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Abstract

The uncertainty of phenomenological parameters governing fourth- and sixth-order Landau energy functions and elec-
trostrictive coupling of ferroelectric single crystals is analyzed for lead titanate. Bayesian statistics are used to quantify
model parameter uncertainty associated with approximating lattice strain and full-field electron density from density
functional theory calculations as a homogenized, electromechanical continuum. The continuum model parameter uncer-
tainty is propagated through the model to obtain prediction and credible intervals when estimating the non-convex
energy surface and electrostrictive stresses for lead titanate. The results illustrate the important differences in fourth-
and sixth-order Landau energy functions that influence estimations of the crystal phase. In addition, Bayesian statistics
provides important insights into varying degrees of uncertainty along different thermodynamic paths associated with
polarization rotation versus polarization changes along its spontaneous direction. Methods to reduce this uncertainty via
decoupling electromechanical relations are demonstrated. The results provide critical insight into the development of
self-consistent models that utilize density functional theory for large-scale continuum model simulations. Furthermore,
the results are complementary to Part 2, in which we develop and apply new concepts in model parameter global sensi-
tivity to accelerate uncertainty quantification of correlated parameters using higher order energy functions for a broad
range of ferroic materials.
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Introduction undoubtedly results in loss of information. This uncer-
tainty can drastically vary depending upon the quan-
tum degrees of freedom that are approximated at the
atomistic or continuum scale. Here we explore these
effects by investigating methods to approximate inter-
nal electronic degrees of freedom, their corresponding
atomic evolution, and continuum electromechanics
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under three-dimensional (3D) deformation in a ferro-
electric single crystal.

Whereas density functional theory (DFT) can accu-
rately quantify many structure—property relations in
solids (Gonze et al., 2009; Payne et al., 1992), develop-
ment of large-scale computations that can model polari-
zation evolution and electrostriction while accurately
accounting for the underlying atomic and electronic
structural evolution remains challenging. Continuum
approximations of electronic behavior during complex
lattice distortions can lead to parameter uncertainty as
the polarization evolves along different thermodynamic
paths from applied electric fields and stress (Frederiksen
et al., 2004; Hu et al., 2014; Oates, 2014; Smith, 2013).

The analysis presented here employs Bayesian infer-
ence, which provides a method to estimate unknown
phenomenological parameters with uncertainty instead
of optimization of a fixed set of material parameters.
In the present case, this uncertainty is associated with
the homogenization of DFT energy and stress calcula-
tions over a range of polarization values that define the
3D energy landscape and electrostrictive coupling. The
continuum approximation results in a reduction of the
internal degrees of freedom of atomic position and
changes in the electron density surrounding the atoms
in a unit cell. For example, lead titanate (PbTiO3) con-
tains five atoms in the unit cell. This results in
5X 3 = 15 degrees of freedom for the positions of the
atomic nuclei in each cell. As these atoms move, the
electron density surrounding each atom also evolves.
The combined effect of the positive charge of the
atomic nuclei and distribution of electron charge den-
sity gives a measure of polarization. This can be
directly determined with DFT calculations using the
Berry phase approach (Resta, 1994). The consequence
of using polarization as the order parameter to predict
changes in stress and energy during changes in atomic
configurations is evaluated for a range of multiaxial
strain states.

The phenomenological parameters implemented in
the ferroelectric continuum model require computing
the energy and stress over a range of polarization values
in 3D polarization space (Su and Landis, 2007). Due to
complexities that preclude the use of the Cauchy—Born
rule to accurately predict atomic displacements in ferro-
electric unit cells, a set of calculations about different
deformation states is computed to determine the equili-
brium atomic positions for different uniaxial and shear
deformation states. These results are used as a guide to
increment atoms about a fixed strain state which leads
to the non-convex energy surface in the polarization
space. The DFT code ABINIT is used to calculate the
low-energy atomic states for different fixed atomic posi-
tions leading to our estimate of the non-convex free
energy surface. All energy calculations used in estimat-
ing the Landau energy are based on a cubic state as the
zero-strain state. The results build upon prior results

which estimated a Landau energy function for polariza-
tion changes along the direction of spontaneous polari-
zation (Oates, 2014).

The following sections first outline the phenomenolo-
gical stored energy equations, followed by the DFT cal-
culations and Bayesian statistical analysis. The governing
continuum equations are presented in section “Stored
energy relations.” Within this section, the DFT calcula-
tions are summarized giving energy and stress calcula-
tions over a range of polarization states. In section
“Bayesian uncertainty analysis,” Bayesian statistics are
used to quantify ferroelectric monodomain parameter
uncertainty followed by propagation of errors associated
with energy and stress. Numerical results of the model
parameters, guided by DFT calculations, are presented
in section “Bayesian inference results.” In section
“Concluding remarks,” we provide concluding remarks.

Stored energy relations

The phenomenological stored energy in the ferroelectric
solid is divided into elastic, polarization, electrostric-
tive, and residual energy terms. Since we approximate
the internal electronic structure with one electronic
coordinate, we assume that a polarization order para-
meter can be used to accurately represent the solid.
In this case, the stored energy per unit volume is
u = u(e, P), where ¢ is the total strain and P is the
polarization. The four stored energy density terms con-
sidered include

(e, P) = up (&) + up(P) + uc(e, P) + up(e) (1)

where u,, is the elastic strain energy, up is the Landau
energy, uc is the electrostrictive energy, and uy is the
residual energy due to differences in energy between the
cubic and tetragonal states. All energy terms are written
per a cubic reference volume. The linear elastic mechan-
ical energy is defined by

11

up(e) = 7( %1 + 5%2 + 3%3)
+ ci(ennen + eness + €11633) (2)

2 2 2
+ 2644(812 + &3 + 813)

where the elastic components ¢;;, ¢12, and cy44 are writ-
ten using Voigt notation (Malvern, 1969).

