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Abstract Sea level rise leads to coastal transgression, and the
survival of ecosystems depends on their ability to migrate
inland faster than they erode and submerge. We compared
marsh extent between nineteenth-century maps and modern
aerial photographs across the Chesapeake Bay, the largest es-
tuary in North America, and found that Chesapeake marshes
have maintained their spatial extent despite relative sea level
rise rates that are among the fastest in the world. In the mapped
region (i.e., 25% of modern Chesapeake Bay marshland),
94 km2 of marsh was lost primarily to shoreline erosion,
whereas 101 km2 of marsh was created by upland drowning.
Simple projections over the entire Chesapeake region suggest
that approximately 100,000 acres (400 km2) of uplands have
converted to wetlands and that about a third of all present-day
marsh was created by drowning of upland ecosystems since
the late nineteenth century. Marsh migration rates were weak-
ly correlated with topographic slope and the amount of devel-
opment of adjacent uplands, suggesting that additional pro-
cesses may also be important. Nevertheless, our results em-
phasize that the location of coastal ecosystems changes rapid-
ly on century timescales and that sea level rise does not nec-
essarily lead to overall habitat loss.
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Introduction

Sea level rise leads to coastal transgression, and the survival of
ecosystems depends on their ability to migrate inland faster
than they erode and submerge (Brinson et al. 1995; FitzGerald
et al. 2008; Curray 2016). Global sea level rise rates began
accelerating sharply in the late nineteenth or early twentieth
century, with an approximate tripling in sea level rise rates in
the last 150 years in many parts of the world (Kemp et al.
2009; Church et al. 2013). Late twentieth century relative
sea level rise rates are three to four times higher along the
US mid-Atlantic coast than the global average due to changes
in the Gulf Stream and spatial variability in subsidence
(Sallenger et al. 2012). When those changes exceed the ability
of marshes and other coastal systems to adapt, ecosystems will
be forced to migrate inland or submerge (Brinson et al. 1995;
FitzGerald et al. 2008; Craft et al. 2009; Kirwan and
Megonigal 2013). Accelerated sea level rise therefore
threatens tidal marshes and other coastal environments, which
are well known for ecosystem services such as carbon seques-
tration, storm protection, and nutrient transformation (Barbier
et al. 2011).

Feedbacks between flooding, plant growth, and sediment
deposition allow marshes to adapt to changes in sea level in
the vertical dimension. Increases in flooding duration tend to
enhance sediment deposition on the marsh surface, plant pro-
ductivity, soil building, and marsh elevation gain (Reed 1995;
Friedrichs and Perry 2001; Cahoon et al. 2006; Kirwan and
Megonigal 2013; Kirwan et al. 2016a). However, the strength
of this feedback depends fundamentally on the availability of
mineral sediments, so that marshes in sediment deficient areas
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remain vulnerable to sea level rise (Kirwan et al. 2010; Day
et al. 2011; D’Alpaos et al. 2012; Weston 2014). Marshes are
fundamentally unstable in the lateral dimension, where ero-
sion of marsh edges is a primary contributor to marsh loss
even in the absence of sea level rise (Fagherazzi et al. 2013).
Marsh erosion rates typically vary between ~ 0.1 and
3 m year−1, depending on wave power, the elevation of marsh
relative to water level, and vegetation-mediated soil strength
(Schwimmer 2001; Mariotti and Fagherazzi 2010; Gedan
et al. 2011; Fagherazzi et al. 2013; McLoughlin et al. 2015;
Ford et al. 2016; Silliman et al. 2016). Accelerations in the rate
of sea level rise potentially enhance erosion rates by increas-
ing water depth, wave height, and the height of the marsh-tidal
flat scarp (Mariotti and Fagherazzi 2010; Marani et al. 2011).

Marshes also respond to sea level rise by migrating inland
and replacing terrestrial ecosystems (Brinson et al. 1995;
Raabe and Stumpf 2015; Kirwan et al. 2016a). Progressive
flooding leads to the development of wetland soils and vege-
tation (Hussein 2009; Anisfeld et al. 2016). In coastal forests,
inundation and salt stress lead to seedling mortality so that
forests do not regenerate following the death of adult trees
during storms or other events (Clark 1986; Williams et al.
1999; Kirwan et al. 2007). These processes allow new
marshes to form along a moving upland boundary as a func-
tion of the rate of sea level rise and upland slope (Brinson et al.
1995; Hussein 2009; Smith 2013; Raabe and Stumpf 2015).
Upland to wetland conversion has been described along the
margin of many marshes throughout North America and is
thought to be important to future marsh survival at regional
scales along the Gulf and mid-Atlantic coasts (Doyle et al.
2010; Feagin et al. 2010; Morris et al. 2012; Smith 2013;
Raabe and Stumpf 2015; Clough et al. 2016; Enwright et al.
2016). However, steep topography and anthropogenic barriers
commonly limit marsh migration in other places (Feagin et al.
2010; Kirwan and Megonigal 2013; Torio and Chmura 2013;
Wasson et al. 2013; Enwright et al. 2016; Field et al. 2016).

The vulnerability of marshes to sea level rise therefore de-
pends at least in part on the competition between erosion and
migration, but it is unclear how the balance between these
processes has changed historically, or will change under ac-
celerated rates of sea level rise in the future. Previous work
focuses largely on either erosion or migration alone and sug-
gests that both processes may accelerate in parallel with sea
level rise (Hussein 2009; Mariotti and Fagherazzi 2010;
Kirwan et al. 2016b). Recent work along a portion of the
Florida Gulf Coast suggests migration into uplands has
exceeded historical erosion rates (Raabe and Stumpf 2015),
and modeling proposes that marsh migration rates are more
sensitive to sea level rise than edge erosion rates (Kirwan et al.
2016a). These observations suggest a counter-intuitive expan-
sion of marshes with sea level rise along undeveloped coasts,
but this idea remains largely untested, especially at regional
scales with large human populations that may present barriers

to migration. Here, we compare the extent of marshes from
nineteenth-century maps of the Chesapeake region to modern
imagery and find that marsh migration into adjacent uplands
has allowed Chesapeakemarshes to survive the fastest relative
sea level rise rates on the Atlantic coast.

Methods

Regional Setting

This study concentrates on the marshes and low elevation
coastal region surrounding the Chesapeake Bay, the largest
coastal-plain estuary in North America (Fig. 1). Chesapeake
Bay is a classic, drowned river valley estuary, with microtidal
tides, and a total watershed area of approximately
166,000 km2 (Perry et al. 2001; Chesapeake Bay Program
2015). Marshes occupy about 1200 km2 of the Chesapeake
region (Stevenson et al. 1985; Chesapeake Bay Program
2015), including approximately 20% of the Chesapeake Bay
shoreline (Rosen 1980). Typical vegetation communities in
regularly flooded marshes include Spartina alterniflora and
Schenoplectus americanus, and irregularly flooded marshes

Fig. 1 Study area map of the Chesapeake Bay region showing the major
rivers, the extent of individual T-sheets used in the analysis (gray rectan-
gles), and area displayed in Fig. 2 (dashed rectangle)
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include Spartina patens, Distichlis spicata, and Juncus
romerianus. Adjacent low-gradient uplands are dominated
by Pinus taeda and Juniperus virginiana, and the marsh-
forest transition zone typically includes Phragmites australis,
Iva frutescens, andMyrica cerifera (Perry et al. 2001; Kirwan
et al. 2007).

