


improve macroscale properties and capabilities. For

example, there is significant research focused on devel-

oping lead-free materials whose performance is close to

lead-based compounds but that are environmentally

safe and feasible for biomedical applications.

In the companion manuscript (Miles et al., 2018), we

detail the use of density functional theory (DFT) to

quantify the atomic structure properties of lead tita-

nate. These computations can be directly extended to

lead zirconate and other perovskite single-crystal mate-

rials. Moreover, we anticipate that by exploiting mix-

tures of the two, we can simulate the electronic and

structural properties of PZT. This provides us with the

capability to generate simulated atomic-level data to

inform continuum energy relations. However, scaling

up electronic and atomic structure calculations into a

continuum model leads to model uncertainties that may

have significantly different parameter uncertainties.

As detailed in Miles et al. (2018), we employ classical

functionals for the Landau polarization energy, electro-

strictive energy, and mechanical energy. All of these

relations contain phenomenological parameters that

govern attributes of the energy behavior. For example,

the sixth-order Landau polarization energy
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contains the parameters uP = ½a1,a11,a12,a111,

a112,a123� that specify the non-convex energy potential

as a function of the polarization P= ½P1,P2,P3�.
There are two fundamental questions pertaining to

these parameters: (1) which of the parameters are iden-

tifiable or influential in the sense that they uniquely

contribute to energy responses and (2) what are the

actual parameter values that dictate the behavior of a

specific material and what are the associated uncertain-

ties in these values? The first comprises the sensitivity

analysis detailed in this article. For the polarization

relation (1), we will employ sensitivity analysis to ascer-

tain whether the sixth-order model is necessary or

whether a fourth-order model will suffice to approxi-

mate quantum calculations. The second question can

be addressed through frequentist or Bayesian inference,

and we address the latter using DFT-generated data in

Miles et al. (2018).

To detail the role of sensitivity analysis, it is first

necessary to define identifiable and influential para-

meter spaces. We consider the nonlinear input–output

relation

y= f (u) ð2Þ

where u= ½u1, . . . , up� are model parameters, f denotes

the mathematical model, and y 2 R1 is a real-valued

response. For the polarization energy (1), u= uP are

the phenomenological parameters, f is the sixth-order

relation, and y= uP(P) is the energy for a specified

polarization value.

The concept of identifiability is classical and can be

defined as follows. The parameters u= ½u1, . . . , up� are
identifiable at u� if f (u)= f (u�) implies that u= u� for

all admissible u 2 Q. The parameters u are identifiable

with respect to a space I(u), termed the identifiable sub-

space, if this holds for all u� 2 I(u). The unidentifiable

parameter space NI(u) is the orthogonal complement of

I(u) with regard to the admissible parameter space Q

with the Euclidean inner product. Identifiable para-

meters can be uniquely determined from observations,

whereas unidentifiable parameters must be fixed during

model calibration using outputs y. An example of iden-

tifiable and unidentifiable parameters is illustrated in

Figure 1(a) and (b), respectively.

Influential parameter spaces are sometimes defined

differently in various disciplines. We define the para-

meters u= ½u1, . . . , up� to be noninfluential on the space

NI(u) if jf (u)� f (u�)j\e for all u and u� 2 NI (u).
The space of influential parameters, I (u), is defined to

be the orthogonal component of NI (u) with respect to

Q. Noninfluential parameters, like unidentifiable para-

meters, can be fixed for model calibration and uncer-

tainty propagation. An example of a noninfluential

parameter is illustrated in Figure 1(c).

Figure 1. Illustration of y= f (u) for (a) identifiable, (b) unidentifiable, and (c) noninfluential parameters u.
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A parameter u1 is considered more influential than

parameter u2 if changes in u1 produce greater changes

in y than changes produced by u2 when both are con-

sidered over the admissible parameter space. In Figure

2(a) and (b), we illustrate highly and minimally influen-

tial parameters.

We note that noninfluential or unidentifiable para-

meter spaces can include individual parameters or linear

or nonlinear combinations of parameters. To illustrate,

consider the parameters u= ½u1, u2� in the admissible

space Q=R2 and the models y= u1 and y= u1 � u2.

For the first model, NI(u)=NI (u)= fu2 2 Rg,
whereas NI(u)=NI (u)= f(u1, u2) 2 R2ju1 = u2g for

the second. We focus on the first case in this article and

note that active subspace methods can be employed for

the second (Bang et al., 2012; Constantine, 2015).

From Figure 1(b) and (c), one observes that uniden-

tifiable or noninfluential parameters can be partially

characterized by the property that the local derivatives

satisfy

∂f

∂ui
u�ð Þ= 0 ð3Þ

when evaluated at nominal values u�. Moreover, Figure

2(a) and (b) indicates that the magnitudes of local deri-

vatives can be used to quantify the relative influence of

parameters. This motivates the use of local sensitivity

analysis and Fisher information matrices based on

equation (3).

There are three difficulties associated with using the

local derivative behavior to quantify parameter sensitiv-

ity. The first is that derivative values are typically una-

vailable unless models are sufficiently simple that they

can be analytically differentiated—as is the case for the

energy relations in this investigation—or codes have

adjoint capabilities or associated sensitivity equations.

This can often be addressed using finite-difference

approximations, although approximation can degrade

the accuracy of sensitivity measures. This is also the

basis for certain screening methods, such as Morris

screening (Cropp and Braddock, 2002; Morris, 1991;

Smith, 2014), which statistically averages derivative

approximations.

Of more serious consequence is the fact that equa-

tion (3) is local in nature and does not incorporate

variability throughout the admissible parameter space.

The parameter u3 depicted in Figure 2(c) is noninfluen-

tial but has large derivatives at certain nominal values

due to high-frequency chatter. This is also partially

addressed by Morris screening through statistically

averaging at multiple nominal values.

Finally, local sensitivity analysis does not accommo-

date potential input and output uncertainties of the

nature illustrated in the works by Saltelli et al. (2004,

2006, 2008, 2010) and Smith (2014). Specifically, it does

not quantify the manner in which output uncertainties

can be apportioned to input uncertainties as quantified

by global sensitivity analysis.

To address these issues, we employ global sensitivity

analysis in this investigation, which broadly quantifies

how uncertainties in responses are apportioned to

uncertainties in inputs (Saltelli et al., 2004, 2008; Smith,

2014). We focus on Sobol’ analysis (Sobol’, 1993, 2001;

Sobol’ et al., 2001), which is based on analysis of var-

iance (ANOVA), but note that Morris screening is

widely employed due to its computational efficiency.

When performing sensitivity analysis, one usually

does not have a prior knowledge of the underlying

parameter distribution. To avoid introducing uninten-

tional biases, one typically assumes in such cases that

parameters are mutually independent and uniformly

distributed. As we will demonstrate using the Bayesian

inference in Part 1 of these papers (Miles et al., 2018),

parameters in the considered models are highly corre-

lated and hence this assumption is false; for example,

a1 and a11 are negatively correlated in equation (1).

We will additionally demonstrate that sensitivity analy-

sis based on this false assumption yields incorrect inter-

pretations about which parameters can be fixed during

Bayesian inference. To illustrate these potential pitfalls,

we present uncertainty analysis in Part 1 and sensitivity

analysis in Part 2, whereas this ordering would typically

be reversed when analyzing large-scale problems. We

summarize in the ‘‘Concluding Remarks’’ section the

manner in which sensitivity analysis can be addressed

prior to Bayesian inference when parameter correlation

is suspected.

