 
patterns, leads to long-term shoreline erosion (e.g., Bruun, 1962; Cowell, Stive, Niedoroda, de Vriend, 
et al., 2003; Cowell, Stive, Niedoroda, Swift, et al., 2003; Moore et al., 2010; Wolinsky & Murray, 
2009), here we focus on a diff erent set of processes involving alongshore sediment transport, which 
also produce long-term, cumulative shoreline change. Here we focus on multiannual to centennial 
time scales. 

Although understanding and modeling the long-term behavior of the coastal landscape remains a 
significant challenge, during the last two decades coastal researchers have increased their eff orts to 
address middle- and long-term morphodynamic evolution (e.g., French et al., 2016; Stive, 2004). 
Such eff orts have led to more robust models, which, by representing only what are hypothesized to 
be the most important dynamics, require relatively little computational eff ort and provide insight into 
which aspects of coastal behavior are 
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relevant from a long-term point of view and which are not (“signal” versus “noise”) (de Vriend et al., 
1993; Lazarus & Murray, 2007; Murray, 2007). However, using such models to address 
morphological change on particular coastlines during particular time periods requires accurate forcing 
data at a level of detail and res- olution appropriate for a given model during the long periods 
scientists are interested (e.g., Antolínez et al., 2016; Camus, Mendez, & Medina, 2011). Waves are 
the most commonly source of data to use as model forcing. However, buoy or satellite data are limited 
in time to recent decades. If we want to examine coastline change driven by changes in wave climate 
over a time scale of decades to centuries, as we do here, buoy or satel- lite data are not sufficient. In 
addition, to be of use as model forcing, wave data need to be aggregated/ synthesized into a form 
appropriate for a particular model. Here we present a method for generating (hind- casting or 
forecasting) wave data over time scales spanning from annual to centennial (“hybrid downscaling”; 
Camus, Mendez, & Medina, 2011; Camus, Méndez, Losada, et al., 2014; Camus, Menéndez, 
Méndez, et al., 2014), in a form appropriate for a particular model (the Coastline Evolution Model 
(CEM); Ashton & Murray, 2006a, 2006b). 

This work is made possible by the development of techniques to synthesize local wave conditions 
given only ocean basin-scale meteorological data — surface pressure fields — which extend back 
140 years (from atmospheric reanalysis). Diff erent approaches exist for downscaling from basin-
scale atmospheric pressure forcing to local wave conditions. In one end-member approach, daily 
pressure fields could serve as boundary conditions to force dynamic atmospheric models to generate 
winds, ocean-atmosphere interaction models would then generate the waves, and nested wave 
transformation models would then propagate the waves to each shoreline location. However, such 
“dynamic downscaling” is too computationally expensive in the context of a decadal- to centennial-
scale modeling endeavor. In addition, a deterministic sequence of daily wave conditions is not 
needed when modeling large-scale coastline shape changes (because the time scale for response to 
changing wave forcing is much longer than days; Thomas et al., 2016). Robinet et al. (2016) propose 
a statistical model that reproduces the interannual variability of shoreline evolution directly from 
basin-scale atmospheric forcing, with a similar skill as empirical cross-shore models, which require 
wave data. In contrast, we use a hybrid statistical and dynamical approach that translates daily 
surface pressure fields into stochastic local wave distributions — an approach that produces wave 
climate data appropriate to use as model forcing, and with orders of magnitude smaller computational 
costs than direct dynamical downscal- ing would incur. In this application, we synthesize local wave 
data into the form needed to force the CEM: the angular distribution of wave influences on 
alongshore sediment flux, defined on an annual time scale, measured at the off shore limit of 
approximately shore-parallel contours (the base of the “shoreface”). 

We  use the CEM to investigate changes in coastline shape. The shape of coastal environments is 
function  of wave climate and also of the beach cross-shore profile (Hallermeier, 1980) and planform 
(Falqués et al., 2000). Plan view coastline shapes, on scales from kilometers to hundreds of 
kilometers, are functions of the angular distribution of wave influences (“wave climate” hereafter; 
Ashton et al., 2001, 2002; Ashton & Murray, 2006a, 2006b; Falqués et al., 2017; Idier et al., 2011; 
Kaergaard & Fredsoe, 2013a, 2013b). This relationship arises from patterns in wave-driven alongshore 
transport. Gradients in net (e.g., annual) transport drive erosion and accretion. When they take place 
on scales of kilometers and greater, they arise from coastline shape, which (for a given wave climate) 
dictates patterns of wave momentum and energy fluxes reaching shore. The gra- dients in transport, 
in turn, change coastline shape. From these “morphodynamic” interactions (Murray & Ashton, 2013), 
diff erent coastline shapes emerge under diff erent wave climates. Shifts in wave climate cause shifts 
in coastline shape, equating to enhanced erosion in some zones and decreased erosion (or 
accretion) in others (Moore et al., 2013; Slott et al., 2006). 

Moore et al. (2013) identified coastline shape shifts associated with decadal-scale wave climate 
change recorded in wave buoy and hindcast data (Komar & Allan, 2008). Moore et al. (2013) 
examined changes along the Carolina coastline in Southeastern United States. This well-studied and 
economically valuable coastline features large-scale cuspate capes with a wavelength of 
approximately 125 km and a cross-shore excursion of 20 km. Two of the capes (Capes Hatteras and 
Lookout), with extensive protected regions, are approximately unaff ected by human shoreline 
stabilization. The third (Cape Fear) features extensive stabilized stretches of shoreline (Johnson et 
al., 2015, identified shifts in the rate that resources have been used to stabilize the shoreline 
associated with wave climate change). As a case study, we will examine changes in the wave cli- 
mate aff ecting the Carolina capes over the past 140 years. We will also examine the associated 
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coastline shape changes, through model hindcasts, and compare the hindcasts to observations of 
historical shoreline change rates (to the extent that available shoreline observations allow). 
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Figure 1. Conceptual framework of the proposed methodology. RD: regional downscaling/ND: nearshore 
downscaling/SD: shoreline downscaling. 

 
The paper is organized as a sequence of successive steps to be performed to downscale, from the 
climate, to the shoreline response (see Figure 1). In the supporting information we describe the data 
used in this work. Section 2 defines a global overview of the methodology, and section 3 explains in 
more detail the hybrid framework, including the coastline change modeling. In section 4 we compare 
the hindcast shoreline change rates with historical observations during select periods of time. We 
summarize conclusions in section 6. 

 
2. Overview of the Methodology 
Our approach starts with an empirical distillation of the pressure fields into characteristic daily weather 
types (DWTs) representing typical patterns of low and high pressure systems and their temporal 
evolution. Then, taking the time lags associated with wave propagation across the basin into account, 
a separate statistical step relates the DWTs with typical deep water wave characteristics (sea state 
type, SST) and wind conditions aff ecting a target region. To translate these typical SSTs into wave 
conditions aff ecting specific coastal loca- tions, we use a dynamical model that propagates the 
waves in the SST across continental shelf bathymetry and around any obstructions, taking local wind 
conditions into account. This versatile “hybrid” downscal- ing approach, mixing statistical and 
dynamical modeling, can be used to generate wave data with a range of diff erent temporal 
resolutions, and the wave and wind data can be converted to other forcing variables, including total 
water level (Rueda et al., 2017). This approach could also be used to address future wave cli- mate 
change, using the meteorological conditions output from global climate models (Perez et al., 2015).   
In this initial work, to assess the large-scale and long-term coastline response to interannual and 
interdecadal shifts in the climate forcing, we synthesize the wave data into a form appropriate for 
driving the CEM and address past changes along the Carolina Coast. 