Historical relative sea level rise rates in the Chesapeake
Bay range between 3 and 6 mm year−1 (h t tp : / /
tidesandcurrents.noaa.gov/sltrends/sltrends.html) and are
about twice as fast as eustatic sea level rise rates as a result
of subsidence (1.6–2.0 mm year−1) (Engelhart et al. 2009).
Relative sea level rise in the Chesapeake Region has acceler-
ated from 1 to 3 mm year−1 in the 1930s to 4–10 mm year−1 in
2011 due to climate warming and changes in ocean currents
(Ezer and Corlett 2012; Sallenger et al. 2012). Coastal ecosys-
tems are rapidly transgressing in response to sea level rise,
characterized by erosion of salt marsh edges, mortality of

low elevation forests, and migration of marshes into adjacent
uplands (Brinson et al. 1995; Hussein 2009).

Habitat Mapping

To determine how the size and location of marshes in the
Chesapeake region have responded to historical sea level rise,
we compared the spatial distribution of marshes from
nineteenth-century era maps to modern aerial photographs
(Fig. 2). We located 66, 1:20,000 scale, NOS topographic
sheets (BT-sheets^) from the years 1846 to 1912 that included
information on simple land types (e.g., marsh, farmland, for-
ests) from the tidal portions of the Chesapeake Bay and its
tributaries (NOAA Shoreline Website 2015). T-sheets from
this time period were created by plane tables and focused on
the coastline as well as its plane geometry (Shalowitz 1964).
We discarded 26maps that did not clearly distinguish between

Fig. 2 Example of land type
delineation and change analysis. a
T-sheet from the mouth of the
York River from 1853 (T00496)
showing water, marsh, forest, ag-
riculture, and developed upland
land types. b Aerial photograph
from 2013 was compared to his-
torical maps to determine the
amount of marsh area lost due to
edge erosion and gained due to
upland retreat. c Simplified map
representing the historical change
in marsh area
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marsh and forested areas due to poor map quality, inconsistent
symbology, and ambiguous treatment of forested wetlands. To
build consistency between different standards of individual
surveyors, we did not include maps with no clear delineation
between upland and marsh. We georeferenced each historical
T-sheet to modern aerial photographs in ArcGIS by locating
approximately 10 control points (e.g., road intersections,
creeks) that were visible in both sets of images, and fitting
with first- or second-order polynomial. We calculated the root
mean square error (RMSE) associated with georeferencing
and discarded maps with RMSE greater than 15 m. Average
RMSE of the remaining 40 maps was 6–7 m. This error is
similar to that reported for T-sheets in previous work (Raabe
and Stumpf 2015). The remaining historical maps represented
all sections of the Bay, though maps were most abundant in
the southwestern portion of the bay (Fig. 1).

We compared the T-sheets with 6-inch resolution
orthoimagery from Maryland collected in 2013 (Eastern
Shore of Chesapeake Bay) and 2014 (Western Shore) (http://
imap.maryland.gov/Pages/imagery-products.aspx) and
orthoimagery from Virginia collected in spring 2013
(ArcGIS server gismaps.vita.virginia.gov). Tidal marshes
were digitized by hand by tracing the boundary between
marsh and open water and the boundary between marsh and
upland. The marsh-forest boundary was identified as the line
between the dense tree canopy and marsh, and the marsh-
water boundary was identified as the line between open water
and adjacent land excluding beaches. Because the resolution
of the modern photographs was significantly better than the T-
sheets, we delineated the modern marsh at the same scale as
the historical T-sheets (1:20,000). This treatment eliminated
interior ponds and many narrow (< 15 m) fringe marshes that
were discernable along channels in modern imagery but not in
the T-sheets. The minimum size of marshes and forest patches
delineated on the T-sheets was about 350 m2, and we were
careful to delineate patches of similar minimum size on the
modern imagery. This approach allowsmarsh delineation over
large spatial scales, builds consistency between high-
resolution modern imagery and low-resolution historical
maps, and ensures that measured changes in marsh area are
not an artifact of changes in map quality.

Analytical Methods

To summarize changes in marsh area through time, we calcu-
lated historic and modern marsh area for each T-sheet individ-
ually, where rates refer to the change in area divided by the
number of years between 2013 and the year of the T-sheet. We
derived linear rates of change by dividing the area of marsh
change by the modern shoreline length, defined as the length
of the water-marsh boundary for edge erosion rates, and the
length of the marsh-forest boundary for migration rates. The
shoreline length was calculated directly from previously

established marsh polygons and was therefore determined at
the same scale (1:20,000) so that it included only large creeks
(> 30 m wide). Finally, we summarized changes in marsh area
across watersheds of the major river systems in the
Chesapeake region defined by USGS HUC 4 watershed
boundaries (USGS Watershed Boundary Dataset: http://nhd.
usgs.gov/wbd.html). For portions of the watershed with
overlapping T-sheets, we generally used the T-sheet with the
lowest georeferencing error. Changes in marsh area by water-
shed were aggregated to determine total, bay-wide changes.

Our methods explicitly calculate areas of marsh gain and
loss along the seaward and landward margins of the historic
and modern marsh extent and assume that positive changes in
marsh area at the upland boundary are due to migration into
retreating uplands, whereas negative changes in marsh area at
the seaward boundary are due to marsh edge erosion. Total net
change in marsh size is calculated as the difference between
the area of marsh migration and marsh shoreline erosion.
Thus, our approach focuses on large-scale drivers of marsh
gain and loss, rather than more subtle changes such as expan-
sion of small, interior ponds. We tested these key assumptions
by re-mapping four randomly selected, but representative,
map units in different portions of the Chesapeake region
(T02957, T01534I, T00199, T00686 in Supplementary
Table 1). For each map, we manually compared the causes
of marsh loss and gain. On average, 96% of marsh gain result-
ed from marsh migration into adjacent uplands, whereas 4%
resulted from progradation into open water. 98% ofmarsh loss
resulted from marsh edge erosion, whereas 2% resulted from
woody encroachment and conversion to anthropogenic land
uses. Total marsh loss across the four map units did not de-
pend on the spatial resolution of mapping (61.4 km2 at
1:20,000; 62.8 km2 at 1:1000) because small interior ponding
visible on the modern imagery was only responsible for about
2% of total marsh loss. Since the vast majority of marsh gain
and loss was caused by migration and shoreline erosion, those
terms are hereafter used interchangeably.

