


under three-dimensional (3D) deformation in a ferro-

electric single crystal.

Whereas density functional theory (DFT) can accu-

rately quantify many structure–property relations in

solids (Gonze et al., 2009; Payne et al., 1992), develop-

ment of large-scale computations that can model polari-

zation evolution and electrostriction while accurately

accounting for the underlying atomic and electronic

structural evolution remains challenging. Continuum

approximations of electronic behavior during complex

lattice distortions can lead to parameter uncertainty as

the polarization evolves along different thermodynamic

paths from applied electric fields and stress (Frederiksen

et al., 2004; Hu et al., 2014; Oates, 2014; Smith, 2013).

The analysis presented here employs Bayesian infer-

ence, which provides a method to estimate unknown

phenomenological parameters with uncertainty instead

of optimization of a fixed set of material parameters.

In the present case, this uncertainty is associated with

the homogenization of DFT energy and stress calcula-

tions over a range of polarization values that define the

3D energy landscape and electrostrictive coupling. The

continuum approximation results in a reduction of the

internal degrees of freedom of atomic position and

changes in the electron density surrounding the atoms

in a unit cell. For example, lead titanate (PbTiO3) con-

tains five atoms in the unit cell. This results in

53 3= 15 degrees of freedom for the positions of the

atomic nuclei in each cell. As these atoms move, the

electron density surrounding each atom also evolves.

The combined effect of the positive charge of the

atomic nuclei and distribution of electron charge den-

sity gives a measure of polarization. This can be

directly determined with DFT calculations using the

Berry phase approach (Resta, 1994). The consequence

of using polarization as the order parameter to predict

changes in stress and energy during changes in atomic

configurations is evaluated for a range of multiaxial

strain states.

The phenomenological parameters implemented in

the ferroelectric continuum model require computing

the energy and stress over a range of polarization values

in 3D polarization space (Su and Landis, 2007). Due to

complexities that preclude the use of the Cauchy–Born

rule to accurately predict atomic displacements in ferro-

electric unit cells, a set of calculations about different

deformation states is computed to determine the equili-

brium atomic positions for different uniaxial and shear

deformation states. These results are used as a guide to

increment atoms about a fixed strain state which leads

to the non-convex energy surface in the polarization

space. The DFT code ABINIT is used to calculate the

low-energy atomic states for different fixed atomic posi-

tions leading to our estimate of the non-convex free

energy surface. All energy calculations used in estimat-

ing the Landau energy are based on a cubic state as the

zero-strain state. The results build upon prior results

which estimated a Landau energy function for polariza-

tion changes along the direction of spontaneous polari-

zation (Oates, 2014).

The following sections first outline the phenomenolo-

gical stored energy equations, followed by the DFT cal-

culations and Bayesian statistical analysis. The governing

continuum equations are presented in section ‘‘Stored

energy relations.’’ Within this section, the DFT calcula-

tions are summarized giving energy and stress calcula-

tions over a range of polarization states. In section

‘‘Bayesian uncertainty analysis,’’ Bayesian statistics are

used to quantify ferroelectric monodomain parameter

uncertainty followed by propagation of errors associated

with energy and stress. Numerical results of the model

parameters, guided by DFT calculations, are presented

in section ‘‘Bayesian inference results.’’ In section

‘‘Concluding remarks,’’ we provide concluding remarks.

Stored energy relations

The phenomenological stored energy in the ferroelectric

solid is divided into elastic, polarization, electrostric-

tive, and residual energy terms. Since we approximate

the internal electronic structure with one electronic

coordinate, we assume that a polarization order para-

meter can be used to accurately represent the solid.

In this case, the stored energy per unit volume is

u= u(e,P), where e is the total strain and P is the

polarization. The four stored energy density terms con-

sidered include

u(e,P)= uM (e)+ uP(P)+ uC(e,P)+ uR(e) ð1Þ

where uM is the elastic strain energy, uP is the Landau

energy, uC is the electrostrictive energy, and uR is the

residual energy due to differences in energy between the

cubic and tetragonal states. All energy terms are written

per a cubic reference volume. The linear elastic mechan-

ical energy is defined by

uM (e)=
c11

2
e
2

11
+ e

2

22
+ e

2

33

� �

+ c12 e11e22+ e22e33+ e11e33ð Þ

+ 2c44 e
2

12
+ e

2

23
+ e

2

13

� �

ð2Þ

where the elastic components c11, c12, and c44 are writ-

ten using Voigt notation (Malvern, 1969).

Following the notation by (Cao and Cross, 1991),

the sixth-order polarization or Landau energy is

uP(P)=a1 P2

1
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+P2

3

� �
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where the phenomenological constants are a1, a11, a12,

a111, a112, and a123

The electrostrictive energy is given by

uC(e,P)= � q11 e11P
2

1
+ e22P

2

2
+ e33P

2

3

� �

�q12 e11 P2

2
+P2

3

� ��

+ e22 P2

1
+P2

3

� �

+ e33 P2

1
+P2

2

� ��

�4q44 e12P1P2 + e13P1P3 + e23P2P3ð Þ

ð4Þ

where q11, q12, and q44 are the electrostrictive

coefficients.

The DFT analysis described in the following section

focuses on energy, stress, and polarization computa-

tions. The polarization is treated as the model input to

the continuum model, and the continuum model out-

puts of energy and stress are compared to DFT energy

and stress calculations. This requires careful assessment

of atomic motion to prescribe a specified polarization

at fixed strain as discussed in the following section.

Importantly, we hold the unit cell fixed so that the total

strain is defined to be zero in a prescribed cubic state.

This produces a residual energy term that we define in

terms of a residual stress tensor. This residual energy is

uR =sR
ijeij ð5Þ

where sR
ij is the unknown residual stress required to

constrain the unit cell to the cubic state. This stress ten-

sor will be treated as a random parameter and deter-

mined from DFT computations through the use of

Bayesian statistics.