Figure 1 depicts the three downscaling models we use and the work flow chart. First, a regional 
downscal- ing (RD) detects the statistical relationship between the basin-scale atmospheric/oceanic 
patterns (predictor, X) and the regional deep water wave and wind climate (predictand, W0) as 
proposed by Camus, Menéndez, Méndez, et al. (2014). Second, a nearshore hybrid downscaling 
model (ND; Camus, Mendez, & Medina, 2011) propagates regional waves across the continental 
shelf, accounting for local winds (predictor, W0), to obtain high-resolution waves (predictand, WHR) at 
a depth relevant to the shoreline change modeling (Y): the depth beyond which, in the long-term, 
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wave-driven sediment transport becomes negligible, that is, the base 
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of the shoreface. The shoreline change modeling requires the following forcing variables: the 
alongshore sediment transport, Qs, resulting from waves approaching from each off shore angle, ΦHR 
(discretized into wave-angle bins, where ΦHR refers to the angle between the wave crests and the 
local shoreline orientation, measured at the base of the shoreface). We label this sediment transport 
contribution Y, and we label the dis- tribution of these contributions as a function of the approach 
angle fY (y). As described below, the shoreline modeling (Ashton & Murray, 2006a) uses an empirical 
formulation for alongshore sediment transport, and Y is integrated as in Ashton and Murray (2006b) to 
predict the large-scale shoreline response in the long term (Z). The local coastline evolution Z is 
ultimately driven by changes in the basin-scale atmospheric/oceanic pat- terns X; thus, we refer to 
the shoreline modeling as shoreline downscaling (SD), the third downscaling model. Below we 
summarize the methodology by describing briefly the diff erent steps through the RD, the ND, and the 
SD nomenclature. 

Step RD1. To define areas of wave generation and characteristic temporal lags of wave energy using 
ESTELA (Pérez et al., 2014) and to use this information to construct a spatially and temporally 
varying daily predic- tor, that is, based on daily sea level pressure (SLP) fields accounting for the 
temporal lags arising from wave propagation across the domain, as in Hegermiller et al. (2017). 

Step RD2. To apply principal component analysis (PCA) to the preprocessed data above (Camus, 
Méndez, Losada, et al., 2014). 

Step RD3. To define DWTs from PCA space of SLP to obtain synoptic SLP patterns (Camus, 
Menéndez, Méndez, et al., 2014) based on ESTELA (Hegermiller et al., 2017; Pérez et al., 2014). 
The DWTs are the predictor data (X) of the RD. 

Step RD4. To define daily SST performing a classification (Camus, Mendez, Medina, & Cofiño, 2011) 
on the off shore wave and wind climate. Here the multivariate wave climate distribution for each SST is 
retained. The SSTs are the predictand data (W0) of the RD and the predictor data of the ND. 

Step RD5. To obtain the categorical distribution of SST for each DWT, fW0 (w0). 

Step RD6. To obtain the monthly distribution of DWT for every year, fX (xt). 

Step ND1. Selection of daily wave and wind conditions from the off shore wave and wind climate to 
reduce the number of wave conditions to propagate dynamically, based on Camus, Mendez, Medina, 
and Cofiño (2011). 

Step ND2. HR propagation of the selected cases in step ND1 using SWAN (Booij et al., 1999) 
accounting for local winds. 

Step ND3. Reconstruction of continuous propagated series applying radial basis functions, previously 
fitted to the continuous daily wave climate series at an off shore location, on the propagated 
conditions in step ND2. Steps ND1, ND2, and ND3 follow the methodology proposed by Camus, 
Mendez, and Medina (2011). 

Step ND4. To obtain propagated daily SST distributions, predictand of the ND (WHR), and predictor of 
the alongshore sediment transport, by projecting the propagated series in Step ND3 within each SST 
defined in Step RD4. 

Step SD1. To define the directional alongshore sediment transport distribution, fY (y), from the 
propagated properties of the wave climate (WHR). For each SST, Y is function of a directional 
discretization (ΦHR) of the alongshore sediment flux (Qs) following Ashton and Murray (2006b).The 
direct eff ect of local winds on along- shore currents and sediment flux is neglected, because forces 
arising from breaking waves are typically much larger than those arising from local wind drag on the 
water surface (Fredsoe & Deigaard, 1992). 

Step SD2. To integrate the decadal and yearly asymmetry (A) and instability (U) parameters (Ashton & 
Murray, 2006b) from the combination of the monthly distribution of DWT for every year (fX (xt)) from 
Step RD6, the categorical distribution of SST for each DWT from Step RD5 (fW0 (w0)), and the 
directional alongshore sediment transport distribution (fY (y)) for each SST from Step SD1. 

Note that looking for the relationship between ocean basin meteorological patterns (X) and nearshore 
waves (WHR), we step into an intermediate stage — the off shore waves and wind (W0)— because this 
half step keeps clean the statistical relationship between atmosphere and wave patterns in the 
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study site without adding the eff ects  of shallow-water wave propagation (shoaling, refraction, 
bottom friction, breaking, …	 ), which is a function of the bathymetry and makes the search for 
relationships linking X and WHR more difficult  
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…;	SLPΩl,t−l+1;	
SLPGΩl,t−l+1 

 
 

 
Figure 2. Mosaic of the study site. U.S. East Coast showing the capes 
and shoals along North and South Carolina. White dots show the 
location of NDBC buoys. Yellow dots are the location of the off shore 
hindcast (GOW2) and one of the nodes from the nearshore 
propagation (Loc14). 

 
because it mixes wave climates from diff erent atmospheric conditions 
into the same nearshore waves; allows us to independently assess 
the perfor- mance of the individual methods— RD or ND—; and 
allows for future improvement in the RD or ND methods without 
repeating everything from scratch. 
 
3. Application 
We apply this methodology to the “Carolina capes” of North Carolina 
and South Carolina, USA (Figure 2). 

3.1. Regional Downscaling Model 
3.1.1. Predictor Definition 
We define the predictor X taking the daily SLP fields from 
atmospheric reanalysis data (details in Data Set S1 in the supporting 
information) and combining four diff erent techniques to process the 
data until the pre- dictor is appropriately optimized. First, we obtain 
the spatial domain and temporal coverage for the predictor, and then 
we apply two data mining 

techniques: a PCA reducing the data dimensionality and simplifying the subsequent process of 
classifying the daily atmospheric conditions (using K-means algorithm) into a set of regional synoptic 
atmospheric patterns related to the regional deep water wave conditions at our location. 

Step RD1. Building up the raw predictor data. First, we apply the Estela method (ESTELA; Pérez et 
al., 2014) on the Atlantic Ocean for the Carolinas coastline based on the historical wave fields. The 
ESTELA accounts for the source and travel time of the wave energy (regionally generated) reaching 
our local area. Figure 3 shows that there are three main sources of energy: a northwest, a southwest, 
and a local one. In line with previous works (Antolínez et al., 2016; Camus, Menéndez, Méndez, et al., 
2014) we use daily mean SLP and squared SLP gradient (SLPG) fields from 1872 to 2010 at 2∘	
spatial resolution from the 20CR reanalysis, representing the geostrophic wind conditions over the 
spatial domain covered by the ESTELA (the envelope of the colormap in Figure 3). As in Hegermiller 
et al. (2017) we build up the predictor Pt from the SLP and SLPG by accounting 

for the isochrones (characteristic travel time of the wave energy to the 
target area, the gray and black lines in Figure 3), 

Pt(x, t)	=	
[
SLPΩ1 ,t;	SLPGΩ1,t; … ;	SLPΩi ,t−i+1;	

SLPGΩi ,t−]i+1
;	

	
(1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. ESTELA applied to the study area. The color map 
represents the mean eff ective energy flux from 1993 to 2012 ( kW/m 
∗	360), and the 

 
where x is the spatial domain, t is time, Ωi is the domain between 
daily isochrones i−1 and i, and l is the number of days for the longest 
wave prop- agation time from generation until arrival at the target 
location (20 days in this work). We  emphasize that with this 
approach we keep track of  the geostrophic wind conditions that 
generate waves aff ecting the target location. 