We characterized the slope and land cover of uplands with-
in a 100-m buffer of delineated marshes in an effort to under-
stand potential factors influencing rates of marsh migration.
The slope of adjacent uplands was determined from LiDAR-
derived bare earth digital elevation models flown between
2010 and 2012 at a resolution of 2.5 × 2.5 ft (Virginia Lidar
2015) and between 2014 and 2015 at a resolution of 1 × 1 m
(ESRGC 2015). For each pixel within the buffered upland
region, we extracted elevation from the digital elevation mod-
el and used the Euclidean distance tool in ArcGIS to deter-
mine distance from the modern marsh-upland boundary and
then used linear regression to calculate an average upland
slope. We used the NLCD 2011 Land Cover map (Multi-
Resolution Land Characteristics Consortium 2016) to esti-
mate potential anthropogenic barriers to marsh migration.
Typical anthropogenic barriers to wetland migration in the
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Chesapeake region include roads, bulkheads, and small berms
and revetments. These features are not consistently identifi-
able near the upland boundary, so we assume that the fraction
of developed land is a proxy for anthropogenic barriers, where
highly developed land would have more extensive barriers to
marsh migration. Landscape-scale models of marsh migration
commonly assume that migration will only occur into forested
uplands. Therefore, we defined developed uplands as land that
was classified as urban or agricultural, and calculated the ratio
of developed land to total land area within the buffered upland
region. Rates of marsh migration were then compared to char-
acteristics of the adjacent uplands (i.e., slope and degree of
development) for each map using linear and multiple
regression.

Results

The total extent of tidal marshes in the studied portion of
the Chesapeake Bay region was nearly identical in
nineteenth-century historical maps and modern aerial pho-
tographs. The nineteenth-century T-sheet maps included
311 km2 of tidal marshes, and the same mapping area in-
cluded 318 km2 of marshes in 2013 (Supplementary
Table 1). Marsh area change at the marsh-water boundary
was negative in each map unit (defined as the extent of
individual T-sheets), indicating that erosion was greater
than marsh progradation into open water, and is likely the
dominant driver of marsh loss in our study (Supplementary
Table 1). Marsh area change at the marsh-upland boundary
was positive in each map unit, indicating that marsh mi-
gration into uplands was greater than apparent woody en-
croachment into marshes that could potentially result from
classification errors in the nineteenth-century maps
(Supplementary Table 1). Marsh gain slightly exceeded
loss in the James River and Eastern Shore watersheds,

whereas loss slightly exceeded gain in the York River wa-
tershed (Fig. 3). Summed across the entire mapped area,
new marsh created at the migrating upland edge (101 km2)
compensated for marsh loss at the marsh-water boundary
(94 km2), resulting in a total net marsh expansion of about
7 km2 or 2% (Fig. 3). The total mapped area represents
24% of all marshes in the Chesapeake Bay and its tribu-
taries (1200 km2) (Stevenson et al. 1985; Chesapeake Bay
Program 2015). The slope of the upland topography within
a 100-m buffer of marshes in the mapped area (0.03 ± 0.02)
is similar to the slope of adjacent uplands in the entire
Chesapeake region (0.05 ± 0.08), suggesting that our up-
land submergence rates may be generally representative.
Therefore, simple projections across the entire Chesapeake re-
gion imply that more than 100,000 acres (400 km2) of uplands
has converted to wetlands over the last century.

Despite little net change in marsh area summed across the
entire Chesapeake region, net change in marsh extent differed
widely between individual map units (Supplementary
Table 1). For example, a maximum loss of ~ 90% of marshes
was observed for the Cape Charles, VAT-sheet extent, and a
maximum gain of ~ 400% was observed for the Potomac
River, MD T-sheet extent. Sixteen of 40 maps had marsh loss
rates exceeding 10%, 15 maps had expansion rates exceeding
10%, and only 10 maps showed net change rates of less than
10%. The average rate of marsh migration for individual map
units was 0.49 ± 0.36 m year−1 (SD) with the highest migra-
tion rates occurring on the eastern shore of the Chesapeake
Bay and the mouth of the York River (Fig. 4a). The lowest
marsh migration rates appear along the Chesapeake tributaries
and in the middle fractions of the bay. The average erosion
rate was 0.53 ± 0.42 m year−1 (SD), with the fastest rates
peaking along the Rappahannock River as well as the
Choptank River area and the lowest rates appearing along
the eastern shore of Virginia and the Chickahominy River
(Fig. 4b). In general, net marsh expansion occurred
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primarily in the southern part of the Chesapeake Bay,
whereas marsh contraction occurred mostly in the mid
and northern Bay and on islands with limited potential
for marsh migration (Fig. 4c). These results are broadly
consistent with previous work demonstrating marsh loss
in the mid Bay (e.g., Stevenson et al. 1985; Kearney et al.
1988; Schepers et al. 2017), rapid erosion of Chesapeake
Bay islands (Kearney and Stevenson 1991), and localized
marsh expansion in the lower bay (Kirwan et al. 2016b).

Marsh migration rates were weakly correlated with charac-
teristics of adjacent uplands. The average upland slope within
100 m of the modern marsh was 0.03 and varied between
0.004 and 0.1 between map units (Supplementary Table 1).
Low upland slopes were located along the eastern shore of
Virginia (e.g., Nandua Creek map = 0.003), and the highest
slopes were generally located near the heads of rivers (e.g.,
Choptank River map = 0.1). Simple linear regression indicat-
ed a weak relationship between rate of marsh migration and
upland slope (r2 = 0.16; p < 0.05) (Fig. 5a).

The average land use within 100 m of the modern marsh
was 41% forest, 26% urban, and 22% agriculture.
Developed land (urban plus agriculture) averaged over in-
dividual map units ranged from 3% developed to 79% de-
veloped within the buffer. Simple linear regression indicat-
ed a weak relationship between marsh migration rate and
the fraction of uplands developed (r2 = 0.09; p = 0.05) (not
shown), and that migration rate was weakly related to up-
land slope even in the most undeveloped uplands (devel-
opment < 10%) (r2 = 0.19; p = 0.07) (Fig. 5b).

Discussion

Reliability of Historical Maps

Nineteenth-century T-sheet maps are commonly used to re-
construct changes in the position of shorelines, barrier islands,
marshes, mangroves, and coastal forests, where they are con-
sidered to be an effective baseline dataset on which tomeasure
subsequent change (e.g., Douglas and Crowell 2000; Moore
2000; Krauss et al. 2011; Raabe and Stumpf 2015).
Delineation of the marsh-upland boundary on T-sheets is more
uncertain than delineation of shorelines, as it depended on site
accessibility and interpretations of individual surveyors
(Shalowitz 1964; Moore 2000). Nevertheless, historical
changes in the position of the marsh-upland boundary have
been reconstructed on the basis of nineteenth-century T-sheet
maps, where previous work noted that maps were generally
consistent with aerial imageries and soil samples (Collins and
Sheikh 2005; Raabe and Stumpf 2015). The average RMSE of
the 40 maps analyzed here (6–7 m) is similar to that reported
in other T-sheet-based studies of marsh extent (e.g., ~ 8 m
(Wrayf et al. 1995), 6–20 m (Collins and Sheikh 2005),
4.6 m (Raabe and Stumpf 2015)). The combined error in the
x and y directions (7 m × 7 m = 0.000049 km2) is several
orders of magnitude less than observed changes in marsh area
for an individual T-sheet (~ 1 km2) (Supplementary Table 1),
and changes in land type are generally parallel to shorelines or
elevation contours, rather than the type of systematic offset
that might be expected for a georeferencing error.