We summarize in the section ‘‘Energy relations’’ the

employed continuum energy relations in addition to

the Landau energy in equation (1), the pertinent

Figure 2. Illustration of (a) a highly influential parameter u1 and (b) minimally influential parameter u2. (c) Minimally influential

parameter u3 having large local derivative values.
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parameters, and the formulation of scalar-valued pseu-

doresponses y based on vector-valued polarization,

normal stress, and shear stress responses. In ‘‘Global

sensitivity analysis and the fisher information matrix,’’

we detail Sobol’-based global sensitivity analysis for

correlated and independent parameters and construc-

tion of the Fisher information matrix, which is based

on local sensitivities (∂f =∂u)(u�). In the ‘‘Results’’ sec-

tion on ‘‘Global sensitivity analysis,’’ we use Sobol’

indices for the correlated parameters to indicate that all

are influential and demonstrate in ‘‘Global sensitivity

analysis: assumption of independent parameters’’ that

analysis based on the incorrect assumption of mutually

independent parameters yields false conclusions about

potentially noninfluential parameters. Finally, we

demonstrate in ‘‘Local identifiability analysis based on

the Fisher information matrix’’ that identifiability anal-

ysis based on the Fisher information matrix corrobo-

rates the earlier global sensitivity analysis.

Energy relations

As detailed in Miles et al. (2018), we take polarization

to be the order parameter. The stored energy per unit

volume, expressed as a function of total strain e and

polarization P, is

u e,Pð Þ= uM eð Þ+ uP Pð Þ+ uC e,Pð Þ+ uR eð Þ ð4Þ

Here, u(e,P) is the total energy per unit volume, and

uM , uP, uC , and uR, respectively, denote the strain,

Landau, electrostrictive, and residual energy per unit

volume. We denote the independent strain and polari-

zation variables by e and P, respectively.

Based on the assumption of linear elasticity, the

mechanical energy, with respect to a reference cubic

state, is

uM eð Þ=
c11

2
e
2

11
+ e

2
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+ e

2

33

� �

+ c12 e11e22 + e22e33+ e11e33ð Þ

+ 2c44 e
2
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+ e

2

23
+ e

2

13

� �

ð5Þ

Here, c11, c12, and c44 are elastic coefficients expressed

in Voigt notation (Malvern, 1969).

The sixth-order Landau polarization energy is
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where a1,a11,a12,a111,a112 and a123 are phenomenolo-

gical parameters. One goal of sensitivity and

uncertainty analysis is to determine the necessity of

including sixth-order terms rather than employing a

fourth-order relation.

The electrostrictive energy is

uC e,Pð Þ=� q11 e11P
2

1
+ e22P

2
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� 4q44 e12P1P2 + e13P1P3 + e23P2P3ð Þ

ð7Þ

where q11, q12, and q44 denote the electrostrictive

coefficients.

The residual energy

uR eð Þ=sR
ijeij ð8Þ

arises since the unit cell is held fixed with respect to the

reference cubic state. Hence, the unknown required resi-

dual stress sR
ij constrains the unit cell to the cubic state.

We next summarize the parameters, independent

variables, and responses used in Miles et al. (2018) to

employ DFT analysis to calibrate the monodomain

continuum model. This forms the basis for the global

sensitivity analysis detailed in this article.

Monodomain continuum model

In the DFT analysis detailed in Miles et al. (2018), we

focus on energy, stress, and polarization computations.

We hold the unit cell fixed so that the total strain is zero

in the cubic state. This permits the polarization energy

(equation (6)) to be calibrated to DFT computations

independent of electrostrictive coupling due to equation

(7). The additional effect of electrostriction is incorpo-

rated by evaluating the continuum stress

s=
∂u

∂e
ð9Þ

This yields the stress tensor

s= c : e+s
R � q : PP ð10Þ

where c is the fourth-order elastic tensor and s
R is the

residual stress tensor obtained from the derivative of

the residual energy (equation (8)) with respect to strain.

In the following expanded equations, we employ the

Einstein summation convention in which one sums

over repeated indices. The tensor indices are reduced to

Voigt notation using the convention ( )
11

! ( )
1
,

( )
22

! ( )
2
, ( )

33
! ( )

3
, ( )

23
! ( )

4
, ( )

13
! ( )

5
and

( )
12

! ( )
6
. This notation is applied to the elastic and

electrostrictive coefficients.

To simplify DFT computations, we constrain the

polarization to move from P3 to P2, with employed val-

ues shown in Figure 3. It follows that sR
11
=sR

22
and

sR
12
=sR

13
= 0. The remaining stress components are

Leon et al. 2843
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Since the elastic properties of lead titanate are well-

understood, we assume fixed elastic properties from

previous DFT simulations (King-Smith and Vanderbilt,

1994) and neglect uncertainty and sensitivity with

respect to the elastic coefficients c11, c12, and c44. We

evaluate sensitivities with respect to the zero strain case.

The polarization energy parameters are

uP = a1,a11,a12,a111,a112½ � ð12Þ

and the normal and shear stress coefficients are,

respectively

usns
= q11, q12,s

R
11
,sR

22
,sR

33

� �

, uss
= q44,s

R
23

� �

ð13Þ

The combined set of stress component parameters is

thus

us = usns
, uss

½ �

and the monodomain model parameters are

uMD = uP, us½ � ð14Þ

The DFT outputs, or responses, are

yMD uMDð Þ= uP uPð Þ,s11 usns
ð Þ,s22 usns

ð Þ,s33 usns
ð Þ,s23 uss

ð Þ½ �

ð15Þ

which include the Landau polarization energy and the

normal and shear stresses. We note that while all are

functions of the polarization, we suppress this

dependence when discussing the sensitivity of responses

to parameters. In addition, the sensitivity of these

responses to the polarization energy parameters uP and

stress parameters us can be analyzed separately due to

the independence between uP(uP) and s11(usns
),

s22(usns
), s33(usns

), s23(uss
).

For standard global sensitivity analysis, it is neces-

sary to construct scalar-valued responses of the para-

meters uP, usns
, and us and polarization values (Pn

2
,Pn

3
),

which serve as independent variables.

For the polarization energy response uP defined in

equation (6), we employ the pseudoresponse

YP uPð Þ=
1

N

X

N

n= 1

uP Pn
2
,Pn

3
; uP

� �

ð16Þ

which averages over the N polarization values

(Pn
2
,Pn

3
), n= 1, . . . ,N , plotted in Figure 3. For the

vector-valued stress responses ysns
(usns

)= ½s11,s22,s33�
and yss

(uss
)=s23, where s11,s22,s33, and s23 are

defined in equation (11), we construct the

pseudoresponses
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3N
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and

Yss
uss
ð Þ=

1

N

X

N

n= 1

s23 Pn
2
,Pn

3
; uss

� �

ð18Þ

The monodomain responses YP(uP), Ysns
(usns

), and

Yss
(uss

) in equations (16) to (18) are linearly parameter-

ized so we can express them as

YP uPð Þ= a1 a2 a3 a4 a5½ �½a1 a11 a12 a111 a112�
T
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Figure 3. Input values of P2 and P3 for equation (15).
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This facilitates the analytical determination of the

component functions in the high-dimensional model

representation (HDMR).

For global sensitivity analysis, we generically express

equations (16) to (18) as

Y = f Yð Þ ð19Þ

Here, Y denotes the polarization response YP, the

electrostrictive normal stress response Ysns
or the elec-

trostrictive shear stress response Yss
, and

Y= ½Y1, . . . ,Yp� is YP, Ysns
, or Yss

. We employ Y to

represent random variables and u to indicate realiza-

tions of those random variables.

Global sensitivity analysis and the Fisher

information matrix

The objective of sensitivity analysis is to quantify the

sensitivity of the responses YP(uP), Ysns
(usns

), and

Yss
(uss

) in equations (16) to (18) to the parameters

uP, usns
, and uss

. In local sensitivity analysis, one

approximates the derivatives of responses with respect

to parameters and evaluates them at nominal para-

meter values, to quantify the influence of parameters

on responses; that is, see equation (3). As detailed in

Chapter 15 of Smith (2014), global sensitivity analysis

more broadly quantifies how uncertainties in responses

can be apportioned to uncertainties in parameters.