The effect of electrostriction and residual stress is

evaluated by comparing continuum stress using the

definition

sij=
∂u

∂eij
ð6Þ

which leads to elastic, electrostrictive, and residual

stresses. For example, consider the general tensor forms

of the elastic and electrostrictive coefficients using cijk‘
and qijk‘, respectively. The stress tensor is then

sij = cijk‘ek‘ � qijk‘PkP‘ +sR
ij ð7Þ

Using the cubic reference state as the zero-strain

state (eij= 0), we can quantify the spontaneous strain

in terms of polarization and a residual stress at zero

polarization. To obtain the spontaneous strain, the

total stress is set to zero and the total strain from equa-

tion (7) is

eij = sijklqklrsPrPs � sijkls
R
kl ð8Þ

where sijkl is the compliance tensor (Malvern, 1969).

Under this relaxed condition of zero stress, the two

strain components include polarization-induced strain

and strain from residual stress at zero polarization.

Using conventional notation (Völker et al., 2011), we

define the spontaneous strain as a function of polariza-

tion. In particular, the spontaneous strain is defined at

the minimum total energy at zero stress. We define the

spontaneous polarization state (Pr ! PS
r ) under these

conditions which gives the spontaneous strain,

e
S
ij = sijklqklrsP

S
rP

S
s . The remaining term in equation (8)

is defined as the residual strain at zero polarization,

e
R
ij = � sijkls

R
kl.

In the numerical analysis, we focus on identifying

phenomenological parameters excluding the elastic

coefficients. Since the elasticity has been studied exten-

sively, we neglect quantifying this uncertainty and

instead assume fixed elastic properties from previous

DFT calculations (King-Smith and Vanderbilt, 1994).

As will be discussed in section ‘‘Bayesian uncertainty

analysis,’’ it was determined that the values of elastic

properties are sensitive in obtaining a convex energy

landscape under zero-stress conditions.

DFT calculations

We conducted a set of DFT calculations using ABINIT

to determine energy and stress for different uniform

polarization states such that the continuum-scale

Landau energy and electrostrictive stresses could be

quantified. Prior one-dimensional (1D) results

described by Oates (2014) for lead titanate are com-

bined with energy calculations that estimate the stored

energy for a broader range of polarization states that

can be used to determine equation (3) for two-

dimensional (2D) and 3D problems. Additional calcu-

lations of stress allow us to determine equation (4).

Pseudopotentials developed previously within this code

were used to approximate the electron density. All

DFT simulations used a 103 103 10 k-point grid on a

five-atom lead titanate unit cell with a cut-off energy of

60 Ha (1633 eV). The local density approximation

(LDA) was also used in all calculations.

Prior DFT results were calculated by first identifying

equilibrium atomic positions in the fully relaxed equili-

brium lattice configuration in the tetragonal state. The

atoms were then incremented in the cubic state with lat-

tice dimensions a3 a3 a= 57:4 Å
3

starting with the

centrosymmetric atomic configuration and linearly

incrementing the atoms through the equilibrium tetra-

gonal state. This yields a double-well potential energy

function.

This double-well potential is estimated using the fol-

lowing methodology. In general, the atomic position

degrees of freedom are described by the vector Pa
i for

each of the five atoms (a=Pb, Ti, 23Ok, and O?) in

the unit cell. The atom labels and the atomic displace-

ments for the titanium atom (as an example) are illu-

strated in Figure 1.
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As described previously (Oates, 2014), the displace-

ments along the x3 direction are related to a single

atomic displacement order parameter. The component

of this order parameter, denoted by P3, defines the dis-

placements of each atom along x3 according to

P
O?

3
=aP3

P
Pb
3
=bP3

P
Ok

3
= gP3 +m

P
Ti
3
= nP3 +m

ð9Þ

where the constants a, b, g, n, and m are given in

Oates (2014). This relationship maps a single atomic

displacement P3 along the x3 direction to the positions

of each of the five atoms.

To quantify a stored energy surface for polarization

states not aligned with the spontaneous polarization

direction, atomic displacements under internal atomic

shearing are used to estimate the energy surface for a

broader range of polarization states. Due to crystal

symmetry of lead titanate, this requires incrementing

the polarization by an angle ranging from 0� to 45� for

different polarization magnitudes. We estimate the

motion of the atoms that is expected to occur during

polarization reorientation starting from full alignment

in the x3 direction to 45� rotation toward the x2 direc-

tion. This allows the identification of all Landau para-

meters in equation (3) except a123.

Continuum parameter identification is done by con-

ducting a series of ab initio molecular dynamic simula-

tions about several fixed unit cell shear deformation

states and simultaneously determining the equilibrium

atomic positions and electron density. Entropic effects

are neglected by computing energy, stress, and polariza-

tion in the limit of 0 K. The minimization method used

in the molecular dynamic simulations is based on the

Broyden–Fletcher–Goldfard–Shanno method contained

within ABINIT 7.0.5 (Gonze et al., 2009). The deforma-

tion gradient component F23= ∂x2=∂X3, based on con-

ventional deformation notation (Malvern, 1969), is

incremented from 0 up to 0.17 while holding all other

deformation gradient components fixed. Once these

equilibrium configurations are determined, the polariza-

tion is determined using the Berry phase approach

(Resta, 1994). This approach is used to relate polariza-

tion to atomic positions to quantify the Landau energy

in the fixed strain state. An example of the differences

in atomic and electronic structures in the undeformed

reference state and shear-deformed state is shown in

Figure 2.

To induce a P2 polarization component, we assume

that the five atoms within the unit cell move propor-

tional to their Pa
3
positions. This is described by

P
a
2
=P

j, a
2

+ xP
j, a
3

ð10Þ

where P
j, a
2

and P
j, a
3

constitute the nominal atomic posi-

tions for spontaneous polarization aligned in the P3

direction. The constant x scales the P
a
2
displacements

by a fraction of the respective P
a
3
displacements. Note

that j= 1, . . . ,N includes 13 points of DFT computa-

tions along the P3 space with P2 = 0. We conduct DFT

simulations along five thermodynamic paths in shear.