Fig. 4 Marshmigration rates (m year−1), erosion rates (m year−1), and net
change in area (%) along the Chesapeake Bay. Each circle represents an
individual T-sheet, where reported values represent the change averaged
over the entire T-sheet extent. Green colors denote rapid change and red
colors denote slow change, except for in the BNet Change^ panel where

green indicates net marsh expansion (migration > erosion) and red indi-
cates net marsh loss (erosion > loss). The gray dot represents Sharps
Island and does not have a migration or erosion rate because complete
land loss occurred prior to 2013
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Several observations suggest nineteenth-century T-
sheets are suitable for reconstructing historical marsh
change and the position of the marsh-upland boundary,
in the Chesapeake region. Rates of erosion and marsh
migration into uplands at Goodwin Island, VA (lower
Chesapeake Bay) based on aerial photographs are similar
to rates determined from T-sheets at the same location.
Aerial photograph analysis indicates erosion and migra-
tion rates of 0.25 and 0.5 m year−1 from 1937 to 2011
(Kirwan et al. 2016b), and the T-sheet analysis indicates
erosion and migration rates of 0.26 and 0.35 m year−1

between 1853 and 2013 (this study). The slight difference
in migration rate reflects increasing migration rates
through time in response to accelerated sea level rise
(Kirwan et al. 2016b). The location of the forest-marsh
boundary on T-sheets is also consistent with historical
maps and sediment cores from a site in the upper
Chesapeake Bay. Figure 6 shows the position of the his-
torical forest-marsh boundary near Hell Hook marsh from
multiple map sources, which is a site where forest retreat
has been independently reconstructed through sediment
coring (Hussein 2009). The resulting map shows the ex-
pected gradual inland migration of the marsh-forest
boundary through time. The marsh-forest boundary in
the 1848 T-sheet is similar to an 1864 map and slightly
seaward of the 1898 and 1905 maps. Dated sediment
cores show the same gradual inland migration of the
marsh-forest boundary (Hussein 2009). The sediment
core with a dated 1848 forest-marsh transition is located
approximately 58 m inland of the 1848 T-sheet boundary,

but the two metrics are perhaps consistent given that sed-
iment cores reflect the development of wetland soils that
may occur under living trees, and therefore pre-date the
retreat of mapped forests. In any case, migration rates
over century timescales (1848–1905 to 2013) are similar
whether derived from boundaries inferred from the 1848
sediment core (2.1 m year−1) , the 1848 T-sheet
(2.4 m year−1), or maps from 1864 (2.8 m year−1), 1898
(2.8 m year−1), or 1905 (2.1 m year−1). Therefore, multi-
ple lines of evidence in two disparate locations within the
Chesapeake study region all suggest that T-sheets are re-
liable for mapping century-scale forest retreat.

Finally, we note that inconsistent mapping of the marsh-
upland boundary is not itself a critical issue for our goal of
resolving total changes in marsh area across the entire
Chesapeake region because errors in one direction on some
maps would be balanced by errors in the other direction on
other maps. A much more serious problem would be consis-
tent, systematic error (i.e., the marsh-upland boundary consis-
tently mapped too far inland or too far seaward) in every T-
sheet. Our observation of no upland encroachment into
marshes (Supplementary Table 1) helps rule out systematic
error associated with mapping the boundary too far inland,
while our observation of gradual upland retreat through time
(Fig. 6) helps rule out systematic error associated with map-
ping the boundary too far seaward. Though these observations
suggest that historical T-sheets are generally reliable, we cau-
tion that it may be difficult to distinguish between no net
change and slight marsh expansion summed across the entire
Chesapeake Bay.

Fig. 5 Historical marsh migration rate versus characteristics of adjacent
uplands, where each marker represents the average migration rate and
topographic slope across an individual T-sheet extent. Characterization
of adjacent uplands is restricted to a 10-m buffer around the modern
marsh-upland boundary. a Observed migration rates (blue markers) com-
pared to expected migration rates for historical relative sea level rise rates
of 3, 4, and 5 mm year−1 (gray envelope). Observed migration rates are
less than the expected migration rate, which is defined as the sea level rise
rate divided by slope (i.e., y = R /m). Observed migration rates are weakly

correlated with topographic slope (y = − 6.0034x + 0.6673, r2 = 0.16,
p < 0.05) and are not significantly correlated with expected migration
rates (y = 0.2206x + 0.4195, r2 = 0.04, p > 0.1). b Observed migration
rates as a function of topographic slope and intensity of coastal develop-
ment in adjacent uplands. Coastal development includes agricultural and
urban land uses, and colors reflect a gradient in development from low
(red) to high (green). There is a weak correlation between slope and
migration rate in uplands with lowest development (< 10%)
(y = − 10.233x + 0.8828, p = 0.07, r2 = 0.19)
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Chesapeake Bay Marsh Erosion and Migration

Our finding that marshes have historically maintained or
slightly increased their spatial extent in response to rapid sea
level rise (Fig. 3) contrasts with previous work that identifies
Chesapeake marshes as highly vulnerable to sea level rise.
Expansive marshland along the Blackwater River, for exam-
ple, is well recognized to be submerging and eroding
(Stevenson et al. 1985; Kirwan and Guntenspergen 2012;
Ganju et al. 2013; Schepers et al. 2017), with a total loss of
about 20 km2 since the 1930s within the Blackwater National
Wildlife Refuge (Stevenson et al. 1985; Scott et al. 2009).
Extensive marsh loss has also been reported along the
Nanticoke River (Kearney et al. 1988). There are no T-
sheets of suitable quality along the Blackwater River, which
means our analysis likely underestimates historical marsh
loss. However, 4 T-sheets located in similar areas on adjacent
rivers, including the Nanticoke River, actually show net marsh
expansion despite substantial erosion because upland drown-
ing is rapid in this low-relief region (Supplementary Table 1;
17 km2 erosion; 23 km2 upland drowning; T00270, T00268-1,

T00255, T00266). Aerial photograph analysis within the
Blackwater National Wildlife Refuge indicates net marsh loss
since 1938, but that marsh migration into drowned uplands
(12 km2) compensated for more than half of the marsh area
that was lost due to conversion to open water (20 km2) (Scott
et al. 2009).

Across the entire Chesapeake region, remote sensing sug-
gests that approximately 70% ofmarshes are currently degrad-
ed (Kearney et al. 2002). Expert opinion assessments predict
major loss of Chesapeake marshes even for slight increases in
sea level rise rates (Reed et al. 2008), and SLAMMmodeling
predicts a 36% loss of marshes with a 0.69 m SLR by 2100
(Glick et al. 2008). More generally, Chesapeake marshes are
considered highly vulnerable to sea level rise because marshes
in low tidal range estuaries have a narrow range of elevations
that vegetation can survive and lowmaximum rates of vertical
accretion (Kirwan et al. 2010; D’Alpaos et al. 2012; Balke
et al. 2016).

