AEM Accepted Manuscript Posted Online 26 January 2018 Appl. Environ. Microbiol. doi:10.1128/AEM.02374-17 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

> 2 3 Heather E. Goetsch,^a Linbo Zhao,^b Mariah Gnegy,^{a*} Michael J. Imperiale,^b Nancy G. 4 Love,^a Krista R. Wigginton^{a#} 5 6 7 Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, 8 Michigan, USA^a; Department of Microbiology and Immunology, University of Michigan, 9 Ann Arbor, Michigan, USA^b 10 11 Running Head: BK human polyomavirus in source-separated urine 12 13 #Address correspondence to Krista R. Wigginton, kwigg@umich.edu 14 *Present address: Mariah Gnegy, Department of Civil and Environmental Engineering, 15 Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA 16

The fate of urinary tract virus BK human polyomavirus in source-separated urine

17

1

Abstract 18

19	Human polyomaviruses are emerging pathogens that infect a large percentage of the
20	human population and are excreted in urine. Consequently, urine that is collected for
21	fertilizer production often has high concentrations of polyomavirus genes. We studied the
22	fate of infectious double-stranded DNA (dsDNA) BK human polyomavirus (BKPyV) in
23	hydrolyzed source-separated urine with infectivity assays and qPCR. Although BKPyV
24	genomes persisted in the hydrolyzed urine for long periods of time ($T_{90} > 3$ weeks), the
25	viruses were rapidly inactivated ($T_{90} = 1.1-11$ hours) in most of the tested urine samples.
26	Interestingly, the infectivity of dsDNA bacteriophage surrogate T3 was much more
27	persistent than BKPyV ($T_{90} = 24-46$ days), highlighting a major shortcoming of using
28	bacteriophages as human virus surrogates. Pasteurization and filtration experiments
29	suggest BKPyV virus inactivation was due to microorganism activity in the source-
30	separated urine, and SDS-PAGE western blots showed that BKPyV protein capsid
31	disassembly is concurrent with inactivation. Our results imply that stored urine may not
32	pose a substantial risk of BKPyV transmission, that qPCR and infectivity of the dsDNA
33	surrogate do not accurately depict BKPyV fate, and that microbial inactivation may be
34	driven by structural elements of the BKPyV capsid.
35	

37 Importance

38	We demonstrate that a common urinary tract virus has a high susceptibility to the
39	conditions in hydrolyzed urine and consequently would not be a substantial exposure
40	route to humans using urine-derived fertilizers. The results have significant implications
41	for understanding virus fate. First, by demonstrating that the dsDNA (double-stranded
42	DNA) genome of the polyomavirus lasts for weeks despite infectivity lasting for hours to
43	days, our work highlights the shortcomings of using qPCR to estimate risks from
44	unculturable viruses. Second, commonly used dsDNA surrogate viruses survived for
45	weeks in the same conditions that BK polyomavirus survived for only hours, highlighting
46	issues with using virus surrogates to predict how human viruses will behave in the
47	environment. Finally, our mechanistic inactivation analysis provides strong evidence that
48	microbial activity drives rapid virus inactivation, likely through capsid disassembly.
49	Overall, our work underlines how subtle structural differences between viruses can
50	greatly impact their environmental fate.
51	
52	

53

AEM

54 Introduction

Enteric viruses that arise from fecal contamination have long been known to be of serious concern for public health. Viruses that infect the urinary tract of humans can also be shed in high quantities yet their concentrations and fate in the environment are unclear. Zika virus, for example, is excreted in urine (1) and can cause microcephaly in newborn children of infected mothers (2). Similarly, cytomegalovirus (CMV) is shed in the urine of infected individuals and is a risk to infants of infected mothers as the virus can cause hearing and vision loss and other developmental disabilities (3).

62 Polyomaviruses are another class of emerging pathogens that commonly infect the 63 urinary tract of humans (4–6). These non-enveloped, dsDNA viruses readily infect a vast 64 majority of the public asymptomatically (7,8), but can also cause severe diseases in 65 immunocompromised individuals (9). Primary infection occurs in childhood, and the 66 viruses persist for the entire life of the individual, mainly in epithelial cells in the kidneys 67 and urinary tract and leukocytes in the blood (6,7,9–12). BK polyomavirus (BKPyV) and 68 JC polyomavirus (JCPyV) are most commonly found excreted in urine (13,14). The 69 excretion of BKPyV by healthy individuals is asymptomatic, but in transplant patients, 70 replication can cause severe disease (15-17). JCPyV and BKPyV concentrations have been reported as high as 10¹⁰ gene copies/mL in the urine of sick individuals, with 71 72 healthy adults typically excreting lower concentrations (5,18).

Despite the potential for abundant polyomavirus gene copies in excreted urine, its
transmission pathways have not yet been fully determined. Respiratory and fecal-oral
routes of transmission have been proposed for BKPyV (19–22), and urine may play a role
(23). Ingestion of contaminated water and food has been implicated as an exposure route

Applied and Environmental Microbiology

AEM

77 (21), indicating the potential significance of polyomavirus transmission via the

78 environment.

79 The need to better understand polyomavirus transmission by urine is underscored 80 by the growing trend of diverting urine from the waste stream and capturing nutrients in 81 urine-derived fertilizers. Urine diversion can provide several environmental benefits, 82 including a sustainable source of phosphorus (24–26), reduction in costs and pollution 83 associated with wastewater treatment (27,28), a potential reduction of water usage (29), 84 and more efficient treatment of contaminants. Despite the benefits of diverting urine, 85 biological contaminants need to be managed before urine can be reused. Biological 86 contaminants in urine are mitigated with a number of treatment technologies, including 87 long-term storage for several months, pasteurization, or by nutrient precipitation (e.g., 88 struvite) (30-32).

When urine is stored in sealed containers to inactivate biological contaminants,
the urea in urine is hydrolyzed, resulting in high pH (~9) and an increase in aqueous
ammonia concentrations (2000-8000 mg N/L) (33,34). This transition to hydrolyzed urine
can occur within a few hours or days depending on urease enzyme activity in the urine.
The high pH and high aqueous ammonia levels have a biocidal impact on indicator
organisms (35–37).

Research on biological contaminants in source-separated urine has primarily
focused on the presence and fate of enteric pathogens (35,38–43). Many enteric viruses
are single-stranded RNA (ssRNA) viruses, so ssRNA viral surrogates are often used to
predict enteric virus fate in urine. Inactivation of the ssRNA bacteriophage MS2, for
example, correlated well with aqueous base (*e.g.* NH₃, OH⁻) activity, suggesting that

101	viruses are susceptible to ammonia activity, whereas the single-stranded DNA (ssDNA)
102	bacteriophage Φ X174, the double-stranded RNA (dsRNA) reovirus, and the double-
103	stranded DNA (dsDNA) human adenovirus and bacteriophage T4 were not susceptible to
104	the same transesterification inactivation pathway (45). These results suggest that although
105	common enteric ssRNA viruses are susceptible to the conditions in hydrolyzed urine,
106	viruses commonly found in the urinary tract (polyomavirus, cytomegalovirus, etc.) may
107	be stable in the high aqueous ammonia concentrations found in hydrolyzed urine and
108	could therefore pose risks in urine-derived fertilizers.
109	To identify the potential transmission risks that polyomavirus may pose in source-
110	separated urine and urine-derived fertilizer production, we tracked the presence and fate
111	of human polyomavirus in fresh and hydrolyzed urine using molecular and culture-based
112	methods. We compared these results to the behavior of common bacteriophage surrogates
113	in an effort to better understand how well surrogate infectivity predicts environmental
114	virus fate and how capsid characteristics may influence inactivation in environmental

115 matrices.