The linear approximation of the atom positions with

respect to the different F23 values is shown in Figure

3(a) for the titanium atom position in the x2 � x3 plane.

Figure 3(b) illustrates how the polarization changes as

the titanium atom displaces in shear. All atoms

have similar characteristics which we approximate to

follow the relation in equation (10) when estimating the

stored energy and stress during polarization rotation,

P3 ! P2.

The changes in stored energy as a function of atomic

displacements are computed using DFT calculations

while holding the unit cell fixed at a reference cubic

state using the same unit cell geometry as prior uniaxial

results (Oates, 2014). This simplifies combining prior

energy calculations with the new calculations given

here; however, it introduces uncertainty between the

position of the atoms and the resulting polarization

when using the cubic state as the reference configura-

tion as shown in Figure 3(b). The thermodynamic path

during shear deformation may follow a more complex

atomic displacement trajectory; however, we show rea-

sonable estimates of continuum-scale energy and stress

along these paths. The error propagation afforded by

Bayesian statistics highlights varying degrees of uncer-

tainty as feedback for model refinement.

Using the relationship defined by equation (10), the

atoms were linearly incremented from different atomic

positions starting near the centrosymmetric state

through the equilibrium tetragonal state. The five paths

defining polarization rotation (P3 ! P2) are shown in

Figure 4. For these five starting points where P2 = 0,

Figure 1. Description of the atoms contained within the lead

titanate unit cell. An example of the atomic displacements (Pa
i )

is shown for the titanium atom.
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the atoms are moved along the directions estimated

from the shear deformation (F23) simulations to gener-

ate positive P2 values while P3 is reduced. Again note

that all the results in Figure 4 are obtained under a

constrained cubic state. Berry phase polarization was

calculated along with the total energy which can be

seen in Figure 4(a). The stress tensor was also calcu-

lated and the shear stress component s23 is shown as

a function of polarization in Figure 4(b). The results

illustrate how displacements of the atoms lead to

polarization rotation, giving rise to changes in energy

and shear stress over a polarization rotation of

approximately 45�. We will show in the following sec-

tion how Bayesian statistics can be used to estimate

the continuum electrostrictive and Landau para-

meters and the uncertainty associated with calibrating

the ferroelectric continuum model in light of these

DFT calculations.

Bayesian uncertainty analysis

Bayesian statistics assert that the model parameters

contain uncertainty when calibrated to experimental

measurements or higher fidelity models. Here, the DFT

calculations are considered the higher fidelity results

and the homogenized continuum parameters are cali-

brated to these results based on the parameters outlined

in section ‘‘Stored energy relations.’’ To accommodate

uncertainty in Bayesian inference, parameters are taken

to be random variables having associated probability

density functions (PDFs) or distributions. Details

regarding this approach are provided in Chapter 8 of

Smith (2013). The continuum model calibration to

DFT simulations focuses on parameter uncertainty of a

monodomain structure. The Landau parameters con-

tained within the stored energy density (equation (3))

and the electrostrictive parameters contained within the

electromechanical energy density in equation (4) are

Figure 2. Example of the electron density solutions for (a) the reference undeformed cubic structure and (b) shear-deformed state

where the unit cell has been sheared such that the deformation gradient component F23 is non-zero.

Figure 3. (a) Atomic displacement showing the relationship between the position of the titanium atom in the x2 and x3 directions

as the deformation component F23 varies between 0 and 0.17. (b) Relationship between the atomic position (titanium atom) and

polarization in the x3 direction as the deformation gradient component F23 varies between 0 and 0.17.
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quantified first. These parameters are determined from

the DFT energy, stress, and polarization calculations

summarized in section ‘‘Stored energy relations.’’

Through this analysis, we discuss how the identification

of Landau and electrostrictive parameters can be

decoupled and inferred separately.

The sets of phenomenological constants identified

from the monodomain Bayesian statistics are denoted

by uP and us, which correspond to parameters for the

Landau energy density and electrostrictive stresses,

respectively. These parameters are

uP = a1,a11,a12,a111,a112½ �

us = q11, q12, q44,s
R
11
,sR

22
,sR

33
,sR

23

� � ð11Þ

The parameters contained in each set can be inferred

separately due to the independence between the strain

and polarization in the Landau and electrostictive

energy densities. In the case of uP, we compare the total

DFT energy to the continuum Landau energy density.

The electrostrictive and residual energies are zero in this

case since the strain is set to zero in the reference cubic

state. The parameters within us are determined by com-

paring DFT stress to continuum-scale stresses. Also

note that the stress components in us represent residual

stress due to the reference configuration chosen for the

DFT simulations. Since the polarization is constrained

to move from the P3 to P2 direction, we take advantage

of symmetry where sR
11
=sR

22
and sR

12
=sR

13
= 0. This

was confirmed through DFT simulations and also veri-

fied using Bayesian statistics by allowing continuum

estimates of sR
11

and sR
22

to be independent. We leave

sR
23

in the calculations although its mean estimate is

found to be approximately zero. Despite a zero-mean

residual shear stress, the uncertainty in its value can

contribute to uncertainty in the total stress which will

be indicated through propagation of errors. We can

decouple the analysis of normal and shear stresses,

thereby allowing us to analyze the parameter sets

usns
= q11, q12,s

R
11
,sR

22
,sR

33

� �

, uss
= q44,s

R
23

� �

ð12Þ

separately. The analysis is performed in both ways to

highlight how the uncertainty propagates through all

the model parameters.

A statistical model is introduced which incorporates

the physical model with random errors associated with

aleatoric uncertainty between DFT calculations of

stress and energy and the corresponding continuum

approximation. The statistical model is taken to be

MDFT (s)=M(s; u)+ es, s= 1, . . . , n ð13Þ

where DFT calculations are denoted by MDFT (s) and es

are the errors induced by the continuum model M(s; u).

