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Abstract

We illustrate the use of global sensitivity analysis, and a parameter subset selection algorithm based on local sensitivity
analysis, to quantify the relative influence of parameters in polarization and electrostrictive energy relations for a quan-
tum-informed, single-domain, ferroelectric material model. A motivating objective is to determine which parameters are
identifiable or influential in the sense that they are uniquely determined by density functional theory—generated data.
Noninfluential parameters will be fixed at nominal values for subsequent Bayesian inference, uncertainty propagation,
and material design since variations in these parameters are minimally reflected in responses. Whereas global sensitivity
analysis is typically based on the assumption of mutually independent, uniformly distributed parameters, we demonstrate
that inherent parameter correlations must be accommodated to achieve correct interpretations of parameter influence.
For the considered energy functionals, we demonstrate that all of the parameters are influential and will be informed by

density functional theory—simulated data.
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Introduction

Ferroelectric materials, such as lead zirconate titanate
(PZT), have been widely employed as sensors and
actuators due to their strong electromechanical cou-
pling, relatively large work densities, fast actuation
rates, and high setpoint accuracy. Due to the electro-
mechanical coupling, they provide unique solid-state
transducer capabilities that have the potential for sim-
plifying and significantly improving the mechanical
capabilities and energy efficiency of traditional mecha-
tronic devices. Due to these attributes, ferroelectric
materials have been considered or employed for high-
speed valves for fuel injection, energy-harvesting cir-
cuits (Song et al., 2010), structural health monitoring
sensors (Park et al., 2017), flow control transducers
(Bilgen et al., 2011; Kumar et al., 2011), flying and
ambulatory microrobots (Hoffman and Wood, 2011;
Pérez-Arancibia et al., 2011; Wood, 2008; Wood et al.,
2011), and ferroelectric memory technologies (e.g.
FeRAM) (Scott, 2000). Additional discussion of appli-
cations can be found in the works by Cattafesta and
Sheplak (2011), Chopra and Sirohi (2014), Jaffe et al.
(1971), Leo (2007), Nuffer and Bein (2006), Smith and

Hu (2012), Smith (2005), Uchino (2010), Uchino and
Giniewicz (2003), and Vasic et al. (2004).

Despite their successes in smart and adaptive struc-
tures, there is significant research focused on multiscale
and multiphysics analysis of ferroelectric materials
from atomic to macroscopic scales. One motivation for
this multiscale analysis is the need to better characterize
and optimize the capabilities and performance of exist-
ing materials such as PZT. For example, physics-based
quantification of the atomic properties that produce
hysteresis and rate dependencies such as creep can be
exploited to improve device designs and model-based
control algorithms. A second, broader, objective is the
goal of engineering materials at atomic scales to

'Department of Mathematics, North Carolina State University, Raleigh,
NC, USA

2Florida Center for Advanced Aero-Propulsion (FCAAP), Department of
Mechanical Engineering, Florida A&M University and Florida State
University, Tallahassee, FL, USA

Corresponding author:

Ralph C Smith, Department of Mathematics, North Carolina State
University, Raleigh, NC 27695, USA.

Email: rsmith@ncsu.edu



Leon et al.

2841

improve macroscale properties and capabilities. For
example, there is significant research focused on devel-
oping lead-free materials whose performance is close to
lead-based compounds but that are environmentally
safe and feasible for biomedical applications.

In the companion manuscript (Miles et al., 2018), we
detail the use of density functional theory (DFT) to
quantify the atomic structure properties of lead tita-
nate. These computations can be directly extended to
lead zirconate and other perovskite single-crystal mate-
rials. Moreover, we anticipate that by exploiting mix-
tures of the two, we can simulate the electronic and
structural properties of PZT. This provides us with the
capability to generate simulated atomic-level data to
inform continuum energy relations. However, scaling
up electronic and atomic structure calculations into a
continuum model leads to model uncertainties that may
have significantly different parameter uncertainties.

As detailed in Miles et al. (2018), we employ classical
functionals for the Landau polarization energy, electro-
strictive energy, and mechanical energy. All of these
relations contain phenomenological parameters that
govern attributes of the energy behavior. For example,
the sixth-order Landau polarization energy

up(P) = oy (P2 + P2+ P2) + ayy (P} + P2 + P2)’
+ app (PIP3 + PIPS + PIPY)
+ am(P? + Pg + Pg)
+ ayp[PY(P5 + P3) + Py (P} + P3)
+ P;‘(P% + Pg)] + a123P%P§P§
(1)

contains the parameters 6p = [a1, a1, a1, @111,
ai12, a123) that specify the non-convex energy potential
as a function of the polarization P = [P, P,, Ps].

There are two fundamental questions pertaining to
these parameters: (1) which of the parameters are iden-
tifiable or influential in the sense that they uniquely
contribute to energy responses and (2) what are the
actual parameter values that dictate the behavior of a
specific material and what are the associated uncertain-
ties in these values? The first comprises the sensitivity
analysis detailed in this article. For the polarization

relation (1), we will employ sensitivity analysis to ascer-
tain whether the sixth-order model is necessary or
whether a fourth-order model will suffice to approxi-
mate quantum calculations. The second question can
be addressed through frequentist or Bayesian inference,
and we address the latter using DFT-generated data in
Miles et al. (2018).

To detail the role of sensitivity analysis, it is first
necessary to define identifiable and influential para-
meter spaces. We consider the nonlinear input—output
relation

y =1 (2)

where 6 = [0, ...,0,] are model parameters, f denotes
the mathematical model, and y € R' is a real-valued
response. For the polarization energy (1), 6 = 6p are
the phenomenological parameters, f is the sixth-order
relation, and y = up(P) is the energy for a specified
polarization value.

The concept of identifiability is classical and can be
defined as follows. The parameters 6 = [0, ...,0,] are
identifiable at 0* if f(6) = f(6") implies that 6 = 0" for
all admissible 6 € Q. The parameters 0 are identifiable
with respect to a space 1(6), termed the identifiable sub-
space, if this holds for all 8" € 1(6). The unidentifiable
parameter space NI/(6) is the orthogonal complement of
1(0) with regard to the admissible parameter space Q
with the Euclidean inner product. Identifiable para-
meters can be uniquely determined from observations,
whereas unidentifiable parameters must be fixed during
model calibration using outputs y. An example of iden-
tifiable and unidentifiable parameters is illustrated in
Figure 1(a) and (b), respectively.

Influential parameter spaces are sometimes defined
differently in various disciplines. We define the para-
meters 0 = [0, ..., 0,] to be noninfluential on the space
NZI() if |[f(0) —f(0%)|<e for all 6 and 6* € N'Z(6).
The space of influential parameters, Z(6), is defined to
be the orthogonal component of A'Z(#) with respect to
Q. Noninfluential parameters, like unidentifiable para-
meters, can be fixed for model calibration and uncer-
tainty propagation. An example of a noninfluential
parameter is illustrated in Figure 1(c).

0 61
(a)

(b) (c)

Figure I. lllustration of y = f(0) for (a) identifiable, (b) unidentifiable, and (c) noninfluential parameters 6.
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Figure 2. lllustration of (a) a highly influential parameter 6, and (b) minimally influential parameter 6,. (c) Minimally influential

parameter 03 having large local derivative values.

A parameter 0 is considered more influential than
parameter 6, if changes in 0 produce greater changes
in y than changes produced by 6, when both are con-
sidered over the admissible parameter space. In Figure
2(a) and (b), we illustrate highly and minimally influen-
tial parameters.

We note that noninfluential or unidentifiable para-
meter spaces can include individual parameters or linear
or nonlinear combinations of parameters. To illustrate,
consider the parameters 6 = [6;,0;] in the admissible
space Q = R? and the models y = 6, and y = 6, — 6,.
For the first model, NI(6) = NZ(0)= {0, € R},
whereas NI(0) = NZ(0) = {(61,6,) € R*|0; = 6,} for
the second. We focus on the first case in this article and
note that active subspace methods can be employed for
the second (Bang et al., 2012; Constantine, 2015).