We employ both techniques to illustrate their relative

merits. The objective is to determine whether any of the

parameters uP, usns
, or uss

are unidentifiable or nonin-

fluential, in the sense defined in the ‘‘Introduction,’’ sec-

tion and hence should be fixed for subsequent Bayesian

inference and uncertainty quantification.

To avoid scaling issues, it is standard to first map

sampled parameter values to the interval ½0, 1� using the

cumulative distribution function (CDF) of the marginal

probability density functions (PDFs) of Y. Specifically,

for a general parameter Y, the parameter input space is

mapped using the relation

r uð Þ=F uð Þ=

Z

u

�‘

rY jð Þdj ð20Þ

for realizations u 2 R, where rY(j) is the PDF of Y.

Sobol’ indices

Sobol’ indices for correlated parameters and general

densities. We focus here on the input–output relation

Y = f Yð Þ

defined in equation (19), where Y is scalar-valued and

Y= ½Y1, . . . ,Yp� has the joint density rY(u). In the

section on ‘‘Sobol’ indices for independent parameters

with uniform densities,’’ we illustrate the special case of

independent, uniformly distributed parameters.

To construct the global sensitivity indices, the model

response for realizations u is represented by the HDMR

or Sobol’ decomposition

f uð Þ= f0 +
X

p

i= 1

fi uið Þ+
X

1� i\j� p

fij ui, uj
� �

+ � � �

+ f1, 2, ..., p u1, . . . , up
� �

=
X

i0� 1, ..., pf g

fi0 ui0ð Þ

ð21Þ

defined in the work by Sobol’ (1993). The second repre-

sentation utilizes the functional form detailed in the

work by Smith (2014), where i0 = i1, . . . , inf g comprises

a set of integers with cardinality n� p,

ui0 = ui1 , . . . , uin½ �, and f;[f0. We note that each of the

component functions is constructed to satisfy

Z

Gi0

ri0 ui0ð Þfi0 ui0ð Þdui0 = 0 ð22Þ

to ensure that the component functions are uniquely

defined. Here, ri0 (ui0) is the joint PDF for the parameter

set ui0 . As detailed in the work by Smith (2014), the

component functions can then be expressed as follows

f0 =

Z

G

r uð Þf uð Þdu=E Yð Þ

fi uið Þ=

Z

G;i

r
;i u;ið Þf uð Þdu;i � f0 =E(Y jui)� f0

fij ui, uj
� �

=

Z

G; ijf g

r
; ijf g u; ijf g

� �

f uð Þdu; ijf g

� fi uið Þ � fj uj
� �

� f0

=E Y jqi, qj
� �

� fi uið Þ � fj uj
� �

� f0

f1...p u1, . . . , up
� �

= f uð Þ � f0 �
X

1� i� p

fi uið Þ

�
X

1� i\j� p

fij ui, uj
� �

�
X

1� i\j\k� p

fijk ui, uj, uk
� �

� � � �

ð23Þ
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where G, G;i, and G; ijf g are the image spaces for u,

u;i[½u1, . . . , ui�1, ui+ 1, . . . , up�, and

u; ijf g[ u1, . . . , ui�1, ui+ 1, . . . , uj�1, uj+ 1, . . . , up
� �

Likewise, r
;i(u;i) and r

; ijf g(u; ijf g), respectively,

denote the conditional PDFs for u;i and u; ijf g given ui
and (ui, uj). To construct the sensitivity indices, we

define the total and partial variances

D=

Z

G

r uð Þf 2 uð Þdu� f 2
0
=var Y½ �

Di =

Z

Gi

ri uið Þf 2i uið Þdui =var½E(Y jui)�

Dij=

Z

Gij

rij ui, uj
� �

f 2ij ui, uj
� �

duiduj

=var½E(Y jui, uj)� � var½E(Y jui)� � var½E(Y juj)�

..

.

To account for correlations in the parameter struc-

ture of the component functions, we employ a formula-

tion of var½Y � proposed in the work by Li et al. (2010).

For general parameters u, this derivation employs the

Hilbert space inner product

f uð Þ, g uð Þh ir[

Z

G

r uð Þf uð Þg uð Þdu

to express var½Y � as

var Y½ �=E Y � E Y½ �ð Þ2
h i

= y� f0, y� f0h ir =
X

2
p�1

n= 1

frn , y� f0

* +

r

Here, rn, 1� n� 2
p � 1, represents all the possible

sets fij1� i� pg, fijj1� i\j� pg, . . . of parameter

indices for the component functions, using the func-

tional form in the work by Li et al. (2010). For example,

letting C
p
2
=(p=2), the first- and second-order compo-

nent functions are

1st order : fr1 ur1ð Þ= f1 u1ð Þ, . . . , frp urp
� �

= fp up
� �

2nd order : frp+ 1
urp+ 1

� �

= f12 u1, u2ð Þ, . . . ,

fr
p+C

p

2

ur
p+C

p

2

� 	

= fp�1, p up�1, up
� �

The linearity of the inner product and relation

(22) are then invoked to obtain the variance

decomposition

var Y½ �=
X

2
p�1

n= 1

cov frn , Y½ �

=
X

2
p�1

n= 1

var frn½ �+cov frn ,
X

2
p�1

‘= 1, ‘ 6¼n

fr‘

" # ð24Þ

where

cov frn , Y½ �=
R

G

r uð Þfrn urnð Þ f uð Þ � f0½ �du

Drn =var frn½ �=
R

Grn

rrn urnð Þf 2rn urnð Þdurn
ð25Þ

The sensitivity indices are then defined to be

Srn =
cov frn , Y½ �

D
, Ssrn =

Drn

D

Scrn =
cov frn ,

P

fr‘½ �

D

ð26Þ

where Srn = Ssrn + Scrn . As detailed in the work by Li

et al. (2010), Ssrn and Ssrn , respectively, correspond to the

structural and correlative contributions to the total

index Srn . The indices (equation (26)) satisfy

X

2
p�1

n= 1

Srn = 1

The integrals in the indices Srn and Ssrn are approxi-

mated using Monte Carlo integration techniques (Li

et al., 2010; Sobol’, 2001), whereas the index Scrn is sim-

ply computed using the relation

Scrn = Srn � Ssrn

In addition, we define the total sensitivity indices

STi = Si +
X

p

j= 1

j6¼i

Sij +
X

1� j\k� p
j, k 6¼i

Sijk + � � � + S1, ..., p ð27Þ

which quantify the total effect of the parameter ui on

the response, including high-order structural interac-

tions and correlative contributions.

When analyzing first-order Sobol’ indices, a rough

guide is to consider first-order Sobol’ indices Si that are

greater than (100=p)% as significant because, in the

absence of interactions, they have greater than average

effect on the response variability. Higher-order Sobol’

indices may be negative due to the correlations between

the parameters. To measure the significance of any nega-

tive Sobol’ indices, we consider the magnitude of the index

as well as the value of the total index STi (equation (27)).

Sobol’ indices for independent parameters with uniform

densities. For the special case when the parameters
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Y= ½Y1, . . . ,Yp� are independent and uniformly dis-

tributed on the hypercube G= ½0, 1�p—that is,

Yi;U(0, 1) for i= 1, . . . , p—one can significantly sim-

plify the relations for the component functions f0, fi, fij,

and Sobol’ indices. As detailed in the works by Ma and

Zabaras (2010), Rabitz and Alis (1999), Smith (2014),

and Sobol’ (1993), the component functions in this case

are

f0 =E Y½ �=

Z

G

f uð Þdu

fi uið Þ=E Y jui½ � � f0 =

Z

Gp�1

f uð Þdu;i � f0

fij ui, uj
� �

=E Y jui, uj
� �

� fi uið Þ � fj uj
� �

� f0

=

Z

Gp�2

f uð Þdu; ijf g � fi uið Þ � fj uj
� �

� f0

..

.