Important limitations of this study and previous studies
likely explain why historical mapping reveals regional stabil-
ity of Chesapeake marshes in a system well recognized to be

Fig. 6 Movement of the marsh-forest boundary derived from historical
maps and sediment cores (lines = maps, dots = sediment cores). The 1848
line represents the T-sheet boundary [T00255] used in the analysis. The
1898 and 1905 lines are from USGS topographic maps, and the 1864 line

is from the US Coast Survey, Coast Chart Number 33. The dots represent
the location of the marsh-forest boundary inferred from dated sediment
cores (Hussein 2009), and the white line indicates a transect over which
forest retreat rates were measured
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vulnerable to sea level rise. Previous work along the
Blackwater and Nanticoke rivers identifies rapid marsh loss
that occurs primarily by the expansion of interior ponds
(Stevenson et al. 1985; Kearney et al. 1988; Schepers et al.
2017). However, our T-sheet-based reconstructions measure
the overall size of marshes between uplands and major water
features such as a bay or channel and cannot capture the loss
of interior marshland due to ponding. Therefore, it is entirely
possible that expandingmarshes are simultaneously becoming
more dissected with ponds and small tidal creeks, so that
marsh size is not necessarily an indicator of vegetated area
or marsh health. On the other hand, the large spatial domain
of our study uniquely indicates that marsh loss in some parts
of the Chesapeake region (e.g., Blackwater and Nanticoke
rivers (Stevenson et al. 1985; Kearney et al. 1988; Beckett
et al. 2016)) has been at least partially compensated by the
creation of new marsh elsewhere (e.g., southwestern Bay)
(Fig. 4). Site-specific research focused on hotspots of marsh
loss, and vulnerability assessments based on rates of vertical
soil building, therefore underestimate the major contribution
upland migration makes to marsh stability in the face of sea
level rise.

Our regional-scale estimates of Chesapeake Bay marsh
erosion (0.53 m year−1) and migration (0.49 m year−1) rates
are similar to reported rates. Reported rates of erosion from
individual marshes typically vary from ~ 0.1 to > 3 m year−1

(Fagherazzi et al. 2013). At the regional scale, average shore-
line erosion rates have been reported for the Virginia portion
of the Chesapeake Bay (0.21 m year−1 (Byrne and Anderson
1978); 0.54 m year−1 (Rosen 1980)), Albemarle-Pamlico
Sounds (0.3 m year−1 (Corbett et al. 2008), 0.91 m year−1

(Soil Conservation Service 1975), 1 m year−1 (Riggs 2001)),
the Delaware Bay (3.21 m year−1 (Phillips 1986)), and the Big
Bend region of the Florida Gulf Coast (1.2 m year−1 (Raabe
and Stumpf 2015)). Although many differences between
methods and study sites could be responsible for the disparity,
our reported erosion rates are likely lower than the majority of
previously estimated rates because we include many marshes
adjacent to tidal channels with fetches that are too small to
generate wave-driven erosion, whereas most previous work
focused on erosion along the estuary edge and major tribu-
taries. Reported rates of marsh migration into uplands vary
from about 0.5 to 6.8 m year−1 (Hussein 2009; Smith 2013;
Raabe and Stumpf 2015; Kirwan et al. 2016a). The highest
rates (3.5–6.8 m year−1 (Hussein 2009)) are calculated from
individual transects in locations selected specifically to study
rapid marsh migration, whereas our rates also include large
parts of the landscape with nomigration. At the regional scale,
our reported migration rates are likely lower than those ob-
served along the Florida Coast (2.3 m year−1) because we
measured the length of the marsh-upland boundary at the
1:20,000 scale and therefore included crenulations, islands,
and many other features that would have been excluded in a

more generalized approach (Raabe and Stumpf 2015).
Nevertheless, linear rates of marsh erosion and migration are
highly sensitive to the complexity of the topography and the
scale at which shoreline length is measured.

Broader Implications

Marsh migration rates into adjacent uplands are widely con-
sidered to be proportional to topographic slope and the rate of
sea level rise (Brinson et al. 1995; Hussein 2009; Doyle et al.
2010; Raabe and Stumpf 2015; Kirwan et al. 2016b). We
found that historical marsh migration rates were weakly cor-
related with slope and were highly variable compared to the
migration rate that would be predicted on the basis of slope
and historical sea level rise rate (i.e., migration = R / m) (Fig.
5a). Ecological lags and/or interactions with human develop-
ment may explain the weak correlation. Adult trees are resil-
ient to sea level impacts, so that retreat of coastal forests takes
place only after punctuated disturbance events such as major
hurricanes (Clark 1986; Williams et al. 1999; Kirwan et al.
2007; Poulter et al. 2008; Field et al. 2016). Even if marsh
vegetation was colonizing under live trees, marsh migration
could not be measured from aerial photographs until the death
of canopy trees, which introduces a lag between sea level rise
and observed marsh migration. Migration rates may also be
weakly correlated with slope because anthropogenic barriers
commonly prevent migration. Previous work focused on sec-
tions of the coast with very little urban and agricultural land
(Hussein 2009; Smith 2013; Raabe and Stumpf 2015), where-
as we mapped migration across the entire Chesapeake Bay
region including areas that are highly urbanized. For example,
the lowest marsh migration rates were observed for the Cape
Charles map, where direct loss to coastal development negat-
ed any potential gains from migration. We found a weak rela-
tionship between migration rate and slope in uplands with
minimal development (Fig. 5b). LiDAR-derived slope esti-
mates may not be sufficiently accurate to identify correlations
between slope and migration rate. In particular, our slope es-
timates are based on the slope of adjacent uplands, rather than
the actual submerged upland over which the marshes have
historically migrated. Nevertheless, regional-scale projections
of marsh migration often rely on coarse elevation datasets and
the assumption that migration occurs as soon as topography is
inundated (Feagin et al. 2010; Morris et al. 2012; Clough et al.
2016; Enwright et al. 2016; Kirwan et al. 2016b). Our findings
therefore suggest that there are important limitations to simple
topographic inundation models and that more process-based
studies are needed to discern the role of coastal development
and ecological lags in marsh migration.

Observations of historical marsh stability in the
Chesapeake region contribute to the growing body of evi-
dence that migration into uplands is a primary component of
marsh response to sea level rise at regional scales. Previous
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studies, for example, found that historical migration into up-
lands exceeded edge erosion for a section of the Florida Gulf
coast (Raabe and Stumpf 2015). The area of land that could be
inundated by 1 m of SLR is similar to the existing area of
coastal wetlands in the coterminous USA (Morris et al.
2012), and modeling studies suggest that in the absence of
anthropogenic barriers to migration, a moderate acceleration
in sea level rise could actually lead to overall marsh expansion
(Feagin et al. 2010; Cadol et al. 2016; Clough et al. 2016;
Kirwan et al. 2016a). Our work is consistent with these stud-
ies, but uniquely suggests that when integrated over a region
with both anthropogenic and topographic barriers, migration
has allowed marshes to survive but not expand substantially.