From Figure 1(b) and (c), one observes that uniden-
tifiable or noninfluential parameters can be partially
characterized by the property that the local derivatives
satisfy

o

36,0 =0 3)

when evaluated at nominal values 0. Moreover, Figure
2(a) and (b) indicates that the magnitudes of local deri-
vatives can be used to quantify the relative influence of
parameters. This motivates the use of local sensitivity
analysis and Fisher information matrices based on
equation (3).

There are three difficulties associated with using the
local derivative behavior to quantify parameter sensitiv-
ity. The first is that derivative values are typically una-
vailable unless models are sufficiently simple that they
can be analytically differentiated—as is the case for the
energy relations in this investigation—or codes have
adjoint capabilities or associated sensitivity equations.
This can often be addressed using finite-difference
approximations, although approximation can degrade
the accuracy of sensitivity measures. This is also the
basis for certain screening methods, such as Morris
screening (Cropp and Braddock, 2002; Morris, 1991;
Smith, 2014), which statistically averages derivative
approximations.

Of more serious consequence is the fact that equa-
tion (3) is local in nature and does not incorporate

variability throughout the admissible parameter space.
The parameter 65 depicted in Figure 2(c) is noninfluen-
tial but has large derivatives at certain nominal values
due to high-frequency chatter. This is also partially
addressed by Morris screening through statistically
averaging at multiple nominal values.

Finally, local sensitivity analysis does not accommo-
date potential input and output uncertainties of the
nature illustrated in the works by Saltelli et al. (2004,
2006, 2008, 2010) and Smith (2014). Specifically, it does
not quantify the manner in which output uncertainties
can be apportioned to input uncertainties as quantified
by global sensitivity analysis.

To address these issues, we employ global sensitivity
analysis in this investigation, which broadly quantifies
how uncertainties in responses are apportioned to
uncertainties in inputs (Saltelli et al., 2004, 2008; Smith,
2014). We focus on Sobol’ analysis (Sobol’, 1993, 2001;
Sobol’ et al., 2001), which is based on analysis of var-
iance (ANOVA), but note that Morris screening is
widely employed due to its computational efficiency.

When performing sensitivity analysis, one usually
does not have a prior knowledge of the underlying
parameter distribution. To avoid introducing uninten-
tional biases, one typically assumes in such cases that
parameters are mutually independent and uniformly
distributed. As we will demonstrate using the Bayesian
inference in Part 1 of these papers (Miles et al., 2018),
parameters in the considered models are highly corre-
lated and hence this assumption is false; for example,
a1 and «ap; are negatively correlated in equation (1).
We will additionally demonstrate that sensitivity analy-
sis based on this false assumption yields incorrect inter-
pretations about which parameters can be fixed during
Bayesian inference. To illustrate these potential pitfalls,
we present uncertainty analysis in Part 1 and sensitivity
analysis in Part 2, whereas this ordering would typically
be reversed when analyzing large-scale problems. We
summarize in the “Concluding Remarks” section the
manner in which sensitivity analysis can be addressed
prior to Bayesian inference when parameter correlation
is suspected.

We summarize in the section “Energy relations” the
employed continuum energy relations in addition to
the Landau energy in equation (1), the pertinent
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parameters, and the formulation of scalar-valued pseu-
doresponses y based on vector-valued polarization,
normal stress, and shear stress responses. In “Global
sensitivity analysis and the fisher information matrix,”
we detail Sobol’-based global sensitivity analysis for
correlated and independent parameters and construc-
tion of the Fisher information matrix, which is based
on local sensitivities (9f/90)(6%). In the “Results” sec-
tion on “Global sensitivity analysis,” we use Sobol’
indices for the correlated parameters to indicate that all
are influential and demonstrate in “Global sensitivity
analysis: assumption of independent parameters” that
analysis based on the incorrect assumption of mutually
independent parameters yields false conclusions about
potentially noninfluential parameters. Finally, we
demonstrate in “Local identifiability analysis based on
the Fisher information matrix” that identifiability anal-
ysis based on the Fisher information matrix corrobo-
rates the earlier global sensitivity analysis.

Energy relations

As detailed in Miles et al. (2018), we take polarization
to be the order parameter. The stored energy per unit
volume, expressed as a function of total strain ¢ and
polarization P, is

u(e,P) = up (&) + up(P) + uc(e,P) + ur(e) (4)

Here, u(e, P) is the total energy per unit volume, and
uy, up, uc, and ug, respectively, denote the strain,
Landau, electrostrictive, and residual energy per unit
volume. We denote the independent strain and polari-
zation variables by ¢ and P, respectively.

Based on the assumption of linear elasticity, the
mechanical energy, with respect to a reference cubic
state, is

C11

up (&) = 5 (3%1 + 8%2 + 3%3)
+ cio(enen + enesz T en1633) ()

2 2 2
+ 2C44(612 +ey t+ a13)

Here, ¢11, c12, and cy4 are elastic coefficients expressed
in Voigt notation (Malvern, 1969).
The sixth-order Landau polarization energy is

up(P) = ay (P} + P2 + P2) + ayy (P} + P + P2)°
+ ap (PIP3 + P3P + PiP3)
+ap (P + P+ PS)
+ o [Py (P} + P3) + Py(PL + P3)
+ P(P} + P3)] + a1n3PiP3P;
(6)

where a1, a1, a2, @111, @112 and a3 are phenomenolo-
gical parameters. One goal of sensitivity and

uncertainty analysis is to determine the necessity of
including sixth-order terms rather than employing a
fourth-order relation.

The electrostrictive energy is

uc(e,P) = — gy (en P} + exnP3 + e33P3)
—qulen (P; + P3)
+ e (PY + P3) + ex3(P] + P3)]
— 4q44(e12P 1Py + €13P1P3 + e3P2P3)

(7)

where ¢,
coefficients.
The residual energy

q12, and q44 denote the electrostrictive

u(e) = ojjey (8)
arises since the unit cell is held fixed with respect to the
reference cubic state. Hence, the unknown required resi-
dual stress crf; constrains the unit cell to the cubic state.

We next summarize the parameters, independent
variables, and responses used in Miles et al. (2018) to
employ DFT analysis to calibrate the monodomain
continuum model. This forms the basis for the global
sensitivity analysis detailed in this article.

Monodomain continuum model

In the DFT analysis detailed in Miles et al. (2018), we
focus on energy, stress, and polarization computations.
We hold the unit cell fixed so that the total strain is zero
in the cubic state. This permits the polarization energy
(equation (6)) to be calibrated to DFT computations
independent of electrostrictive coupling due to equation
(7). The additional effect of electrostriction is incorpo-
rated by evaluating the continuum stress

ou

This yields the stress tensor

o=c:¢+of—q:PP (10)

where ¢ is the fourth-order elastic tensor and o® is the
residual stress tensor obtained from the derivative of
the residual energy (equation (8)) with respect to strain.

In the following expanded equations, we employ the
Einstein summation convention in which one sums
over repeated indices. The tensor indices are reduced to
Voigt notation using the convention ();; — (),
02— 02 O —=05 Oxn—0s O—0s and
()12 — ()g- This notation is applied to the elastic and
electrostrictive coefficients.