Step RD2. Principal component analysis. The raw predictor data Pt 
at this point are spatial and temporal SLP and SLPG fields spanning 
the North and South Atlantic Ocean for 139 years at 2∘	 spatial 
resolution and daily tempo- ral scale. We perform a PCA of Pt to 
obtain the dominant spatial variability patterns (Empirical Orthogonal 
Functions, EOFs) and their corresponding temporal coefficients 
(PCs) (Camus, Méndez, Losada, et al., 2014) reducing the 
dimensionality (2,478 grid cells for each SLP and SLPG) of the 
tempo- ral Pt (50,769 days) while preserving the maximum variance 
of the sample data. We select the first 188 modes from the PCA 
analysis (explaining 95% of the variance). As an example, the time 
series associated with the first mode EOF1(x)	 is PC1(t). The original 
predictor Pt can be expressed as a linear combination of EOFs and 
PCs: 

∀i =	1, …	, 
l, 

gray and black lines represent the characteristic travel time 
(isochrones). Red 
lines are the great circles for certain directional sectors. 
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 i=1 

i=1 

Pt(x, t)	=		 EOFi(x)	∗	PCi(t).
 (2
) 
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Figure 4. Predictor X. DWT lattice and diff erent weather type patterns: Boreal summer in green (DWT 7), boreal 
winter in purple (DWT 19), and TC activity in red (DWT 80). The blue-white-red color scale refers to the SLP in 
hectopascal (hPa).  The left panels show the total monthly DWT probability. 

 
Retaining a higher number of modes here than is typical in PCA applications (Antolínez et al., 2016) 
is a con- sequence of the high variability introduced by building up the Pt accounting for the ESTELA. 
At this step, the cubic root of the daily and monthly wave energy flux is regressed from the PCs as in 
Camus, Méndez, Losada, et al. (2014) to validate the performance of the raw predictor Pt defined 
above before going ahead with the methodology (details on the preliminary validation of the predictor 
skill are given in Text S1 in the supporting information). 

Step RD3. DWT classification. The preliminary validation model only accounts for linear relationships 
between waves and the PCs in the time domain. Categorizing the daily atmospheric conditions 
(statistically summa- rized by the PCs of Pt) into homogeneous atmospheric circulation patterns allows 
us to account for nonlinear relationships between waves and the predictor. The link is made in the 
probability domain (population of multivariate local wave climate related to each homogeneous 
atmospheric condition) to identify the wave conditions belonging to each weather class or weather 
type. Following Camus, Menéndez, Méndez, et al. (2014), a K-means classification is applied to the 
daily PCs space of the raw predictor Pt obtaining nDWT =	 81, DWTs statistically representative of daily 
atmospheric synoptic situations. The DWTs are the predictor data X 
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Figure 5. Predictand W0. The upper panels show the multivariate classification of wave height (Hs), period (Tp) 
and mean direction ( ), and wind intensity (W) and direction ( W ). The diff erent colored dots represent the 
population within a cluster and the black dots the centroids for each of the 81 clusters. The lower panel shows 
the 
centroids projected in a lattice of 9 ×	9. Blue scale is the occurrence probability for the period of 1979 – 2014. 
White-yellow-red-black scale represents the wave height (HS). The arrow represents the mean direction ( )). The 
length and gray scale of the arrow represents the period (TP). 
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∗	 =	 ×	 =	

W0 =	
{
H0, T0, 0, W, W

} 
.

 (3

) 

 
of the RD. Figure 4 shows the lattice of the 81 DWTs arranged with a self-organizing map, producing 
smooth transitions between adjacent synoptic situations (see Camus, Mendez, Medina, & Cofiño, 
2011, for further details on clustering techniques). The left panels represent the total monthly DWT 
probability; note that there are nine DWTs occurring only during the months of August– October. 
Even though 20CR does not have enough resolution (2∘) to capture the lowest pressures associated 
with tropical cyclones (TCs), it gets the footprint of very low pressure tracks. The diff erent synoptic 
patterns are characterized in Figure 4, from boreal winter conditions (December-January-February) 
feeding southerly winds (e.g., DWT 19 represented in purple), through boreal summer conditions 
(June-July-August) being related with light northerly winds (e.g., DWT 7 represented in green), to TC 
activity with strong and highly variable local winds (e.g., DWT 80 represented in red). 
3.1.2. Predictand Definition 
We define the predictand W0 from the Global Ocean Waves (GOW2; Perez et al., 2017) data set from 
1979 onward for the multivariate wave climate consisting of significant wave height (H0), peak period 
(T0), and S P 
mean direction ( 0) and the Climate Forecast System Reanalysis U and V components in 10 m height 
above 
the sea level to perform the wind intensity (W) and mean direction ( W). This data set is extracted at 
a point (longitude = 72∘W, latitude = 35∘N) located in deep water close to the buoy NDBC_41001 (see 
Figure 2). This set of regional deep water multivariate wave and wind climate conditions are the 
linkage between regional synoptic atmospheric patterns and nearshore waves. Data Sets S1 and S2 
in the supporting information con- tain further details of the data used for the predictand definition, 
and Text S2 contains more details on the predictand definition. 

Step RD4. Daily SST classification. We apply the K-means algorithm technique to daily multivariate 
time series of the wave and wind climate. Furthermore, we apply the maximum dissimilarity algorithm 
as a centroid initial- ization technique to force the K-means technique to correctly describe the high 
diversity of the daily wave and wind climate (Camus, Mendez, Medina, & Cofiño, 2011). These 
techniques are applied here to obtain nSST =	 81 daily SST. Figure 5 shows the classification of the 
predictand data. Both, nDWT and nSST, were chosen to be a square lattice of 9 ×	 9 =	 81 after testing 
for the highest number of clusters that keep a significant population data on each cluster. In this 
work, we tried pairs of {nDWT, nSST}	with nDWT, nSST =	 3 ×	3, 4 ×	4, 5 ×	5, …	 , 10 ×	10. The SST are the 
predictand data W0 of the RD. Note that each daily record of the multivariate wave and wind climate 
belongs to one of the 81 SSTs. We define the predictand W0 by 

 
S       P 

 
3.1.3. Statistical Downscaling 
We present here the statistical properties of the RD inherited from the statistical relationship between 
the predictor X and the predictand W0. 

Step RD5. Monthly distribution of DWTs for every year. The monthly occurrence probability of a DWT 
for every year is defined as 

fX (xt)	=	Prob(DWT =	i∕(year =	r ∩	month =	s));	
∀i =	1, …	, nDWT;	 ∀r =	1872, …	, 2010;	 ∀s =	1, …	, 
12. 