Following the notation by (Cao and Cross, 1991),
the sixth-order polarization or Landau energy is

up(P) = ay (P} + P2 + P}) + ay (P} + P} + P3)’
+ aip(PIP; + P3P + PiP3)
+agn (P} + P + PS) (3)
+aip[P{(P; + P3) + P4 (P] + P3)
+ P§(P} + P3)] + a1 PIPIPS
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where the phenomenological constants are «;, a1, a2,
aiin, aqrz, and a3
The electrostrictive energy is given by

uc(e,P) = —qn (811P% + enP3 + 8331’%)
—q12 [811 (P% + P%)
+ e (P + P3) + e53(P} + P3)]
—4qaa(e12P1 Py + €13P1P3 + e23P2P3)

4)

where qi1, q12, and  quq the electrostrictive
coefficients.

The DFT analysis described in the following section
focuses on energy, stress, and polarization computa-
tions. The polarization is treated as the model input to
the continuum model, and the continuum model out-
puts of energy and stress are compared to DFT energy
and stress calculations. This requires careful assessment
of atomic motion to prescribe a specified polarization
at fixed strain as discussed in the following section.
Importantly, we hold the unit cell fixed so that the total
strain is defined to be zero in a prescribed cubic state.
This produces a residual energy term that we define in

terms of a residual stress tensor. This residual energy is

are

ug = ot (5)

where 0‘5 is the unknown residual stress required to
constrain the unit cell to the cubic state. This stress ten-
sor will be treated as a random parameter and deter-
mined from DFT computations through the use of
Bayesian statistics.

The effect of electrostriction and residual stress is
evaluated by comparing continuum stress using the
definition

ou

O = — 6

y 8811 ( )

which leads to elastic, electrostrictive, and residual

stresses. For example, consider the general tensor forms

of the elastic and electrostrictive coefficients using c;j/
and g, respectively. The stress tensor is then

Oij = Cijeere — GiskePrPr + fffj (7)

Using the cubic reference state as the zero-strain
state (¢;; = 0), we can quantify the spontaneous strain
in terms of polarization and a residual stress at zero
polarization. To obtain the spontaneous strain, the
total stress is set to zero and the total strain from equa-
tion (7) is

& = SikiQursPrPs — S0y ®)

where s; is the compliance tensor (Malvern, 1969).
Under this relaxed condition of zero stress, the two
strain components include polarization-induced strain

and strain from residual stress at zero polarization.
Using conventional notation (Volker et al., 2011), we
define the spontaneous strain as a function of polariza-
tion. In particular, the spontancous strain is defined at
the minimum total energy at zero stress. We define the
spontaneous polarization state (P, — PS) under these
conditions which gives the spontaneous strain,
& = SyuqursPs Py The remaining term in equation (8)
is defined as the residual strain at zero polarization,
85 = — sijklaf].

In the numerical analysis, we focus on identifying
phenomenological parameters excluding the elastic
coefficients. Since the elasticity has been studied exten-
sively, we neglect quantifying this uncertainty and
instead assume fixed elastic properties from previous
DFT calculations (King-Smith and Vanderbilt, 1994).
As will be discussed in section “Bayesian uncertainty
analysis,” it was determined that the values of elastic
properties are sensitive in obtaining a convex energy
landscape under zero-stress conditions.

DFT calculations

We conducted a set of DFT calculations using ABINIT
to determine energy and stress for different uniform
polarization states such that the continuum-scale
Landau energy and electrostrictive stresses could be
quantified. Prior one-dimensional (1D) results
described by Oates (2014) for lead titanate are com-
bined with energy calculations that estimate the stored
energy for a broader range of polarization states that
can be used to determine equation (3) for two-
dimensional (2D) and 3D problems. Additional calcu-
lations of stress allow us to determine equation (4).
Pseudopotentials developed previously within this code
were used to approximate the electron density. All
DFT simulations used a 10 X 10 X 10 k-point grid on a
five-atom lead titanate unit cell with a cut-off energy of
60 Ha (1633 eV). The local density approximation
(LDA) was also used in all calculations.

Prior DFT results were calculated by first identifying
equilibrium atomic positions in the fully relaxed equili-
brium lattice configuration in the tetragonal state. The
atoms were then incremented in the cubic state with lat-
tice dimensions a X a X a = 57.4 A starting with the
centrosymmetric atomic configuration and linearly
incrementing the atoms through the equilibrium tetra-
gonal state. This yields a double-well potential energy
function.

This double-well potential is estimated using the fol-
lowing methodology. In general, the atomic position
degrees of freedom are described by the vector II{ for
each of the five atoms (a = Pb, Ti, 2X O, and O,) in
the unit cell. The atom labels and the atomic displace-
ments for the titanium atom (as an example) are illu-
strated in Figure 1.
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X

Figure 1. Description of the atoms contained within the lead
titanate unit cell. An example of the atomic displacements (I1")
is shown for the titanium atom.

As described previously (Oates, 2014), the displace-
ments along the x; direction are related to a single
atomic displacement order parameter. The component
of this order parameter, denoted by I3, defines the dis-
placements of each atom along x3 according to

1§ = oll;

1 e ©)
H30” =qvll; + u

I = oIl + p

where the constants «, B, y, v, and w are given in
Oates (2014). This relationship maps a single atomic
displacement II3 along the x5 direction to the positions
of each of the five atoms.