To simplify DFT computations, we constrain the
polarization to move from P; to P,, with employed val-
ues shown in Figure 3. It follows that of, = 0%, and
o, = o = 0. The remaining stress components are
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Figure 3. Input values of P, and P; for equation (I5).

o1 = cien tocin(en t+e33)
2 2 2
7q11P1 *6112(1)2 +P3) +0—11€1
on =cnen T enlen + 633)
—quP; — qu(P} + P3) + %,
o33 =cnes T enlen + &)
2 2 2
—quP5 —qi (P} + P3) + 0%,
023 = 2caa623 — 2quPrPs + o,

Since the elastic properties of lead titanate are well-
understood, we assume fixed elastic properties from
previous DFT simulations (King-Smith and Vanderbilt,
1994) and neglect uncertainty and sensitivity with
respect to the elastic coefficients ¢, ¢j2, and cgq. We
evaluate sensitivities with respect to the zero strain case.

The polarization energy parameters are

0p = a1, a1, @, a1, @12 (12)

and the normal and shear stress coefficients are,

respectively

b, = [C]44, 053] (13)

The combined set of stress component parameters is
thus

R R —
I:QIla q12, 0-119 O—§2, 033] s 00}- -

0, = [00»15’ Gm}

and the monodomain model parameters are

eMD = [01),60] (14)

The DFT outputs, or responses, are

ns )’ 022 (Bo'm-)n 033 (00',,\-)9 023 (90\. )]

(15)
which include the Landau polarization energy and the

normal and shear stresses. We note that while all are
functions of the polarization, we suppress this

yup(Oup) = [up(6p),011(6,,

dependence when discussing the sensitivity of responses
to parameters. In addition, the sensitivity of these
responses to the polarization energy parameters 6p and
stress parameters 6, can be analyzed separately due to
the independence between up(fp) and o11(6,,),
0'22(00,15)’ 0'33(0(7,,5)’ 0'23(003)

For standard global sensitivity analysis, it is neces-
sary to construct scalar-valued responses of the para-
meters 6p, 6, , and 6, and polarization values (P}, P}),
which serve as independent variables.

For the polarization energy response up defined in
equation (6), we employ the pseudoresponse

N

1 7 1
Yp(0p) = N};up(}g,g;ep) (16)
which averages over the N polarization values

(P5,P), n=1,...,N, plotted in Figure 3. For the
vector-valued stress responses Ve, (05,.) = [011, 022, 033]
and yUS(OUA) = 073, where 011,022,033, and O3 are
defined in equation (11), we construct the
pseudoresponses

N
YU’ns(eﬂ'm) = 7NZ 11 Pn,Pg, 0',,5)

+ —21033 (P3.P%;6,,,)
=
and
Yy (05.) = —2023 P5,P3;0,,) (18)

n—l

The monodomain responses Yp(0p), Yo, (65,,), and
Y. (0,,) in equations (16) to (18) are linearly parameter-
ized so we can express them as

Yp(0p) = [a1 az a3 as as)|a; oy apn 0111101112]T

T
Y5,,(05,,) ]
Yo, (05,) = [c1 ¢2][qas 053]

= [b1 by b3 by bs)[q11 g12 O'f1 0'52 0'§3

where

N

1 2
(P +P) =D (P + )

n=1

1 N
2 — 6 6
P3P, aa = N;; (Pz,, + Pan)

(P53, PLFL)

a; =

2 |

==

==

2
2
S

and
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e (B )

n=

3N
2 N
2 2
f—NZ:(P + P? )

—

b2:
by = by = bs §
N
01:——2 P2P3 ,6‘271

n—l

This facilitates the analytical determination of the
component functions in the high-dimensional model
representation (HDMR).

For global sensitivity analysis, we generically express
equations (16) to (18) as

Y =1(0)

Here, Y denotes the polarization response Yp, the
electrostrictive normal stress response Y, or the elec-
trostrictive  shear  stress response Y, , and
0 =1[0,...,0,]is Op, O, or O, . We employ O to
represent random variables and 6 to indicate realiza-
tions of those random variables.

(19)

Global sensitivity analysis and the Fisher
information matrix

The objective of sensitivity analysis is to quantify the
sensitivity of the responses Yp(0p), Yy, (0y,), and
Y5 (05,) in equations (16) to (18) to the parameters
0p,0,,, and 6, . In local sensitivity analysis, one
approximates the derivatives of responses with respect
to parameters and evaluates them at nominal para-
meter values, to quantify the influence of parameters
on responses; that is, see equation (3). As detailed in
Chapter 15 of Smith (2014), global sensitivity analysis
more broadly quantifies how uncertainties in responses
can be apportioned to uncertainties in parameters.

We employ both techniques to illustrate their relative
merits. The objective is to determine whether any of the
parameters 6p, 0, , or 6, are unidentifiable or nonin-
fluential, in the sense defined in the “Introduction,” sec-
tion and hence should be fixed for subsequent Bayesian
inference and uncertainty quantification.

To avoid scaling issues, it is standard to first map
sampled parameter values to the interval [0, 1] using the
cumulative distribution function (CDF) of the marginal
probability density functions (PDFs) of @. Specifically,
for a general parameter ®, the parameter input space is
mapped using the relation

0

r0)=F©) = [ polédt

—o

(20)

for realizations 6 € R, where pg(§) is the PDF of ©.

Sobol’ indices

Sobol’ indices for correlated parameters and general
densities. We focus here on the input—output relation

Y =7(0©)

defined in equation (19), where Y is scalar-valued and
© = [0y, ...,0,] has the joint density pg(#). In the
section on “Sobol’ indices for independent parameters
with uniform densities,” we illustrate the special case of
independent, uniformly distributed parameters.

To construct the global sensitivity indices, the model
response for realizations 6 is represented by the HDMR
or Sobol” decomposition

P
+ Zfl(az) + Z f,-j(el-,e_,-) +
i=1 1<i<j<p
+fi2p (01, ..., 6p) (21)
= > filbw)

PC{l,...,p}

defined in the work by Sobol” (1993). The second repre-
sentation utilizes the functional form detailed in the
work by Smith (2014), where i’ = {7y, ...,i,} comprises
a set of integers with cardinality n<p,
0y = [0i,, ...,0; ], and fy=fy. We note that each of the
component functions is constructed to satisfy

/ oo (80 )i (608 = 0 (22)

Iy

i

to ensure that the component functions are uniquely
defined. Here, p;(6y) is the joint PDF for the parameter
set 0y. As detailed in the work by Smith (2014), the
component functions can then be expressed as follows

e / p(0)/(6)d0 = E(Y)

r
76) = [ p-(0-)f(6)40-s ~fo = E(YI6) 1
I
fi(0:,6;) = / P g3y (013 )/ (0)d0— (i
gy
—fi6) —£(6,) —fo (23)
= E[Y|qi.q;] —£(6:) — £;(6;) —fo
fip(01,.6,) =£(0) —fo— > fi(6)
1<i<p
> fi(6:6)
1<i<j<p
_ Z fijk(eia 0; gk) ...
1<i<j<k<p
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where I, 11,, and I'_; are the image spaces for 6,
0~l [Gla'- l 1’01+la "'96p}9and

9~{g;}5[91, e i, 040,

0,

Likewise, p_(0—;) and p_;3(0~(;), respectively,
denote the conditional PDFs for 6-; and 6, given 6,
and (0;,0;). To construct the sensitivity indices, we
define the total and partial variances

01,01, ...