ð28Þ

Here, Gp�1 = ½0, 1�p�1
, Gp�2 = ½0, 1�p�2

, . . . , and u; ijf g

denotes the vector having all components of u except

the ones corresponding to the subset fijg; that is,

du;i = du1 � � � dui�1dui+ 1 � � � dup.
Since the parameters are assumed to be mutually

independent, the second right-hand expression in equa-

tion (24) reduces to zero; that is

cov frn ,
X

2
p�1

‘= 1, ‘ 6¼n

fr‘

" #

= 0 ð29Þ

Hence, the component functions frn are mutually ortho-

gonal. Therefore, the correlative sensitivity index Scrn in

equation (26) reduces to

Scrn =
cov frn ,

P

fr‘½ �

D
= 0 ð30Þ

This shows that there are no correlative contributions

to the index Srn representing total contributions. The

total contributions can then be expressed as follows

Srn =
cov frn , Y½ �

D
= Ssrn =

Var frn½ �

D
=

Drn

D
ð31Þ

That is, the sensitivity index representing the total con-

tributions is equal to the index representing the struc-

tural contribution. Thus, one obtains the relation

Srn =
Drn

D
=

var frn½ �

var Y½ �
=

R

Gn f 2rn urnð Þdurn
R

G
f 2 uð Þdu� f 2

0

ð32Þ

for the sensitivity index representing the total contribu-

tion from urn . Here, Gn = ½0, 1�n represents the input

space for the set urn .

The integrals in equation (32) are approximated

using Monte Carlo integration in a manner similar to

the approximation to equation (26). When p is large,

this becomes prohibitively expensive. For problems

where f (u) can be approximated by a second-order

HDMR representation

f uð Þ= f0 +
X

p

i= 1

fi uið Þ+
X

1� i\j� p

fij ui, uj
� �

+ e

where e;N (0,s2) represents truncation error, one

obtains the Sobol’ indices

Si =
Di

D
=

var E(Y jui)½ �

var Y½ �
, Sij=

Dij

D
, i, j= 1, . . . p

STi = Si +
X

p

j= 1

i 6¼j

Sij= 1�
var E(Y ju;i)½ �

var Y½ �

which satisfy

X

p

i= 1

Si +
X

1� i\j� p

Sij= 1 ð33Þ

In this case, algorithms such as those proposed in the

works by Saltelli (2002), Saltelli et al. (2010), Sobol’

et al. (2001), and Weirs et al. (2012), can be used to

construct estimators for the sensitivity indices. These

algorithms greatly reduce the number of function eva-

luations otherwise required for Monte Carlo sampling–

based quadrature. For example, for the polarization

energy and normal stress parameter sets uP in equation

(12) and usns
in equation (13), the dimensions are

p= 5, which makes Monte Carlo sampling–based

quadrature over Gp, Gp�1, and Gp�2 expensive. To

address this, we employ Algorithm 3.1 as presented by

Wentworth et al. (2016), to construct estimators for Si
and STi .

Analytical computation for linearly parameterized

problems

Consider linearly parameterized problems

Y = f Yð Þ= a1Y1 + a2Y2 + � � � apYp ð39Þ

such as (16) for the monodomain model. We make the

assumption that Y;N (m,V) where

m= ½m
1
,m

2
, . . . ,mp�

T
is a vector of nominal values for

Y and V is the p3 p corresponding covariance matrix.

As before, we denote realizations of the random vari-

able Y by u.

We construct the component functions (23) by evalu-

ating conditional expected values in
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f0 =E Y½ �=E a1Y1 + a2Y2 + � � � + apYp

� �

= a1E Y1½ �+ a2E Y2½ �+ � � � + apE Yp

� �

= a1m1
+ � � � + apmp

fi uið Þ=E Y jui½ � � f0

= a1E Y1jui½ �+ � � � + apE Ypjui
� �

� f0,

fij ui, uj
� �

=E Y jui, uj
� �

� fi uið Þ � fj uj
� �

� f0

= a1E Y1jui, uj
� �

+ � � � + apE Ypjui, uj
� �

� fi uið Þ � fj uj
� �

� f0

..

.

ð40Þ

We note that equation (40) requires the evaluation of

expectation terms E½Yrjui�, where r= 1, . . . , p. To ana-

lytically evaluate these terms, we partition Y and V as

follows

Q= ½Q1Q2�
T
, V=

V11 V12

V21 V22


 �

whereQ1 is r3 1,Q2 is (p� r)3 1, and the components

of V have dimensions

r3 r r3 p� rð Þ
p� rð Þ3 r p� rð Þ3 p� rð Þ


 �

As detailed by Eaton (1983), the expected value is

E Q1ju2½ �=m
1
+V12V

�1

22
u2 � m

2
ð Þ ð41Þ

We now apply these results to relation (39). We

denote the entries in the covariance matrix by

V=

s2

1
r12 � � � r1p

r
21

s2

2

..

. . .
.

rp1 s2

p

0

B

B

B

@

1

C

C

C

A

We can then express the component functions (40) as

f0 = a1m1
+ � � � + apmp

fi(ui)= aiui +
X

p

j= 1

j 6¼i

aj mj + rsisj

sj

si

(ui � mi)

� 	

� f0, (i= 1, . . . , p)

fij(ui, uj)= aiui + ajuj

+
X

p

k= 1

k 6¼i, j

ak mk + ½rki rkj�
s2

i rij

rji s2

j

" #�1

ui � mi

uj � mj


 �

0

@

1

A

� fi � fj � f0

..

.

f1, ..., p(u1, . . . , up)= f (u)� � � � �
X

1� i\j\k\‘� p

fijk‘

�
X

1� i\j\k� p

fijk �
X

1� i\j� p

fij �
X

p

i= 1

fi � f0 ð42Þ

Algorithm 3.1: Saltelli algorithm to compute first-order and
total Sobol’ sensitivity indices for uniform densities (Saltelli
et al., 2010)

(1) For M Monte Carlo evaluations from U(Gp), create two
M3p sample matrices

A=

u11 � � � u1i � � � u1p

..

. ..
. ..

.

uM1 � � � uMi � � � uMp

2

6

6

4

3

7

7

5

B=

û11 � � � û1i � � � û1p

..

. ..
. ..

.

ûM1 � � � ûMi � � � ûMp

2

6

6

4

3

7

7

5

The entries of these matrices are pseudorandom numbers
drawn from the respective density. In our investigation, the
number of parameters is p= 5 for the polarization energy
response YP(uP) (equation (16)), p= 5 for the normal stress
response Ysns

(usns
) (equation (17)), and p= 2 for the shear

stress response Yss
(uss

) (equation (18)).
(2) Create

A
(i)
B =

u11 . . . û1i . . . u1p

..

.

uM1 . . . ûMi . . . uMp

2

6

6

4

3

7

7

5

ð34Þ

where the entries are identical to A with the exception that the
ith column is taken from B. Create B

(i)
A in a similar manner.

(3) Create

C=

A

��
B

2

4

3

5 ð35Þ

which is the B matrix appended to matrix A.
(4) Compute the column vectors f (A), f (B), f (A

(i)
B ), and f (B

(i)
A )

by evaluating the model at input values from the rows of
matrices A, B, A

(i)
B , and B

(i)
A . Here, f (A)j denotes the output

computed from the jth row of A.
(5) The first-order Sobol’ indices are estimated by

Si’

1
M

PM

j= 1
f (A)jf (B

(i)

A
)
j
�f (A)jf (B)j

h i

1
2M

P2M

j= 1
f (C)jf (C)j�E2 f (C)½ �

ð36Þ

and the total indices by

STi’

1
2M

PM

j= 1
f (A)j�f (A

(i)

B
)
j

h i2

1
2M

P2M

j= 1
f (C)jf (C)j�E2 f (C)½ �

ð37Þ

In equation (36), we approximated the squared mean

f 20 =
R

Gp

f (u)f (u0)dudu0

by

f 20 ’
1
M

P

M

j= 1

f (A)jf (B)j ð38Þ

as motivated in the works by Saltelli (2002) and Sobol’ et al.
(2001).
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Here, rsisj
= rij=(sisj) is the Pearson correlation, rij

the covariance between ui and uj, and s2

i is the variance

for ui. We present results, obtained when employing

this methodology for the monodomain model, in the

‘‘Results’’ section.