To quantify a stored energy surface for polarization
states not aligned with the spontaneous polarization
direction, atomic displacements under internal atomic
shearing are used to estimate the energy surface for a
broader range of polarization states. Due to crystal
symmetry of lead titanate, this requires incrementing
the polarization by an angle ranging from 0° to 45° for
different polarization magnitudes. We estimate the
motion of the atoms that is expected to occur during
polarization reorientation starting from full alignment
in the x; direction to 45° rotation toward the x, direc-
tion. This allows the identification of all Landau para-
meters in equation (3) except a3.

Continuum parameter identification is done by con-
ducting a series of ab initio molecular dynamic simula-
tions about several fixed unit cell shear deformation
states and simultaneously determining the equilibrium
atomic positions and electron density. Entropic effects
are neglected by computing energy, stress, and polariza-
tion in the limit of 0 K. The minimization method used
in the molecular dynamic simulations is based on the
Broyden—Fletcher—Goldfard—Shanno method contained

within ABINIT 7.0.5 (Gonze et al., 2009). The deforma-
tion gradient component F,3 = dx,/dX3, based on con-
ventional deformation notation (Malvern, 1969), is
incremented from O up to 0.17 while holding all other
deformation gradient components fixed. Once these
equilibrium configurations are determined, the polariza-
tion is determined using the Berry phase approach
(Resta, 1994). This approach is used to relate polariza-
tion to atomic positions to quantify the Landau energy
in the fixed strain state. An example of the differences
in atomic and electronic structures in the undeformed
reference state and shear-deformed state is shown in
Figure 2.

To induce a P, polarization component, we assume
that the five atoms within the unit cell move propor-
tional to their I1§ positions. This is described by

I3 =I5 + xI%; (10)
where T, and TF;“ constitute the nominal atomic posi-
tions for spontaneous polarization aligned in the P;
direction. The constant y scales the II5 displacements
by a fraction of the respective Il displacements. Note
that j =1, ..., N includes 13 points of DFT computa-
tions along the P; space with P, = 0. We conduct DFT
simulations along five thermodynamic paths in shear.

The linear approximation of the atom positions with
respect to the different F,; values is shown in Figure
3(a) for the titanium atom position in the x, — x3 plane.
Figure 3(b) illustrates how the polarization changes as
the titanium atom displaces in shear. All atoms
have similar characteristics which we approximate to
follow the relation in equation (10) when estimating the
stored energy and stress during polarization rotation,
P3 — Pz.

The changes in stored energy as a function of atomic
displacements are computed using DFT calculations
while holding the unit cell fixed at a reference cubic
state using the same unit cell geometry as prior uniaxial
results (Oates, 2014). This simplifies combining prior
energy calculations with the new calculations given
here; however, it introduces uncertainty between the
position of the atoms and the resulting polarization
when using the cubic state as the reference configura-
tion as shown in Figure 3(b). The thermodynamic path
during shear deformation may follow a more complex
atomic displacement trajectory; however, we show rea-
sonable estimates of continuum-scale energy and stress
along these paths. The error propagation afforded by
Bayesian statistics highlights varying degrees of uncer-
tainty as feedback for model refinement.

Using the relationship defined by equation (10), the
atoms were linearly incremented from different atomic
positions starting near the centrosymmetric state
through the equilibrium tetragonal state. The five paths
defining polarization rotation (P; — P;) are shown in
Figure 4. For these five starting points where P, = 0,
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(a)

(b)

Figure 2. Example of the electron density solutions for (a) the reference undeformed cubic structure and (b) shear-deformed state
where the unit cell has been sheared such that the deformation gradient component Fy3 is non-zero.
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Figure 3. (a) Atomic displacement showing the relationship between the position of the titanium atom in the x; and x3 directions
as the deformation component F,3 varies between 0 and 0.17. (b) Relationship between the atomic position (titanium atom) and
polarization in the x3 direction as the deformation gradient component F,3 varies between 0 and 0.17.

the atoms are moved along the directions estimated
from the shear deformation (F,3) simulations to gener-
ate positive P, values while P5 is reduced. Again note
that all the results in Figure 4 are obtained under a
constrained cubic state. Berry phase polarization was
calculated along with the total energy which can be
seen in Figure 4(a). The stress tensor was also calcu-
lated and the shear stress component o3 is shown as
a function of polarization in Figure 4(b). The results
illustrate how displacements of the atoms lead to
polarization rotation, giving rise to changes in energy
and shear stress over a polarization rotation of
approximately 45°. We will show in the following sec-
tion how Bayesian statistics can be used to estimate
the continuum electrostrictive and Landau para-
meters and the uncertainty associated with calibrating
the ferroelectric continuum model in light of these
DFT calculations.

Bayesian uncertainty analysis

Bayesian statistics assert that the model parameters
contain uncertainty when calibrated to experimental
measurements or higher fidelity models. Here, the DFT
calculations are considered the higher fidelity results
and the homogenized continuum parameters are cali-
brated to these results based on the parameters outlined
in section “Stored energy relations.” To accommodate
uncertainty in Bayesian inference, parameters are taken
to be random variables having associated probability
density functions (PDFs) or distributions. Details
regarding this approach are provided in Chapter 8 of
Smith (2013). The continuum model calibration to
DFT simulations focuses on parameter uncertainty of a
monodomain structure. The Landau parameters con-
tained within the stored energy density (equation (3))
and the electrostrictive parameters contained within the
electromechanical energy density in equation (4) are
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Figure 4. (a) Total energy and (b) shear stress (0733) as a function of P, and P;.

quantified first. These parameters are determined from
the DFT energy, stress, and polarization calculations
summarized in section “Stored energy relations.”
Through this analysis, we discuss how the identification
of Landau and electrostrictive parameters can be
decoupled and inferred separately.