D= [ (o) ®)d8 £} = var
r

D, = / (0:)/2(6,)d0; = var[E(Y|6,)

I;

Dy = [ 9,067 (61.6))a0udt
ry
= var[E(Y|6;, 6,)] — var[E(Y6,)] — var[E(Y|6,)]

To account for correlations in the parameter struc-
ture of the component functions, we employ a formula-
tion of var[Y] proposed in the work by Li et al. (2010).
For general parameters 6, this derivation employs the
Hilbert space inner product

to express var[Y] as

var[Y] = E [(y - E[Y])z]

20 —1
=y —fo.y —fo), <Zfr/,,y fo>

n=1

Here, r,, 1 <n<2 —1, represents all the possible
sets {i|ll <i<p}, {j|1<i<j<p},... of parameter
indices for the component functions, using the func-
tional form in the work by Li et al. (2010). For example,
letting C5 = (p/2), the first- and second-order compo-
nent functions are

Ist order : £, (6,,) = £1(61), . (Grp)
2nd order : f;, . (6,,. )

= (6)
:f12(91,02), ey

ﬁp‘r(‘g <0rp+ (‘5) :fp*LP (017*1’ GP)

The linearity of the inner product and relation
(22) are then invoked to obtain the variance
decomposition

r—|
var[Y] = Z covlf,,, Y

n=1

27 —1 27 —1 (24)
= Z var[f,,] + cov [frn, f,/]
n=1 = 1,0#n
where
covlf,, Y] = fp(ﬂ)ﬁ (60 r,,)[f( ) —foldb
D’”n = Varv; f prn Vn ’”n)de (25)
The sensitivity indices are then defined to be
s - covlf,, Y] S‘ _ D,
" P (26)
. covlfe )
D
where §,, = S + ;. As detailed in the work by Li

et al. (2010) S“ dnd S5 respectively, correspond to the
structural and correlatlve contributions to the total
index S,, . The indices (equation (26)) satisfy

»—1
> s, =1

n=1

The integrals in the indices S,, and S; are approxi-
mated using Monte Carlo integration techniques (Li
et al., 2010; Sobol’, 2001), whereas the index Sy is sim-
ply computed using the relation

an = S"n - S;n

In addition, we define the total sensitivity indices

P
Sp =8+ Y St Y. Spt - +S_, (27)
i=1 1<j<k<p
i i

which quantify the total effect of the parameter 6; on
the response, including high-order structural interac-
tions and correlative contributions.

When analyzing first-order Sobol’ indices, a rough
guide is to consider first-order Sobol’ indices S; that are
greater than (100/p)% as significant because, in the
absence of interactions, they have greater than average
effect on the response variability. Higher-order Sobol’
indices may be negative due to the correlations between
the parameters. To measure the significance of any nega-
tive Sobol” indices, we consider the magnitude of the index
as well as the value of the total index S7, (equation (27)).

Sobol’ indices for independent parameters with uniform
densities. For the special case when the parameters
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© = [0, ...,0,] are independent and uniformly dis-
tributed on the hypercube I'=[0,1]’—that Iis,
®;~U(0,1) for i =1, ..., p—one can significantly sim-
plify the relations for the component functions fy, fi, fi.
and Sobol’ indices. As detailed in the works by Ma and
Zabaras (2010), Rabitz and Alis (1999), Smith (2014),
and Sobol’ (1993), the component functions in this case
are

Jo=E[Y]= [f(0)d6
/

£i(6:) = E[Y|0] — fo = / £(0)d6- — fi

£i(6:,6;) = E[Y16:,6,] — £(6;) — £;(6;) — fo (28)
- / F(0)d0- 5y — £(0) —£6) —fo
2
Here, 1771 = [0, 17", P72 = [0,1F°%, ..., and 0_(;

denotes the vector having all components of 6 except
the ones corresponding to the subset {ij}; that is,
dHNi = d01 . ~d0,»,1d0,~+ 1 dOP

Since the parameters are assumed to be mutually
independent, the second right-hand expression in equa-
tion (24) reduces to zero; that is

-1

>

0=1,04n

cov lf,.n, ﬁ[‘| =0 (29)

Hence, the component functions f;, are mutually ortho-
gonal. Therefore, the correlative sensitivity index Sy in
equation (26) reduces to

an — COVV"W Zﬁé] — 0

2 (30)

This shows that there are no correlative contributions
to the index S§,, representing total contributions. The
total contributions can then be expressed as follows

s - VY] _ o _ Varlf] _ Dy,
" D Tn D D

(31)

That is, the sensitivity index representing the total con-
tributions is equal to the index representing the struc-
tural contribution. Thus, one obtains the relation

VaI’V;n] _ frnf;% (Or,1 )dGr,,
varlYy] ~ [.72(0)d0 — 3
for the sensitivity index representing the total contribu-

tion from 6, . Here, I'" = [0, 1]" represents the input
space for the set 6,,.

D,
S, = —=

"~ D (32)

The integrals in equation (32) are approximated
using Monte Carlo integration in a manner similar to
the approximation to equation (26). When p is large,
this becomes prohibitively expensive. For problems
where f(6) can be approximated by a second-order
HDMR representation

P
FO)=fi+ D H0)+ D> f3(0.6) +e
i=1 1<i<j<p

where &~N(0,0?) represents truncation error, one
obtains the Sobol’ indices

D; _ var[E(Y|6))] Dy ..
Si= == —""“2 S: =" qjji=1,...
D var[Y] i~ p> b p
? var[E(Y]0-,)
j=1
i
which satisfy
p
> s+ S; =1 (33)
i=1 1<i<j<p

In this case, algorithms such as those proposed in the
works by Saltelli (2002), Saltelli et al. (2010), Sobol’
et al. (2001), and Weirs et al. (2012), can be used to
construct estimators for the sensitivity indices. These
algorithms greatly reduce the number of function eva-
luations otherwise required for Monte Carlo sampling—
based quadrature. For example, for the polarization
energy and normal stress parameter sets p in equation
(12) and 6,, in equation (13), the dimensions are
p =35, which makes Monte Carlo sampling—based
quadrature over I, I’ P=1 and 172 expensive. To
address this, we employ Algorithm 3.1 as presented by
Wentworth et al. (2016), to construct estimators for S;
and Sr,.

Analytical computation for linearly parameterized
problems

Consider linearly parameterized problems

Y=1(0)=a10; + 0, + ---4,0, (39)
such as (16) for the monodomain model. We make the
assumption that O~N(m,V) where
"=, M, ...,MP}T is a vector of nominal values for
® and V is the p X p corresponding covariance matrix.
As before, we denote realizations of the random vari-
able © by 0.

We construct the component functions (23) by evalu-
ating conditional expected values in
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Algorithm 3.1: Saltelli algorithm to compute first-order and
total Sobol’ sensitivity indices for uniform densities (Saltelli
etal, 2010)

(1) For M Monte Carlo evaluations from U(I"?), create two
MXp sample matrices

Kl 6! 0 |

A= : :
LA

o) --- 0 o)

B=1: :
o]

The entries of these matrices are pseudorandom numbers
drawn from the respective density. In our investigation, the
number of parameters is p = 5 for the polarization energy
response Yp(6p) (equation (16)), p = 5 for the normal stress
response Yy, (6,,.) (equation (17)), and p = 2 for the shear
stress response Y, (6,,) (equation (18)).

(2) Create
| 0] 6! 0,
AY = | - (34)
N

where the entries are identical to A with the exception that the
ith column is taken from B. Create BX) in a similar manner.
(3) Create

(35)

which is the B matrix appended to matrix A. _ )
(4) Compute the column vectors f(A), f(B), f(Ag)), and f(Bg'))
by evaluating the model at input values from the rows of
matrices A, B, Ag), and Bﬂ\'). Here, f(A)j denotes the output
computed from the jth row of A.