Spline basis functions expansion

The analytical solution technique, detailed in the previ-

ous section, is only applicable for linearly parameter-

ized problems. Here, we discuss a general solution

technique for nonlinearly parameterized problems

Y = f (u). This technique is based on the work in Li

et al. (2010) and utilizes cubic B-splines (Hastie et al.,

2009; Prenter, 1989), Bk(u), k=� 1, . . . ,m+ 1, to

approximate the terms in the HDMR representation

for Y = f (u). Specifically, the component terms in

equation (23) are represented as

fi(ui)’
X

m+ 1

r=�1

ai
rBr(ui)

fij(ui, uj)’
X

m+ 1

u=�1

X

m+ 1

q=�1

bij
uqBu(ui)Bq(uj)

fijk(ui, uj, uk)

’

X

m+ 1

u=�1

X

m+ 1

q=�1

X

m+ 1

v=�1

gijk
uqvBu(ui)Bq(uj)Bv(uk)

ð43Þ

where coefficients ai
r,b

ij
uq, and gijk

uqv are to be determined

via least squares regression. The first-, second-, and

third-order component functions are approximated by

fi u
s
i

� �

’Y s � f0

fij usi , u
s
j

� �

’Y s � f0 � fi u
s
i

� �

� fj usj

� �

fijk usi , u
s
j , u

s
k

� �

’Y s � f0 � fi u
s
i

� �

� fj usj

� �

� fk usk
� �

� fij usi , u
s
j

� �

� fik usi , u
s
k

� �

� fjk usj , u
s
k

� �

ð44Þ

Here, Y s = f (us) is employed as an unbiased estimator

for E½Y jusrn � and us represents realizations from the

underlying distribution for u. Substituting the expres-

sions (43) into (44) yields

X

m+ 1

r=�1

ai
rBr usi
� �

’Y s � f0

X

m+ 1

u=�1

X

m+ 1

q=�1

bij
uqBu usi

� �

Bq usj

� �

’Y s � f0 � fi u
s
i

� �

� fj usj

� �

X

m+ 1

u=�1

X

m+ 1

q=�1

X

m+ 1

v=�1

gijk
uqvBu usi

� �

Bq usj

� �

Bv usk
� �

’Y s � f0 � fi u
s
i

� �

� fj usj

� �

� fk usk
� �

� fij usi , u
s
j

� �

� fik usi , u
s
k

� �

� fjk usj , u
s
k

� �

ð45Þ

To determine the coefficients ai = ½ai
�1
, . . . ,ai

m+ 1
�T ,

we minimize the cost functional

Ji a
i

� �

=
X

K

s= 1

Y s � f0 � fi u
s
i

� �� �2

=
X

K

s= 1

Y s � f0 �
X

m+ 1

r=�1

ai
rBr usi
� �

 !2

= Yi � A if gai
� �T

Yi � A if gai
� �

= Yi � A if gai
�

�

�

�

2

2

ð46Þ

for i= 1, . . . , p. Here

A if g =

B�1 u1i
� �

B0 u1i
� �

� � � Bm+ 1 u1i
� �

..

. ..
. ..

.

B�1 uKi
� �

B0 uKi
� �

� � � Bm+ 1 uKi
� �

2

6

6

4

3

7

7

5

Yi =

Y 1

..

.

YK

2

6

4

3

7

5
� f01

1= ½1, . . . , 1�T , and K is the number of samples of u.

Hence, we obtain the least squares solution

ai� = A if gTA if g
� ��1

A if gTYi ð47Þ

to the sum of squares cost function (46). It follows that

the first-order component functions satisfy

Y1 = � � � =Yp.

Similarly, for

bij = ½bij
�1,�1

, . . . ,b
ij
m+ 1,�1

,

b
ij
�1, 0, . . . ,b

ij
uq, . . . ,b

ij
m+ 1,m+ 1

�T

and

gijk = ½gijk
�1,�1,�1

, . . . , gijk
uqv, . . . , g

ijk
m+ 1,m+ 1,m+ 1

�T

we minimize the cost functions

Jij b
ij

� �

= Yij � A ijf gbij
�

�

�

�

2

2

Jijk gijk
� �

= Yijk � A ijkf ggijk
�

�

�

�

2

2

In the ‘‘Results’’ section, we compare the results of

using the analytical method of computing the compo-

nent functions presented the previous section with the

method presented in this section for the monodomain

model.

Fisher information matrix

The Fisher information matrix contains local sensitivity

information that can be exploited to determine
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unidentifiable or noninfluential parameters. To moti-

vate, we consider a scalar-valued response

Y = f Pn; uð Þ, n= 1, . . . ,N

where Pn are prescribed polarization values. For exam-

ple, this could be the polarization energy

Y = uP Pn
2
,Pn

3
; uP

� �

defined in equation (6) and employed in equation (16)

when constructing a pseudoresponse. We let Yn denote

data at the same N polarization values.

Minimization of the functional

J uð Þ=
1

N

X

N

n= 1

Yn � f Pn; uð Þ½ �2

yields an optimal parameter vector u�. As detailed in

the ‘‘Introduction,’’u is locally identifiable at u� if this

minimum is uniquely determined by data.

To relate to local sensitivity, we consider the multi-

variate Taylor expansion

f Pn; uð Þ’f Pn; u�ð Þ+ruf Pn; u�ð Þ � Du

where

ruf Pn; u�ð Þ=
∂f

∂u1
Pn; u�ð Þ, . . . ,

∂f

∂up
Pn; u�ð Þ


 �T

ð48Þ

and Du= u� u�. Based on the assumption that

Yn’f (Pn; u�) at the minimum u�, the cost functional

can be approximated by

J uð Þ’
1

N

X

N

n= 1

ruf Pn; u�ð Þ � Du½ �2

If we define the N 3 p sensitivity matrix S by

S=

∂f

∂u1
P1; u�
� �

� � �
∂f

∂up
P1; u�
� �

..

. ..
.

∂f

∂u1
PN ; u�
� �

� � �
∂f

∂up
PN ; u�
� �

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð49Þ

we can then approximate the cost functional by

J uð Þ’
1

N
(SDu)T SDuð Þ

or, equivalently, J (u� +Du)’(1=N )DuTSTSDu. If we

take Du to be an eigenvector of STS, so that

STSDu= lDu, then

J u� +Duð Þ’
1

N
l kDuk2

2

We note that if l’0, the cost functional perturba-

tions J (u� +Du) are also approximately 0 and hence

the corresponding parameters are locally unidentifiable.

This forms the basis for the algorithms in the works by

Brun et al. (2002), Burth et al. (1999), Contron-Arias

et al. (2009) and Quaiser and Monnigmann (2009). We

employ Algorithm 3.2 from the work by Quaiser and

Monnigmann (2009).

Results

In the next section, we illustrate the analytical and

numerical techniques from the last section for quantify-

ing the global sensitivity of the parameters (equation

(14)) in the linearly parameterized models YP(uP) (equa-

tion (16)), Ysns
(usns

) (equation (17)), and Yss
(uss

) (equa-

tion (18)) for correlated parameters. We illustrate in

section ‘‘Global sensitivity analysis: assumption of inde-

pendent parameters,’’ the discrepancies that arise if one

performs global sensitivity analysis based on the incor-

rect assumption that parameters are independent and

uniformly distributed. In the final section, we will use

local sensitivity analysis, based on the Fisher informa-

tion matrix discussed in ‘‘Fisher information matrix’’ to

isolate unidentifiable parameters.