116

117 **Materials and Methods**

118 Urine collection and characterization

119 Urine was collected from men and women at nine public events in Vermont,

- 120 Massachusetts, and Michigan, USA. After collection, urine was stored in sealed
- 121 containers at room temperature to minimize ammonia off-gassing. Specific urine samples

inactivation is caused by transesterification of the ribose in RNA (44). Other ssRNA

122 were also pasteurized by heating to 80° C for at least 3 minutes. Nutrient content (total

AEN

123	ammonia nitrogen, total phosphorus, total nitrogen) of hydrolyzed urine was evaluated
124	using Standard Methods (4500-NH ₃ F; 4500-P J and 4500- P E; 4500-N C and 4500-NO ₃ ⁻
125	C) (46). Details on collection location, event type, number of donors, and characteristics
126	of the urines used in this study are provided in Table 1. Experiments with urines are
127	described by the collection event (A-I), followed by the treatment the urine has
128	undergone (fresh, hydrolyzed, pasteurized), and the length of time after that treatment.
129	For example, urine collected from a rural festival in Vermont (event A; Table 1) and used
130	for an experiment 10 months after it underwent hydrolysis was referred to as "A -
131	hydrolyzed 10 months."
132	
133	Bacteriophage and virus strains
134	Bacteriophages used as surrogates for human viruses included Escherichia coli
135	non-enveloped bacteriophages T3, MS2, and Q β . Bacteriophage T3 (38.2 kbp) is a
136	dsDNA virus that has dimensions of 50×20 nm in size and was used as a surrogate for
137	polyomaviruses, which are dsDNA viruses. Bacteriophages MS2 (3.6 kbp) and Q β (4.2
138	kbp) are both ssRNA viruses and 25 nm in diameter, but $Q\beta$ has disulfide bonds in its
139	capsid, and MS2 does not. These two viruses were studied to help explain differences
140	observed in the inactivation kinetics of BKPyV and T3.
141	The BK polyomavirus Dunlop variant was used to study the fate of BKPyV. This
142	genetic variant was chosen since it can be propagated at a high titer (~ 10^8 IU (infectious
143	unit) mL ⁻¹) to provide maximal experimental sensitivity and range. BKPyV (dsDNA) has
144	a 5.1 kbp genome and is approximately 45 nm in diameter (47).

145	Bacteriophages MS2 and T3 were propagated in their E. coli hosts (ATCC 15597
146	and 11303). The viruses were extracted from cellular material with a chloroform
147	extraction method (48) and purified with an Econo Fast Protein Liquid Chromatography
148	system (BioRad, USA) equipped with a HiPrep Sephacryl S-400 column (GE, USA).
149	The purified virus fraction was concentrated with 100 kDa Amicon ultracentrifugal filters
150	and filter-sterilized with 0.22 μ m polyethersulfone (PES) membrane filters (Millipore,
151	USA). The final MS2 and T3 stocks ($\sim 10^{11}$ PFU mL ⁻¹) were stored in phosphate buffer
152	(5 mM NaH ₂ PO ₄ and 10 mM NaCl, pH 7.5) at 4 °C. Bacteriophage Q β was propagated
153	in its E. coli host (ATCC 15597) and purified similar to MS2 and T3, except the protein
154	chromatography step was excluded. The Q β stocks (~10 ¹¹ PFU mL ⁻¹) were stored in
155	phosphate buffer at 4 °C for immediate use in infectivity experiments. The
156	bacteriophages were enumerated by the double layer plaque assay (48). Briefly, aliquots
157	of each virus were serially diluted, and 100 μ L of final serial dilutions were combined
158	with 100 μ L of an overnight culture of their respective <i>E. coli</i> hosts and 5 mL of soft
159	agar. Plaques were enumerated after overnight incubation at 37 °C.
160	BKPyV was propagated in Vero and 293TT cells using previously published
161	methods (49,50). Briefly, Vero and 293TT cells were grown to 70% confluency, infected
162	with BKPyV crude lysate at MOI 0.1 IU cell ⁻¹ , and incubated at 37 °C for three weeks
163	(Vero cells) or 10 days (293TT cells). Virus lysates were purified over density CsCl
164	gradient centrifugation, and the collected virus fraction was dialyzed overnight in buffer
165	(10 mM HEPES, 1mM CaCl ₂ , 1 mM MgCl ₂ , 5 mM KCl, pH 7.9).
166	Infectious BKPyV was enumerated in renal proximal tubule epithelial (RPTE)
167	cells with immunofluorescence assays (IFAs) (49). When RPTE cells in the wells of 24

169	were added to the cells. Following a one-hour infection at 4° C, the cells were further
170	incubated at 37° C for two days. Cells were then fixed with 4% paraformaldehyde for 20
171	minutes, washed three times with phosphate-buffered saline (154 mM NaCl, 5.6 mM
172	Na ₂ HPO ₄ , 1.06 mM KH ₂ PO ₄ , pH 7.4, PBS), washed with a 0.1% Triton detergent
173	solution, rinsed with PBS, and then washed with a 5% goat serum blocking solution. To
174	identify infected cells, the cells were treated first with a 1:200 dilution of antibody
175	pAB416 (51) in 5% goat serum, and then with a 1:200 dilution of polyclonal goat anti-
176	mouse IgG FITC antibody (Sigma) in 5% goat serum. The virus titer was determined by
177	counting the individual fluorescent cells. At least nine random fields of view with at least
178	five positive cells each were averaged to obtain the titer values (IU mL^{-1}) in each well.
179	Duplicate wells were prepared for each sample and their titer values were averaged (50).
180	
181	Virus inactivation in urine and buffer
182	All inactivation experiments were conducted at room temperature in the dark. T3
183	bacteriophage was spiked into 10-50 mL of hydrolyzed urine (n=3) at concentrations of
184	$10^8 - 10^9$ PFU mL ⁻¹ to evaluate the inactivation rate of the human dsDNA virus surrogate.
185	Bacteriophages MS2 and Q β were spiked into 10 mL of hydrolyzed urine (n=2) to
186	evaluate the inactivation rates of the bacteriophages with (MS2) and without (Q β)
187	disulfide bridges in the protein capsid. Both surrogates were spiked into hydrolyzed urine
188	at an initial concentration of $10^8 - 10^9$ PFU mL ⁻¹ . Infectious particles were quantified
189	over time with plaque assays.

well plates reached 70-80% confluency, serial dilutions of the BKPyV virus samples

168

AEM

Applied and Environ<u>mental</u>

Microbioloav

In the BKPyV inactivation experiments, 50 μ L of stock BKPyV was spiked into		
1 mL of urine or buffer at a concentration of 5×10^5 - 1×10^6 IU mL ⁻¹ . At various time		
points, 50 μ L aliquots were removed and spiked into 450 μ L of tissue culture media		
(renal epithelial growth medium, REGM). The samples were then frozen at -80° C until		
enumerated with the tissue culture assays. Infectious BKPyV could be detected at		
concentrations as low as 3×10^2 IU mL ⁻¹ .		
The BKPyV stock was spiked into buffers, hydrolyzed urine, pasteurized urine,		
and filtered urine to evaluate the role of solution characteristics on inactivation rates.		
Pasteurization consisted of heating urine to 80° C for at least 3 minutes. Urine was		
filtered through a 0.22 μ m PES syringe filter. BKPyV inactivation was also measured in		
buffer solutions with various pH and ammonia concentrations (Table S2). These included		
phosphate carbonate buffers with and without ammonia (147 mM, consistent with levels		
found in hydrolyzed urine) and adjusted to pH 7 and 9, described as PC7, PC9, AmPC7,		
and AmPC9 (45).		
Polyomavirus qPCR conditions		
Endogenous BKPyV DNA concentrations in collected urine samples and Dunlop		
BKPyV DNA concentrations in spiked urine were evaluated using qPCR (conditions		
described in Table S1). DNA was extracted from all urine samples (100-300 μ L) for		
qPCR analysis with Maxwell Total Viral Nucleic Acid Extraction kits (Promega) using		
the Maxwell 16 instrument (Promega). Primers (5' to 3') specific for endogenous BKPyV		
were selected to target the large T-antigen (152 hp; forward;		

211	were selected to target the large T-antigen (152 bp; forward:
212	AAGGAAAGGCTGGATTCTG; reverse: TGTGATTGGGATTCAGTG (52)) and