(5) The first-order Sobol’ indices are estimated by

S w3 {f(A),»f(Bﬁ{’)j—f(A),-f(B),}

i 36
o fOfC-Ef(O) (36)
and the total indices by
SO [f(A),—f(A:?)} 2
St~ il ’ 37
T AOfOE(C) (37)
In equation (36), we approximated the squared mean
fe = J F(6)f(6")dodo’
Jad
by
2 | M
fo =~ Z f(A)f(B); (38)

j=1

as motivated in the works by Saltelli (2002) and Sobol’ et al.
(2001).

fo=E[Y] =E[a;® + 0,0, + -+ + a,0,]
= q|E[0] + RE[@,] + -+ + a,E[0,]
=aipy + -+ app,

£i(0;) = E[Y6:] — fo
= aiE[@1]0]] + - + 4,E[0,16:] — /o,

Ji(6:,6;) = E[Y16:,6;] — fi(6:) — £;(6;) —fo
= aE[0,]0:.6)] + - + a,E[0,]0:.0)]
—fi(6:) = £(6)) —fo

(40)

We note that equation (40) requires the evaluation of
expectation terms E[®,|6;], where r = 1, ...,p. To ana-
Iytically evaluate these terms, we partition ® and V as
follows

Vi

0=[0,0,], V= Vi

V12:|
Vo

where @ is7 X 1, @, is (p — r) X 1, and the components
of V have dimensions

rXr rX(p—r) }
p—r)xXr (p-r)xX@p-r)

As detailed by Eaton (1983), the expected value is

E[©,]0;] = p; + V12V, (8, — my) (41)

We now apply these results to relation (39). We
denote the entries in the covariance matrix by

2
01 P2 Pip
2
P2 03
V=
2
ppl a-p

We can then express the component functions (40) as
p o
fi(0:) = a;0; + Z a; (,uj T Poo, ;{((9,- — ,ui)>
j=1 i
J#i

—f, (G=1,....p)
fij(0:,0)) = aib; + a;0;

-1
i ij i 157,
+ E ag Mk+[pkipkj][p 0.2‘| {9]‘—,&]}

+ ap iy,

k=1 Ji J
ki j
~fi—fi—fo
frop@r 0 =fO = — > fiw

1<i<j<k<(<p

P
- D> fw— > S fi—h

1<i<j<k<p 1<i<j<p i=1

(42)
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Here, p,,, = p;j/(0i0;) is the Pearson correlation, p;
the covariance between 6; and 6;, and o7 is the variance
for 6;. We present results, obtained when employing
this methodology for the monodomain model, in the
“Results” section.

Spline basis functions expansion

The analytical solution technique, detailed in the previ-
ous section, is only applicable for linearly parameter-
ized problems. Here, we discuss a general solution
technique for nonlinearly parameterized problems
Y = f(0). This technique is based on the work in Li
et al. (2010) and utilizes cubic B-splines (Hastie et al.,
2009; Prenter, 1989), Bi(0), k=—1,....m+ 1, to
approximate the terms in the HDMR representation
for Y = f(0). Specifically, the component terms in
equation (23) are represented as

m+ 1

Si(0:)~ E alB,(6))
r=—1
m+1m+1

fi0:.0)~ > " > BY B.(6:)B,(6))

u=—1q=-1
Jix(65,0;,0;)

m+1lm+1m+1

= Z Z Z ’ny](vBM(Bl)Bq(Hj)Bv(ek)

u=—lg=—1v=-1

where coefficients «, 87 , and v} are to be determined

ugqv
via least squares regression. The first-, second-, and
third-order component functions are approximated by

ﬁ(@f)w‘—fo

£i(01.6;) =" ~ 1o~ 1(6) ~5(8)

S (03.0.0) =¥ 1o —1(63) —5(6))
—1i(67) 13 (05.65) — £ (65, 03) — £ (6,61

Here, Y* = f(#°) is employed as an unbiased estimator
for E[Y[6) ] and 6 represents realizations from the
underlying distribution for 0. Substituting the expres-
sions (43) into (44) yields

m+1

i alB.(07)=Y" —fy

:n:;: m+ 1

> BLB6)B(%)

u=—1q=-1

~Y' —fo — ];(0; (45)

m+1lm+1lm+1

)
> 3 Y e>Bq() )
)

u=—lg=—1v=-—1

~Y' —fy — (ej

~i(# ,)

—fi(0

>fw( )

T

To determine the coefficients o' = [a' |, ..., ],

we minimize the cost functional

>

jé(
(v

~ V- A

e i)

m+ 1

2
~fo= aiBr(05)> (46)

=1
— Alilg ) (Y’ A{f}a")

o' Hz

fori=1,...,p. Here

5.1(6))

;) Bo(o;)
Al =

Bm +1 (011)
~1(0F)  Bo(67) By 1(05)
Yl
Y= |-fl
YK

1=11,...,1]", and K is the number of samples of 6.
Hence, we obtain the least squares solution

. 0\ 1 . .
o = (A{’}TA{’}) ATy (47)

to the sum of squares cost function (46). It follows that

the first-order = component functions  satisfy
Y= ... =Yy~
Similarly, for
i — gV i
B BLy 1o By 1,—1e
ij ij ij r
B—I,O"' Bltq""’Bm+l,m+l]
and
ik ijk ijk ijk T
y [717171""”yuqv’""7m+lm+lm+l]

we minimize the cost functions

Jy(B7) = || Y7 — AW il
Ty (YF) = || Y7 — AT ||

In the “Results” section, we compare the results of
using the analytical method of computing the compo-
nent functions presented the previous section with the
method presented in this section for the monodomain
model.

Fisher information matrix

The Fisher information matrix contains local sensitivity
information that can be exploited to determine



2850

Journal of Intelligent Material Systems and Structures 29(13)

unidentifiable or noninfluential parameters. To moti-
vate, we consider a scalar-valued response

Y =f(P";0),

where P" are prescribed polarization values. For exam-
ple, this could be the polarization energy

n=1,...,N

Y = up(P5, P3;0p)

defined in equation (6) and employed in equation (16)
when constructing a pseudoresponse. We let Y, denote
data at the same N polarization values.

Minimization of the functional

J(60) = ]%Z Y, —f(P";0))

n=1

yields an optimal parameter vector 6*. As detailed in
the “Introduction,” is locally identifiable at 0" if this
minimum is uniquely determined by data.

To relate to local sensitivity, we consider the multi-
variate Taylor expansion

J(P0)=~f(P";67) + Vof (P";07) - A
where
9 T
VA (P30) = [ (PO ()| )

and AO =6 —0". Based on the assumption that
Y,~f(P";6%) at the minimum 6*, the cost functional
can be approximated by

N

IO~ D Ve (P36

n=1

") - A6)?
If we define the N X p sensitivity matrix S by

T prgy .. L pg
a‘91(117,0) aop(P’o)

I N of .
a01(13 0°) - %, (P ;60%)

we can then approximate the cost functional by

J(0)~ %(SAB)T(SAB)

or, equivalently, J(0* + A0)~(1/N)AOTSTSAG. If we
take Af to be an eigenvector of STS, so that
STSAO = AA6, then

1
J(O" + A0)~NA | A6 |3

We note that if A=0, the cost functional perturba-
tions J(0* + Af) are also approximately 0 and hence
the corresponding parameters are locally unidentifiable.
This forms the basis for the algorithms in the works by
Brun et al. (2002), Burth et al. (1999), Contron-Arias
et al. (2009) and Quaiser and Monnigmann (2009). We
employ Algorithm 3.2 from the work by Quaiser and
Monnigmann (2009).

Results

In the next section, we illustrate the analytical and
numerical techniques from the last section for quantify-
ing the global sensitivity of the parameters (equation
(14)) in the linearly parameterized models Yp(6p) (equa-
tion (16)), Y5, (6,,.) (equation (17)), and Y, (6,,) (equa-
tion (18)) for correlated parameters. We illustrate in
section “Global sensitivity analysis: assumption of inde-
pendent parameters,” the discrepancies that arise if one
performs global sensitivity analysis based on the incor-
rect assumption that parameters are independent and
uniformly distributed. In the final section, we will use
local sensitivity analysis, based on the Fisher informa-
tion matrix discussed in “Fisher information matrix” to
isolate unidentifiable parameters.

Global sensitivity analysis

Analytical determination of component functions. To con-
struct the component functions (equation (23)), we
must first specify a prior distribution for the para-
meters. We obtained nominal values for 6p, 6,,, and
0., via Bayesian inference by calibrating using synthetic

Algorithm 3.2: Parameter subset selection algorithm to determine locally unidentifiable parameters (Quaiser and Monnigmann,

2009).