Global sensitivity analysis

Analytical determination of component functions. To con-

struct the component functions (equation (23)), we

must first specify a prior distribution for the para-

meters. We obtained nominal values for uP, usns
, and

uss
via Bayesian inference by calibrating using synthetic

Algorithm 3.2: Parameter subset selection algorithm to determine locally unidentifiable parameters (Quaiser and Monnigmann,
2009).

(0) Set h= p, where p is the number of parameters in the model, and construct the sensitivity matrix S following relation (49).

We note that the variable h changes with the iterations of the algorithm.

(1) Compute the matrix STS and its eigenvalues and order their magnitudes as
jl1j<jl2j< � � �<jlhj.
(2) If jl1j.e, where e is some prescribed threshold value, stop. We take all the parameters to be identifiable.
(3) If jl1j\e, then one of the parameters is not identifiable. Proceed as follows.
(4) Identify the component with the largest magnitude in the eigenvector Du1 associated with l1. This component corresponds to

the least identifiable parameter.
(5) Remove the column in S corresponding to the component identified in Step 4, set h=h� 1 and repeat Step 1.
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data computed via DFT simulations (Oates, 2014). As

detailed in Miles et al. (2018), we use the Delayed

Rejection Adaptive Metropolis (DRAM) algorithm

(Haario et al., 2006; Smith, 2014) to perform the

Bayesian analysis. We summarize the nominal values in

Table 1. We plot the resulting joint pairwise correlation

plots for uP, usns
, uss

in Figures 4 to 6.

We also obtained the covariance matrices

VP =

105:65 �287:05 �1:3069e+3 177:38 2:9320e+3

�287:05 854:09 3:4852e+3 �556:86 �8:4947e+3

1:3069e+3 3:4852e+3 5:3605e+4 �2:0918e+3 �1:0741e+5

177:38 �556:86 �2:0918e+3 376:36 5:3725e+3

2:9320e+3 �8:4947e+3 �1:0741e+5 5:3725e+3 2:2692e+5

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Vsns
=

0:0605 0:0014 0:0012 0:0021 0:0208

0:0014 0:0314 0:0115 0:0106 8:8239e� 4

0:0012 0:0115 0:0097 0:0037 6:3619e� 4

0:0021 0:0106 0:0037 0:0093 8:4661e� 4

0:0208 8:8239e� 4 6:3619e� 4 8:4661e� 4 0:0126

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Vss
=

3:4801e� 4 3:6383e� 5

3:6383e� 5 1:1141e� 5

� 	

ð50Þ

via Bayesian inference.

Table 1. Mean parameter values obtained through Bayesian inference in the work Miles et al. (2018).

Parameter a1 a11 a12 a111 a112

Units MV m/C MV m5/C3 MV m5/C3 MV m9/C5 MV m9/C5

Mean value (mu) 2389.4 761.3 414.1 61.46 2740.8
Standard deviation 10.49 30.01 241.6 19.98 499.4

Parameter q11 q12 sR
11 sR

22 sR
33

Units GV m/C GV m/C GPa GPa GPa

Mean value (mns) 19.2 3.14 23.98 24.00 23.41
Standard deviation 0.258 0.182 0.103 0.101 0.118

Parameter q44 sR
23

Units GV m/C GPa

Mean value (ms) 1.40 28.16e24
Standard deviation 0.019 3.32e23

Figure 4. Pairwise correlation among the Landau energy

parameters uP = ½a1,a11,a12,a111,a112�.
Figure 5. Pairwise correlation among the normal stress

parameters usns
= ½q11, q12,s

R
11,s

R
22,s

R
33�.
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To construct distributions required to analytically

construct or numerically approximate the component

functions f0, fi, . . . and Sobol’ indices, we take

YP;N mP,VPð Þ, Ysns
;N mns,Vsns

ð Þ
Yss

;N ms,Vss
ð Þ

where mP, mns, and ms are the nominal values from

Table 1 and the covariance matrices are defined in

equation (50). We note that this is an approximation to

obtain parametric distributions from the non-

parametric posterior distributions created through

Bayesian analysis. As an alternative to Bayesian infer-

ence, one could use asymptotic ordinary least squares

(OLS) techniques or experimental data to obtain nom-

inal values and covariance matrices.

Numerical determination of component functions. Using the

numerical method detailed in the section on ‘‘Spline

basis functions expansion,’’ we first solve the least

squares problem (47) to compute the coefficients ai�

used in equation (43) to approximate fi(ui). We then

compute coefficients bij and gijk to compute second-

and third-order effects fij(ui, uj) and fijk(ui, uj, uk). The

samples for the procedure in this section are also taken

from the distributions N (mP,VP), N (mns,Vsns
), and

N (ms,Vss
).

Sobol’ sensitivity indices. The first-order Sobol’ indices Si,

i= 1, . . . , p, quantify the fraction of uncertainty in

the response that can be attributed to ui, whereas

higher-order sensitivity indices Sij, i\j, Sijk , i\j\k,

. . ., quantify the uncertainty due to interactions and

correlations that can be attributed to the parameters.

The total indices STi quantify the total fraction of

uncertainty that can be attributed to ui and its higher-

order structural interactions and correlation contri-

butions with other parameters. Hence, STi provides a

more comprehensive measure of global parameter

sensitivity.

Here, we construct the sensitivity indices for each of

the component functions frn . We determine the compo-

nent functions frn using the analytical and numerical

methods of the previous section. We employ the Monte

Carlo approximations

Srn =
cov frn , Y½ �

var Y½ �
’

PK
s= 1

frn usrn

� �

f usð Þ � f0½ �
PK

s= 1
f usð Þ � f0½ �2

Ssrn =
var frn½ �

var Y½ �
’

PK
s= 1

frn
2 usð Þ

PK
s= 1

f usð Þ � f0½ �2

Scrn = Srn � Ssrn

ð51Þ

where f0 is approximated by the sample mean

f0’

PK
s= 1

f usð Þ

K

Using these approximations, we obtain the results in

Table 2 for uP, Table 3 for usns
, and Table 4 for uss

.

Note that we used K= 10, 000 samples to compute the

sensitivity indices with Monte Carlo quadrature. For

the pairs of parameters that are most correlated, and

whose individual parameters are most influential in uP,

second-order sensitivity indices are significant. We

make a similar observation for the normal stress para-

meters usns
as illustrated in Table 3. We find that due

to the contribution effects corresponding to parameter

correlation, no parameter is noninfluential as exhibited

by the total sensitivity indices for uP, usns
, and uss

.

We plot in Figure 7 the first-order and total sensitiv-

ity indices Si and STi for the Landau parameters uP. In

Figures 8 and 9, we plot the sensitivity indices Si and

STi for normal and shear stress parameters usns
and uss

,

respectively.

We note that the magnitudes for the first-order sensi-

tivity indices S3 and S5 are relatively small for the para-

meters a12 and a112. However, correlative contributions

present in the higher-order sensitivity indices and com-

piled in Table 2 have a non-negligible effect on the total

sensitivity indices ST3 and ST5 . This implies that the para-

meters u3 =a12 and u5 =a112 are still influential.

We make a similar observation regarding the electro-

strictive coefficients q11 and q12. Although, first-order

contributions are negligible, second- and third-order

interactions, as observed in Table 3, yield greater total

sensitivity indices, making the coefficients more influen-

tial. We observe from Table 4 that while the first-order

contribution is negligible for q44, the second-order sen-

sitivity index for q44 and sR
23

is significant in the case of

the shear stress. This yields a considerable contribution

to the total sensitivity indices STi , making both para-

meters q44 and sR
23

influential.

To illustrate relative effects of first-order and higher-

order effects, we plot in Figures 10 to 12, the compo-

nent functions for uP, usns
, and uss

. We note that the

higher-order component functions are significant in all

three cases.

Since the parameters uP are highly correlated, as illu-

strated by the covariance matrix (equation (50)) and

the pairwise plots of Figure 4, we conclude that all the

component functions of equation (16) are significant.