AEN

213
214
215
216
217
218
219
220
221
222
223
224
225

213	primers specific for the Dunlop BKPyV strain were designed to target the VP2 protein
214	region of the Dunlop strain (900 bp; forward: ATTTCCAGGTTCATGGGTGCT;
215	reverse: AGGCAACATCCATTGAGGAGC). The 10 μ L reactions included 5 μ L 2X
216	Biotium Fast-Plus EvaGreen Master Mix, 0.5 μ M primers, 0.625 mg/mL bovine serum
217	albumin (BSA), and 1 μ L of DNA template (0.5 to 5 ng). Standard curves were prepared
218	between 10^1 - 10^8 gene copies mL ⁻¹ . All efficiencies were greater than 70%, and R ² values
219	were greater than 0.99.
220	
221	Experiments to study polyomavirus sorption
222	Control experiments were conducted to determine if the measured decreases in
223	BKPyV concentrations were due to the sorption of viruses to particles found in
224	hydrolyzed urine. In these experiments, 50 μ L of stock BKPyV was spiked into 1 mL of
225	urine at a concentration of 5×10^5 - 1×10^6 IU mL ⁻¹ and briefly mixed. The solution was
226	then incubated for various amounts of time to allow particles in the urine to settle. At
227	predetermined times, two 50 μ L aliquots were removed, including one from the top of
228	the sample to avoid settled particles and one of the mixed sample. All aliquots were
229	spiked into 450 μ L of tissue culture media (REGM). Infectious BKPyV levels in the
230	supernatant were compared to levels in the mixture.
231	
232	Experiments to study polyomavirus genome degradation
233	To assess BKPyV genome stability, 50 μ L of stock BKPyV was spiked into 1

234 mL of hydrolyzed urine at a concentration of 5×10^5 - 1×10^6 IU mL⁻¹. 50 μ L aliquots were

anu	236	tissue culture media (REGM). The samples were stored at -80° C until viral DNA
Accepted M	237	extraction, and then qPCR was conducted on a 900 bp region of the genome (Table S1).
	238	To estimate the reaction rate constants for the entire BKPyV genome, we first
	239	extrapolated the concentrations measured for the 900 bp amplicon to the entire 5.1 kbp
	240	genome with the following relationship (53):
	241	$log \frac{N}{N_0} = log \frac{n}{n_0} \times \frac{genome \ size}{amplicon \ size}$ (Equation 1)
	242	where $\frac{N}{N_0}$ is the extrapolated concentration of the entire genome and $\frac{n}{n_0}$ is the measured
	243	concentration of the 900 bp amplicon. First order rate constants for the BKPyV genome
Microbiology	244	were estimated by conducting linear regressions of $\ln(N/N_0)$ versus time. This
	245	extrapolation assumes that the reactions in the genome are uniformly distributed.
	246	The ability of the BKPyV Dunlop strain qPCR method to detect small decreases
	247	of the 900 bp gene copy concentrations in hydrolyzed urine was tested by diluting the
	248	spiked urine solutions by 10% and 20% (i.e. $0.9 \times$ and $0.8 \times$) with nuclease free water. Th

248	spiked urine solutions by 10% and 20% (i.e. $0.9 \times$ and $0.8 \times$) with nuclease free water. The
249	undiluted, $0.9 \times$ and $0.8 \times$ samples were extracted five times each, and then the 900 bp
250	targets were quantified with qPCR. The measured gene copies in the 0.9× and 0.8×
251	samples were compared to the measured gene copies in the undiluted sample.

252

253 Experiments to study polyomavirus capsid disassembly

254 To evaluate protein capsid stability in hydrolyzed urine, BKPyV proteins were 255 separated with SDS-PAGE gels, and the VP1 capsid proteins were visualized by western 256 blotting (50). Specifically, 50 μ L of stock BKPyV was spiked into 1 mL of hydrolyzed

removed from the mixture at different time points up to 27 days and added to 450 μ L of

AEN

≶
Щ
\triangleleft

257	urine at a concentration of 5×10^5 - 1×10^6 IU mL ⁻¹ . Immediately after adding the virus to
258	the urine and then again after 24 hours, 80 μ L aliquots were removed from the mixture.
259	To preserve the disulfide bond configuration of BKPyV in the urine samples, 80 μ L
260	aliquots were combined with 1.6 μ L of freshly prepared 1 M <i>N</i> -ethylmaleimide (Sigma),
261	diluted in 100% ethanol. This mixture was incubated on ice for 45 minutes and stored at -
262	80 °C until viral proteins from the BKPyV capsid were separated using 8% SDS-PAGE
263	gels. In the SDS-PAGE analysis, 80 μ L sample aliquots were added to 20 μ L of
264	reducing buffer (250 mM Tris-HCl pH 6.8, 50% glycerol, 10% SDS, 250 mM
265	dithiothreitol, 0.025% bromophenol blue) or 20 μ L nonreducing buffer (250 mM Tris-
266	HCl pH 6.8, 50% glycerol, 10% SDS, 0.025% bromophenol blue). Samples in reduced
267	conditions were diluted 1:20 to have similar signal strength as non-reduced samples for
268	western blot visualization. After buffer addition, all samples were heated to 42° C for 5
269	minutes and resolved on an SDS-PAGE gel. Under non-reducing conditions, the capsid
270	proteins will enter the gel only if the disulfide bridges were broken in the experiments.
271	Control samples were prepared in reduced conditions to evaluate the total amount of VP1
272	proteins in the samples. After separation, VP1 proteins were wet-transferred to a
273	nitrocellulose membrane in buffer (25 mM Tris, 192 mM glycine, 20% methanol) at 60 V
274	overnight. Membranes were blocked in 2% nonfat dry milk diluted in 0.1% Tween 20
275	prepared in phosphate buffer (PBS-T), stained with 1:2000 VP1 primary antibody diluted
276	in 2% nonfat dry milk solution, stained with 1:2000 anti-mouse HRP secondary antibody
277	(Amersham) diluted in 2% nonfat dry milk solution, and washed with PBS-T.
278	
279	Viability of bacteria in urine

Bacteria with intact and damaged cell membranes in duplicate urine samples were
quantified using BacLight "Live/Dead" stain (Molecular Probes) according to the
manufacturer's protocol. Viable (fluorescent green) cells were counted and compared to
cells with damaged membranes (fluorescent red) using fluorescence microscopy and
averaging counts over 10 random fields of view.

285

286 Data Analysis

287 Virus inactivation was modelled with first order kinetics. Rate constants k were 288 calculated with linear regressions of natural log concentration and time using the Data 289 Analysis plugin for Microsoft Excel. The reported errors correspond to 95% confidence 290 intervals. The T₉₀ values, or time required for 90% reduction in infectivity or gene copies, 291 were calculated as the reciprocal of the first order rate constants. 292 Student T-tests were used to compare bacteria live/dead ratios, changes in the 900 293 bp gene copy concentrations after storage in hydrolyzed urines, and to test the sensitivity 294 of our DNA extraction and qPCR assays. ANOVA multiple linear regression analysis 295 was used to compare the inactivation kinetics of two model viruses, MS2 and Q β , and to 296 assess the impact of urine pasteurization and filtration on virus inactivation kinetics. p-297 values are provided for all statistical analyses. 298 299 **Results and Discussion** 300 Polyomavirus concentrations in urine and urine-derived fertilizers 301 Infectious polyomaviruses present in urine cannot be enumerated due to a lack of