All errors are assumed to be independent and identi-

cally distributed (iid). The DFT (MDFT ) and continuum

(M(s; u)) models may include measures of monodomain

energy and electrostrictive stress. Each model will be

specified and compared to continuum estimates in the

following sections.

Bayesian model calibration utilizes Bayes’ equation

p uk jM
DFT

� �

=
‘(M juk)p0(uk)

Ð

R
s

‘(M juk)p0(uk)duk
ð14Þ

to infer the probability densities of the continuum para-

meters based on DFT calculations. In equation (14),

the continuum model output denoted by M describes

the monodomain material characteristics, while uk
denotes the model parameters in equation (11). The

posterior density, p(uk jM
DFT ), quantifies the probabil-

ity of observing the parameter values uk given the DFT

energy or stress calculations which is denoted by MDFT .

The prior density is denoted by p0(uk), which assumes

previous knowledge about the model parameters before

comparing to the DFT calculations. We assume flat

priors for all parameters unless otherwise noted. These

priors are characterized as having a constant value on a

parameter space that satisfies positive definite

Figure 4. (a) Total energy and (b) shear stress (s23) as a function of P2 and P3.
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thermodynamic criteria. The prior densities are updated

using a likelihood ‘(M juk), which compares the model

outputs given by the continuum model and the DFT

model. The denominator in Bayes’ equation normalizes

the posterior density to have an area of unity.

The likelihood function used here assumes that

errors in the DFT energy and stress calculations are iid

and normally distributed with zero mean and variance

s2

k , ek;N (0,s2

k). The likelihood function is then

‘(M juk)= e
�
P

N

s= 1

MDFT (s)�M s;ukð Þ½ �
2

2s2
k ð15Þ

which assumes that the DFT energy and stress

calculations are normally distributed as MDFT (s);

N (M(s; uk),s
2

k). In this equation, we have explicitly

included the number of model outputs evaluated over

s= 1, . . . ,N . The variance sk in the DFT calculations

is unknown and is inferred during the calibration of the

continuum model parameters uk . We presume that this

variance may be different for the DFT energy and

stress calculations.

There are five unknown parameters in uP and seven

parameters in us that are all numerically inferred

through the Bayesian calibration. Whereas the para-

meter sets are reasonably small, Gauss quadrature

techniques are not ideal due to the order of integration

in the denominator contained within equation (14) and

also due to the lack of a priori knowledge of the limits

of integration. These computational issues are avoided

by implementing sampling-based Metropolis algo-

rithms, the stationary distribution of which is the pos-

terior density. In particular, the delayed rejection

adaptive Metropolis (DRAM) algorithm developed by

Haario et al. (2001, 2006) is implemented using the

code available on the website (Laine, 2013).

Bayesian inference results

Here we summarize the results from the Bayesian sta-

tistical analysis of the Landau energy and monodomain

stresses. We highlight parameter uncertainty in both

Landau energy and electrostrictive parameters and how

this uncertainty propagates through the continuum

model when predicting continuum-scale energy and

stress as a function of polarization.

Model calibration: monodomain energy

The continuum model calibration is conducted by sam-

pling over the monodomain DFT energy and stress cal-

culations presented in section ‘‘Stored energy

relations.’’ The number of model iterations was 13 10
5

for all analyses. A summary of the mean values and

standard deviations for the Landau parameters is given

in Table 1. Both sixth- and fourth-order models—

a111 =a112= 0 in equation (3)—are evaluated for

comparisons of the energy landscapes given in the sub-

sequent discussion in section ‘‘Bayesian inference

results.’’ The results of the energy calibration illustrate

important differences in the amount of relative

Table 1. Landau energy parameters determined using Bayesian statistics implemented via DRAM.

Symbol Mean value (6th order) Standard deviation Units

a1 �389:4 10.49 MVm=C

a11 761:3 30.01 MVm5=C3

a12 414:1 241.6 MVm5=C3

a111 61:46 19.98 MVm9=C5

a112 �740:8 499.4 MVm9=C5

Symbol Mean value (4th order) Standard deviation Units

a1 2414.1 5.925 MVm=C

a11 846.4 6.904 MVm5=C3

a12 280.73 57.22 MVm5=C3

DRAM: delayed rejection adaptive Metropolis.

Figure 5. Statistical sampling results for the Landau energy

model parameters in the continuum model using DFTenergy

calculations. 13105 iterations were used in the simulations.
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uncertainty for each parameter by comparisons of

mean values and their standard deviations. For exam-

ple, the second- and fourth-order Landau parameters

a1 and a11 have lower relative uncertainty in compari-

son to a12 and the sixth-order terms.

Statistical results based on the Landau energy den-

sity in Figures 5 and 6 show the parameter samples

generated using the DRAM algorithm and the resulting

posterior densities, respectively. The parameters

sampled for 13 10
5 iterations in Figure 5 illustrate a

‘‘burned-in’’ chain among all the Landau model para-

meters considered. A burned-in chain is defined by a

chain that has been sampled sufficiently such that it

has converged to the posterior density. The posterior

probabilities for the Landau energy density parameters

are determined from these chains. All the posterior

probabilities are approximately normal distributions as

shown in Figure 6. Correlation between certain para-

meters is also quantified as shown in Figure 7. Stronger

correlation is seen among (a1,a11), (a11,a111), and

(a12,a112). The simplest example of parameter correla-

tion is the inverse relation between a1 and a11 as these

parameters govern the polarization at minimum energy

which is P0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�a1=2a11

p

, where electrostriction and

the sixth-order terms are neglected. A similar compet-

ing mechanism for P0 occurs between the higher order

a111 term and a11 as shown by their correlation in

Figure 7. Finally, the a12 and a112 parameters are asso-

ciated with polarization rotation, which is supported

by their correlation.