Figure 6. Pairwise correlation among the shear stress

parameters uss
= ½q44,s

R
23�.
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Table 2. Sensitivity indices for total contributions Srn constructed using the component functions frn for the Landau energy

parameters uP .

S1 S2 S3 S4 S5

A. 1st order 0.281 0.133 0.006 0.088 0.009

N. 1st order 0.274 0.127 0.005 0.082 0.008

S12 S13 S14 S15 S23 S24 S25 S34 S35 S45

A. 2nd order 0.100 0.062 0.060 0.067 0.012 0.021 0.016 23.75e24 0.002 20.001

N. 2nd order 0.109 0.065 0.068 0.072 0.014 0.029 0.019 0.002 0.004 0.002

S123 S124 S125 S134 S135 S145 S234 S235 S245 S345

A. 3rd order 20.002 0.049 20.052 0.013 20.069 20.024 0.032 20.011 0.015 0.001
N. 3rd order 4.20e24 0.036 20.052 0.016 20.068 20.023 0.036 20.009 0.018 0.003

S1234 S1235 S1245 S1345 S2345

A. 4th order 20.070 0.202 20.011 0.088 20.025

N. 4th order 20.073 0.195 20.011 0.092 20.011

S12345

A. 5th order 0.009
N. 5th order 20.027

ST1 ST2 ST3 ST4 ST5

A. Total index 0.703 0.418 0.249 0.244 0.217

N. Total index 0.672 0.400 0.242 0.238 0.211

The A’s and N’s represent sensitivity indices derived from the analytical and numerical determination of the component functions, respectively. The

indices correspond to the order specified by uP = ½a1,a11,a12,a111,a112�. The shaded cells designate significant indices.

Table 3. Sensitivity indices for total contributions Srn constructed using the component functions frn for the normal stress

parameters usns
.

S1 S2 S3 S4 S5

A. 1st order 5.79e24 0.001 0.158 0.176 0.164

N. 1st order 5.46e24 0.001 0.156 0.179 0.162

S12 S13 S14 S15 S23 S24 S25 S34 S35 S45

A. 2nd order 5.74e25 25.79e24 24.50e24 0.180 0.157 0.141 0.002 20.093 20.018 20.025

N. 2nd order 7.42e24 2.09e24 9.70e24 0.183 0.156 0.141 0.002 20.092 20.015 20.023

S123 S124 S125 S134 S135 S145 S234 S235 S245 S345

A. 3rd order 25.73e25 3.35e24 1.47e25 6.99e24 0.003 0.016 0.120 0.001 20.003 0.012

N. 3rd order 0.003 0.003 0.003 0.005 0.005 0.017 0.119 0.001 20.003 0.014

S1234 S1235 S1245 S1345 S2345

A. 4th order 0.002 0.003 0.013 20.005 20.012
N. 4th order 0.006 0.009 0.016 0.005 20.011

S12345

A. 5th order 0.005
N. 5th order 20.045

ST1 ST2 ST3 ST4 ST5

A. Total index 0.217 0.431 0.334 0.348 0.336

N. Total index 0.211 0.403 0.316 0.332 0.320

The indices correspond to the order specified by usns
= ½q11, q12,sR

11,s
R
22,s

R
33�. The shaded cells correspond to significant indices.
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For the normal stress electrostrictive parameters usns
, it

is shown that higher-order component functions are

significant for the sets of most correlated parameters.

Finally, for the shear stress parameters, the second-

order component function is again significant due to

the correlation between q44 and sR
23
.

Global sensitivity analysis: assumption of independent

parameters

The pairwise plots in Figures 4 to 6, obtained through

Bayesian inference, demonstrate that the parameters

are highly correlated, thus requiring the general sensi-

tivity analysis. The results in the section on ‘‘Global

sensitivity analysis’’ demonstrate that due to this corre-

lation, high-order indices can be significant when first-

order interactions are negligible.

As noted in the ‘‘Introduction,’’ however, the nature

of parameter correlation is rarely known a priori thus

motivating global sensitivity analysis based on the

assumption of mutually independent, uniformly distrib-

uted parameters. As detailed in the section on ‘‘Sobol’

indices for independent parameters with uniform

Figure 8. Comparison of analytical and numerical methods to obtain (a) first-order and (b) total sensitivity indices for equation (17).

Figure 7. Comparison of analytical and numerical methods obtain (a) first-order and (b) total sensitivity indices for equation (16).

Table 4. Sensitivity indices for total contributions Srn constructed using the component functions frn for the shear stress parameters

usns
.

S1 S2 S12 ST1 ST2

Sensitivity 6.812e25 0.651 0.349 0.349 1.000

Numerical 5.347e25 0.650 0.350 0.350 1.000

The indices correspond to the order specified by usns
= ½q11, q12,s

R
11,s

R
22,s

R
33�. The shaded cells designate significant indices.
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densities,’’ this vastly simplifies the computation of

Sobol’ indices. We will demonstrate here, however, that

this also yields incorrect and highly misleading mea-

sures of parameter influence and ranking when para-

meters are correlated.

We consider the parameters to be independent and

uniformly distributed

Yi;U unomi � 0:25 unomi











, unomi + 0:25 unomi













� �

where junomi j are the absolute values of nominal values

compiled in Table 1 for uP in equation (12) and us in

equation (13). Perturbations on the order of 0.25 are

commonly employed to provide broad sampling with-

out significantly changing the model behavior. To

avoid scaling issues, we mapped these intervals to

Figure 10. (a) First-, (b) second-, (c) third-, (d) fourth-, and (e) fifth-order component functions constructed using the analytical

method (– –) and the numerical method (—) for up in equation (16) with m= 4 subintervals for the cubic B-spline basis functions.

Figure 9. Comparison of analytical and numerical methods to obtain (a) first-order and (b) total sensitivity indices for equation (18).
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½0, 1� before employing Algorithm 3.1 to approximate

first- and second-order Sobol’ indices. We employed

M = 10, 000 samples when constructing YA, YB, and

YCi
, i= 1, . . . , p for the polarization energy pseudore-

sponse (equation (16)), the normal stress pseudoresponse

(equation (17)), and the shear stress pseudoresponse

(equation (18)).

We summarize in Table 5 the first-order and total

Sobol’ indices for the three parameter sets. We note that

the indices Si and STi imply that a1 and a11 are most

influential and they reflect the property (33), which

states that the first- and second-order indices sum to

unity. Likewise, the indices for the normal stress com-

ponents imply that q12, s
R
11
, and sR

33
are most influential

and satisfy equation (33). The indices for the shear

stress parameters show that sR
23

is most influential, also

satisfying equation (33).

These results indicate that the Landau energy para-

meters a12, a111, and a112, normal stress parameters

Figure 11. (a) First-, (b) second-, (c) third-, (d) fourth-, and (e) fifth-order component functions constructed using the analytical

method (– –) and numerical method (—) for uss
in equation (17) with m= 4 subintervals.

Figure 12. First-order component functions constructed using

the analytical method (– –) and numerical method (—) for uss
in

equation (18) with m= 4 subintervals.

Table 5. Sobol’ indices Si, STi for responses YP(uP), Ysns
(usns

), and Yss
(uss

), constructed using Algorithm 3.1.

a1 a11 a12 a111 a112 q11 q12 sR
11 sR

22 sR
33 q44 sR

23

Si 0.40 0.60 4.35e25 1.12e23 1.49e24 2.26e22 0.29 0.16 3.25e23 0.51 3.84e23 0.99

STi 0.40 0.59 1.97e24 1.89e23 1.44e24 2.13e22 0.29 0.16 3.96e23 0.52 2.95e23 1.00

The shaded columns correspond to significant indices.
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q11, q44, and sR
22
, and shear stress parameter q44 are not

influential. Based on this result, the parameters are not

influential and therefore minimal uncertainty in the

response can be attributed to uncertainty in the para-

meters. Furthermore, these parameters could then be

fixed at nominal values for Bayesian model calibration.