a compatible tissue culture for studying urine isolates. Consequently, BKPyV DNA

303	concentrations in the collected urine before and after hydrolysis and pasteurization were
304	enumerated by qPCR. The endogenous BKPyV DNA concentration in freshly collected
305	source-separated urine A prior to hydrolysis was 7.0×10^5 gene copies mL ⁻¹ (Figure 1)
306	which is consistent with reported concentrations in urine of healthy individuals (5 \times 10 0
307	-1.24×10^8 gene copies mL ⁻¹) (5). This data is based on one fresh urine sample, as it is
308	difficult to collect large fresh urine samples since hydrolysis can happen quickly. The
309	average BKPyV gene copy concentration in hydrolyzed urines A, B, C was 3.8×10^6
310	gene copies mL ⁻¹ and 1.2×10^7 gene copies mL ⁻¹ in pasteurized urines A, B, C (Figure 1)
311	These data suggest that the polyomaviruses, or at least the polyomavirus DNA, survive
312	the harsh conditions of hydrolyzed urine storage and pasteurization.
313	
314	BKPyV and bacteriophage T3 inactivation in hydrolyzed urine
315	The gene copy concentrations measured by qPCR do not necessarily correspond
316	to the concentrations of infectious viruses. Although infectivity assays for the
317	polyomaviruses found in urine are not possible at this time, certain polyomavirus genome
318	variants, such as BKPyV Dunlop can be enumerated in vitro. BKPyV Dunlop is a
319	rearranged variant of the archetype that is present in humans. This variant differs in the
320	non-coding control region of the genome and is easily grown in cell culture models (54).
321	The variant viral particles are structurally identical to the viruses found in urine. BKPyV
322	Dunlop was spiked into various hydrolyzed urine samples, and inactivation kinetics were
323	then measured. Source-separated urine characteristics vary depending on the donors' age,
324	nutrition, amount of physical exercise, etc. (55). We therefore utilized a number of

326

Applied and Environ<u>mental</u>

327 Control experiments confirmed that the unspiked urine samples contained no 328 culturable BKPyV. In the spiked hydrolyzed urine samples, BKPyV inactivation rates ranged from $4.7 \times 10^{-3} - 0.90$ hour⁻¹, corresponding to T₉₀ values from 1.1 - 210 hours 329 330 (Figure 2 and Table 2). Most of the urine samples exhibited rapid inactivation rates (E, F, 331 H, and I), with T₉₀ < 11 hours, but BKPyV was much more stable in urine G. Urine G did 332 not differ from the other urine samples in its ammonia concentration (Table 1), but was 333 collected from fewer donors than urines E, F, H, and I. 334 In addition to different urine samples exhibiting different inactivation rates, the 335 same collected urine sample hydrolyzed for different amounts of time exhibited different 336 BKPyV inactivation rates (Figure 2B and Table 2). Our previous work demonstrated that 337 the bacterial community changes as the urine is stored (56). Other work has shown that 338 microbial activity can play a role in virus inactivation, particularly for DNA viruses that 339 experience slower abiotic inactivation or in matrices with higher microbial activity (57). 340 We therefore hypothesized that the microbial activity was influencing inactivation, and 341 that the variation of inactivation kinetics was due to different microbial activities in the

source-separated urines collected from different regions of the United States and stored

for different amounts of time to capture these variations.

342 urine samples.

343 Microbial activity was thus evaluated in urine samples that exhibited slow and 344 fast virus inactivation rates (urines G – hydrolyzed 11 months and I – hydrolyzed 2 345 months) with BacLight viability staining. The average urine I ratio (0.66) was larger than 346 the average urine G ratio (0.085, p = 0.0194). Interestingly, the higher live/dead bacteria 347 ratio was measured in the sample that inactivated the virus at a significantly faster rate.

348	This supported our hypothesis that microbial activity played a role in the different
349	observed polyomavirus inactivation rates.
350	Other dsDNA viruses are stable in human excreta and animal manure with high
351	ammonia and high pH (45). T4 (dsDNA), Φ X174 (ssDNA), and rhesus rotavirus
352	(dsRNA) are stable in urine with T_{90} values of 12.5 days, 7 days (57), and 35 days at 20°
353	C (38), respectively, while human adenovirus (dsDNA) is less stable, with T_{90} values
354	ranging from 2-24 hours (57). We used another dsDNA virus bacteriophage T3 to
355	confirm that our observation was not unique to the urine samples tested. The dsDNA
356	bacteriophage T3 was spiked into various urine samples, and the concentration of
357	infectious T3 particles was measured over time. T3 was much more stable than BKPyV
358	in hydrolyzed urine (Table 2), with an average first order rate constant of 1.6×10^{-3} hour ⁻¹
359	and an average T_{90} equal to 630 hours (n = 3). T3 is also stable in other aquatic
360	environments, remaining infectious in a wide pH range (5-9.2) and in wastewater
361	matrices for at least 48 hours (58,59). T3 and BKPyV exhibited very different
362	inactivation kinetics despite having the same genome type. This suggests that the
363	inactivation mechanism for BKPyV is different than the inactivation mechanism for
364	bacteriophage T3. We next sought to determine why BKPyV was susceptible to the
365	conditions of hydrolyzed urine.
366	
367	Attributes of polyomavirus leading to inactivation
368	Inactivation of non-enveloped viruses can be due to damage to the capsid

structure or damage to the genome (60–63). To assess if inactivation in the urine was due
to degradation of the polyomavirus genome, a 900 bp region of the BKPyV genome was

372	amplicon covered $\sim 20\%$ of the BKPyV genome, and controls confirmed that unspiked
373	urine did not contain the amplicon sequence. After 27 days we detected no significant
374	decrease in gene copies based on both linear regressions of the entire data set and a
375	student T-test of the gene copy concentrations at time = 0 and time = 27 days. Our qPCR
376	assay could effectively detect a 20% decrease in the initial gene copy concentration of
377	BKPyV (student T-test, p=0.0062); this means that the reaction rate constant for the 900
378	bp amplicon in urine was $< 0.0083 \text{ day}^{-1}$ (T ₉₀ >120 days). Extrapolating this rate constant
379	to the entire genome using equation (1) results in a genome rate constant $k \le 0.047 \mbox{ day}^{-1}$
380	and a T_{90} value greater than 21 days. For comparison, the infectivity T_{90} for this same
381	urine sample was 6.3 hours (Table 2). These data verify that reactions in the dsDNA
382	polyomavirus genomes are not responsible for virus inactivation in the hydrolyzed urine.
383	To investigate if capsid disassembly plays a role in polyomavirus inactivation,
384	western blots were employed to monitor the disulfide bonds that provide stability to the
385	protein capsid structure. VP1 is the major structural protein in the polyomavirus capsid.
386	The capsid is composed of 72 pentamers of this protein (64) connected with inter- and
387	intrapentameric disulfide bridges (65). The presence of disulfide bridges sets
388	polyomavirus apart from the other dsDNA viruses that have been tested in hydrolyzed
389	urine and human excreta at combined high pH and ammonia levels. To investigate the
390	stability of the capsid structure, SDS-PAGE western blots were conducted on BKPyV
391	proteins after the viruses were stored in urine. If the disulfide bonds are intact, the virus is

- 392 unable to enter the SDS-PAGE gel. Results confirmed protein structural changes
- 393 following incubation in hydrolyzed urine (Figure 3). Immediately after BKPyV was

monitored by qPCR as the virus was incubated in hydrolyzed urine I. The 900 bp

371

AEM

394	added to urine, minimal VP1 pentamers, dimers, or monomers were visible; therefore,
395	most of the BKPyV particles were intact and too large to enter the non-reducing SDS-
396	PAGE gel. After BKPyV was incubated in hydrolyzed urine for 24 hours and inactivated,
397	VP1 monomers were detected; therefore, the BKPyV capsid was disassembling. Control
398	samples at time = 0 and after 24 hours, in which the VP1 protein disulfide bonds were
399	reduced experimentally prior to electrophoresis, confirmed that the increase in signal
400	observed in Figure 3 was due to disassembly of BKPyV in urine and not due to different
401	amounts of added virus capsids. These results, coupled with the relatively slow T3
402	inactivation kinetics and the relatively slow genome reaction kinetics, suggest that
403	something about the capsid structure of BKPyV renders it susceptible to disassembly and
404	rapid inactivation in hydrolyzed urine.
405	To explore the role of disulfide bonds when viruses are inactivated in hydrolyzed
406	urine, two related model viruses (MS2 and Q β) were added to hydrolyzed urine, and
407	infectivity was measured over time. These two ssRNA viruses have similar RNA
408	sequences (up to 80% similarity in the replicase subunit) and capsid size (25 nm), but
409	differ in that the capsid proteins of $Q\beta$ are connected with disulfide bridges.
410	Bacteriophage Q β inactivated at a significantly faster rate in hydrolyzed urine than MS2
411	$(p = 0.00105)$ (Table 2 and Figure S1). The RNA genome of Q β is longer than MS2
412	(4.2 kbp vs. 3.6 kbp), and based on a model developed by Decrey et al., we compared the
413	expected ssRNA transesterification rates in Q β and MS2 based on their genome sizes
414	(44). The $k_{\{NH3\}}$ for Q β was predicted to be 1.17× larger than the $k_{\{NH3\}}$ for MS2. Our
415	inactivation rate constant for Q β was 1.32× larger than that of MS2. Consequently, if
416	mechanisms beyond RNA transesterification inactivate $Q\beta$, such as disruption of the

Applied and Environmental Microbiology

AEM

417 capsid structure, these mechanisms are minor. Additional viruses that contain disulfide
418 bonds will need to be studied in hydrolyzed urine to better define the role these bonds
419 play in virus inactivation.