We also quantify the uncertainty in the model out-

put by propagating the errors through the Landau

energy function based on the combination of the pos-

terior densities in Figure 6 and the inferred variance s2

k

from equation (15). This provides measures of the mean

Landau energy as well as credible and prediction inter-

vals relative to the DFT energy; details on these inter-

vals in comparison to frequentist-based confidence

intervals are described in Smith (2013). The Landau

energy density using mean parameter values versus the

DFT energy density are shown in Figure 8(a) for the

full sixth-order polynomial energy representation. We

also compare the fourth-order Landau model to the

sixth-order model fit. The comparison of the fourth-

and sixth-order models is illustrated by plotting the

residual error between the continuum energy and the

DFT energy in Figure 8(b). The results show compara-

ble residual errors for the fourth- or sixth-order models;

however, there are important differences that will be

discussed at the end of this section. We first identify the

electrostrictive parameters and then combine these

parameters into a measure of the total energy to assess

the different polynomial orders of the Landau energy.

The 95% prediction and credible intervals shown in

Figure 8(a) are further highlighted by plotting the error

propagation of the Landau energy along select thermo-

dynamic paths. The prediction and credible intervals

are relatively small overall; therefore, 95% intervals

along two different lines of polarization are shown in

Figure 9 to highlight their differences. The plot in

Figure 9(a) corresponds to line 1 in Figure 8(a) where

P2 = 0, and the plot in Figure 9(b) corresponds to line

4 among the five lines from Figure 8(a) where P2 6¼ 0.

The prediction and credible intervals appear larger

along the lines where P2 6¼ 0 because the magnitude of

the energy is smaller and the uncertainty on a12 and

a112 is larger than on the other Landau parameters.

Figure 6. Bayesian marginal posterior densities (p(ujyDFT)) for
the continuum model parameters.

Figure 7. Pairwise correlation among the Landau energy

parameters. Stronger correlation is observed between some of

the lower and higher order parameters.
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These two parameters do not influence the energy when

P2 = 0.

Model calibration: monodomain stresses

A similar set of Bayesian statistical results are calcu-

lated for the electrostrictive stress constitutive law given

by equation (4) in light of the DFT stress calculations.

The electrostrictive coefficients and residual stress com-

ponents contained within us are summarized in Table

2. Again 13 10
5 iterations are calculated to ensure that

the parameter values are burned-in similar to the

results shown in Figure 5. For brevity, we only show

statistical results in terms of the posterior densities of

the electrostrictive parameters and the residual stress.

The results are in agreement with the means and stan-

dard deviations given in Table 2 which show larger

uncertainty in the shear coefficient q44 when it is identi-

fied together with all parameters in us. When uss
is

identified, the standard deviation of the shear para-

meters is significantly reduced. Also note that the shear

Figure 8. (a) Continuum model comparison of the sixth-order Landau energy in comparison to the DFTenergy function including

95% prediction and credible intervals. Note that each line consists of a set of energy values along different lines in the P2P3-plane.

The lines have been numbered 1–6 for reference in later discussion. (b) A scatter plot of the error using the full sixth-order Landau

energy function in equation (3) (black circles) versus a lower order fourth-order Landau energy function (red triangles).

Figure 9. Error propagation of the energy function, uP, about two different lines along the stored energy path plotted against the

polarization magnitude jjPjj: (a) energy for line 1 in Figure 8(a) for the case where P2 = 0 and (b) energy for line 4 in Figure 8(a) for

the case where P2 6¼ 0.

Table 2. Continuum material parameters determined using

Bayesian statistics via DRAM. Parameters with an asterisk were

inferred using uss
.

Symbol Mean value Standard deviation Units

q11 19:2 0.258 GV m/C
q12 3:14 0.182 GV m/C
q44 1:39 0.538 GV m/C
q�44 1:40 0.019 GV m/C

sR
11 23.977 0.103 GPa

sR
22 23.995 0.101 GPa

sR
33 23.410 0.118 GPa

sR
23 �4:00310�4 96:2310�3 GPa

sR�
23 �7:79310�4 3:32310�3 GPa

DRAM: delayed rejection adaptive Metropolis.
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residual stress is nominally zero as expected; however,

there is uncertainty associated with its value. The pos-

terior densities for both us and uss
are shown in Figure

10. All posteriors are approximately normal distribu-

tions. Importantly, we find reduced uncertainty when

the shear parameters are identified independently from

the normal stress parameters. The uncertainty of the

normal stress parameters is unaffected by decoupling

the parameter estimation.

It is important to refer back to equation (4) to high-

light the decoupling between the electrostrictive para-

meters q11 and q12 associated with normal stress and

the shear electrostrictive coefficient q44. Upon simplify-

ing the stress from equation (7), it can be shown that

the electrostrictive shear stress depends only on the

uncertain parameters q44 and sR
23
. Therefore, these

parameters may be sampled separately from the normal

stress components to determine how this influences

parameter identification and uncertainty. In the follow-

ing, we compare sampling all stress parameters con-

tained within us versus the reduced set defined by

uss
= ½q44,s

R
23
�.

The mean model predictions of the relevant stress

components along with their prediction and credible

intervals are shown in Figure 11 using the parameter

set us. Similar to the case of the Landau energy surface,

reasonable predictions are observed over the range of

polarization values simulated; however, the range of

uncertainty in electrostrictive stress is more difficult to

see over the entire polarization space. Selected 1D plot

examples examining s33 and s23 are shown in Figures

12 and 13, respectively, to further illustrate the propa-

gation of uncertainty. Note that the error propagation

in Figure 13 is based on the reduced uncertainty using

parameters uss
. It is clearly shown that less uncertainty

exists for the normal stress along the direction of polar-

ization when P2 = 0; similar results are found for s11

and s22. The shear stress and normal stresses for the

cases where P2 6¼ 0 exhibit larger uncertainty. This is

due to the magnitude of the stress, the larger uncer-

tainty in the shear electrostrictive parameter q44, and

the additional uncertainty of the shear residual stress.