(0) Set p = p, where p is the number of parameters in the model, and construct the sensitivity matrix S following relation (49).

We note that the variable 17 changes with the iterations of the algorithm.

(1) Compute the matrix SS and its eigenvalues and order their magnitudes as

NiIsAal<-- <Ayl

(2) If X, |>€, where € is some prescribed threshold value, stop. We take all the parameters to be identifiable.
(3) If JA1|<e€, then one of the parameters is not identifiable. Proceed as follows.
(4) Identify the component with the largest magnitude in the eigenvector A6, associated with A|. This component corresponds to

the least identifiable parameter.

(5) Remove the column in S corresponding to the component identified in Step 4, set n = 1 — | and repeat Step |.
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Table |. Mean parameter values obtained through Bayesian inference in the work Miles et al. (2018).

Parameter ) a) app an a2
Units MV m/C MV m*/C3 MV m*/C3 MV m’/C® MV m’/C®
Mean value () —3894 761.3 414.1 61.46 —740.8
Standard deviation 10.49 30.01 241.6 19.98 499 .4
Parameter qi q12 U’ﬁ 0'52 ‘7§3
Units GV m/C GV m/C GPa GPa GPa
Mean value (u,,) 19.2 3.14 —3.98 —4.00 —3.4I
Standard deviation 0.258 0.182 0.103 0.101 0.118
Parameter Q44 o
Units GV m/C GPa
Mean value (u,) 1.40 —8.16e—4
Standard deviation 0.019 3.32e-3
oy
825 3.5
d 675 5 |8
2.6 - A2
1000 8.7 . .
= T ¥
3 © 5
-200 4.2 TEET R
_ 130 3.8 ;i
= u:b& v
3 ki Eehe
42| GTRE R
20 o %22
o 500 g T -3.1
= o : \ - o 3
T 3 B o :
-1850 | .5 g el PG S 37493 R I T th
-420 -360 675 825 -200 1000 20 130 18. 20 2.7 35 -4.2 -3.7 -4.2 -3.8

Figure 4. Pairwise correlation among the Landau energy
parameters fp = [, a1, @12, )11, Q112).

data computed via DFT simulations (Oates, 2014). As
detailed in Miles et al. (2018), we use the Delayed
Rejection Adaptive Metropolis (DRAM) algorithm
(Haario et al., 2006; Smith, 2014) to perform the

Figure 5. Pairwise correlation among the normal stress
- R R R
parameters Oy, = [q11,q12, 0|, 0, 53]

Bayesian analysis. We summarize the nominal values in
Table 1. We plot the resulting joint pairwise correlation
plots for 6p, 6,,,, 6, in Figures 4 to 6.

We also obtained the covariance matrices

105.65 ~287.05  —1.306% + 3 177.38 2.9320¢ + 3
~287.05 854.09 3.4852 + 3 ~556.86  —8.4947¢ + 3
Vo= | 1.3069¢ +3 34852 +3 53605 +4 —2.0918 +3 —1.074le + 5
177.38 ~556.86  —2.0918¢ + 3 376.36 5.3725¢ + 3
2.9320e +3 —8.4947e +3 —1.074le+5 53725 +3  2.2692 + 5
0.0605  0.0014 0.0012 0.0021 0.0208 (50)
0.0014  0.0314 0.0115 0.0106  8.8239¢ —4
V, = | 00012 00115 0.0097 0.0037 63619 — 4
0.0021  0.0106 0.0037 0.0093  8.466le — 4
0.0208 8.823% —4 63619 —4 8.466le —4  0.0126
 [3480lc—4 3.6383¢—5
7 (3.63836 5 l.1l4le— 5>

via Bayesian inference.
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1.34 1.44
Figure 6. Pairwise correlation among the shear stress

parameters 0, = [q44, Th3].

To construct distributions required to analytically
construct or numerically approximate the component
functions fy, f;, . . . and Sobol’ indices, we take

®P~N(ILP9 VP)D ®Um NN(’Lnsﬂ VtTm)
®U's NN(MS’ VU; )

where pp, M, and m, are the nominal values from
Table 1 and the covariance matrices are defined in
equation (50). We note that this is an approximation to
obtain parametric distributions from the non-
parametric posterior distributions created through
Bayesian analysis. As an alternative to Bayesian infer-
ence, one could use asymptotic ordinary least squares
(OLS) techniques or experimental data to obtain nom-
inal values and covariance matrices.

Numerical determination of component functions. Using the
numerical method detailed in the section on “Spline
basis functions expansion,” we first solve the least
squares problem (47) to compute the coefficients o'"
used in equation (43) to approximate fi(f;). We then
compute coefficients 87 and y’* to compute second-
and third-order effects f;;(6;,0;) and fj(0;,6;,6;). The
samples for the procedure in this section are also taken
from the distributions N (mp, Vp), N, Ve,,), and
N (s, Vo).

Sobol’ sensitivity indices. The first-order Sobol’ indices S;,
i=1,...,p, quantify the fraction of uncertainty in
the response that can be attributed to 6;, whereas
higher-order sensitivity indices Sy, i<j, Sy, i<j<k,
..., quantify the uncertainty due to interactions and
correlations that can be attributed to the parameters.
The total indices Sy, quantify the total fraction of
uncertainty that can be attributed to 6; and its higher-
order structural interactions and correlation contri-
butions with other parameters. Hence, Sy, provides a
more comprehensive measure of global parameter
sensitivity.

Here, we construct the sensitivity indices for each of
the component functions f. . We determine the compo-
nent functions f;, using the analytical and numerical
methods of the previous section. We employ the Monte
Carlo approximations

covlf,¥] Skt (85, ) 1F09) — ]

"7 varlY] S 16— fof
o _ varlf] S 1 (6Y) Gl
" var[Y] Zf: L F(6%) —fol?

S =5 -5,

where f is approximated by the sample mean

K s

Using these approximations, we obtain the results in
Table 2 for 6p, Table 3 for 6, , and Table 4 for 6,,.
Note that we used K = 10,000 samples to compute the
sensitivity indices with Monte Carlo quadrature. For
the pairs of parameters that are most correlated, and
whose individual parameters are most influential in 6p,
second-order sensitivity indices are significant. We
make a similar observation for the normal stress para-
meters 6, as illustrated in Table 3. We find that due
to the contribution effects corresponding to parameter
correlation, no parameter is noninfluential as exhibited
by the total sensitivity indices for 6p, 6, ., and 6,.

We plot in Figure 7 the first-order and total sensitiv-
ity indices S; and Sy, for the Landau parameters 6p. In
Figures 8 and 9, we plot the sensitivity indices S; and
Sr, for normal and shear stress parameters 6, and 0,,
respectively.

We note that the magnitudes for the first-order sensi-
tivity indices S5 and Ss are relatively small for the para-
meters a1, and a;;2. However, correlative contributions
present in the higher-order sensitivity indices and com-
piled in Table 2 have a non-negligible effect on the total
sensitivity indices Sy, and Sz,. This implies that the para-
meters 63 = a, and 05 = a1, are still influential.

We make a similar observation regarding the electro-
strictive coefficients ¢;; and ¢j. Although, first-order
contributions are negligible, second- and third-order
interactions, as observed in Table 3, yield greater total
sensitivity indices, making the coefficients more influen-
tial. We observe from Table 4 that while the first-order
contribution is negligible for g44, the second-order sen-
sitivity index for 44 and o%; is significant in the case of
the shear stress. This yields a considerable contribution
to the total sensitivity indices S7,, making both para-
meters g44 and oy influential.

To illustrate relative effects of first-order and higher-
order effects, we plot in Figures 10 to 12, the compo-
nent functions for 6p, 6, , and 6,. We note that the
higher-order component functions are significant in all
three cases.