420

421	Hydrolyzed urine	characteristics	that influence	BKPvV	inactivation	rates
141	11yar Ory2ca ar me	chur acter istics	mai mpinence	DILLYY	machivanon	ruics

422 To understand why different hydrolyzed urine samples exhibited different rates of

423 BKPyV inactivation, we explored which characteristics of the hydrolyzed urine

424 contributed to BKPyV inactivation. We first hypothesized that the BKPyV particles

425 adsorbed to large particulates in the urine and then settled out rapidly before aliquots

426 were collected for culturing. Control experiments were therefore conducted in which

427 particulates in the urine were allowed to settle and inactivation of BKPyV was measured

428 in the supernatant. The rate constant with particulates $(0.40\pm0.12 \text{ hour}^{-1})$ was not

429 statistically different from the rate constant without particulates $(0.39\pm0.12 \text{ hour}^{-1}, p =$

430 0.90). Sorption to particulates and settling was therefore ruled out as a significant

431 contributing factor in the observed inactivation rates.

432 We next tested the impact of the high pH and ammonia levels in the hydrolyzed

433 urine samples, as these conditions are biocidal to many organisms, including RNA

434 viruses (44). Linear regressions conducted on BKPyV concentrations over time in buffers

435 with pH and ammonia levels similar to hydrolyzed urine were not significantly different

436 from zero (n=3). This demonstrated that the BKPyV was not losing infectivity due to the

437 elevated pH and high ammonia concentrations in hydrolyzed urine.

438 Finally, we tested the role of microbial activity. Microorganisms can contribute to439 virus inactivation in some environments (57,66,67). To evaluate if the microorganisms

442	hydrolyzed urine that was recently filtered through filters with 0.22 μ m pores. ANOVA
443	multiple linear regression analyses suggested that BKPyV was inactivated at slower rates
444	when urine I (hydrolyzed 11 months) was either pasteurized or filtered (Table 2, Figure 4,
445	$p = 0.0014$ for pasteurized urine, $p = 9.7 \times 10^{-5}$ for filtered urine). This experiment was
446	repeated in urine I (hydrolyzed 2 months) and urine I (hydrolyzed 10 months) with
447	similar results (Table 2). Inactivation was not completely prevented after filtration and
448	pasteurization; therefore, additional unknown factors contributed to BKPyV inactivation
449	in the hydrolyzed urine.
450	This work demonstrates that the urinary tract virus BKPyV is rapidly inactivated
451	in most hydrolyzed urine samples. It is therefore likely that short-term storage of urine (<
452	1 month) is adequate for mitigating risks associated with polyomavirus. We ruled out the
453	role of elevated ammonia and pH levels in BKPyV inactivation and provided evidence
454	for the role of microbial activity. The specific inactivation mechanism most likely
455	involves capsid damage, since the DNA was not degraded over long periods of time and
456	the capsid proteins disassembled. We hypothesize that the disulfide bonds in BKPyV

441

448	pasteurization; therefore, additional unknown factors contributed to BKPyV inactivation
449	in the hydrolyzed urine.
450	This work demonstrates that the urinary tract virus BKPyV is rapidly inactivated
451	in most hydrolyzed urine samples. It is therefore likely that short-term storage of urine (<
452	1 month) is adequate for mitigating risks associated with polyomavirus. We ruled out the
453	role of elevated ammonia and pH levels in BKPyV inactivation and provided evidence
454	for the role of microbial activity. The specific inactivation mechanism most likely
455	involves capsid damage, since the DNA was not degraded over long periods of time and
456	the capsid proteins disassembled. We hypothesize that the disulfide bonds in BKPyV
457	make it more susceptible to inactivation in the hydrolyzed urine because the dsDNA
458	bacteriophage T3 was very stable. Inactivation experiments with MS2 and $Q\beta$ were not
459	able to support this hypothesis due to the rapid RNA transesterification reactions that
460	inactivated both viruses.

present in hydrolyzed urine impact the infectivity of BK polyomavirus, BKPyV was

added to hydrolyzed urine, hydrolyzed urine that was recently pasteurized, and

461 Our results are a reminder that positive qPCR measurements do not indicate the 462 presence of infective viruses. BKPyV DNA genes persisted for months, but infective

AEM

464	pathogen behavior is ideal for viruses that are not culturable; however, our results
465	underscore the fact that bacteriophages are often inappropriate surrogates for human
466	viruses even when they contain the same genome type. Using the inactivation behavior of
467	bacteriophage T3 to predict polyomaviruses would greatly overestimate the BKPyV risk
468	posed by urine-derived fertilizer.
469	It is, of course, impractical to test the survivability of every human virus in every
470	environmental condition with culture assays, especially when a number of human viruses
471	do not have readily available culture systems (e.g., human norovirus). Instead, the
472	environmental virology community should aim to understand how the chemical,
473	structural, and biological characteristics of viruses impact their environmental fate. This
474	requires studying the mechanistic fate of a broad range of viruses in various
475	environmental conditions. Our results suggest that the capsid of BKPyV is disassembled
476	in hydrolyzed urine samples despite the common assumption that disulfide bridges have a
477	stabilizing effect on protein structures. It remains to be seen whether this effect influences
478	the stability of other important human viruses with disulfide bonds in capsid proteins
479	including HIV, Hepatitis B, and Hepatitis C (68-70). Once we identify the protein
480	characteristics that drive inactivation in hydrolyzed urine and other environmental
481	matrices, we will be able to select more appropriate process surrogates for specific human
482	viruses.
483	Finally, microbial activity appears to contribute to the BKPyV inactivation,
484	although the specific mechanism by which microorganisms inactivate the virus remains
485	unclear. Viral inactivation in environmental matrices often depends on a variety of

viruses persisted for only hours to days. Employing bacteriophage surrogates to predict

22

Applied and Environmental Microbiology

487	varied inactivation rates observed amongst the urine samples may be due to the
488	prokaryotic and eukaryotic levels and communities in the urine samples. Our earlier work
489	revealed that bacterial communities in several collected urine samples converge to have
490	similar structures at the 16S level when stored (56). Identifying the specific prokaryotic
491	and eukaryotic organisms responsible for the inactivation of viruses in urine samples and
492	other environmental matrices will be necessary to more systematically evaluate the risks
493	that they pose.
494	
495	Acknowledgements
496	This work was supported through the USEPA grant RD-83556701-1 (under WERF
497	STAR_N1R14). Its contents are solely the responsibility of the grantee and do not
498	necessarily represent the official views of the USEPA. Further, USEPA does not endorse
499	the purchase of any commercial products or services mentioned in the publication. This
500	work was also supported through the INFEWS T3 grant number 1632974 and NIH R01
501	AI060584 awarded to M.J.I. HG was supported through a University of Michigan
502	Researching Fresh Solutions to the Energy/Water/Food Challenge in Resource
503	Constrained Environments grant (REFRESCH). The authors also acknowledge Ishi
504	Keenum for lab work and thank the anonymous reviewers for their helpful feedback.
505	
506	References
507	1. Gourinat AC, O'Connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M. Detection

factors, and the components leading to inactivation can vary from sample to sample. The

508 of zika virus in urine. Emerg Infect Dis. 2015;21(1):84-6.