However, as mentioned earlier, by decoupling the para-

meter identification between the normal and shear

stresses, there is a significant decrease in the uncer-

tainty contained within the shear electrostrictive and

shear residual stress parameters.

Model comparison at zero-strain and zero-stress

states

Given the parameter calibration for both the Landau

energy and electrostrictive stresses, we further analyze

the energy landscape under zero-strain and zero-stress

states. The total energy under zero strain is fully

described by the Landau energy. This form of the

energy is compared to the total energy where the stress

is set to zero. We set the stress to zero and solve for the

spontaneous strain in terms of polarization to find this

form of the total energy. These strain components are

substituted into uM from equation (2) and uC from

equation (4) to obtain the total stored energy in terms

of polarization. In this comparison, we set the residual

stresses to zero in the residual energy from equation (5)

since it produces biased minimum wells along the P3

polarization direction. In this case, the elastic, electro-

strictive, and Landau energies are all non-zero and

plotted together, for example, uTot(Pi)= uP(Pi)+

uM (Pi)+ uC(Pi). This relaxed state is compared to the

Landau energy under zero strain as shown in Figure

14. In all plots, we apply mean parameter values.

It is particularly interesting to compare the zero-

strain and zero-stress total energies using the sixth- ver-

sus fourth-order Landau energy densities. The fourth-

order Landau energy Bayesian calibration results in a

non-negligible increase in error. The error, based on

the mean parameter estimates and using a sum of

squares difference between the Landau and the DFT

energies, increases from 24.7 MPa for the sixth-order

model to 32.3 MPa for the fourth-order model. The

pointwise differences in the residual errors, as shown in

Figure 8(b), are small relative to the maximum energy

(650 MPa). However, it becomes significant when com-

pared to the energy at zero polarization versus the

energy minimum, that is, Du= 46:3MPa. These differ-

ences are most apparent by comparing the energy land-

scapes of the sixth- and fourth-order models in Figure

14(a) and (c), respectively. The fourth-order model pre-

dicts a rhombohedral phase, while the sixth-order

Figure 10. Bayesian marginal posterior densities (p(ujyDFT))
for the electrostrictive parameters and residual stress in the

continuum model. The units for the parameter values are given

in Table 2. By decoupling the model, it is seen that the

uncertainty in the shear stress parameters (q44 and sR
23) has

been reduced. Note that these shear stress parameters are

normally distributed, but the view is expanded to highlight the

decrease in uncertainty.
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model predicts a tetragonal phase for the zero-strain

state. The differences in these two approximations is

primarily attributed to a12 which changes its sign when

using a fourth- or sixth-order polynomial as given in

Table 1. In contrast, a1 and a11 are insensitive to the

order of the model calibration. The minima directions

predicted by the fourth-order model are self-consistent

with prior DFT analysis on lead titanate (King-Smith

and Vanderbilt, 1994).

Figure 14(b) and (d) represents the sixth- and

fourth-order energy densities, respectively, for the zero-

stress state. In these plots, we use the mean electrostric-

tive parameters from Table 2 in combination with

elastic moduli from King-Smith and Vanderbilt (1994).

For reference, the elastic properties used in the

model include c11 = 321GPa, c12 = 140GPa, and

c44 = 96:5GPa. In both the sixth- and fourth-order

models, the magnitudes of polarization at the minima

have increased due to relaxation as expected. In

addition, the location of the minima in the fourth-order

model has reoriented from the rhombohedral direction

to the tetragonal direction, consistent with experimen-

tal observation and DFT calculations (Jaffe, 2012;

King-Smith and Vanderbilt, 1994; Shirane et al., 1956).

It is also important to note how the continuum energy

landscape is sensitive to both the electrostrictive and

elastic coefficients. For example, if the elastic modulus

was taken to be smaller (e.g. elastic tensor values from

lead titanate thin films (Ruglovsky et al., 2006)), the

total energy density in the relaxed state becomes convex

and grows unbounded in the negative direction as the

polarization increases.

It was highlighted in Table 1 that the sixth-order

terms have higher relative uncertainty than the fourth-

order terms. This is expected since the DFT calculations

were taken for polarization values less than or near the

spontaneous polarization. These sixth-order terms

become more sensitive at larger polarization

Figure 11. Examples of the mean model estimates along with 95% prediction (PI) and credible (CI) intervals in relation to DFT

stresses for (a) s11, (b) s22, (c) s33, and (d) s23. Note that each plot consists of a set of stresses along different lines in the P2P3-

plane. The lines have been numbered 1–6 for reference in later discussion.
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Figure 13. Error propagation for s23 with respect to the magnitude of polarization. Results shown of calibration using us2. In

reference to Figure 11(d), (a) line 2, (b) line 3, (c) line 4, and (d) line 5. Note that 95% prediction intervals (PIs) and credible intervals

(CIs) are shown in relation to the s23 stress. It is clearly seen that the prediction and credible intervals are significantly decreased

compared to those observed in Figure 11(d).

Figure 12. Error propagation for s33 with respect to the magnitude of polarization. The plots reflect 2D representations of the

error propagation shown in Figure 11(a): (a) line 1, (b) line 2, (c) line 3, and (d) line 6. Note that 95% prediction intervals (PIs) and

credible intervals (CIs) are shown in relation to the s33 stress.
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magnitudes which were not considered for polarization

states rotated from the lowest energy spontaneous

polarization orientation. Additional details with regard

to global sensitivity analysis are given in the comple-

mentary Part 2 paper. Since a112\0, the Landau energy

grows in the negative direction for large polarization

values. Therefore, these parameters for computations

such as in phase field methods should be used with

caution due to instabilities at large polarization values.

Additional comparisons of the Bayesian parameter sta-

tistics with experimental fits for lead titanate (Haun

et al., 1987) are given in Appendix 1; see Table 3.