Since the parameters 6p are highly correlated, as illu-
strated by the covariance matrix (equation (50)) and
the pairwise plots of Figure 4, we conclude that all the
component functions of equation (16) are significant.
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Table 2. Sensitivity indices for total contributions S, constructed using the component functions f; for the Landau energy
parameters 0p.
S| SZ s3 54 Ss
A. Ist order 0.281 0.133 0.006 0.088 0.009
N. Ist order 0.274 0.127 0.005 0.082 0.008
Si2 Si3 Sia Sis S S24 Sas S34 S35 Sas
A. 2nd order 0.100 0.062 0.060 0.067 0.012 0.021 0016 —3.75e—4 0.002 —0.001
N. 2nd order 0.109 0.065 0.068 0.072 0.014 0.029 0.019 0.002 0.004 0.002
Si23 Si24 Si2s Si34 Si3s Si4s S234 S235 S245 S345
A. 3rd order —0.002 0.049 —0.052 0.013 —0.069 —0.024 0.032 —0.011 0.015 0.001
N. 3rd order 4.20e—4 0.036 —0.052 0.016 —0.068 —-0.023 0.036 —0.009 0.018 0.003
Si234 Si23s Si245 Si345 S2345
A. 4th order —0.070 0.202 —0.011 0.088 —0.025
N. 4th order —0.073 0.195 —-0.011 0.092 —-0.011
Si2345
A. 5th order 0.009
N. 5th order —-0.027
ST, St St Sr, St
A. Total index 0.703 0.418 0.249 0.244 0217
N. Total index 0.672 0.400 0.242 0.238 0.211

The A’s and N’s represent sensitivity indices derived from the analytical and numerical determination of the component functions, respectively. The
indices correspond to the order specified by 0p = [, a1, @12, 11, @) 12 The shaded cells designate significant indices.

Table 3. Sensitivity indices for total contributions S, constructed using the component functions f;, for the normal stress
parameters 0, .

SI Sz 53 S4 55
A. Ist order 5.79¢—4 0.001 0.158 0.176 0.164
N. Ist order 5.46e—4 0.001 0.156 0.179 0.162
Si2 Si3 Sia Sis S23 So4 Sas S34 S35 Sas
A. 2nd order 5.74e—5 —5.79¢—4 —450e—4 0.180 0.157 0.141 0.002 —0.093 —-0.018 —0.025
N. 2nd order 7.42¢—4 2.09¢e—4 9.70e—4 0.183 0.156 0.141 0.002 —-0.092 -0.0I5 —-0.023
Si23 Si24 Si2s Si34 Si35 Sias S234 S235 S2as S345
A. 3rd order —5.73e—5 3.35e—4 1.47e—5 6.99¢e—4  0.003 0.016 0.120 0.001 —0.003 0.012
N. 3rd order 0.003 0.003 0.003 0.005 0.005 0.017 0.119 0.001I —0.003 0.014
S1234 Si235 Si245 Si345 S2345
A. 4th order 0.002 0.003 0.013 —0.005 —-0.012
N. 4th order 0.006 0.009 0.016 0.005 —0.011
S12345
A. 5th order 0.005
N. 5th order —0.045
st s, s, 57, sr,
A. Total index 0217 0.431 0.334 0.348 0.336
N. Total index  0.211 0.403 0316 0.332 0.320

The indices correspond to the order specified by 0,,, = [q11,q12, 0%, 05,, 0%;]. The shaded cells correspond to significant indices.
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Table 4. Sensitivity indices for total contributions S, constructed using the component functions f,, for the shear stress parameters

0,

S S Si2 St St
Sensitivity 6.812e—5 0.651 0.349 0.349 1.000
Numerical 5.347e¢—5 0.650 0.350 0.350 1.000

The indices correspond to the order specified by 0,,. = [q11,qi2, o"fl s cr'fz, U§3], The shaded cells designate significant indices.
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Figure 7. Comparison of analytical and numerical methods obtain (a) first-order and (b) total sensitivity indices for equation (16).
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Figure 8. Comparison of analytical and numerical methods to obtain (a) first-order and (b) total sensitivity indices for equation (17).

For the normal stress electrostrictive parameters 6., it
is shown that higher-order component functions are
significant for the sets of most correlated parameters.
Finally, for the shear stress parameters, the second-
order component function is again significant due to
the correlation between g4 and o%;.

Global sensitivity analysis: assumption of independent
parameters

The pairwise plots in Figures 4 to 6, obtained through
Bayesian inference, demonstrate that the parameters

are highly correlated, thus requiring the general sensi-
tivity analysis. The results in the section on “Global
sensitivity analysis” demonstrate that due to this corre-
lation, high-order indices can be significant when first-
order interactions are negligible.

As noted in the “Introduction,” however, the nature
of parameter correlation is rarely known a priori thus
motivating global sensitivity analysis based on the
assumption of mutually independent, uniformly distrib-
uted parameters. As detailed in the section on “Sobol’
indices for independent parameters with uniform
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Figure 10. (a) First-, (b) second-, (c) third-, (d) fourth-, and (e) fifth-order component functions constructed using the analytical
method (- —) and the numerical method (—) for 6, in equation (16) with m = 4 subintervals for the cubic B-spline basis functions.
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densities,” this vastly simplifies the computation of ©;~U (07" — 0.25]62°" |, 67" + 0.25]67°™|)
Sobol’ indices. We will demonstrate here, however, that
this also yields incorrect and highly misleading mea-
sures of parameter influence and ranking when para-
meters are correlated.

We consider the parameters to be independent and
uniformly distributed

where |07°"| are the absolute values of nominal values
compiled in Table 1 for 6p in equation (12) and 6, in
equation (13). Perturbations on the order of 0.25 are
commonly employed to provide broad sampling with-
out significantly changing the model behavior. To
avoid scaling issues, we mapped these intervals to
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Figure 12. First-order component functions constructed using
the analytical method (- —) and numerical method (—) for 6, in
equation (18) with m = 4 subintervals.

[0, 1] before employing Algorithm 3.1 to approximate
first- and second-order Sobol’ indices. We employed
M = 10,000 samples when constructing Y4, Y3, and
Yo, i=1,...,p for the polarization energy pseudore-
sponse (equation (16)), the normal stress pseudoresponse
(equation (17)), and the shear stress pseudoresponse
(equation (18)).

We summarize in Table 5 the first-order and total
Sobol’ indices for the three parameter sets. We note that
the indices S; and Sy, imply that «; and a;; are most
influential and they reflect the property (33), which
states that the first- and second-order indices sum to
unity. Likewise, the indices for the normal stress com-
ponents imply that 15, 0%, and ¢%; are most influential
and satisfy equation (33). The indices for the shear
stress parameters show that o%; is most influential, also
satisfying equation (33).

These results indicate that the Landau energy para-
meters agp, @11, and @y, normal stress parameters

Table 5. Sobol’ indices S;, S, for responses Yp(6p), Yy, (05,.), and Y, (0,5, ), constructed using Algorithm 3.1.

R R R

o) ay (22)] gy a2 qi q12 G"ﬁ (003 033 qa4 053
Si 0.40 0.60 4.35e—5 1.12e—3 1.49¢—4 2.26e—2 0.29 0.16 3.25e—3 0.51 3.84e—3 0.99
St 0.40 0.59 1.97e—4 1.89¢—3 |.44e—4 2.13e—2 0.29 0.16 3.96e—3 0.52 2.95e—3 1.00

The shaded columns correspond to significant indices.
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Figure 13. Posterior densities obtained via Bayesian calibration of Y,(6p) in equation (16) when (1) sampling all the parameters, (2)
sampling a, aryy, ey with arjp, a7 fixed, and (3) sampling ay, ary with a1, aj2, a3 fixed.

q11» 444, and o§2, and shear stress parameter g4 are not
influential. Based on this result, the parameters are not
influential and therefore minimal uncertainty in the
response can be attributed to uncertainty in the para-
meters. Furthermore, these parameters could then be
fixed at nominal values for Bayesian model calibration.
Because the fixed parameters are not influential, we
would expect negligible changes in the uncertainty
quantification of the influential parameters before and
after the noninfluential parameters are fixed.