Simple extrapolation of our results from the study area to
the entire Chesapeake region suggests that sea level rise has
led to massive and widespread drowning of uplands, which
has created more than 100,000 acres (400 km2) of new marsh
over the last century. Marsh migration into these drowned
uplands has created about one third of all the marsh in the
mapped region (marsh migration = 101 km2; total 2013 marsh
area = 318 km2). Moreover, about one third of all marshes
mapped in the late nineteenth century (311 km2) were lost
by 2013, presumably due to edge erosion (94 km2). These
observations of rapid marsh change emphasize the disparity
between marsh instability in the lateral dimension and marsh
stability in the vertical dimension where marshes have sur-
vived low rates of sea level rise for thousands of years
(Fagherazzi et al. 2013; Kirwan and Megonigal 2013).
Traditional approaches to predicting and mitigating marsh
vulnerability to sea level rise focus on the survival of existing
marsh. However, our results indicate that sea level rise itself
creates new marsh through upland drowning and that marsh
size can be maintained despite substantial loss of existing
marsh. Averaged across the Chesapeake Bay region, wide-
spread upland drowning has historically compensated for
marsh edge erosion and allowed Chesapeake Bay marshes to
maintain their spatial extent despite relative sea level rise rates
that are among the fastest in the world. There are real concerns
over the ability of marshes to survive sea level rise in the
Chesapeake and beyond (Kearney et al. 2002; Beckett et al.
2016; Crosby et al. 2016; Schepers et al. 2017; Watson et al.
2016), and our study focuses simply on the broad spatial ex-
tent of marshes rather than any indicator of their health.
Nevertheless, our results emphasize that the location of coastal
ecosystems changes rapidly on century timescales and that sea
level rise does not necessarily lead to overall habitat loss.

Acknowledgements The Dominion Foundation, NSF Coastal SEES
1426981, NSF LTER 1237733, NSF CAREER 1654374, U.S.
Department of Energy Terrestrial Ecosystem Science Program, and the
USGS Climate and Land Use Dynamics Program funded this project. We
would like to thank David Wilcox, Madison Clapsaddle, VIMS Center
for Coastal Resources Management and VIMS Shoreline Studies pro-
grams, and the Chesapeake Bay National Estuarine Research Reserve

System for assistance with the GIS analyses. This is contribution number
3676 of the Virginia Institute of Marine Science.

References

Anisfeld, S.C., K.R. Cooper, and A.C. Kemp. 2017. Upslope develop-
ment of a tidal marsh as a function of upland land use. Global
Change Biology 23, 755–766. https://doi.org/10.1111/gcb.13398.

Balke, T., M. Stock, K. Jensen, T.J. Bouma, and M. Kleyer. 2016. A
global analysis of the seaward salt marsh extent: The importance
of tidal range. Water Resources Research 52: 3775–3786.

Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R.
Silliman. 2011. The value of estuarine and coastal ecosystem ser-
vices. Ecological Monographs 81: 169–193.

Beckett, L.H., A.H. Baldwin, and M.S. Kearney. 2016. Tidal marshes
across a Chesapeake Bay subestuary are not keeping up with sea-
level rise. PLoS ONE 11(7): e0159753. https://doi.org/10.1371/
journal.pone.0159753.

Brinson, M.M., R.R. Christian, and L.K. Blum. 1995. Multiple states in
the sea-level induced transition from terrestrial forest to estuary.
Estuaries 18: 648–659.

Byrn, R.J., and G.L. Anderson. 1978. Shoreline erosion in tidewater
Virginia. Special Report in Applied Marine Science and Ocean
Engineering 111, Virginia Institute of Marine Science, Gloucester
Pt, VA, 102. http://ccrm.vims.edu/gis_data_maps/shoreline_
inventories/virginia/scan_reports/TidewaterShorelineErosion.pdf.

Cadol, D., A. Elmore, S. Guinn, K.A.M. Engelhardt, and G. Sanders.
2016. Modeled tradeoffs between developed land protection and
tidal habitat maintenance during rising sea levels. PLoS ONE
11(10): e0164875. https://doi.org/10.1371/journal.pone.0164875.

Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, and N.S.McKee. 2006.
Coastal vulnerability to relative sea-level rise: Wetland elevation
trends and process controls. Ecological Studies 190: 271–292.

Chesapeake Bay Program: Tidal wetland abundance. 2015.http://www.
chesapeakebay.net/indicators/indicator/tidal_wetlands_abundance.

Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A.
Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn,
A.J. Payne,W.T. Pfeffer, D. Stammer, and A.S. Unnikrishnan. 2013.
Sea level change. In Climate change 2013: The physical science
basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, ed.
T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.
Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley.
Cambridge, United Kingdom and New York, NY, USA:
Cambridge University Press.

Clark, J.S. 1986. Coastal forest tree populations in a changing environ-
ment, southeastern Long Island, NewYork.EcologicalMonographs
56: 259–277.

Clough, J., A. Polaczyk, and M. Popato. 2016. Modeling the potential
effects of sea-level rise on the coast of New York: Integrating mech-
anistic accretion and stochastic uncertainty. Environmental
Modelling & Software 84: 349–362.

Collins, B.D., and A.J. Sheikh. 2005. Historical reconstruction, classifi-
cation and change analysis of Puget Sound tidal marshes. Puget
Sound River History Project Report to: Washington Department of
Natural Resources. http://www.pugetsoundnearshore.org/
supporting_documents/historical_shoreline_dnr.pdf.

Corbett, D.R., J.P. Walsh, S.R. Riggs, D.V. Ames, and S.J. Culver. 2008.
Shoreline change within the Albemarle-Pamlico estuarine system,
North Carolina. 1907–2007 Centennial. https://www.ecu.edu/cs-
acad/icsp/upload/EstuarineShorelineChangeDec2008.pdf.

Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and
M. Machmuller. 2009. Forecasting the effects of accelerated sea-

Estuaries and Coasts

https://doi.org/10.1111/gcb.13398
https://doi.org/10.1371/journal.pone.0159753
https://doi.org/10.1371/journal.pone.0159753
http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/virginia/scan_reports/TidewaterShorelineErosion.pdf
http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/virginia/scan_reports/TidewaterShorelineErosion.pdf
https://doi.org/10.1371/journal.pone.0164875
http://www.chesapeakebay.net/indicators/indicator/tidal_wetlands_abundance
http://www.chesapeakebay.net/indicators/indicator/tidal_wetlands_abundance
http://www.pugetsoundnearshore.org/supporting_documents/historical_shoreline_dnr.pdf
http://www.pugetsoundnearshore.org/supporting_documents/historical_shoreline_dnr.pdf
https://www.ecu.edu/cs-acad/icsp/upload/EstuarineShorelineChangeDec2008.pdf
https://www.ecu.edu/cs-acad/icsp/upload/EstuarineShorelineChangeDec2008.pdf


level rise on tidal marsh ecosystem services. The ecological society
of America. Frontiers in Ecology and the Environment 7 (2): 73–78.

Crosby, S.C., D.F. Sax, M.E. Palmer, H.S. Booth, L.A. Deegan, M.D.
Berness, and H.M. Leslie. 2016. Salt marsh persistence is threatened
by predicted sea-level rise. Estuarine, Coastal and Shelf Science
181: 93–99.

Curray, J.R. 2016. Transgressions and regressions. In Papers in marine
geology, ed. R.L. Miller, 175–203. New York: Macmillan.

D’Alpaos, A., C. Da Lio, and M. Marani. 2012. Biogeomorphology of
tidal landforms: Physical and biological processes shaping the tidal
landscape. Ecohydrology 5: 550–562.

Day, J., C. Ibáñez, F. Scarton, D. Pont, P. Hensel, J. Day, and R. Lane.
2011. Sustainability of Mediterranean deltaic and lagoon wetlands
with sea-level rise: The importance of river input. Estuaries and
Coasts 34: 483–493.

Douglas, B., andM. Crowell. 2000. Long-term shoreline position predic-
tion and error propagation. Journal of Coastal Research 16 (1):
145–152.