We also obtain estimates of the spontaneous strain

and polarization by calibrating the Landau energy and

electrostrictive stresses. The spontaneous strain pre-

dicted by the model using parameters from Tables 1

Figure 14. Comparison of sixth-order (a, b) and fourth-order (c, d) energy densities. The Landau energy density (uL) is plotted in

(a) and (c), while the total energy density for the relaxed strain state (sij = 0) is plotted in (b) and (d).

Table 3. Model parameter comparison between this study and Haun et al. (1987). Note that the values of �a11 and �a12 have been

augmented so they can be directly compared to the different definitions of the Landau energy function used by Haun et al. (1987).

Also note that we have neglected the residual stress in our Landau parameters which may influence a1 according to electrostriction

in equation (17).

Parameter Current Haun et al. (1987) Units

Landau coefficients
a1 2389.4 2283.2 MV m/C
�a11 105.7 272.5 MVm5=C3

�a12 2011 750 MVm5=C3

a111 61:5 260.6 MVm9=C5

a112 �740:8 610 MVm9=C5

Electrostrictive coefficients
Q11 0.073 0.089 m4=C2

Q12 20.015 20.026 m4=C2

Q44 0.029 0.068 m4=C2
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and 2, in combination with elastic parameters, is

e
S
33
= 7:25% and e

S
11
= � 1:53% for the predicted

spontaneous polarization value, P3 =P0 = 0:99C=m2.

These estimates are based on zero residual stress.

Additional predictions of spontaneous strain and

polarization that include residual stress are given in

Appendix 1. The spontaneous polarization for lead

titanate is known to vary widely based on different

DFT pseudopotentials (Bilc et al., 2008) as well as

experimental measurements (Haun et al., 1987; Lines

and Glass, 1977). Haun et al. (1987) estimated the

experimental spontaneous polarization near 0 K to

be between 0:8� 0:9C=m2. Depending on the

DFT exchange and correlation approximation, the

computed spontaneous polarization has ranged

between 0:78� 1:40C=m2 (Bilc et al., 2008), while sev-

eral other experimental values range between 0.5 and

1.0 C/m2 (Lines and Glass, 1977). Using the experi-

mental lattice constant measurements from the litera-

ture (aT = 3:8995 Å, cT = 4:1552 Å; Haun et al., 1987)

and the extrapolated cubic lattice at room temperature:

âC = 3:96 Å, we compute the spontaneous strain com-

ponents e
S
33

and e
S
11
. These strain components are

e
S
33
=(1=2)½(cT=âC)

2 � 1�= 5:05% and e
S
11
=(1=2)

½(a=âC)
2 � 1�= � 1:52%. Extrapolation to near 0 K

gave strain estimates of e
S
33

’ 6:25% and e
S
11
’ �1:75%

which are in reasonable agreement with Bayesian inferred

spontaneous strain estimates. In contrast, the DFT-com-

puted lattice constants (a= 3:858 Å and c= 4:031 Å;

Oates, 2014) give a poorer predictor of strain values

e
s
11
= � 2:54% and e

s
33
= 1:81% using the experimental

cubic lattice parameter âC as the reference state.

Our energy function was written as a function of

strain and polarization to simplify comparisons

between DFT calculations and continuum models

using Landau and electrostrictive energy functions.

Experimentally, stress is often used as the independent

variable (Haun et al., 1987). Therefore, we apply a

Legendre transformation in Appendix 1 to provide

additional comparisons of our Landau and electrostric-

tive parameters with measurements taken on lead tita-

nate. Direct comparisons extrapolated to 0 K are given

in Table 3. There are notable distinctions between the

Bayesian inferred DFT calculations and experimentally

determined parameters. These differences could come

from multiple sources such as defects, zero-temperature

limits, as well as elastic parameters. It was unclear what

the experimental elastic parameters were in the study

by Haun et al. (1987). These values influence the

Landau parameters as described in Appendix 1.

Concluding remarks

Parameters contained within a ferroelectric monodo-

main model have been analyzed by comparing

continuum-scale model approximations to DFT energy

and stress calculations. Bayesian statistics have pro-

vided information about parameter uncertainty when

quantifying the energy landscape over a relatively

broad range of the polarization space. Previous analy-

sis that considered changes in energy along the sponta-

neous polarization direction (Oates, 2014) showed

relatively low uncertainty in predictions of energy and

stress. Here parameter uncertainty is found to be larger

during polarization rotation as highlighted by the

shear-related constitutive parameter posterior densities;

see Figures 6 and 10. The parameter uncertainty is pro-

pagated through the continuum model to quantify pre-

diction intervals of energy and stress along different

thermodynamic paths as illustrated in Figures 9 and

13. The larger uncertainty during polarization rotation

is believed to manifest at the atomic scale when approx-

imating the motion of multiple atoms within a unit cell

in terms of a single polarization vector along the direc-

tions not aligned with the spontaneous polarization.

Increased parameter sensitivity at larger polarization

that is rotated from the spontaneous orientation is also

expected to potentially reduce the uncertainty of a112.

This is further discussed in the complementary Part 2

paper on global sensitivity.

It is also important to point out the parameter esti-

mation differences in the fourth- and sixth-order

Landau energy functions. As shown in Table 1, the

inclusion of the sixth-order terms a111 and a112 influ-

ences the shape of the energy surface under zero strain.

First, the sign of the fourth-order coefficient a12

changes when using either a fourth- or a sixth-order

model. Second, Figure 7 illustrates parameter correla-

tion between the pairs (a11,a111) and (a12,a112). This

parameter correlation points to the important coupling

between fourth- and sixth-order terms. Caution should

be used when freezing higher order terms as a result of

perceived lower sensitivity. Quantifying the global sen-

sitivity of these different parameters can provide fur-

ther insights into their importance and should be done

in parallel with Bayesian statistics to keep the most rel-

evant model parameters without introducing unneces-

sary random parameters that would otherwise create

computational inefficiencies. In the cases where correla-

tion exist, parameter sensitivity rankings must account

for this effect which is discussed in more detail in the

Part 2 paper on new global sensitivity analysis tech-

niques and applications on ferroelectric models. This

sign change in estimating a12 is important because it

predicts a different ferroelectric phase (e.g. rhombohe-

dral versus tetragonal) as illustrated in Figure 14.