The sets of phenomenological constants identified
from the monodomain Bayesian statistics are denoted
by 6p and 6, which correspond to parameters for the
Landau energy density and electrostrictive stresses,
respectively. These parameters are

0p = a1, 011, a1, 0111, @112

(11)

_ R R R R
0y = [6111,Q12,Q44,011,0'22,0'33’0'23]

The parameters contained in each set can be inferred
separately due to the independence between the strain
and polarization in the Landau and electrostictive
energy densities. In the case of 6p, we compare the total
DFT energy to the continuum Landau energy density.
The electrostrictive and residual energies are zero in this
case since the strain is set to zero in the reference cubic
state. The parameters within 6,, are determined by com-
paring DFT stress to continuum-scale stresses. Also
note that the stress components in 6, represent residual
stress due to the reference configuration chosen for the
DFT simulations. Since the polarization is constrained
to move from the P; to P, direction, we take advantage
of symmetry where of, = 0%, and o, = o = 0. This
was confirmed through DFT simulations and also veri-
fied using Bayesian statistics by allowing continuum
estimates of of, and o%, to be independent. We leave
o%, in the calculations although its mean estimate is
found to be approximately zero. Despite a zero-mean
residual shear stress, the uncertainty in its value can
contribute to uncertainty in the total stress which will
be indicated through propagation of errors. We can
decouple the analysis of normal and shear stresses,
thereby allowing us to analyze the parameter sets

61)',,; = l:qlla q12, o’f]aa'g2>0—§3]a 6()’; = [q44a 0—§3]

separately. The analysis is performed in both ways to
highlight how the uncertainty propagates through all
the model parameters.

A statistical model is introduced which incorporates
the physical model with random errors associated with
aleatoric uncertainty between DFT calculations of
stress and energy and the corresponding continuum
approximation. The statistical model is taken to be

(12)

MPTT(s) = M(s;60) + &, (13)

where DFT calculations are denoted by MPF7(s) and &
are the errors induced by the continuum model M(s; 6).
All errors are assumed to be independent and identi-
cally distributed (iid). The DFT (M?fT) and continuum
(M (s; 6)) models may include measures of monodomain
energy and electrostrictive stress. Each model will be
specified and compared to continuum estimates in the
following sections.
Bayesian model calibration utilizes Bayes’ equation

s=1,...,n

7T(0k |MDFT) _ g(M|0k)7TO(9k) (14)

J UM |6;)70(61)d6;

e
to infer the probability densities of the continuum para-
meters based on DFT calculations. In equation (14),
the continuum model output denoted by M describes
the monodomain material characteristics, while 6,
denotes the model parameters in equation (11). The
posterior density, 7(0;|MPT), quantifies the probabil-
ity of observing the parameter values 0 given the DFT
energy or stress calculations which is denoted by MPFT,
The prior density is denoted by 7(6;), which assumes
previous knowledge about the model parameters before
comparing to the DFT calculations. We assume flat
priors for all parameters unless otherwise noted. These
priors are characterized as having a constant value on a
parameter space that satisfies positive definite
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thermodynamic criteria. The prior densities are updated
using a likelihood ¢(M|6y), which compares the model
outputs given by the continuum model and the DFT
model. The denominator in Bayes’ equation normalizes
the posterior density to have an area of unity.

The likelihood function used here assumes that
errors in the DFT energy and stress calculations are iid
and normally distributed with zero mean and variance
a2, &~N(0,07). The likelihood function is then

o~ [T (o))
UM|0y) = e D (15)

which assumes that the DFT energy and stress
calculations are normally distributed as MPM7(s)~
N(M(s;0¢),07). In this equation, we have explicitly
included the number of model outputs evaluated over
s =1, ...,N. The variance o} in the DFT calculations
is unknown and is inferred during the calibration of the
continuum model parameters 6;. We presume that this
variance may be different for the DFT energy and
stress calculations.

There are five unknown parameters in 6p and seven
parameters in 6, that are all numerically inferred
through the Bayesian calibration. Whereas the para-
meter sets are reasonably small, Gauss quadrature
techniques are not ideal due to the order of integration
in the denominator contained within equation (14) and
also due to the lack of a priori knowledge of the limits
of integration. These computational issues are avoided
by implementing sampling-based Metropolis algo-
rithms, the stationary distribution of which is the pos-
terior density. In particular, the delayed rejection
adaptive Metropolis (DRAM) algorithm developed by
Haario et al. (2001, 2006) is implemented using the
code available on the website (Laine, 2013).

Bayesian inference results

Here we summarize the results from the Bayesian sta-
tistical analysis of the Landau energy and monodomain

=340 14 875 ta
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Figure 5. Statistical sampling results for the Landau energy
model parameters in the continuum model using DFT energy
calculations. | X 10° iterations were used in the simulations.

stresses. We highlight parameter uncertainty in both
Landau energy and electrostrictive parameters and how
this uncertainty propagates through the continuum
model when predicting continuum-scale energy and
stress as a function of polarization.

Model calibration: monodomain energy

The continuum model calibration is conducted by sam-
pling over the monodomain DFT energy and stress cal-
culations presented in section “Stored energy
relations.” The number of model iterations was 1 X 10
for all analyses. A summary of the mean values and
standard deviations for the Landau parameters is given
in Table 1. Both sixth- and fourth-order models—
aqp = aj;p = 0 in equation (3)—are evaluated for
comparisons of the energy landscapes given in the sub-
sequent discussion in section “Bayesian inference
results.” The results of the energy calibration illustrate
important differences in the amount of relative

Table I. Landau energy parameters determined using Bayesian statistics implemented via DRAM.

Symbol Mean value (6th order) Standard deviation Units

a —389.4 10.49 MV m/C
o) 761.3 30.01 MV m®/C3
an 414.1 241.6 MV mé/C3
o 61.46 19.98 MV m?®/C®
o —740.8 499.4 MV m®/C®
Symbol Mean value (4th order) Standard deviation Units

a —414.1 5.925 MV m/C
o 846.4 6.904 MV m®/C3
an —80.73 57.22 MV m?/C?