509	2.	Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, et al.
510		Detection and sequencing of Zika virus from amniotic fluid of fetuses with
511		microcephaly in Brazil: a case study. Lancet Infect Dis. 2016;16(6):653-60.
512	3.	Stagno S, Pass RF, Cloud G, Britt WJ, Henderson RE, Walton D, et al. Primary
513		Cytomegalovirus Infection in Pregnancy: Incidence, Transmission to Fetus, and
514		Clinical Outcome. J Am Med Assoc. 1986;256:1904-8.
515	4.	Monini P, Rotola A, Di Luca D, De Lellis L, Chiari E, Corallini A, et al. DNA
516		rearrangements impairing BK virus productive infection in urinary tract tumors.
517		Virology. 1995;214(1):273–9.
518	5.	Urbano P, Oliveira R, Romano C, Pannuti C, Domingues da Silva Fink MC.
519		Occurrence, Genotypic Characterization, and Patterns of Shedding of Human
520		Polyomavirus JCPyV and BKPyV in Urine Samples of Healthy Individuals in Sao
521		Paulo, Brazil. J Med Virol. 2016;88:153-8.
522	6.	Antonsson A, Green AC, Mallitt KA, O'Rourke PK, Pawlita M, Waterboer T, et al.
523		Prevalence and stability of antibodies to the BK and JC polyomaviruses: A long-
524		term longitudinal study of Australians. J Gen Virol. 2010;91(7):1849-53.
525	7.	Dorries K. Molecular biology and pathogenesis of human polyomavirus infections.
526		Dev Biol Stand. 1998;(94):71-9.
527	8.	Kean JM, Rao S, Wang M, Garcea RL. Seroepidemiology of Human
528		Polyomaviruses. PLoS Pathog [Internet]. 2009;5(3):e1000363. Available from:
529		http://dx.plos.org/10.1371/journal.ppat.1000363
530	9.	Bofill-Mas S, Pina S, Girones R. Documenting the epidemiologic patterns of

531 polyomaviruses in human populations by studying their presence in urban sewage.

532		Appl Environ Microbiol. 2000;66(1):238–45.
533	10.	Ling PD, Lednicky JA, Keitel WA, Poston DG, White ZS, Peng R, et al. The
534		dynamics of herpesvirus and polyomavirus reactivation and shedding in healthy
535		adults: a 14-month longitudinal study. J Infect Dis [Internet]. 2003;187(10):1571-
536		80. Available from: http://jid.oxfordjournals.org/content/187/10/1571.full.pdf
537	11.	Dolei A, Pietropaolo V, Gomes E, Di Taranto C, Ziccheddu M, Spanu MA, et al.
538		Polyomavirus persistence in lymphocytes: Prevalence in lymphocytes from blood
539		donors and healthy personnel of a blood transfusion centre. J Gen Virol.
540		2000;81(8):1967–73.
541	12.	Dorries K, Vogel E, Gunther S, Czub S. Infection of Human Polyomaviruses JC
542		and BK in Peripheral Blood Leuokcytes from Immunocompetent Individuals.
543		Virology. 1994;(198):59–70.
544	13.	Knowles WA. Discovery and Epidemiology of the Human Polyomaviruses BK
545		Virus (BKV) and JC Virus (JCV). In: Ahsan N, editor. Polyomaviruses and
546		Human Diseases [Internet]. New York, NY: Springer New York; 2006. p. 19-45.
547		Available from: https://doi.org/10.1007/0-387-32957-9_2
548	14.	Bialasiewicz S, Whiley DM, Lambert SB, Nissen MD, Sloots TP. Detection of BK,
549		JC, WU, or KI polyomaviruses in faecal, urine, blood, cerebrospinal fluid and
550		respiratory samples. J Clin Virol. 2009;45(3):249-54.
551	15.	Reploeg MD, Storch G a, Clifford DB. Bk virus: a clinical review. Clin Infect Dis.
552		2001;33(2):191–202.
553	16.	Bressollette-Bodin C, Coste-Burel M, Hourmant M, Sebille V, Andre-Garnier E,
554		Imbert-Marcille BM. A prospective longitudinal study of BK virus infection in 104

AEM

Applied and Environmental Microbiology

555		renal transplant recipients. Am J Transplant. 2005;5(8):1926-33.
556	17.	Hirsch HH, Knowles W, Dickenmann M, Passweg J, Klimkait T, Mihatsch M, et
557		al. Prospective Study of Polyomavirus type BK replication and nephropathy in
558		renal-transplant recipients. N Engl J Med. 2002;347(7):488-96.
559	18.	Randhawa P, Ho A, Shapiro R, Vats A, Swalsky P, Finkelstein S, et al. Correlates
560		of Quantitative Measurement of BK Polyomavirus (BKV) DNA with Clinical
561		Course of BKV Infection in Renal Transplant Patients. J Clin Microbiol.
562		2004;42(3):1176–80.
563	19.	Goudsmit J, Wertheim-van Dillen P, van Strien a, van der Noordaa J. The role of
564		BK virus in acute respiratory tract disease and the presence of BKV DNA in
565		tonsils. J Med Virol [Internet]. 1982;10(2):91-9. Available from:
566		http://www.ncbi.nlm.nih.gov/pubmed/6292361
567	20.	Monaco MC, Jensen PN, Hou J, Durham LC, Major EO. Detection of JC virus
568		DNA in human tonsil tissue: evidence for site of initial viral infection. J Virol
569		[Internet]. 1998;72(12):9918–23. Available from:
570		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=110504&tool=pmcentr
571		ez&rendertype=abstract
572	21.	Bofill-Mas S, Formiga-cruz M, Clemente-Casares P, Calafell F, Girones R.
573		Potential Transmission of Human Polyomaviruses through the Gastrointestinal
574		Tract after Exposure to Virions or Viral DNA. J Virol [Internet].
575		2001;75(21):10290–9. Available from:
576		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=110504&tool=pmcentr
577		ez&rendertype=abstract%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi

578		?artid=1588750&tool=pmcentrez&rendertype=abstract%5Cnhttp://doi.wiley.com/
579		10.1111/j.1600-6143.2005.01
580	22.	Rachmadi AT, Torrey JR, Kitajima M. Human polyomavirus: Advantages and
581		limitations as a human-specific viral marker in aquatic environments. Water Res
582		[Internet]. Elsevier Ltd; 2016;105:456-69. Available from:
583		http://linkinghub.elsevier.com/retrieve/pii/S004313541630687X
584	23.	Bofill-Mas S. Polyomavirus [Internet]. Global Water Pathogen Project. UNESCO;
585		2017. Available from: http://www.waterpathogens.org
586	24.	Larsen T, Gujer W. Waste design and source control lead to flexibility in
587		wastewater management. Water Sci Technol [Internet]. IWA Publishing; 2001
588		Mar 1 [cited 2014 Dec 1];43:309–18. Available from:
589		http://www.iwaponline.com/wst/04305/wst043050309.htm
590	25.	Maurer M, Pronk W, Larsen T a. Treatment processes for source-separated urine.
591		Water Res [Internet]. 2006 Oct [cited 2014 Aug 25];40(17):3151-66. Available
592		from: http://www.ncbi.nlm.nih.gov/pubmed/16949123
593	26.	Meinzinger F, Oldenburg M. Characteristics of source-separated household
594		wastewater flows: a statistical assessment. IWA Publ [Internet]. IWA Publishing;
595		2009 May 1 [cited 2014 Dec 1]; Available from:
596		http://www.iwaponline.com/wst/05909/wst059091785.htm
597	27.	Wilsenach J a., van Loosdrecht MC. Integration of Processes to Treat Wastewater
598		and Source-Separated Urine. J Environ Eng. 2006;132(3):331-41.
599	28.	Jimenez J, Bott C, Love N, Bratby J. Source Separation of Urine as an Alternative
600		Solution to Nutrient Management in Biological Nutrient Removal Treatment