Because the fixed parameters are not influential, we

would expect negligible changes in the uncertainty

quantification of the influential parameters before and

after the noninfluential parameters are fixed.

We then employ the DRAM algorithm (Haario

et al., 2006; Smith, 2014) to perform the Bayesian anal-

ysis and obtain posterior densities for the influential

parameters, when fixing noninfluential parameters dic-

tated by the results in Table 5. The model is once again

informed by synthetic data generated by DFT simula-

tions (Oates, 2014). We consider the cases when the

noninfluential parameters a12, a111, and a112 are fixed

at the nominal values presented in Table 1. We obtain

the posterior densities plotted in Figure 13.

We note that the posterior densities vary signifi-

cantly when (1) all the parameters are sampled and (2)

the parameters a1,a11 are sampled with a111,a12,a12

fixed at the nominal values. These results contradict the

results in Table 5 but are consistent with the results in

the section on ‘‘Global sensitivity analysis,’’ where all

parameters were found to be significant. This demon-

strates that global sensitivity indices based on the

assumption of mutually independent, uniformly distrib-

uted, parameters can yield very misleading interpreta-

tions of parameter influence when parameters are

correlated.

Local identifiability analysis based on the Fisher

information matrix

Here, we employ the local identifiability analysis meth-

odology from the section on the ‘‘Fisher information

matrix’’ to infer any locally unidentifiable parameters

and corroborate the global sensitivity analysis results

for correlated parameters. Specifically, we apply

Algorithm 3.2 to the Landau polarization energy uP in

equation (6), and the normal stresses s11, s22, s33, and

shear stress s23 in equation (11). We note again that

the Landau energy parameters are

uP = a1,a11,a12,a111,a112½ �

whereas the normal and shear stress coefficients are,

respectively

Figure 13. Posterior densities obtained via Bayesian calibration of Yp(uP) in equation (16) when (1) sampling all the parameters, (2)

sampling a1,a11,a111 with a12,a112 fixed, and (3) sampling a1,a11 with a111,a12,a12 fixed.
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usns
= q11, q12,s

R
11
,sR

22
,sR

33

� �

, uss
= q44,s

R
23

� �

We set the threshold parameter e= 10
�8 in

Algorithm 3.2. When jl1j.e, all remaining parameters

that have not been removed, are identifiable. For the

Landau energy uP, application of the algorithm yields

that all parameters are considered to be identifiable.

We observe this from the first iteration of the algorithm

in Table 6. These results are consistent with the global

sensitivity analysis for correlated parameters, where we

showed that all total Sobol’ sensitivity indices STi were

significant, thus specifying that all parameters are influ-

ential. Therefore, no parameter in the model can be

fixed for subsequent Bayesian inference. Similar results

are observed for the parameters us (equation (13)) in

the normal and shear stress components (equation

(11)). We compile the first iteration of Algorithm 3.2 in

Table 7. In both cases, the magnitude of the smallest

eigenvalue is jl1j.e. Thus, we conclude that all the

parameters are identifiable. This verifies our results for

the global sensitivity analysis detailed early in this sec-

tion, where it was shown that all parameters us (equa-

tion (13)) were influential.

Concluding remarks

The objective of this article was to investigate and

quantify the influence of parameters in a quantum-

informed continuum model for single-domain ferroelec-

tric materials. Broadly, parameters are considered to be

noninfluential if perturbations through the admissible

parameter space are minimally reflected in responses.

Noninfluential parameters are typically fixed at

nominal values during model calibration, uncertainty

propagation, and model-based design and control. In

this investigation, we employed global and local sensi-

tivity analysis to quantify the relative influence of five

parameters in a sixth-order Landau polarization energy

and seven electrostrictive energy parameters.

Since parameter distributions are not typically

known a priori, it is commonly assumed that para-

meters are independent and uniformly distributed when

performing global sensitivity analysis. However, we

demonstrate using general theory for correlated para-

meters, with covariance structures computed using the

Bayesian analysis in Part 1 (Miles et al., 2018), that the

incorrect assumption of mutually independent para-

meters yields incorrect conclusions regarding parameter

influence for correlated parameter sets.

While the methods for sensitivity analysis presented

in other investigations, such as Hamby (1994), provide

a technique for computing partial correlation coeffi-

cients, our study broadly accommodates the underlying

correlation in the complete set of parameters. Hence,

this analysis enables the comparison of individual, par-

tial, and total effects due to the correlation structure.

Based on the general theory of global sensitivity

analysis, we demonstrate that for both parameter sets,

individual effects may be negligible, whereas total

effects are significant due to correlation. For both para-

meter sets, this theory establishes that all of the para-

meters are influential and must be inferred during

model calibration. The local sensitivity analysis, imple-

mented using the Fisher information matrix, corrobo-

rates these conclusions. In comparison, global

sensitivity analysis based on the assumption of

Table 7. Results from Algorithm 3.2 to determine unidentifiable parameters in us (equation (13)) for the normal and shear stress

components uns and us (equation (11)).

Iteration l1j j Eigenvector Du1 with associated parameters

q11 q12 sR
11 sR

22 sR
33

1 3.67 29.33e21 26.13e22 22.48e22 25.17e22 23.51e21

Iteration l1j j q44 sR
23

1 8.99e21 29.94e21 21.07e22
Result: All parameters us are identifiable since jl1j.e= 10�8

Table 6. Results from Algorithm 3.2 to determine unidentifiable parameters in uP (equation (12)) for the polarization energy

Ysns
(usns

) (equation (6)).

Iteration jl1j a1 Eigenvector Du1 with associated parameters

a11 a12 a111 a112

5.62e25 1.16e22 23.30e22 24.31e21 2.07e22 9.01e21
Result: All parameters uP are identifiable since jl1j.e= 10�8
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mutually independent parameters incorrectly specifies

two influential polarization parameters and three influ-

ential electrostrictive parameters.

Generally, one would perform global sensitivity

analysis prior to Bayesian or frequentist inference to

reduce computational requirements by isolating the

subset of identifiable parameters. This raises the practi-

cal question of how one determines whether parameters

are correlated and what their distribution is without

performing full Bayesian inference as we have done

here for illustrative purposes.

One can determine whether parameters are corre-

lated by computing the local sensitivity matrix S in

equation (49) and matrix

F= STS

employed in Step 1 of Algorithm 3.2. Specifically, para-

meter correlation is indicated by non-negligible off-

diagonal elements of F.

As we did in this analysis, one can then consider

parameters to be normally distributed, u;N (m,V ),

where m and V are OLS estimates for the mean and

covariance matrix. As detailed in the work by Smith

(2014), the OLS estimate for V is

V =
RTR

n� p
F�1

where n is the number of observations, p is the number

of parameters, and

R=
X

n

i= 1

yi � fi uð Þ½ �2

is the residual. The OLS estimate of V is typically

employed to initiate the DRAM algorithm employed in

Miles et al. (2018) for Bayesian inference. Hence, this

analysis comprises the first step of Bayesian inference

but avoids the computationally intensive sampling.

In future work, we will extend the single-domain sen-

sitivity and uncertainty analysis to polydomain materi-

als by incorporating the domain wall gradient energy

(Cao and Cross, 1991). This includes the development

and simulation of appropriate responses.

Global and local sensitivity analyses are subset selec-

tion techniques since they isolate subsets of identifiable or

influential parameters. However, they do not address

models of the form y= u1 + u2 involving linear combina-

tions of parameters. A second component of future work

will focus on active subspace techniques (Bang et al., 2012;

Constantine, 2015) to isolate linear identifiable subspaces.

As detailed in the work by Lewis et al. (2017), one can

subsequently perform Bayesian inference on these sub-

spaces to eliminate the tight priors required for unidentifi-

able parameters and reduce computational requirements

for moderate to high-dimensional parameter spaces.
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