DRAM: delayed rejection adaptive Metropolis.
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Figure 7. Pairwise correlation among the Landau energy
parameters. Stronger correlation is observed between some of
the lower and higher order parameters.

uncertainty for each parameter by comparisons of
mean values and their standard deviations. For exam-
ple, the second- and fourth-order Landau parameters
a; and «a;; have lower relative uncertainty in compari-
son to aj, and the sixth-order terms.

Statistical results based on the Landau energy den-
sity in Figures 5 and 6 show the parameter samples
generated using the DRAM algorithm and the resulting
posterior densities, respectively. The parameters
sampled for 1 X 10° iterations in Figure 5 illustrate a
“burned-in” chain among all the Landau model para-
meters considered. A burned-in chain is defined by a

chain that has been sampled sufficiently such that it
has converged to the posterior density. The posterior
probabilities for the Landau energy density parameters
are determined from these chains. All the posterior
probabilities are approximately normal distributions as
shown in Figure 6. Correlation between certain para-
meters is also quantified as shown in Figure 7. Stronger
correlation is seen among (ay,aq1), (a1, aq11), and
(a12,a112). The simplest example of parameter correla-
tion is the inverse relation between «; and «y; as these
parameters govern the polarization at minimum energy
which is Py = y/—a1/2a4;, where electrostriction and
the sixth-order terms are neglected. A similar compet-
ing mechanism for Py occurs between the higher order
aqpp term and «;; as shown by their correlation in
Figure 7. Finally, the a1, and a1, parameters are asso-
ciated with polarization rotation, which is supported
by their correlation.

We also quantify the uncertainty in the model out-
put by propagating the errors through the Landau
energy function based on the combination of the pos-
terior densities in Figure 6 and the inferred variance o7
from equation (15). This provides measures of the mean
Landau energy as well as credible and prediction inter-
vals relative to the DFT energy; details on these inter-
vals in comparison to frequentist-based confidence
intervals are described in Smith (2013). The Landau
energy density using mean parameter values versus the
DFT energy density are shown in Figure 8(a) for the
full sixth-order polynomial energy representation. We
also compare the fourth-order Landau model to the
sixth-order model fit. The comparison of the fourth-
and sixth-order models is illustrated by plotting the
residual error between the continuum energy and the
DFT energy in Figure 8(b). The results show compara-
ble residual errors for the fourth- or sixth-order models;
however, there are important differences that will be
discussed at the end of this section. We first identify the
electrostrictive parameters and then combine these
parameters into a measure of the total energy to assess
the different polynomial orders of the Landau energy.

The 95% prediction and credible intervals shown in
Figure 8(a) are further highlighted by plotting the error
propagation of the Landau energy along select thermo-
dynamic paths. The prediction and credible intervals
are relatively small overall; therefore, 95% intervals
along two different lines of polarization are shown in
Figure 9 to highlight their differences. The plot in
Figure 9(a) corresponds to line 1 in Figure 8(a) where
P, = 0, and the plot in Figure 9(b) corresponds to line
4 among the five lines from Figure 8(a) where P, # 0.
The prediction and credible intervals appear larger
along the lines where P, # 0 because the magnitude of
the energy is smaller and the uncertainty on «;, and
aqqp is larger than on the other Landau parameters.
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the case where P, # 0.

Table 2. Continuum material parameters determined using
Bayesian statistics via DRAM. Parameters with an asterisk were
inferred using 0,,,.

Symbol Mean value Standard deviation Units
qi 19.2 0.258 GV m/C
q2 3.14 0.182 GV m/C
Qa4 1.39 0.538 GV m/C
s 1.40 0.019 GV m/C
ak, —3.977 0.103 GPa

ak, —3.995 o.101 GPa

oy —3410 0.118 GPa

o —4.00x 10~ 96.2x1073 GPa

abs —7.79x107* 3.32x1073 GPa

DRAM: delayed rejection adaptive Metropolis.

These two parameters do not influence the energy when
P2 =0.

Model calibration: monodomain stresses

A similar set of Bayesian statistical results are calcu-
lated for the electrostrictive stress constitutive law given
by equation (4) in light of the DFT stress calculations.
The electrostrictive coefficients and residual stress com-
ponents contained within 6, are summarized in Table
2. Again 1 X 10 iterations are calculated to ensure that
the parameter values are burned-in similar to the
results shown in Figure 5. For brevity, we only show
statistical results in terms of the posterior densities of
the electrostrictive parameters and the residual stress.
The results are in agreement with the means and stan-
dard deviations given in Table 2 which show larger
uncertainty in the shear coefficient g44 when it is identi-
fied together with all parameters in 6,. When 6, is
identified, the standard deviation of the shear para-
meters is significantly reduced. Also note that the shear
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Figure 10. Bayesian marginal posterior densities (7(6]y°™))

for the electrostrictive parameters and residual stress in the
continuum model. The units for the parameter values are given
in Table 2. By decoupling the model, it is seen that the
uncertainty in the shear stress parameters (q44 and ;) has
been reduced. Note that these shear stress parameters are
normally distributed, but the view is expanded to highlight the
decrease in uncertainty.

residual stress is nominally zero as expected; however,
there is uncertainty associated with its value. The pos-
terior densities for both 6, and 6, are shown in Figure
10. All posteriors are approximately normal distribu-
tions. Importantly, we find reduced uncertainty when
the shear parameters are identified independently from
the normal stress parameters. The uncertainty of the
normal stress parameters is unaffected by decoupling
the parameter estimation.