601		Plants. Water Environ Res [Internet]. 2015;87(12):2120-9. Available from:
602		http://openurl.ingenta.com/content/xref?genre=article&issn=1061-
603		4303&volume=87&issue=12&spage=2120
604	29.	USEPA. Water Sense: Indoor Water Use in the U.S. [Internet]. Washington D.C.;
605		Available from: http://www3.epa.gov/watersense/pubs/indoor.html
606	30.	WHO. Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Excreta
607		Greywater Use Agric. 2006;4.
608	31.	Larsen TA, Udert KM, Lienert J, editors. Source Separation and Decentralized
609		Wastewater Treatment. London, UK: IWA Publishing; 2013.
610	32.	Ronteltap M, Maurer M, Gujer W. Struvite precipitation thermodynamics in
611		source-separated urine. Water Res [Internet]. 2007 Mar [cited 2014 Oct
612		18];41(5):977-84. Available from:
613		http://www.ncbi.nlm.nih.gov/pubmed/17258264
614	33.	Udert KM, Larsen T a., Gujer W. Fate of major compounds in source-separated
615		urine. Water Sci Technol. 2006;54(11-12):413-20.
616	34.	Höglund C, Vinneras B, Stenström TA, Jönsson H. Variation of chemical and
617		microbial parameters in collection and storage tanks for source separated human
618		urine. J Environ Sci Heal [Internet]. 2000;35(8):1463-75. Available from:
619		http://www.scopus.com/inward/record.url?eid=2-s2.0-
620		0034284345&partnerID=40&md5=3cfc30c9f204b2c07cf91bc2435516df
621	35.	Chandran A, Pradhan SK, Heinonen-Tanski H. Survival of enteric bacteria and
622		coliphage MS2 in pure human urine. J Appl Microbiol [Internet]. 2009 Nov [cited
623		2014 Oct 30];107(5):1651-7. Available from:

624		http://www.ncbi.nlm.nih.gov/pubmed/19457041
625	36.	Warren KS. Ammonia Toxicity and pH. Nature. 1962;47-9.
626	37.	Schonning C, Stenstrom T. Guidelines for the safe use of urine and faeces in
627		ecological sanitation systems. Stock Environ Institute, EcoSanRes Program. 2004;
628	38.	Höglund C, Ashbolt N, Stenström TA, Svensson L. Viral persistence in source-
629		separated human urine. Adv Environ Res. 2002;6(3):265-75.
630	39.	Decrey L, Udert KM, Tilley E, Pecson BM, Kohn T. Fate of the pathogen
631		indicators phage Φ X174 and Ascaris suum eggs during the production of struvite
632		fertilizer from source-separated urine. Water Res [Internet]. 2011 Oct 15 [cited
633		2014 Oct 1];45(16):4960–72. Available from:
634		http://www.ncbi.nlm.nih.gov/pubmed/21807394
635	40.	Hoglund C, Stenström TA, Jonsson H, Sundin A. Evaluation of faecal
636		contamination and microbial die-off in urine separating sewage systems. Water Sci
637		Technol. 1998;38(6):17–25.
638	41.	Höglund C, Stenström TA, Ashbolt N. Microbial risk assessment of source-
639		separated urine used in agriculture. Waste Manag Res [Internet]. 2002 Apr 1 [cited
640		2014 Oct 30];20(2):150–61. Available from:
641		http://wmr.sagepub.com/cgi/doi/10.1177/0734242X0202000207
642	42.	Vinnerås B, Nordin A, Niwagaba C, Nyberg K. Inactivation of bacteria and viruses
643		in human urine depending on temperature and dilution rate. Water Res [Internet].
644		2008 Sep [cited 2014 Oct 18];42(15):4067-74. Available from:
645		http://www.ncbi.nlm.nih.gov/pubmed/18718625

646 43. Wohlsager S, Clemens J, Nguyet PT, Rechenburg A, Arnold U. Urine - A

648		2010;840–7.
649	44.	Decrey L, Kazama S, Udert KM, Kohn T. Ammonia as an In Situ Sanitizer:
650		Inactivation Kinetics and Mechanisms of the ssRNA Virus MS2 by NH3. Environ
651		Sci Technol [Internet]. 2014;49(2):1060-7. Available from:
652		http://dx.doi.org/10.1021/es5044529
653	45.	Decrey L, Kazama S, Kohn T. Ammonia as an <i>in-situ</i> sanitizer: influence of virus
654		genome type on inactivation. Appl Environ Microbiol [Internet].
655		2016;41(June):AEM.01106-16. Available from:
656		http://aem.asm.org/lookup/doi/10.1128/AEM.01106-16
657	46.	APHA; AWWA; WEF. Standard Methods for the Examination of Water and
658		Wastewater. 21st ed. Eaton A, Clesceri L, Rice E, Greenberg A, editors. 2005.
659	47.	Krumbholz A, Bininda-Emonds ORP, Wutzler P, Zell R. Phylogenetics, evolution,
660		and medical importance of polyomaviruses. Infect Genet Evol. 2009;9(5):784–99.
661	48.	Agency USEP. Environmental Protection Agency Method 1601: Male-Specific
662		(f+) and Somatic Coliphage in Water by Two-Step. Washington D.C.; 2001.
663	49.	Broekema NM, Imperiale MJ. Efficient propagation of archetype BK and JC
664		polyomaviruses. Virology. 2012;422(2):235-41.
665	50.	Jiang M, Abend JR, Tsai B, Imperiale MJ. Early Events during BK Virus Entry
666		and Disassembly. J Virol [Internet]. 2009;83(3):1350-8. Available from:
667		http://jvi.asm.org/cgi/doi/10.1128/JVI.02169-08
668	51.	Harlow E, Whyte P, Franza, Jr. BR, Schley C. Association of Adenovirus Early-

Valuable Fertilizer with Low Risk after Storage in the Tropics. Water Environ Res.

669 Region 1A Proteins with Cellular Peptides. Mol Cell Biol. 1986;6(5):1579–89.

Applied and Environmental

Microbiology

52.	Bennett SM, Zhao L, Bosard C, Imperiale MJ. Role of a nuclear localization signal
	on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry. Virology
	[Internet]. Elsevier; 2015;474:110-6. Available from:
	http://dx.doi.org/10.1016/j.virol.2014.10.013
53.	Pecson BM, Ackermann M, Kohn T. Framework for using quantitative PCR as a
	nonculture based method to estimate virus infectivity. Environ Sci Technol.
	2011;45(6):2257–63.
54.	Broekema NM, Abend JR, Bennett SM, Butel JS, Vanchiere JA, Imperiale MJ. A
	system for the analysis of BKV non-coding control regions: Application to clinical
	isolates from an HIV/AIDS patient. Virology [Internet]. Elsevier Inc.;
	2010;407(2):368-73. Available from: http://dx.doi.org/10.1016/j.virol.2010.08.032
55.	Rose C, Parker A, Jefferson B, Cartmell E. The characterization of feces and urine:
	A review of the literature to inform advanced treatment technology. Crit Rev
	Environ Sci Technol. 2015;45(17):1827-79.
56.	Lahr RH, Goetsch HE, Haig SJ, Noe-Hays A, Love NG, Aga DS, et al. Urine
	Bacterial Community Convergence through Fertilizer Production: Storage,
	Pasteurization, and Struvite Precipitation. Environ Sci Technol [Internet].
	2016;50:11619–26. Available from:
	http://pubs.acs.org/doi/abs/10.1021/acs.est.6b02094
57.	Decrey L, Kohn T. Virus inactivation in stored human urine, sludge and animal
	manure under typical conditions of storage or mesophilic anaerobic digestion.