Doyle, T.W., K.W. Krauss, W.H. Conner, and A.S. From. 2010.
Predicting the retreat and migration of tidal forests along the north-
ern Gulf of Mexico under sea-level rise. Forest Ecology and
Management 259: 770–777.

Engelhart, S.E., B.P. Horton, B.C. Douglas, W.R. Peltier, and T.E.
Törnqvist. 2009. Spatial variability of late Holocene and 20th centu-
ry sea-level rise along the Atlantic coast of the United States.
Geology 37: 1115–1118.

Enwright, N.M., K.T. Griffith, and M.J. Osland. 2016. Barriers to and
opportunities for landward migration of coastal wetlands with sea-
level rise. Frontiers in Ecology and the Environment 14 (6): 307–
316.

ESRGC: Eastern Shore Regional GIS Cooperative LiDAR Services.
2015. http://lidar.salisbury.edu/arcgis/rest/services/DEM_ft.

Ezer, T., and W.B. Corlett. 2012. Is sea level rise accelerating in the
Chesapeake Bay? A demonstration of a novel new approach for
analyzing sea level data. Geophysical Research Letters 39,
L19605. https://doi.org/10.1029/2012GL053435.

Fagherazzi, S., G. Mariotti, P. Wiberg, and K. McGlathery. 2013. Marsh
collapse does not require sea level rise. Oceanography 26: 70–77.

Feagin, R., M. Martinez, G. Mendoza-Gonzalez, and R. Costanza. 2010.
Salt marsh zonal migration and ecosystem service change in re-
sponse to global sea level rise: A case study from an urban region.
Ecology and Society 15(4): 14. [online] URL: http://www.
ecologyandsociety.org/vol15/iss4/art14/.

Field, C.R., C. Gjerdrum, and C.S. Elphick. 2016. Forest resistance to
sea-level rise prevents landward migration to tidal marsh. Biological
Conservation 201: 363–369.

FitzGerald, D., M. Fenster, B. Argow, and I. Buynevich. 2008. Coastal
impacts due to sea-level rise. Annual Review of Earth and Planetary
Sciences 36: 601–647.

Ford, H., A. Garbutt, C. Ladd, J. Malarkey, and M.W. Skov. 2016. Soil
stabilization linked to plant diversity and environmental context in
coastal wetlands. Journal of Vegetation Science 27 (2): 259–268.

Friedrichs, C.T., and J.E. Perry. 2001. Tidal salt marsh morphodynamics:
A synthesis. Journal of Coastal Research 27: 7–37.

Ganju, N.K., N.J. Nidzjeko, and M.L. Kirwan. 2013. Inferring tidal wet-
land stability from channel sediment fluxes: Observations and a
conceptual model. Journal of Geophysical Research Earth Surface
118: 2045–2058.

Gedan, K.B., M.L. Kirwan, E.Wolanski, E.B. Barbier, and B.R. Silliman.
2011. The present and future role of coastal wetland vegetation in
protecting shorelines: Answering recent challenges to the paradigm.
Climatic Change 106 (1): 7–29.

Glick, P., J. Clough, and B. Nunley. 2008. Sea-level rise and coastal
habitats in the Chesapeake Bay region. Technical Report. National
Wildlife Federation. https://www.nwf.org/media/PDFs/Global-

Warming/Repor t s /SeaLeve lRiseandCoas ta lHabi ta t s_
ChesapeakeRegion.ashx.

Hussein, A.H. 2009. Modeling of sea-level rise and deforestation in sub-
merging coastal ultisols of Chesapeake Bay. Soil Science Society of
America Journal 73 (1): 185.

Kearney, M.S., E.G. Russell, and J.C. Stevenson. 1988. Marsh loss in
Nanticoke Estuary, Chesapeake Bay. Geographical Review 78 (2):
205–220.

Kearney, M.S., and J.C. Stevenson. 1991. Island land loss and marsh
vertical accretion rate evidence for historical sea-level changes in
Chesapeake Bay. Journal of Coastal Research 7 (2): 403–415.

Kearney, M.S., A.S. Rogers, J.R.G. Townshend, E. Rizzo, and D. Stutzer.
2002. Landsat imagery shows decline of coastal marshes in
Chesapeake and Delaware Bays. Eos, Transactions American
Geophysical Union 83 (16): 173–184.

Kemp, A.C., B.P. Horton, S.J. Culver, D.R. Corbett, O. van de Plassche,
W.R. Gehrels, B.C. Douglas, and A.C. Parnell. 2009. Timing and
magnitude of recent accelerated sea-level rise (North Carolina,
United States). Geology 37: 1035–1038.

Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the
face of human impacts and sea-level rise. Nature 504: 53–60.

Kirwan, M.L., S. Temmerman, E. Skeehan, G. Guntenspergen, and S.
Fagherazzi. 2016a. Overestimation of marsh vulnerability to sea
level rise. Nature Climate Change 6: 253–260.

Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M.
Mudd, and S. Temmerman. 2010. Limits on the adaptability of
coastal marshes to rising sea level. Geophysical Research Letters
37: L23401. https://doi.org/10.1029/2010GL045489.

Kirwan, M.L., J.L. Kirwan, and C.A. Copenheaver. 2007. Dynamics of
an estuarine forest and its response to rising sea level. Journal of
Coastal Research 232: 457–463.

Kirwan, M.L., and G.R. Guntenspergen. 2012. Feedbacks between inun-
dation, root production, and shoot growth in a rapidly submerging
brackish marsh. Journal of Ecology 100: 764–770.

Kirwan, M.L., D.C. Walters, W.G. Reay, and J.A. Carr. 2016b. Sea level
driven marsh expansion in a coupled model of marsh erosion and
migration. Geophysical Research Letters 43: 4366–4373.

Krauss, K.W., A.S. From, T.W. Doyle, T.J. Doyle, and M.J. Barry. 2011.
Sea-level rise and landscape change influence mangrove encroach-
ment onto marsh in the Ten Thousand Islands region of Florida,
USA. Journal of Coastal Conservation 15: 629–638.

Marani, M., A. D’Alpaos, S. Lanzoni, and M. Santalucia. 2011.
Understanding and predicting wave erosion of marsh edges.
Geophysical Research Letters 38: L21401. https://doi.org/10.1029/
2011GL048995.

Mariotti, G., and S. Fagherazzi. 2010. A numerical model for the coupled
long-term evolution of salt marshes and tidal flats. Journal of
Geophysical Research 115, F01004. https://doi.org/10.1029/
2009JF001326.

McLoughlin, S.M., P.L. Wiberg, I. Safak, and K.J. McGlathery. 2015.
Rates and forcing of marsh edge erosion in a shallow coastal bay.
Estuaries and Coasts 38 (2): 620–638.

Moore, L. 2000. Shoreline mapping techniques. Journal of Coastal
Research 16 (1): 111–124.

Morris, J.T., J. Edwards, S. Crooks, and E. Reyes. 2012. Assessment of
carbon sequestration potential in coastal wetlands. In
Recarbonization of the biosphere, ed. R. Lal, K. Lorenz, R.F.
Hüttl, B.U. Schneider, and J. von Braun, 517–531. Dordrecht:
Springer Netherlands.

Multi-Resolution Land Characteristics Consortium. 2016. http://www.
mrlc.gov/nlcd2011.php.