It is important to refer back to equation (4) to high-
light the decoupling between the electrostrictive para-
meters ¢g;; and g associated with normal stress and
the shear electrostrictive coefficient g44. Upon simplify-
ing the stress from equation (7), it can be shown that
the electrostrictive shear stress depends only on the
uncertain parameters g44 and a’§3. Therefore, these
parameters may be sampled separately from the normal
stress components to determine how this influences
parameter identification and uncertainty. In the follow-
ing, we compare sampling all stress parameters con-
tained within 6, versus the reduced set defined by
0o, = [qas. 053]

The mean model predictions of the relevant stress
components along with their prediction and credible
intervals are shown in Figure 11 using the parameter
set 0. Similar to the case of the Landau energy surface,
reasonable predictions are observed over the range of
polarization values simulated; however, the range of
uncertainty in electrostrictive stress is more difficult to
see over the entire polarization space. Selected 1D plot
examples examining o33 and o3 are shown in Figures
12 and 13, respectively, to further illustrate the propa-
gation of uncertainty. Note that the error propagation

in Figure 13 is based on the reduced uncertainty using
parameters 6, . It is clearly shown that less uncertainty
exists for the normal stress along the direction of polar-
ization when P, = 0; similar results are found for o
and o5,. The shear stress and normal stresses for the
cases where P, # 0 exhibit larger uncertainty. This is
due to the magnitude of the stress, the larger uncer-
tainty in the shear electrostrictive parameter g44, and
the additional uncertainty of the shear residual stress.
However, as mentioned earlier, by decoupling the para-
meter identification between the normal and shear
stresses, there is a significant decrease in the uncer-
tainty contained within the shear electrostrictive and
shear residual stress parameters.

Model comparison at zero-strain and zero-stress
states

Given the parameter calibration for both the Landau
energy and electrostrictive stresses, we further analyze
the energy landscape under zero-strain and zero-stress
states. The total energy under zero strain is fully
described by the Landau energy. This form of the
energy is compared to the total energy where the stress
is set to zero. We set the stress to zero and solve for the
spontaneous strain in terms of polarization to find this
form of the total energy. These strain components are
substituted into uy, from equation (2) and uc from
equation (4) to obtain the total stored energy in terms
of polarization. In this comparison, we set the residual
stresses to zero in the residual energy from equation (5)
since it produces biased minimum wells along the P;
polarization direction. In this case, the elastic, electro-
strictive, and Landau energies are all non-zero and
plotted together, for example, u7,(P;) = up(P;) +
ur(P;) + uc(P;). This relaxed state is compared to the
Landau energy under zero strain as shown in Figure
14. In all plots, we apply mean parameter values.

It is particularly interesting to compare the zero-
strain and zero-stress total energies using the sixth- ver-
sus fourth-order Landau energy densities. The fourth-
order Landau energy Bayesian calibration results in a
non-negligible increase in error. The error, based on
the mean parameter estimates and using a sum of
squares difference between the Landau and the DFT
energies, increases from 24.7 MPa for the sixth-order
model to 32.3 MPa for the fourth-order model. The
pointwise differences in the residual errors, as shown in
Figure 8(b), are small relative to the maximum energy
(650 MPa). However, it becomes significant when com-
pared to the energy at zero polarization versus the
energy minimum, that is, Au = 46.3 MPa. These differ-
ences are most apparent by comparing the energy land-
scapes of the sixth- and fourth-order models in Figure
14(a) and (c), respectively. The fourth-order model pre-
dicts a rhombohedral phase, while the sixth-order
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plane. The lines have been numbered -6 for reference in later discussion.

model predicts a tetragonal phase for the zero-strain
state. The differences in these two approximations is
primarily attributed to «j, which changes its sign when
using a fourth- or sixth-order polynomial as given in
Table 1. In contrast, «; and «q; are insensitive to the
order of the model calibration. The minima directions
predicted by the fourth-order model are self-consistent
with prior DFT analysis on lead titanate (King-Smith
and Vanderbilt, 1994).

Figure 14(b) and (d) represents the sixth- and
fourth-order energy densities, respectively, for the zero-
stress state. In these plots, we use the mean electrostric-
tive parameters from Table 2 in combination with
elastic moduli from King-Smith and Vanderbilt (1994).
For reference, the elastic properties used in the
model include c¢;; = 321GPa, ¢, = 140GPa, and
css = 96.5GPa. In both the sixth- and fourth-order
models, the magnitudes of polarization at the minima
have increased due to relaxation as expected. In

addition, the location of the minima in the fourth-order
model has reoriented from the rhombohedral direction
to the tetragonal direction, consistent with experimen-
tal observation and DFT calculations (Jaffe, 2012;
King-Smith and Vanderbilt, 1994; Shirane et al., 1956).
It is also important to note how the continuum energy
landscape is sensitive to both the electrostrictive and
elastic coefficients. For example, if the elastic modulus
was taken to be smaller (e.g. elastic tensor values from
lead titanate thin films (Ruglovsky et al., 2006)), the
total energy density in the relaxed state becomes convex
and grows unbounded in the negative direction as the
polarization increases.

It was highlighted in Table 1 that the sixth-order
terms have higher relative uncertainty than the fourth-
order terms. This is expected since the DFT calculations
were taken for polarization values less than or near the
spontaneous polarization. These sixth-order terms
become more sensitive at larger polarization
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Table 3. Model parameter comparison between this study and Haun et al. (1987). Note that the values of @|| and &), have been
augmented so they can be directly compared to the different definitions of the Landau energy function used by Haun et al. (1987).
Also note that we have neglected the residual stress in our Landau parameters which may influence «| according to electrostriction

in equation (17).