We then employ the DRAM algorithm (Haario
et al., 2006; Smith, 2014) to perform the Bayesian anal-
ysis and obtain posterior densities for the influential
parameters, when fixing noninfluential parameters dic-
tated by the results in Table 5. The model is once again
informed by synthetic data generated by DFT simula-
tions (Oates, 2014). We consider the cases when the
noninfluential parameters «;, @111, and a1, are fixed
at the nominal values presented in Table 1. We obtain
the posterior densities plotted in Figure 13.

We note that the posterior densities vary signifi-
cantly when (1) all the parameters are sampled and (2)
the parameters ay,aq; are sampled with aji1, a2, a1
fixed at the nominal values. These results contradict the
results in Table 5 but are consistent with the results in

i

the section on “Global sensitivity analysis,” where all
parameters were found to be significant. This demon-
strates that global sensitivity indices based on the
assumption of mutually independent, uniformly distrib-
uted, parameters can yield very misleading interpreta-
tions of parameter influence when parameters are
correlated.

Local identifiability analysis based on the Fisher
information matrix

Here, we employ the local identifiability analysis meth-
odology from the section on the “Fisher information
matrix” to infer any locally unidentifiable parameters
and corroborate the global sensitivity analysis results
for correlated parameters. Specifically, we apply
Algorithm 3.2 to the Landau polarization energy up in
equation (6), and the normal stresses o1, 02, 033, and
shear stress o3 in equation (11). We note again that
the Landau energy parameters are

0p = a1, a11, a2, a1, @112

whereas the normal and shear stress coefficients are,
respectively
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Table 6. Results from Algorithm 3.2 to determine unidentifiable parameters in 6p (equation (12)) for the polarization energy

Ys,,(6,) (equation (6)).

Iteration Ay a) Eigenvector A, with associated parameters
o) g an a2
5.62e—5 I.16e—2 —3.30e—2 —43le—| 2.07e—-2 9.0le—1

Result: All parameters 6p are identifiable since |A||>¢ = 1078

Table 7. Results from Algorithm 3.2 to determine unidentifiable parameters in 6, (equation (|3)) for the normal and shear stress

components 6, and 65 (equation (I 1)).

Iteration A Eigenvector A6, with associated parameters
qi qi2 ot o5 ol
| 3.67 —9.33e—1 —6.13e—2 —2.48e—2 —5.17e-2 —3.5le—1
Iteration A Qa4 ab,
| 8.9%e—1 —9.94e—1 —1.07e-2

Result: All parameters 6, are identifiable since | |>€ = 1078

ole = [%1;‘112:0'?1,0'52,0'53], 003- = [q44s 0-53}

We set the threshold parameter €= 10"% in
Algorithm 3.2. When |A;[>e€, all remaining parameters
that have not been removed, are identifiable. For the
Landau energy up, application of the algorithm yields
that all parameters are considered to be identifiable.
We observe this from the first iteration of the algorithm
in Table 6. These results are consistent with the global
sensitivity analysis for correlated parameters, where we
showed that all total Sobol’ sensitivity indices Sy, were
significant, thus specifying that all parameters are influ-
ential. Therefore, no parameter in the model can be
fixed for subsequent Bayesian inference. Similar results
are observed for the parameters 6, (equation (13)) in
the normal and shear stress components (equation
(11)). We compile the first iteration of Algorithm 3.2 in
Table 7. In both cases, the magnitude of the smallest
eigenvalue is |A{|>e. Thus, we conclude that all the
parameters are identifiable. This verifies our results for
the global sensitivity analysis detailed early in this sec-
tion, where it was shown that all parameters 6, (equa-
tion (13)) were influential.

Concluding remarks

The objective of this article was to investigate and
quantify the influence of parameters in a quantum-
informed continuum model for single-domain ferroelec-
tric materials. Broadly, parameters are considered to be
noninfluential if perturbations through the admissible
parameter space are minimally reflected in responses.
Noninfluential parameters are typically fixed at

nominal values during model calibration, uncertainty
propagation, and model-based design and control. In
this investigation, we employed global and local sensi-
tivity analysis to quantify the relative influence of five
parameters in a sixth-order Landau polarization energy
and seven electrostrictive energy parameters.

Since parameter distributions are not typically
known a priori, it is commonly assumed that para-
meters are independent and uniformly distributed when
performing global sensitivity analysis. However, we
demonstrate using general theory for correlated para-
meters, with covariance structures computed using the
Bayesian analysis in Part 1 (Miles et al., 2018), that the
incorrect assumption of mutually independent para-
meters yields incorrect conclusions regarding parameter
influence for correlated parameter sets.

While the methods for sensitivity analysis presented
in other investigations, such as Hamby (1994), provide
a technique for computing partial correlation coeffi-
cients, our study broadly accommodates the underlying
correlation in the complete set of parameters. Hence,
this analysis enables the comparison of individual, par-
tial, and total effects due to the correlation structure.

Based on the general theory of global sensitivity
analysis, we demonstrate that for both parameter sets,
individual effects may be negligible, whereas total
effects are significant due to correlation. For both para-
meter sets, this theory establishes that all of the para-
meters are influential and must be inferred during
model calibration. The local sensitivity analysis, imple-
mented using the Fisher information matrix, corrobo-
rates these conclusions. In comparison, global
sensitivity analysis based on the assumption of
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mutually independent parameters incorrectly specifies
two influential polarization parameters and three influ-
ential electrostrictive parameters.

Generally, one would perform global sensitivity
analysis prior to Bayesian or frequentist inference to
reduce computational requirements by isolating the
subset of identifiable parameters. This raises the practi-
cal question of how one determines whether parameters
are correlated and what their distribution is without
performing full Bayesian inference as we have done
here for illustrative purposes.

One can determine whether parameters are corre-
lated by computing the local sensitivity matrix S in
equation (49) and matrix

F=S7s

employed in Step 1 of Algorithm 3.2. Specifically, para-
meter correlation is indicated by non-negligible off-
diagonal elements of F.

As we did in this analysis, one can then consider
parameters to be normally distributed, 6~N(w, V),
where u and V' are OLS estimates for the mean and
covariance matrix. As detailed in the work by Smith
(2014), the OLS estimate for V'is

RTR
n—p

V= F!

where 7 is the number of observations, p is the number
of parameters, and

R=3 i (O)

i=1

is the residual. The OLS estimate of V is typically
employed to initiate the DRAM algorithm employed in
Miles et al. (2018) for Bayesian inference. Hence, this
analysis comprises the first step of Bayesian inference
but avoids the computationally intensive sampling.

In future work, we will extend the single-domain sen-
sitivity and uncertainty analysis to polydomain materi-
als by incorporating the domain wall gradient energy
(Cao and Cross, 1991). This includes the development
and simulation of appropriate responses.

Global and local sensitivity analyses are subset selec-
tion techniques since they isolate subsets of identifiable or
influential parameters. However, they do not address
models of the form y = 6; + 6, involving linear combina-
tions of parameters. A second component of future work
will focus on active subspace techniques (Bang et al., 2012;
Constantine, 2015) to isolate linear identifiable subspaces.
As detailed in the work by Lewis et al. (2017), one can
subsequently perform Bayesian inference on these sub-
spaces to eliminate the tight priors required for unidentifi-
able parameters and reduce computational requirements
for moderate to high-dimensional parameter spaces.
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