However, this is only relevant in the constrained strain

state. In the relaxed stress state, both the fourth- and

sixth-order models estimate the correct tetragonal

phase due to the additional effect of electrostriction

and elastic energy which is consistent with other homo-

genized energy models based on DFT results (King-

Smith and Vanderbilt, 1994).
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Appendix 1

The following relations provide a comparison of experi-

mental energy functions in terms of stress and polariza-

tion with the results given in this article. The Legendre

transformation is presented and several relations

describing spontaneous strain and polarization are

derived.
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Legendre transformation from strain to stress

Haun et al. (1987) define the energy functions with

respect to stress and polarization. For self-consistent

comparison of Landau and electrostrictive parameters,

the model in equation (1) is defined using stress and

polarization as the independent variables. Given the

non-linearities of the Landau energy function, we start

with the stress defined as

sij=
∂u
∂eij

= cijklekl � qijklPkPl +sR
ij :

This can be rearranged to find the strain as

eij = sijkl skl � sR
kl

� �

+ sijklqklmnPmPn: ð16Þ

Recall from Malvern (1969) that the compliance tensor

sijkl is the inverse of the stiffness tensor cijkl.

Substituting equation (16) into equations (2), (4),

and (5) yields the updated expressions for uM , uC, and

uR, respectively

uM =
1

2
srsmns

M
rss

M
mn + 2srsmnqrsabs

M
mnPaPb

�

+ srscdqrsabqcdef PaPbPePf

�

uC = � qijklsijmnPkPls
M
mn

�qijklsijrsqrsmnPmPnPkPl

uR = sijkls
M
kl + sijrsqrsklPkPl

� �

sR
ij

� �

ð17Þ

where we have introduced the relation sM
ij =sij � sR

ij .

The converted model in equation (17) is not a direct

match to Haun et al. (1987); however, an equivalent set

of model parameters are determined and have been

compared in Table 3. The electrostrictive coefficients

result from the expansion of

qijklsijmn !

Q11 = q11s11 + 2q12s12

Q12 = q11s12 + q12s11 + q12s12

Q44 = 2q44s44

ð18Þ

Two additional coefficients that arise as a result of

the transformation are

1

2
qijklsijrsqrsmn !

b1 =
q2
11
s11

2
+ q2

12
s11+ q2

12
s12 + 2q11q12s12

b2 = q2
11
s12 + q2

12
s11+ 3q2

12
s12+ 2q11q12s11

+ 2q11q12s12 + 2q2
44
s44

ð19Þ

These two bi coefficients scale the fourth-order

polarization terms, so their values influence a11 and a12

as follows.

The Landau polarization energy defined in equation

(3) can be defined in two distinct ways, which can

potentially shift the value of a12. We followed Cao and

Cross (1991) using a11 to scale the term

(P2

1
+P2

2
+P2

3
)2. Alternatively, the Landau function

can be defined such that a11 scales the term

P4

1
+P4

2
+P4

3
(Haun et al., 1987; Völker et al., 2011).

To directly compare the parameters, we expand the

polynomial (P2

1
+P2

2
+P2

3
)2 =(P4

1
+P4

2
+P4

3
)+ 2(P2

2
P2

3
+

P2

1
P2

3
+P2

1
P2

2
) and combine like parameters. Therefore,

in Table 3 we report the values �a11=a11 � b1 and

�a12 = 2a11 +a12 � b2 to directly compare fourth-order

parameters reported in Haun et al. (1987) with our

mean Bayesian parameter estimations.

Spontaneous polarization and strain

Expansion of the free energy via variational methods

gives rise to the static equilibrium conditions with

respect to polarization and strain. The condition for

static equilibrium with regard to polarization is

∂

∂xj

∂u

∂Pi, j

	 


�
∂u

∂Pi

= 0, (i, j= 1, 2, 3) ð20Þ

The stress in the material is found by taking the deri-

vative of the energy function with respect to strain, and

so the equilibrium constraint is

sij, j =
∂

∂xj

∂u

∂eij

	 


= 0, (i, j= 1, 2, 3): ð21Þ

The divergence of stress should be zero for systems at

static equilibrium.

The monodomain, that is, region of uniform polari-

zation, energy is a function of temperature, which can

be described by the phenomenological parameters in

equations (2), (3), and (4). All physical quantities are

uniform in space, so equations (20) and (21) reduce to

∂u

∂Pi

= 0, sij= 0 ð22Þ

Note that the condition on stress assumes that no

external stresses are being applied. Assuming that all

the polarization is oriented in the x3 direction, one is

left with the following system of equations

∂u

∂P3

= 2a+
1
P3 + 4a11P

3

3
+ 6a111P

5

3
= 0

∂u

∂e11
= c11e11 + c12(e22+ e33)� q12P

2

3
+sR

11
= 0

∂u

∂e22
= c11e22 + c12(e11+ e33)� q12P

2

3
+sR

22
= 0

∂u

∂e33
= c11e33 + c12(e11+ e22)� q11P

2

3
+sR

33
= 0

ð23Þ

where a+
1
=a1 + q11e33 + q12(e11 + e22). For tempera-

tures well below the Curie temperature, the solution for

polarization in a monodomain system is
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P3 =P0 =
�a0

11+ a0
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1
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11
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Recall that the results for spontaneous strain and

polarization given in the end of section ‘‘Bayesian infer-

ence results’’ were computed for zero residual stress.

When including our mean values for residual stress

from Table 2, we find a numerical solution for the spon-

taneous polarization and strain to be P0 = 1:1C=m2,

e11 = e22 = � 1:1%, and e33 = 9:3%.

Miles et al. 2839