 
(4) 

We empirically obtain fX (xt)	from the temporal series of DWT for the period of 1872 – 2010, defined by 1 matrix ∗	
12 month   139years 1668 probability matrices of 9
 9 

year 
in Figure 

6. 

month 
81 DWT, represented in the sketch on the 
left 

Step RD6. Categorical distribution of daily SSTs for each DWT. Here we link the predictand data W0 

to the pre- dictor X; in other words we project the SST (lower panel of Figure 5) into the DWT lattice 
(Figure 4). Thus, the probability of the SST “j” conditioned to the DWT “i” is given by the following: 

 
fW0 (w

0)	=	Prob(SST =	j∕DWT =	i)	=		Prob(SST =	j ∩	DWT 
=	i)	

;	
P
r
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ob(DWT =	i)	
∀j =	1, …	, nSST;	 ∀i =	1, …	, nDWT. 

 
 

(5) 

We empirically obtain fW0 (w0)	 from the temporal series of DWT and SST for the shared period 1979 – 
2010, and it is calculated from the number of SST =	 j belonging to the DWT =	 i divided by the total 
SST belonging to the DWT =	i. The right scheme in Figure 6 represents the matrix of matrices. 



ANTOLÍNEZ ET 
AL. 

15 

Journal of Geophysical Research: Earth 
Surface 

10.1002/2017JF0043
67 

 

 

 
 

 
Figure 6. Statistical relationship between the predictor X  and the predictand W0. The left side shows a sketch of the monthly distribution of DWT, fX 
(xt). The   right side shows the categorical distribution of SST for each DWT, fW0 (w

0). We use the same DWT lattice as in Figure 4; however, for fW0 
(w0)	within each element   of the DWT lattice we represent a lattice of SST. The SST probabilities for diff erent weather type patterns are highlighted: 
Boreal winter in purple (DWT 19), 
TC activity in red (DWT 80), and boreal summer in green (DWT 7). 
 

3.2. Nearshore Downscaling Model 
The nearshore downscaling model, ND, consists of a dynamical downscaling of the representative 
subset of SST conditions in deep water, W0. The ND output is the propagated distribution function of 
wave height, period, and direction for each SST defined in section 3.1.2. With the ND we complete 
the procedure for downscaling local nearshore waves from regional atmospheric conditions, 
obtaining the likely distribution of the multivariate nearshore wave climate through the twentieth 
century. Note that this procedure is com- putationally inexpensive compared with full dynamical 
downscaling (running wave models continuously   in time). 
3.2.1. Hybrid Downscaling 
Step ND1. Selection of daily wave and wind conditions. First, we apply the maximum dissimilarity 
algorithm following Camus, Mendez, and Medina (2011) to the daily multivariate time series of wave 
height, period and direction, and wind intensity and direction described above in section 3.1.2, at the 
same location, to select M =	 200 daily sea states to propagate numerically (red dots in top scatters in 
Figure 7). 

Step ND2. Propagation of selected cases using SWAN. Then we perform stationary deep water to 
nearshore (base of the shoreface) wave transformation of the most representative daily sea states 
selected above using the wave propagation model SWAN (Booij et al., 1999). The off shore boundary 
condition of the numerical grid matches the depth at which we take waves from GOW2 reanalysis, 
indefinite depths (the end of the conti- nental shelf in Figure 2). We define a constant wind field in the 
computational domain by daily wind intensity (W) and direction ( W). Further details of the bathymetry 
used for propagations are given in Data Set S3 and details of SWAN modeling in Text S3 in the 
supporting information. The lower panels in Figure 7 show two diff erent wave transformations. 

Step ND3. Reconstruction of the continuous propagated multivariate time series. Finally, we carry out 
the recon- struction of the time series of nearshore wave parameters during the period 1979 to 2014 
by an interpolation technique based on radial basis functions, a scheme that is very convenient for 
scattered and multivariate data (Franke, 1982); details on the use of radial basis functions are in Text 
S4 in the supporting information. We have validated the reconstructed temporal series against buoy 
records at diff erent depths. A summary of the results is presented in Table  1. The BIAS in directions 
is high when the number of data to compare     is very low, and/or the diff erence in depth where the 
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buoy measures against the depth of the closest node 
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Figure 7. Nearshore wave transformation W0  ⇒ WHR. Upper scatters show the 200 selected wave climate 
conditions (red dots) over the wave climate data (black dots). The lower panels show two representative wave 
transformations in the computational domain for northern and southern wave direction components. The arrow 
orientation represents the mean wave direction. The white-yellow-red-black scale represents the wave height. 
The vectors on top of lower panels 
are the boundary conditions imposed for each propagation   Hs(m), Tp(s), (∘), W (m∕s), W (∘)		. 

 

Table 1 
Comparison of GOW Nodes (G) Against Buoys and Validation of the Hybrid Downscaling (D) 
 

Buoy 

 

Node 
Depth (m) 
buoy/node 

Longitude 
(deg) 

Latitude 
(deg) 

 

Data available 
 
Hs 

RHO 

Tp 
 

 
 
Hs (m) 

RMS 

Tp (s) 
 
 (deg) 

BIA
S 

Hs 
(m) 

Tp (s)  (deg) 

NDBC_4100
1 

G ∞	 −72.61
7 

34.62
5 

290 0.97 0.88 0.96 0.3 0.97 29.92 −0.0
1 

0.03 15.81 

NDBC_4100
2 

G ∞	 −74.84 31.76 657 0.97 0.83 0.96 0.22 1.17 27.46 0.01 −0.12 7.03 

NDBC_4102
5 

D 68.3 / 
105 

−75.40
2 

35.00
6 

730 0.77 0.70 0.77 0.56 1.70 52.12 0.07 0.21 23.41 

NDBC_4100
4 

D 38.4 / 37 −79.09
9 

32.50
1 

816 0.87 0.79 0.78 0.39 1.42 41.93 −0.0
8 

−0.24 13.92 

NDBC_4101 D 23.5 / 28 −77.74 33.43 3,703 0.87 0.77 0.82 0.36 1.52 38.88 0.04 −0.2 6.34 
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3 3 6 
NDBC_4409

5 
D 18.3 / 22 −75.33 35.75 1,214 0.76 0.66 0.59 0.72 2.64 64.02 0.33 0.95 −37.211 

NDBC_4111
0 

D 17 / 15 −77.71
7 

34.14
1 

2,552 0.75 0.73 0.61 0.31 2.11 39.24 −0.0
6 

0.22 9.06 

NDBC_4110
8 

D 12.8 / 13 −77.74
3 

33.43
6 

944 0.69 0.65 0.76 0.43 2.19 40.88 −0.1
8 

−0.73 −14.73 

Note. RHO is the correlation coefficient, RMS is the root-mean-square error, and BIAS is the bias. 
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Figure 8. Reconstruction of temporal series. Three upper panels: black lines represent the downscaled time series 
in the period 1979 – 2014 and red lines the measured values at the buoy NDBC_41013 at 28 m depth (Figure 2). 
Squared lower panels: scatter plots of the downscaled daily wave climate (model) against the daily buoy record 
(Buoy NDBC_41013, empirical). The color map of the scatters represents the density of points, yellow is the 
maximum density, and blue the minimum. rho is the correlation coefficient, and RMS is the root-mean-square error. 