Parameter Current Haun et al. (1987) Units
Landau coefficients

a —389.4 —283.2 MV m/C
@ 105.7 —72.5 MVmé/C3
@2 2011 750 MVm®/C3
an 61.5 260.6 MVm?®/C>
o —740.8 610 MVm®/C®
Electrostrictive coefficients

Qi 0.073 0.089 m*/C?
Qn —-0.015 —0.026 m*/C?
Qus 0.029 0.068 m*/C?

magnitudes which were not considered for polarization
states rotated from the lowest energy spontancous
polarization orientation. Additional details with regard
to global sensitivity analysis are given in the comple-
mentary Part 2 paper. Since a1, <0, the Landau energy
grows in the negative direction for large polarization
values. Therefore, these parameters for computations
such as in phase field methods should be used with

caution due to instabilities at large polarization values.
Additional comparisons of the Bayesian parameter sta-
tistics with experimental fits for lead titanate (Haun
et al., 1987) are given in Appendix 1; see Table 3.

We also obtain estimates of the spontancous strain
and polarization by calibrating the Landau energy and
electrostrictive stresses. The spontaneous strain pre-
dicted by the model using parameters from Tables 1
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and 2, in combination with elastic parameters, is
33 = 7.25% and &, = —1.53% for the predicted
spontaneous polarization value, P; = Py = 0.99 C/m?.
These estimates are based on zero residual stress.
Additional predictions of spontaneous strain and
polarization that include residual stress are given in
Appendix 1. The spontaneous polarization for lead
titanate is known to vary widely based on different
DFT pseudopotentials (Bilc et al., 2008) as well as
experimental measurements (Haun et al., 1987; Lines
and Glass, 1977). Haun et al. (1987) estimated the
experimental spontaneous polarization near 0 K to
be between 0.8 —0.9C/m?. Depending on the
DFT exchange and correlation approximation, the
computed spontaneous polarization has ranged
between 0.78 — 1.40 C/m? (Bilc et al., 2008), while sev-
eral other experimental values range between 0.5 and
1.0 C/m? (Lines and Glass, 1977). Using the experi-
mental lattice constant measurements from the litera-
ture (ar = 3.8995 A, ¢y = 4.1552 A; Haun et al., 1987)
and the extrapolated cubic lattice at room temperature:
ac =3.96 A, we compute the spontaneous strain com-
ponents &, and e&};. These strain components are
&, = (1/2)(cr/ac)* —1]=5.05% and &, = (1/2)
[(a/ac)* — 1] = — 1.52%. Extrapolation to near 0 K
gave strain estimates of &3; ~ 6.25% and &, ~ —1.75%
which are in reasonable agreement with Bayesian inferred
spontaneous strain estimates. In contrast, the DFT-com-
puted lattice constants (¢ = 3.858 A and ¢ = 4.031 A;
Oates, 2014) give a poorer predictor of strain values
g = —2.54% and &j; = 1.81% using the experimental
cubic lattice parameter ac as the reference state.

Our energy function was written as a function of
strain and polarization to simplify comparisons
between DFT calculations and continuum models
using Landau and electrostrictive energy functions.
Experimentally, stress is often used as the independent
variable (Haun et al., 1987). Therefore, we apply a
Legendre transformation in Appendix 1 to provide
additional comparisons of our Landau and electrostric-
tive parameters with measurements taken on lead tita-
nate. Direct comparisons extrapolated to 0 K are given
in Table 3. There are notable distinctions between the
Bayesian inferred DFT calculations and experimentally
determined parameters. These differences could come
from multiple sources such as defects, zero-temperature
limits, as well as elastic parameters. It was unclear what
the experimental elastic parameters were in the study
by Haun et al. (1987). These values influence the
Landau parameters as described in Appendix 1.

Concluding remarks

Parameters contained within a ferroelectric monodo-
main model have been analyzed by comparing
continuum-scale model approximations to DFT energy

and stress calculations. Bayesian statistics have pro-
vided information about parameter uncertainty when
quantifying the energy landscape over a relatively
broad range of the polarization space. Previous analy-
sis that considered changes in energy along the sponta-
neous polarization direction (Oates, 2014) showed
relatively low uncertainty in predictions of energy and
stress. Here parameter uncertainty is found to be larger
during polarization rotation as highlighted by the
shear-related constitutive parameter posterior densities;
see Figures 6 and 10. The parameter uncertainty is pro-
pagated through the continuum model to quantify pre-
diction intervals of energy and stress along different
thermodynamic paths as illustrated in Figures 9 and
13. The larger uncertainty during polarization rotation
is believed to manifest at the atomic scale when approx-
imating the motion of multiple atoms within a unit cell
in terms of a single polarization vector along the direc-
tions not aligned with the spontaneous polarization.
Increased parameter sensitivity at larger polarization
that is rotated from the spontaneous orientation is also
expected to potentially reduce the uncertainty of ;.
This is further discussed in the complementary Part 2
paper on global sensitivity.