NOAA. NOAA Shoreline Website: NOAA Historical Surveys (T-
Sheets). 2015. https://shoreline.noaa.gov/intro/.

Perry, J.E., T.A.J.R. Barnard, J.G. Bradshaw, C.T. Friedrichs, K.J.
Havens, P.A. Mason, W.I. Priest III, and G.M. Silberhorn. 2001.

Estuaries and Coasts

http://lidar.salisbury.edu/arcgis/rest/services/DEM_ft
https://doi.org/10.1029/2012GL053435
http://www.ecologyandsociety.org/vol15/iss4/art14/
http://www.ecologyandsociety.org/vol15/iss4/art14/
https://www.nwf.org/media/PDFs/Global-Warming/Reports/SeaLevelRiseandCoastalHabitats_ChesapeakeRegion.ashx
https://www.nwf.org/media/PDFs/Global-Warming/Reports/SeaLevelRiseandCoastalHabitats_ChesapeakeRegion.ashx
https://www.nwf.org/media/PDFs/Global-Warming/Reports/SeaLevelRiseandCoastalHabitats_ChesapeakeRegion.ashx
https://doi.org/10.1029/2010GL045489
https://doi.org/10.1029/2011GL048995
https://doi.org/10.1029/2011GL048995
https://doi.org/10.1029/2009JF001326
https://doi.org/10.1029/2009JF001326
http://www.mrlc.gov/nlcd2011.php
http://www.mrlc.gov/nlcd2011.php
https://shoreline.noaa.gov/intro/


Creating tidal salt marshes in the Chesapeake Bay. Journal of
Coastal Research 27: 179–191.

Phillips, J.D. 1986. Spatial analysis of shoreline erosion, Delaware Bay,
New Jersey. Annals of the Association of American Geographers 76
(1): 50–62.

Poulter, B., N. Christensen, and S. Qjian. 2008. Tolerance of Pinus taeda
and Pinus serotine to low salinity and flooding: Implications for
equilibrium vegetation dynamics. Journal of Vegetation Science 19
(1): 15–22.

Raabe, E.A., and R.P. Stumpf. 2015. Expansion of tidal marsh in response
to sea-level rise: Gulf Coast of Florida, USA. Estuaries and Coasts
39 (1): 145–157.

Reed, D.J. 1995. The response of coastal marshes to sea-level rise:
Survival or submergence? Earth Surface Processes and
Landforms 20: 39–48.

Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S.
Kolker, L.L. Leonard, R.A. Orson, and J.C. Stevenson. n.d.-bn.d.-
an.d.-an.d.2008-b. Site-specific scenarios for wetlands accretion as
sea level rises in the Mid-Atlantic region. Section 2.1 in.
Background Documents Supporting Climate Change Science
Program Synthesis and Assessment Product 4.1., Titus, J.G., and
Strange, E.M. (eds.). EPA 430R07004. U.S. EPA, Washington, DC.

Riggs, S.R. 2001. Shoreline erosion in North Carolina estuaries: The
Soundfront Series UNC-SG_01-11. North Carolina Sea Grant,
Raleigh, Pub. No. N.C., UNC-SG-01-11, 69.

Rosen, P.S. 1980. Erosion susceptibility of the Virginia Chesapeake Bay
shoreline.Marine Geology 34: 45–59.

Sallenger, A.H.S., K.S. Doran, and P.A. Howd. 2012. Hotspot of accel-
erated sea-level rise on the Atlantic coast of North America. Nature
Climate Change 2: 884–888.

Schepers, L., Kirwan, M., Guntenspergen, G., and Temmerman, S., 2017.
Spatio-temporal development of vegetation die-off in a submerging
coastal marsh. Limnology and Oceanography 62: 137–150.

Schwimmer, R.A. 2001. Rates and processes of marsh shoreline erosion
in Rehoboth Bay, Delaware, U.S.A. Journal of Coastal Research 17
(3): 678–683.

Scott, M., L. McDermott, E. Silva, and E. Watson. 2009. Digital spatial
data capture of marsh extent in Blackwater National Wildlife

Refuge, 1938 and 2006. Eastern Shore GIS Cooperative at
Salisbury University.

Shalowitz, A.L. 1964. Shore and sea boundaries. Washington, DC: U.S.
Government Printing Office.

Silliman, B., P. Dixon, C. Wobus, Q. He, P. Daleo, B. Hughes, J. Willis,
and M. Hester. 2016. Thresholds in marsh resilience to the
Deepwater Horizon oil spill. Scientific Reports 6: 32520. https://
doi.org/10.1038/srep32520.

Smith, J.A.M. 2013. The role of Phragmites australis in mediating inland
salt marsh migration in a Mid-Atlantic Estuary. PLoS ONE 8(5):
e65091. https://doi.org/10.1371/journal.pone.0065091.

Soil Conservation Service. 1975. Estuarine Shoreline Erosion Inventory,
North Carolina. Raleigh, North Carolina: U.S. Soil Conservation
Service, 71p.

Stevenson, J.C., M.S. Kearney, and E.C. Pendleton. 1985. Sedimentation
and erosion in a Chesapeake Bay brackish marsh system. Marine
Geology 67: 213–235.

Torio, D.D., and G.L. Chmura. 2013. Assessing coastal squeeze of tidal
wetlands. Journal of Coastal Research 29 (5): 1049–1061.

Virginia Lidar. 2015. http://virginialidar.com/index-3.html#.V_-
Z1vkrKUk.

Wasson, K., A. Woolfolk, and C. Fresquez. 2013. Ecotones as indicators
of changing environmental conditions: Rapid migration of salt
marsh-upland boundaries. Estuaries and Coasts 36: 654–664.

Watson, E.B., K.B. Raposa, J.C. Carey, C. Wigand, and R.S. Warren.
2016. Anthropocene survival of southern New England’s salt
marshes, Estuaries and Coasts 40: 617–625.

Weston, N.B. 2014. Declining sediments and rising seas: An unfortunate
convergence for tidal wetlands. Estuaries and Coasts 37: 1–23.

Williams, K., K.C. Ewel, R.P. Stumpf, F.E. Putz, and T.W. Workman.
1999. Sea-level rise and coastal forest retreat on the West Coast of
Florida, USA. Ecology 80: 2045–2063.

Wrayf, R.D., S.P. Leatherman, and R.J. Nicholls. 1995. Historic and
future land loss for upland and marsh islands in the Chesapeake
Bay, Maryland, U.S.A. Journal of Coastal Research 11 (4): 1195–
1202.

Estuaries and Coasts

https://doi.org/10.1038/srep32520
https://doi.org/10.1038/srep32520
https://doi.org/10.1371/journal.pone.0065091
http://virginialidar.com/index-3.html#.V_-Z1vkrKUk
http://virginialidar.com/index-3.html#.V_-Z1vkrKUk

	Massive Upland to Wetland Conversion Compensated for Historical Marsh Loss in Chesapeake Bay, USA
	Abstract
	Introduction
	Methods
	Regional Setting
	Habitat Mapping
	Analytical Methods

	Results
	Discussion
	Reliability of Historical Maps
	Chesapeake Bay Marsh Erosion and Migration
	Broader Implications

	References