 
 
 

in the computational domain is significant (e.g., buoy NDBC_41025 is located close to Hatteras 
Canyon at  68 m depth, but the closest node is at 105 m depth because changes in bathymetry are 
very strong at this location, Figure 2). Another source of error is the inherited bias from the off shore 
wave hindcast (see results in NDBC_41001 and NDBC_41002 buoys in Table 1 and the location of the 
buoys and hindcast nodes in Figure 2). The most valuable comparison is at NDBC_41013 and 
NDBC_41110 (Figure 2) because there are more than 2,000 daily multivariate wave climate (>5 
years); they are centered in the computational grid and the depths in the model and the buoys match 
sufficiently. We discuss how we address the bias in angle during the shoreline modeling in section 5. 

Figure 8 shows the reconstructed series and the quality of the hybrid downscaling at the buoy 
NDBC_41013 at 28 m depth (location in Figure 2). Note that this methodology supplies continuous 
temporal series over a longer period than buoys provide and avoids gaps and inhomogeneity in 
measures. 

Step ND4. Categorical distribution of propagated daily SSTs for each DWT. The aim of the hybrid 
downscaling is to propagate the representative deep water wave and wind conditions to the 
nearshore. Here we project the daily propagated wave conditions into the lattice of SST defined in 
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section 3.1.2, as each propagated daily 
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Figure 9. Deep water (blue) and 15 m depth (red) PDFs of significant wave height (Hs) in the SST lattice 
 

wave climate condition is contemporary in time with one SST. The result of this projection is the 
propagated, HR distribution function of the multivariate wave climate for each SST, WHR: 

WHR =		HS(i), TP(i), (i)	 ∀i =	1, …	, n (6) 
with n referring to the locations where the wave climate has been propagated. Figure 9 shows the deep 
water and propagated distribution functions of wave height, period, and direction for each SST. The 
categorical distribution of the propagated SST on each DWT remains constant once the propagated 
wave climate has been projected to the deep water SST lattice. Thus, we have now captured the 
statistical relationship between the regional atmospheric conditions X and the nearshore waves WHR 

relying on the deep water wave and wind conditions W0. 

fWHR (wHR)	=	fW0 (w0)	=	Prob(SST =	j∕DWT =	i)	

=	Prob(SST =	j ∩	DWT =	i)	;	 ∀		
=	 …	

Prob(DWT =	i)	

3.3. Shoreline Downscaling Model 

 
SS
T 
;	 ∀i =	1, …	, 
n 

 

DW
T 

(7) 

Waves approaching from “high angles” (angles between off shore wave crests and shoreline orientation 
larger than the value that maximizes alongshore sediment transport) tend to cause instabilities in 
coastline shape (Ashton & Murray, 2006a, 2006b; Murray & Ashton, 2013). When the influence of 
high-angle waves is greater than the influence of low-angle waves (which tend to smooth coastlines), 
coastlines can self-organize into regular, quasiperiodic shapes similar to those found along many 
natural coasts at scales ranging from kilome- ters to hundreds of kilometers. If the asymmetry of the 
wave climate is small (small net alongshore sediment transport relative to the gross transport), 
cuspate coasts develop that exhibit increasing relative cross-shore amplitude and pointier tips as the 
proportion of high-angle waves is increased. For asymmetrical wave cli- mates, shoreline features 
migrate in the downdrift direction. Increasing asymmetric wave climates produce increasingly 
asymmetric coastline features (Ashton & Murray, 2006a). Hence, the SD (1) defines the directional 
distribution of wave influences on alongshore sediment transport distribution for each SST by applying 
a sim- ple sediment transport formula and (2) integrates over years and decades the alongshore 
sediment transport to characterize the asymmetry— the proportion of influence from waves 
approaching from left, looking off - shore (A)— and the proportion of influence from high-angle waves 
(U) in the eff ective wave climate over those time scales. 
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Figure 10. Directional distribution of alongshore sediment transport fY (y)	in the SST lattice. Green line is the 
shoreline orientation (N60∘E); cyan lines define the reference relative 42∘	relative angle (at the seaward limit of 
approximately 
shore-parallel contours) that maximizes sediment transport (Ashton & Murray, 2006a). Black line is the directional 
alongshore sediment transport distribution for each SST, fY (y), and red line is the average of fY (y)	for all the 
SST. Note that in the SST with largest values of directional alongshore sediment transport, Y(y)	=	QS(ΦHR), the 
circles have been scaled to fit in the lattice but they represent the same magnitude as in the other groups. 

 
Step SD1. Distribution of alongshore sediment transport. In this step we compute the daily 
alongshore sedi- ment transport from the nearshore wave climate (WHR) applying the CERC sediment 
transport formula (Komar, 1971). We take the mean coastline orientation to be N60∘E (Ashton & 
Murray, 2006b). Then we achieve the directional alongshore sediment transport distribution for each 
SST, fY (y), partitioning the sediment transport into bins of 5∘, where the representative angle of the bin 
is defined by ΦHR and the accumulated sediment flux value by QS. Thus, the directional alongshore 
sediment transport is given by Y =	 QS(ΦHR)	 and the directional distribution for each SST by fY (y). 
Figure 10 shows the fY (y)	 obtained with nearshore wave parameters during the period 1979 to 2014 in 
the location Loc14 in front of Cape Lookout at 30 m water depth (see Figure 2). The lower right panel of 
Figure 11 shows the sediment transport variables involved in the directional distribution of alongshore 
sediment transport fY (y). 

Step SD2. Decadal and yearly A and U parameters. Here we integrate fY(y), fW0 (w0), and fX(xt)	 to 
calculate the cumulative directional alongshore sediment transport distribution during yearly and 
decadal time spans,    fY (yt), as below: 

fY(yt)	=	
∑ ∑ 

fX(xt)	· 
∑ 
fW0 (w0)	· fY(y), (8) 

   
   

where 
∑
n fW0 (w0)	· fY(y)	is the cumulative alongshore sediment transport for each DWT, 

∑
t fX(xt)	· 

SST f     (	 )	· f (y)	 is the cumulative alongshore sediment transport for each DWT in a period of time t, 
 

nSST W0 w0 Y 

 
 

directional bin to obtain fY (yt). The top roses in Figure 11 show the decadal alongshore sediment 
transport distribution from 1872 to 2010. The decadal roses present two very diff erent directional 
sediment contribu- tions, a southerly (contribution from the right looking onshore) and a northerly 

nDW
T 

t nSS
T nDW

T 

t nSS
T 

nDWT , accumulates the total Yt =	Qs,t(ΦHR)	for 
each 

here a decade or a year, and integrating over the 
DWT, 

nDWT , accumulates the total Yt =	Qs,t(ΦHR)	for 
each 
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(contribution from the left). These contributions vary through time as is shown by comparing to the 
mean value for the study period (red dotted line in Figure 11). The end of the nineteenth century is 
characterized by more asymmetry and more low-angle influence (sediment transport contribution 
between the two cyan lines in the decadal alongshore sediment transport distribution) in the wave 
climate. For example, the northerly component in the 1880 – 1990 
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Figure 11. Decadal directional distribution of alongshore sediment transport fY (yt)	(upper roses). Green line is 
the shoreline orientation (N60∘E); cyan lines define the reference 42∘	angle above which a wave tend to cause 
instability 
in coastline shape according to Ashton and Murray (2006a, 2006b). Black line is the decadal distribution 
Y(yt), and the red line is the mean value for all the decades. The lower left rose shows scheme for the 
integration of A and 
U parameters. The lower right scheme shows the sediment transport variables involved in the directional 
distribution of alongshore sediment transport fY (y). 

 
distribution is larger than in the 1910 – 1920 distribution, relative to the southerly component. Changes 
in the relative influences on alongshore sediment transport from waves approaching from diff erent 
directions will be reflected in the migration rate and shape of coastline features (Z). 