It is also important to point out the parameter esti-
mation differences in the fourth- and sixth-order
Landau energy functions. As shown in Table 1, the
inclusion of the sixth-order terms «;;; and a1 influ-
ences the shape of the energy surface under zero strain.
First, the sign of the fourth-order coefficient «a;
changes when using either a fourth- or a sixth-order
model. Second, Figure 7 illustrates parameter correla-
tion between the pairs (a1, a111) and (a2, @q12). This
parameter correlation points to the important coupling
between fourth- and sixth-order terms. Caution should
be used when freezing higher order terms as a result of
perceived lower sensitivity. Quantifying the global sen-
sitivity of these different parameters can provide fur-
ther insights into their importance and should be done
in parallel with Bayesian statistics to keep the most rel-
evant model parameters without introducing unneces-
sary random parameters that would otherwise create
computational inefficiencies. In the cases where correla-
tion exist, parameter sensitivity rankings must account
for this effect which is discussed in more detail in the
Part 2 paper on new global sensitivity analysis tech-
niques and applications on ferroelectric models. This
sign change in estimating «j, is important because it
predicts a different ferroelectric phase (e.g. rhombohe-
dral versus tetragonal) as illustrated in Figure 14.
However, this is only relevant in the constrained strain
state. In the relaxed stress state, both the fourth- and
sixth-order models estimate the correct tetragonal
phase due to the additional effect of electrostriction
and elastic energy which is consistent with other homo-
genized energy models based on DFT results (King-
Smith and Vanderbilt, 1994).
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Appendix |

The following relations provide a comparison of experi-
mental energy functions in terms of stress and polariza-
tion with the results given in this article. The Legendre
transformation is presented and several relations
describing spontaneous strain and polarization are
derived.
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Legendre transformation from strain to stress

Haun et al. (1987) define the energy functions with
respect to stress and polarization. For self-consistent
comparison of Landau and electrostrictive parameters,
the model in equation (1) is defined using stress and
polarization as the independent variables. Given the
non-linearities of the Landau energy function, we start
with the stress defined as

_ o _ )
Tij = Gy = Cipten — i PP + 0‘5

This can be rearranged to find the strain as

&y = Sy (0r — o) + SijtGrimnPmP- (16)

Recall from Malvern (1969) that the compliance tensor
s;u 1s the inverse of the stiffness tensor cj.

Substituting equation (16) into equations (2), (4),
and (5) yields the updated expressions for uy, uc, and
ug, respectively

1
Uy = 5 [SrsmnO'/r\;IOJmWn + 2Srsmn‘1rsab0JmWnPan

+ SrscdQI‘sabQCdefPanPer']
uc = — qzjklsg;'mnPkPKf%,
_qy'klsijrSQrsmanPnPkPl

Urp = (Sijkl()'?{/[[ + SijthrsklPkPl) (0'5)

(17)

where we have introduced the relation o3}/ = o — of.
The converted model in equation (17) is not a direct
match to Haun et al. (1987); however, an equivalent set
of model parameters are determined and have been
compared in Table 3. The electrostrictive coefficients

result from the expansion of

qijkiSijmn —

O11 = qusn + 2q12812

O12 = qus12 + quas11 + qusi
Ous = 2qa4544

(18)

Two additional coefficients that arise as a result of
the transformation are

1
Eqijklsijrsqrsmn -
Qﬁsll 2 2
B = st qse T 2qnqnse(9)

By = qlis12 + qhysi + 3¢5 + 2q11q12s1
+ 2q11q12512 + 2q3,544

These two fB; coefficients scale the fourth-order
polarization terms, so their values influence a1 and «ay;
as follows.

The Landau polarization energy defined in equation
(3) can be defined in two distinct ways, which can

potentially shift the value of ;. We followed Cao and
Cross (1991) using «;; to scale the term
(P2 + P3 + P})’. Alternatively, the Landau function
can be defined such that a;; scales the term
P} + P3 + P} (Haun et al., 1987; Volker et al., 2011).
To directly compare the parameters, we expand the
polynomial (P} + P} + P})* = (P} + P} + P}) + 2(P3P} +
P3P} + P3P3) and combine like parameters. Therefore,
in Table 3 we report the values @;; = a;; — 8; and
ap = 2wy, + app — B, to directly compare fourth-order
parameters reported in Haun et al. (1987) with our
mean Bayesian parameter estimations.

Spontaneous polarization and strain

Expansion of the free energy via variational methods
gives rise to the static equilibrium conditions with
respect to polarization and strain. The condition for
static equilibrium with regard to polarization is

o ()
an 3P,"j 8P, ’

The stress in the material is found by taking the deri-
vative of the energy function with respect to strain, and
so the equilibrium constraint is

i,j=1,2,3) (20)

d [ du
= — () =0, @(j=123). (21
O-Ja] ax] (aglj) (l J ) ( )

The divergence of stress should be zero for systems at
static equilibrium.

The monodomain, that is, region of uniform polari-
zation, energy is a function of temperature, which can
be described by the phenomenological parameters in
equations (2), (3), and (4). All physical quantities are
uniform in space, so equations (20) and (21) reduce to

)
2 —0,0;=0

aP; (22)

Note that the condition on stress assumes that no
external stresses are being applied. Assuming that all
the polarization is oriented in the x3 direction, one is
left with the following system of equations

ou
— =2a, Py + 4a Pi + 62111 P; =0

oP5

ou 2
— =cnén T oen(en + &) — qi2P5 + "1131 =0
deqy (23)
ou 2
Py crien T cplen + e33) —qpPs + 052 =0
€22

ou 2 R
@ =cpen T eplen T en)—qubP; Ho3;3=0

where a]” = a; + gqiie33 + qia(en + &2). For tempera-
tures well below the Curie temperature, the solution for
polarization in a monodomain system is
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polarization given in the end of section “Bayesian infer-
ence results” were computed for zero residual stress.
When including our mean values for residual stress
from Table 2, we find a numerical solution for the spon-
taneous polarization and strain to be Py = 1.1C/m?,

—o'y) + (a’112 _ 30[;{&1“)1/2 12 Recall that the results for spontaneous strain and
P3 = P() = (24)

3aqn

where af and o, are

aj =ap + iin [(c11g12 — ciaqu) (o, + 0%) el = e = — 1.1%, and &33 = 9.3%.
+ (cnigu1 + ci2(gin — 26]12))013%] (25)
a1 = ay

n dcinqiiqin — g3 (en + c2) — 2cn1qh,
2¢11822