- Environ Sci Water Res Technol [Internet]. Royal Society of Chemistry;
- 2017;3(3):492-501. Available from: http://xlink.rsc.org/?DOI=C6EW00311G

AEM

Applied and Environmental Microbiology

693	58.	Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors
694		on bacteriophagesreview. Folia Microbiol (Praha) [Internet]. 2011;56(3):191-
695		200. Available from:
696		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3131515&tool=pmcen
697		trez&rendertype=abstract
698	59.	Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and
699		Recovery of Enveloped Viruses in Untreated Municipal Wastewater. Environ Sci
700		Technol. 2016;50(10):5077-85.
701	60.	Ward RL, Knowlton DR, Winston PE. Mechanism of Inactivation of Enteric
702		Viruses in Fresh-Water. Appl Environ Microbiol. 1986;52(3):450–9.
703	61.	Roy D, Wong PKY, Engelbrecht RS, Chian ESK. Mechanism of enteroviral
704		inactivation by ozone. Appl Environ Microbiol. 1981;41(3):718-23.
705	62.	Kim CK, Gentile DM, Sproul OJ. Mechanism of ozone inactivation of
706		bacteriophage f2. Appl Environ Microbiol. 1980;39(1):210-8.
707	63.	Brien R, Newman J. Structural and compositional changes associated with chlorine
708		inactivation of poliovirus. Appl Environ Microbiol [Internet]. 1979;38(6):1034-9.
709		Available from: http://www-ncbi-nlm-nih-
710		gov.proxy.lib.umich.edu/pmc/articles/PMC291240/pdf/aem00243-0011.pdf
711	64.	Rayment I, Baker TS, Caspar DLD, Murakami W. Polyoma virus capsid structure
712		at 22.5 Å resolution. Nature. 1982;(295):110-115.
713	65.	Walter G, Deppert W. Intermolecular Disulfide Bonds: An Important Structural
714		Feature of the Polyoma Virus Capsid. Cold Spring Harb Symp Quant Biol.
715		1975;39(Part 1):255–7.

Applied and Environmental Microbiology

716	66.	Nasser AM, Glozman R, Nitzan Y. Contribution of microbial activity to virus
717		reduction in saturated soil. Water Res. 2002;36(10):2589-95.
718	67.	Ming Yi Deng, Cliver DO. Inactivation of poliovirus type 1 in mixed human and
719		swine wastes and by bacteria from swine manure. Appl Environ Microbiol.
720		1992;58(6):2016–21.
721	68.	Ivanov D, Tsodikov O V, Kasanov J, Ellenberger T, Wagner G, Collins T.
722		Domain-swapped dimerization of the HIV-1 capsid C-terminal domain. Proc Natl
723		Acad Sci U S A [Internet]. 2007;104(11):4353-8. Available from:
724		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1838606&tool=pmcen
725		trez&rendertype=abstract
726	69.	Wynne SA, Crowther RA, Leslie AGW. The Crystal Structure of the Human
727		Hepatitis B Virus Capsid. 1999;3:771–80.
728	70.	Blanchard E, Brand D, Trassard S, Goudeau a, Roingeard P. Hepatitis C virus-like
729		particle morphogenesis. J Virol [Internet]. 2002;76(8):4073-9. Available from:
730		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt
731		=Citation&list_uids=11907246%5Cnpapers2://publication/uuid/5ADF9F15-
732		DA1A-4B74-9BDF-888444EA296F
733		
734		

				Total	Total	Total Ammonia
Urine	Collection		No. of	Phosphorus	Nitrogen	Nitrogen
Label	Location	Event Type	Donors	(mg P/L)	(mg N/L)	(mg N/L)
А	Vermont	Rural Festival	300	410±1	4700±170	5000±260
В	Massachusetts	Male rest stop	>100	240±24	4400±170	4300±210
C	Vermont	Combination of parade and festival	>300	400±9	7100±430	5700±60
D	Michigan	University	200	850±210	7400±270	5600±200
Е	Michigan	Outdoor Theater	80	490±4	6300±230	5600±250
F	Michigan	Outdoor Theater	60	320 ±1	4600±230	4800±640
G	Michigan	University	10	700±10	9700±1000	6300±110
Н	Vermont	Urine Community Collection	>100	450±1	6400±400	5800±320
Ι	Vermont	Urine Community Collection	>100	460±10	4900±600	6300±100

735 Table 1. Characterization of urines used in experiments. Standard deviations are reported for >2 measurements.

736 737

AEM

Applied and Environmental Microbiology

738	Table 2. First order rate constants and T ₉₀ values for BKPyV and bacteriophages T3, Qβ, and MS2 in hydrolyzed urines. 95% confidence intervals are reported for the
739	linear regression analyses.

-	BKPyV			Т3			Qβ		MS2	
	dsDNA –			dsDNA			ssRNA –		ssRNA	
-	disulfide b	onds	[disulfide	bonds		
Urine (hydrolysis time)	k (hour ⁻¹)	T ₉₀ (hours)		k (h	iour ⁻¹)	T ₉₀ (hours)	k (hour ⁻¹)	T ₉₀ (hours)	k (hour ⁻¹)	T ₉₀ (hours)
D (< 1 week)			1.7	10 ⁻³ ±3.1	10 ⁻ 4	590				
E (4 months)			2.2	10 ⁻³ ±9.5	10 ⁻ 4	450				
E (8 months)	0.67±0.97*	1.5								
E (9 months)	0.28 +0.51*	2.6					0.16±0.33	6.3	0.11±0.011	9.1
E (15 months)	0.28 ±0.51	5.0								
F (4 months)			9.0	$10^{-4} \pm 5.0$	10-4	1100				
F (8 months)	0.40 ±3.1*	2.5								
F (11 months)	0.90±0.41	1.1								

G (11 months)	4.7 10^{-3} ±7.6 10^{-3} *	210
H (3 months)		
H (9 months)	0.17±0.060	5.9
I (2 months)	0.45±0.048,	2.2
I (2 months), pasteurized	0.26±0.045	3.8
I (2 months), filtered	0.31±0.037	3.2
I (10 months) I (10 months), pasteurized I (10 months), filtered	0.16 ±0.037 0.078±0.16* 0.079±0.21*	6.3 13 13
I (11 months)	0.094±0.030	11
I (11 months), pasteurized	0.045±0.027	22
I (11 months), filtered	0.036±0.009	28

2 *Linear regression was not statistically different from zero.

D
Ň
loa
dec
d fro
Ħ
http
0://s
aem
າ.ລູ
m.
org
or
ں ا
Ň
μ
201
80
ž
Jniv
'ers
Ę
of N
Nict
liga
iigan L
nigan Libra
nigan Library
nigan Library

0.11±0.019

9.1

7.7

 0.13 ± 0.033

Applied and Environmental

AEM

Applied and Environmental

Microbiology

Microbiology

746 months, and pasteurized after hydrolyzed for 10 months) and urines B and C (hydrolyzed 1 month and after 10

747 months, respectively, and pasteurized after the same amount of hydrolysis time). Fresh urine was only available

748 for urine A due to the rapid hydrolysis in urines B and C.

Figure 2. Infectivity of BK polyomavirus in hydrolyzed urine samples (E - I) measured over time. Initial
infective virus concentrations in urine were 5 10⁵-1 10⁶ IU (infectious units) mL⁻¹. Experiments were
conducted until the detection limit was reached (3 × 10² IU mL⁻¹). Left panel A shows variability in kinetics
across different urine aged between 8-11 months. Right panel B shows kinetic changes with hydrolysis time.

757 Figure 3. Western blot of BKPyV proteins separated under non-reducing (left) and reducing (right) conditions.

758 BKPyV proteins were analyzed after addition to buffer (neat), immediately after addition to hydrolyzed urine (0

759 hour) and after incubating for one day in hydrolyzed urine (24 hour). The reduced samples were diluted to 5%

760 of the experimental concentration to allow visualization on the same gel as the non-reduced samples. The

761 BKPyV VP1 monomer size is 42 kD.

762

Applied and Environmental Microbiology

AEM

763

765 Figure 4. Infectivity over time of polyomavirus BKPyV spiked into urine I samples that had been hydrolyzed for

766 11 months, pasteurized, and filtered. Initial BKPyV concentrations were 5×10⁵-1×10⁶ IU mL⁻¹. Experiments

767 were conducted until the detection limit was reached $(3 \times 10^2 \text{ IU mL}^{-1})$.

768