We integrate the decadal and yearly A and U parameters from fY (yt)	=	fY (Qs,t(ΦHR))	as follows (see 
also the lower left panel of Figure 11): 

∫ 

A  =			
∫
ΦHR > 0 

fY 
(Qs,t(ΦHR))dΦHR 

 
(9) 

∀ΦHR 
fY (Qs,t(ΦHR))dΦHR 

∫ fY (Qs t(ΦHR))dΦHR     ΦHR   > 42 ,  

U  =				|
∫
 
∀Φ

|

 fY 
(Q 

 

s,
t 
(ΦH

R 
))dΦH

R 

, (10) 

Figure 12 depicts the variability in values of A and U over annual and decadal time scales. 

3.4. Downscaled Shorelines 
In this section, we drive the CEM (Ashton & Murray, 2006a) using yearly A and U parameters (dotted 

H
R 
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black line in Figure 12) over the period of 1870 – 2010. We generate an initial coastline using the 
values of U 
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Figure 12. Yearly values (black), 10 year running mean of yearly values (red) and decadal (blue) A and U 
parameters for the study period in location Loc14. 

 

and A that maximize the resemblance between the model capes and the Carolina capes, U =	 0.6 and 
A =	 0.55 (Moore et al., 2013). Then, to examine the responses of a coastline (Z) with some of the 
main characteristics of the Carolina Coast to the action of historical (hindcast) wave climate, we vary 
U and A relative to these mean values using the diff erences from the mean shown in Figure 12. 
Figure 13 (right panel) exhibits the values used to force CEM. Figure 13 (middle panel) shows the 10 
year running mean of the yearly shoreline 

 
 

Figure 13. CEM model results. The middle panel shows the 10 year running mean of the yearly shoreline 
change rate; red is erosion, and blue is accretion. The lower panel is the initial model shoreline with scales 
resembling the Carolina capes. The right panel shows the yearly values of A and U (dotted lines) and the 10 
year running mean of yearly values (continuous lines). 
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Figure 14. (upper panel) The resulting coastline after forcing with the 
best fit wave climate (black) and (lower panel) mean shoreline change 
after 
100 years for the best fit climate (green) and for increased summer 
hurricane waves (red). The darker (lighter) gray regions cover 
approximately 10 km north (south) of cusp locations (source: Moore et 
al., 2013). 

 
change rate. The dominance of erosion (red colors) on the updrift 
flanks of the capes (to the left of the cape tips) and accretion (blue 
colors) on downdrift flanks reflects the downdrift migration of the 
capes, under the asymmetrical wave climate. In contrast to that 
time-averaged behavior, Figure 13 also highlights the diff erent 
erosion/accretion behavior of the modeled capes during diff erent 
decades. Around the end of the nine- teenth century, an erosional 
cycle driven by lower U and higher A creates smaller cross-shore 
amplitudes. In contrast, near the end of the twentieth century the 
accretional cycle due to an increase of both U and A creates more 
asymmetrical features with pointier tips. 
 
4. Comparison of Predictions With 
Historical Observations 
Using available historical shorelines (details in Data Set S4 in the 
supporting information), we calculate historical shoreline change 
rates and compare with those predicted in Figure 13, following the 
methodol- ogy described in Moore et al. (2013). Historical shorelines 
extend as far back in time as the 1850s, although shoreline surveys 
were temporally sparse until recent decades. The availability of 
historical shorelines lim- its the time periods over which we can 
calculate shoreline change rates. 

Model predictions shown in Figure 13 include a strong contrast between the patterns of change 
before approximately 1908 and during the 1908 – 1938 period (which we term “period 1” and “period 2,” 
respectively). We focus on testing whether this strong predicted signal can be detected in historical 
observations. 

But first, we carry out a preliminary assessment of how reliable the predicted signals are, by 
comparing the model results based on the downscaling presented here to a previous modeling eff ort 
based on buoy and 

Wave Information Study wave hindcasts for  a  more  recent  period,  
1974 – 2004 (Moore et al., 2013). Moore et al. (2013) examined the 
response of modeled capes to an altered wave climate, with a single 
pair of altered A and U values representing the culmination of a 
trend observed in buoy observations. Figure 14 shows how time-
averaged shoreline change rates influenced by wave climate change 
diff er from the rates under a con- stant wave climate, featuring 
increased erosion extending approximately 10 km updrift of the cape 
tips and increased accretion downdrift of the tips. This climate 
change signal also appears in Figure 13. Although Moore et al. 
(2013) only looked for a signal representing the period as a whole, 
Figure 13 features pronounced erosion within 10 km updrift of cape 
tips in the 1980s and pronounced accretion just downdrift of the tips 
during the 1990s and early 2000s. 

This period, 1974 – 2004, features not only buoy and Wave 
Information Study data but also shoreline data — data that are more 
reliable and more frequent than the shoreline data from the late 
nineteenth or early twen- tieth centuries. Therefore, we also 
compare our predicted model signals with an analysis of shoreline 
change during this period (Moore et al., 2013). Figure 15 shows the 
modeled shoreline change rate (top panel) and the observed rates 
for the flanks of Cape Hatteras (bottom). To assess whether the 
component of shoreline change from gradients in alongshore 
transport, driven by downscaled wave climate data, is relevant on 
natural shorelines, we focus on the areas adjacent to and updrift of 
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Cape Hatteras 

Figure 15. Upper panel: predicted shoreline change rate (m/yr) in the 
period 1974:2004. Lower panel: measured shoreline change rate 
(m/yr) in the period 1974:2004 for Cape Hatteras (source: Moore et 
al., 2013). 

(excluding the shoreline in the vicinity of Hatteras Inlet, on the 
downdrift flank, as discussed further below). The rough 
correspondence between modeled and observed shoreline change 
rates near and updrift of the cape 
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Figure 16. Upper panel: predicted shoreline change rate diff erence 
(m/yr) between period 1 (1872:1917) and period 2 (1917:1946). Results 
are an average of the rates for the capes shown in Figure 13, 
representing a generic cape with characteristics similar to those of the 
Carolina capes. Middle   panel: measured shoreline change rate 
diff erence (m/yr) between period 1 (1852:1916) and period 2 
(1916:1946) for Cape Hatteras. Lower panel: measured shoreline 
change rate diff erence (m/yr) between period 1 (1851:1913) and period 
2 (1913:1947) for Cape Lookout. 

tip is consistent with the conclusion that the shoreline change 
processes represented in hybrid downscaling play a significant role 
in producing shoreline change on natural coastlines. 

Turning back to the period featuring the strong predicted shoreline 
change signal during the late nineteenth and early twentieth 
centuries, Figure 16 shows the diff erence between shoreline change 
rates calculated for period 1 and period 2 from model results and 
observations from near Cape Hatteras and Cape Lookout. 

Two factors complicate this test. First, the availability of historical 
meteo- rological observations diff ers from the availability of 
historical shorelines; our model results, based on meteorological 
data, begin in 1871, while his- torical shoreline change rates pre-
1908 can only be determined between approximately 1850 and 
approximately 1915. Thus, period 1 includes two decades of 
shoreline change in the observations that cannot be included in the 
model results. Second, the opening of inlets during these historical 
periods aff ects the shoreline change rates on the downdrift flanks of 
the capes (to the southwest of the cape tips). The large Hatteras 
Inlet opened at approximately the beginning of period 1, and the 
growth of large tidal deltas during period 1 acted as a sediment sink 
for the surrounding coast- lines, driving local patterns of rapid 
shoreline change. Thus, shoreline change rates became much less 
erosional in period 2 relative to period   1 on the downdrift flank of 
Cape Hatteras, for reasons not connected to changes in wave 
climate. Similarly, Barden Inlet opened downdrift of the tip of Cape 
Lookout during the period 2, altering coastline change patterns there. 
(We do not include Cape Fear in this analysis, because dredging of 
the river channel strongly aff ects shoreline change rates both updrift 
and downdrift of the cape tip.) 

Therefore, we focus our comparison on the updrift flanks of the 
capes. We do not compare the absolute rates of change during each 
period in model results to observations for two reasons: (1) The 
rates of shoreline change can be adjusted in the model (by adjusting 
the poorly constrained empirical coefficient in the parameterization 
for alongshore sediment flux). (2) We are assessing whether the 
signal of climate change involv- ing altered wave climate and related 
alterations to alongshore sediment transport gradients has 
significant roles in past shoreline change pat- terns, although cross-
shore sediment transport, such as the overwash dur- ing major 
storms, also contribute to the magnitude of shoreline change. Rather 
than comparing raw shoreline change magnitudes, to test for the 
climate change signal we are addressing, we compare the observed 
along- shore pattern of diff erences in shoreline change rates from 
one period   to the other. The model predicts (Figure 16, upper 
panel) that (1) within approximately 10 km updrift of the cape tips, 
the trend from period 1 to period 2 should have been toward more 
accretion/less erosion (positive values of the diff erence in shoreline 
change rates between the two peri- ods) and (2) farther updrift, the 
trend should have been toward less accre- tion/more erosion. Figure 
16, lower panels, shows the changes from one period to the other in 
the observations, exhibiting a shift toward more accretion/less 
erosion near the cape tips and toward less accretion/more erosion 
farther updrift. In addition, the transition from more accretion/less 
erosion to less accretion/more erosion occurs at a distance updrift of 
the cape tip on the order of 10 km, roughly matching the spatial 
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scale of the transition in the model results (Figure 16, upper 
panel). 
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5. Summary and Discussion 
5.1. Model Limitations 
We have presented a “hybrid approach,” combining statistical and dynamical modeling, to downscale 
from meteorological hindcast in the North Atlantic basin since 1870 to the responses of the shape of 
the coast of the Carolinas, USA. In the first step, RD, we use the daily SLP fields from the ensemble 
mean of 20CR reanal- ysis to build up 81 diff erent weather types (X) reproducing the interannual 
variability through the period of 1872 – 2010. In this step, we link the off shore wave and wind climate 
conditions (hindcast) W0, with the atmo- spheric conditions X, in the period of 1979 – 2010 through a 
statistical relationship. Here we use empirical distributions although statistical models could be used 
instead (Antolínez et al., 2016; Méndez et al., 2007; Rueda et al., 2017). This method will statistically 
reflect any variability presented in X into W0. Note that the 20CR data assimilation system is based 
on an ensemble Kalman filter.  The data are produced in a series of   5 year “streams”(independent 
runs), with 56 members in each stream (Compo et al., 2011). Therefore, ensem- ble members only 
remain temporally continuous during the 5 year duration of each stream. This is reflected in how 
variability is assessed over long time periods. The increased uncertainty in the early period of the data 
leads to greater disagreement between the ensemble members, such that a time series of their mean 
will have much less variability than the members individually. This would lead to a spurious strong 
reduction in variability appearing at earlier times in the ensemble mean. 

In the second step, ND, we propagate W0 — the daily off shore wave conditions accounting for local 
wind — to the nearshore (WHR) during the period of 1979 – 2010. We combine 200 SWAN runs of 
multivariate wave and local wind conditions in the hindcast period, selected with data mining 
techniques (maximum dissimilarity algorithm), with statistical interpolation techniques (radial basis 
functions) to reconstruct the daily continu- ous temporal series in the nearshore. Tests reveal that 
increasing the number of runs does not improve the results significantly. We could increase the 
complexity of the nearshore wave propagation by forcing spa- tial wave and wind fields instead of 
uniform multivariate wave and wind climate at the off shore boundary. However, as forcing for the 
CEM, increasing the spatial resolution of the nearshore wave data would not be useful. Furthermore, 
we could account for temporal changes in bathymetry if multiple bathymetries were available. With 
the procedure we have used, any variability presented in X will be statistically reflected in W0 and so 
in WHR. 

The CEM omits several factors and processes that contribute to changes on natural coastlines. In 
this work, we do not consider alongshore variations in underlying lithology (Moore et al., 2010; Valvo 
et al., 2006), and in the coastline modeling we do not consider local variations in wave conditions 
arising from complicated nearshore bathymetry (Limber et al., 2017; McNinch, 2004; Schupp et al., 
2006). (The downscaled nearshore wave data include local variations at depths that can extend to 
the limit of wave breaking, but to force the CEM, we use only the wave data at depths corresponding 
to the base of the shoreface, and we average dif- ferent locations alongshore.) In such a “one-
contour-line model,” coastline accretion or erosion arises from gradients in n et alongshore sediment 
transport that occur in the uppermost portion of the shoreface profile, and the accretion or erosion is 
distributed across the whole shoreface all at once. This simplified approach neglects delays in 
propagating the accretion or erosion to the lower parts of the shoreface profile (Kinsela & Cowell, 
2015), which over the time scales of decades can alter the rates of coastline response to alongshore 
transport gradients. Thus, when comparing modeled to observed shoreline change rates, we 
emphasize not the magnitude of the rate but rather the patterns of alongshore variations in the rates, 
which are diagnostic of the climate change signals we are testing for (Figure 16). 

Perhaps most notably, one-contour-line models do not address the component of shoreline erosion that 
arises from cross-shore sediment fluxes shoreward of the beach. Strong storms wash sediment from 
the beach and upper shoreface landward. Such “overwash” events remove sand from the beach and 
shoreface, inducing shoreline erosion. And because the frequency and magnitude of such events 
tends to increase with the rate of sea level rise, the resulting component of shoreline change is related 
to the rate of sea level rise. The model results presented here do not include this component of 
shoreline change, but neither other cross-shore pro- cesses. With the simplifying assumption that the 
sea-level-rise-related component of shoreline changes is approximately homogeneous alongshore, 
that component could be superimposed with the CEM results pre- sented here. However, the 
alongshore variations in shoreline change rates we are using to test for the signals of wave climate 
change would be unaff ected. On the other hand, the cross-shore sediment fluxes that arise from the 
opening of an inlet and the subsequent growth of ebb- and flood-tidal deltas contribute a strong 
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shoreline change signal that is alongshore heterogeneous. This signal complicates the detection of the 
wave 
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Figure 17. Interannual variability of the DWTs (X). Upper panel: yearly occurrence probability for the 81 DWTs. 
Lower    left panel: DWT lattice as presented in Figure 4. Lower middle panel: self-organizing map of the colors 
used in the upper panel with the same organization as the DWT in the lower left panel. Lower right panel: 
categorical distribution of SST  for each DWT. The right side color bar represents the numbers and colors of the 
DWT in lower middle panel with the same order than in the upper panel. It links the lower left and right panel 
with the upper panel. 

 
climate change signal we are testing for, prompting us to exclude the portions of the coastline in the 
vicinity of inlets from the comparisons between model hindcasts and historical observations. 

The processes and factors omitted in the CEM would be flaws in a model designed to fully mimic the 
shore- line changes along specific coastlines. In the future, models that combine the diff erent 
processes and factors contributing to shoreline change will likely allow meaningful forecasts or 
hindcasts of raw shoreline change patterns, including the magnitude of rates and their alongshore 
variations. However, such models do not yet exist — and the coastal science community is still trying 
to understand what causes the observed temporal and spatial variability in shoreline change rates. A 
simplified, “exploratory” model such as the CEM can help illuminate the component of shoreline 
change arising from wave climate (meaning here the angular distri- bution of wave influences on 
alongshore transport) and wave climate changes. The comparisons between model hindcasts and 
historical observations that we have emphasized (Figure 16) serve to test whether the signal of wave 
climate change is embedded in the observed shoreline change — change that results from a 
combination of diff erent factors and processes. Detecting the hindcast signal of temporal shifts in 
alongshore patterns of shoreline change rates, as is suggested by Figure 16, indicates that this 
climate change eff ect can play a significant role in determining past— and future— shoreline 
changes. 

5.2. Atmospheric and Oceanic Climate Shifts and Implications for the Future 
Figure 17 shows the interannual variability of the yearly occurrence probability of the DWTs. We 
highlight in purple frequent winter low pressure systems in the North Atlantic, and we distinguish two 
diff erent flavors of them in the upper panel of Figure 18: the aquamarine (wSTRONG, DWT 
numbers: 28, 19, 29, 37, and 38) associated with the lowest pressure systems and the pistachio 
green (wWEAK, DWT numbers: 10, 11, and 20) associated with very persistent and weak pressure 
systems, usually related with a negative phase of North Atlantic Oscillation. 

According to Müller et al. (2015) in the period prior to the 1900s, the North Atlantic Oscillation state 
and   the associated weak winds resulted in a weak North Atlantic Current and subpolar gyre, which 
is translated into less warm water going to the North and thus less Labrador Sea convection. This is 
in line with reduced probabilities found in wSTRONG and increased in wWEAK in the period before 
the 1910s compared with the period 1910s – 1930s. From the 1910s Arctic freshwater export is 
reduced. Thus, the North Atlantic Current and the subpolar gyre are strengthened. The Labrador Sea 
convection and Atlantic Meridional Overturning Circulation increase. The intensified North Atlantic 
Current, subpolar gyre, and Atlantic Meridional Overturn- ing Circulation redistribute subtropical water 
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into the North Atlantic and Nordic Seas, therefore increasing observed and modeled temperature and 
salinity during the 1920s on higher latitude, which is also reflected 
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Figure 18. Interannual variability for the highlighted DWTs in Figure 17. The black line is the cumulative probability of DWTs 71, 72, 80, and 81, which 
are associated with TC activity near the U.S. East Coast. 
 

in the shifts in the probabilities of wSTRONG (higher) and wWEAK (lower) for that period. Fenster 
and Dolan (1994) found nearly two thirds of the U.S. East Coast shorelines have undergone a 
significant change in the long-term rates of change between 1950s and 1980s, which could be 
related with the shift in the wSTRONG (higher-lower-higher) and wWEAK (lower-higher-lower) DWT 
probabilities during the 1930s– 1970s (upper panel, Figure 18), considering some time lag in 
coastline responses (Thomas et al., 2016). 

Changes in TC activity will also aff ect wave climates and coastline change patterns. The red 
rectangle in Figure 17 highlights weather types related to TC activity, taking place during the TC 
season — August – October—(see left panel of Figure 4). Moore et al. (2013) explain the dynamics of 
modern cuspate shorelines from observed changes in hurricane-driven waves, which matches the 
shift in TC activity during the 1970s (lower panel, Figure 18). Peaks in the probabilities of the DWTs 
corresponding to TCs near the Southeastern 
U.S. coast also occur prior to approximately 1910, as shown in Figure 18. The Gulf Stream passes 
by the Southeastern U.S. coast, and the weakened flow of warm water northward prior to 1900 
(Müller et al., 2015) would have caused more heat to accumulate in the coastal waters during that 
time. Warmer coastal water would tend to enhance tropical activity there— allowing tropical storms to 
retain more strength as they prop- agate northward, compared with other periods. One result would 
be that tropical storms making landfalls along the Carolina coast would tend to be stronger, 
compared with other periods— likely explaining why multiple strong hurricanes made landfall along 
the Carolina coast during this period (Stick, 1990). 

The downscaled hindcasts reflect such occurrences. In the SSTs near the center of Figure 10 (rows 6 
and 7 and columns 6 and 7), large magnitude contributions from waves approaching from the east and 
just south of east represent landfalling or near landfalling TCs, with the strongest onshore winds from 
these directions gener- ating the largest waves (Moore et al., 2013). The decadal directional 
distributions of influences on alongshore transport in Figure 11 represents the dominant eff ect such 
landfalling or near landfalling TCs had during the 1880s and 1890s (and to a lesser degree, 1900 – 
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1910). The TC-generated waves tend to increase the asym- metry of the wave climate, A. They also 
tend to decrease U. (The decreased occurrences of wSTRONG noted 
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above, and associated decrease in waves from high angles north of east, during the pre-1900 period, 
would also tend to decrease U, although these eff ects are less striking in Figure 11.) The 
corresponding trends in A and U, shown in the right panel of Figure 13, drive the dramatic shifts in 
erosion and accretion patterns during period 1 (before 1917) shown in the middle panel of Figure 13. 

This strong signal of erosion and accretion, combined with a contrasting erosion/accretion pattern 
during period 2 (1917 – 1946), produces the result in the top panel of Figure 16. The fact that the 
observations, as syn- thesized into the bottom two panels of Figure 16, qualitatively match the signal 
predicted in the top panel of Figure 16, despite the factors complicating the comparison (including 
diff erent limits on period 1), sug- gests that basin-scale climate shifts produce significant responses 
in coastline shape. Scenarios for future basin-scale shifts in climate can be generated by global 
climate models. Such scenarios are likely to include the warming of coastal waters that may have 
contributed to the strong signal that seems clear in Figure 16. Based on the comparison in Figure 16, 
the downscaling procedure presented here provides the opportunity to forecast the component of the 
future pattern of shoreline change rates related to shifting climate states through shifts in wave 
climates — whether decadal-scale oscillations or a trend related to global warming. 
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6. Conclusions 
The hybrid methodology 
presented here provides a 
computationally efficient 
way to downscale from 
ocean basin-scale 
meteorological climate to 
the nearshore wave and 
wind climate aff ecting any 
particular coast- line. The 
multivariate wave and wind 
climate could be used to 
examine a range of 
diff erent types of coastal 
responses, including the 
statistics of total water 
levels and coastal flooding. 
Here we use the local wave 
cli- mate to investigate 
shifts in coastline shape. 
This methodology captures 
the interannual and 
interdecadal shifts in the 
climate forcing throughout 
the last century and 
hindcasts how these shifts 
may have aff ected 
coastline shape (along the 
coast of the Carolinas, 
USA, as a case study). 
Coastline-shape responses 
manifest as shifts in the 
patterns of shoreline 
change rates. An initial 
comparison between 
predicted and observed 
shifts in patterns of 
shoreline change rates 
suggests the conclusion 
that climate shifts can play 
a significant role in 
determining shoreline 
change rates, increasing or 
decreasing erosion rates by 
up to meters per year. This 
method combines 
statistical, data mining and 
dynamic modeling 
techniques that now are 
available to quickly address 
coastal responses to 
projected future climate 
change. 
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