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Ocean acidification compromises a
planktic calcifier with implications
for global carbon cycling
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Anthropogenically-forced changes in ocean chemistry at both the global and regional scale have the
potential to negatively impact calcifying plankton, which play a key role in ecosystem functioning and
marine carbon cycling. We cultured a globally important calcifying marine plankter (the foraminifer,
Globigerina bulloides) under an ecologically relevant range of seawater pH (7.5 to 8.3 total scale).
Multiple metrics of calcification and physiological performance varied with pH. At pH > 8.0, increased
calcification occurred without a concomitant rise in respiration rates. However, as pH declined from
8.0to 7.5, calcification and oxygen consumption both decreased, suggesting a reduced ability to
precipitate shell material accompanied by metabolic depression. Repair of spines, important for both
buoyancy and feeding, was also reduced at pH < 7.7. The dependence of calcification, respiration,
and spine repair on seawater pH suggests that foraminifera will likely be challenged by future ocean
conditions. Furthermore, the nature of these effects has the potential to actuate changes in vertical
transport of organic and inorganic carbon, perturbing feedbacks to regional and global marine carbon
cycling. The biological impacts of seawater pH have additional, important implications for the use of
foraminifera as paleoceanographic indicators.

Global change, driven by the anthropogenic release of carbon dioxide (CO,) into the atmosphere, is rapidly alter-
ing modern oceans. The oceans have already absorbed a third of emitted anthropogenic CO,', and the resulting
decrease in ocean pH and carbonate saturation state, known as ‘ocean acidification, will impact the physiology,
ecology, and preservation of marine fauna (e.g. refs 2-5). Biological responses to ocean acidification vary by
taxon®” and by geographic region®'°. Among pelagic calcifiers, reductions in pH and concentration of carbonate
ion (CO42") are known to alter the performance of pteropods'!-%3, coccolithophores'*-¢, and foraminifera!’-%.
These marine calcifiers are ubiquitous in the world’s oceans, where they play essential roles in food web dynamics
and carbon cycling, and provide vital tools for paleoclimate research.

Along the California margin in the northeastern Pacific Ocean, planktic foraminifera affect carbon flux in two
ways. First, their shells, together with those of coccoliths, contribute CaCOj to the ‘alkalinity pump;, which trans-
ports inorganic carbon out of surface waters while reducing alkalinity (a potential positive feedback to climate
change and amplification of surface acidification®"-??). Indeed, the shells of these two groups comprise 20-80%
of marine calcite exported to the deep ocean?"?2. Second, inorganic and organic components of vertical carbon
transport interact such that shell material may act as “ballast” for relatively light and unstructured organic mat-
ter. In this regard, foraminiferal shell properties may control sinking rates of soft tissue and the efficiency of the
biologic carbon pump, a negative feedback on climate change and mitigation of surface ocean acidification®-2,
Beyond their role in carbon cycling, planktic foraminifera are excellent archives of the water column conditions in
which they calcify during their short lives. These organisms are therefore valued for their rich fossil record, which
facilitates reconstruction of past ocean conditions (e.g. refs 29, 30).

At present, knowledge concerning the response of foraminifera to changes in ocean chemistry remains incom-
plete. While reductions in planktic foraminiferal shell weight have been observed under decreased seawater
pH in the laboratory and in some field studies'®-2" 3!, other studies show no such trend*> 3. Where observed,

!Department of Earth & Planetary Sciences, University of California - Davis, Davis, CA, USA. 2Bodega Marine
Laboratory, University of California - Davis, Bodega Bay, CA, USA. 3Department of Evolution and Ecology,
University of California - Davis, Davis, CA, USA. “Present address: Virginia Institute of Marine Science, William &
Mary, Gloucester Point, VA, USA. Correspondence and requests for materials should be addressed to C.V.D. (email:
cvdavis@seoe.sc.edu)

SCIENTIFICREPORTS|7:2225 | DOI:10.1038/s41598-017-01530-9 1



www.nature.com/scientificreports/

correlations between pH and shell weight have been attributed to increases in the energy requirements of cal-
cification under low pH conditions®* **. However, additional physiological consequences of ocean acidification,
including maintenance of key body structures that can influence net buoyancy and feeding, and overall reproduc-
tion and metabolic functioning - all of which can affect mortality, rates of sinking, and ultimately carbon export
- have not been examined.

Here, we provide a first exploration of additional biological consequences of ocean acidification by culturing
the widespread planktic foraminifer, Globigerina bulloides, a common focal taxon in paleoceanographic research,
under a range of seawater pH. This species complex, with 7 known genetically distinct lineages, has a cosmopol-
itan distribution and ranges from polar regions to the tropics, including both upwelling zones and oligotrophic
gyres**-*, Within the California Current Upwelling System, these organisms already experience a wide range of
environmental pH, encompassing minima that are expected to intensify and increase in frequency in the coming
century, with potential consequences for carbon cycling and export™ . Therefore, we examine several types of
responses of G. bulloides to increased ocean acidity, including changes in calcification, morphology, and phys-
iology. We follow these experiments with an initial evaluation of the implications of this suite of responses for
survival of these organisms and the operation of both the biologic carbon and alkalinity pumps, as well as for the
geologic record.

Methods

Collection. Individual G. bulloides were collected by 155 pm mesh net tows taken offshore of Bodega Head,
CA in January-February 2015. Foraminifera were isolated from tow material and randomly assigned to a pH
treatment into which they were placed immediately. Based upon the location of our study site, these G. bulloides
likely belong to type IId or Ile as distinguished by past genetic studies®. Treatment seawater was filtered at 0.6 pm,
before being chemically brought to a target pH at constant alkalinity*!, and labeled with a fluorescent calcein dye.
All foraminifera were held at 16 °C (4:0.15 °C) under a stable 12 hour light/dark cycle, although G. bulloides lacks
photosymbionts.

Experimental Design. On day 2, after 24 hours recovery, individuals were fed a day-old freeze-killed
Artemia nauplius. Foraminifera that fed successfully and had colored cytoplasm and active rhizopodia were des-
ignated with specimen numbers and tracked through the next phase of experimental observations. Treatment
water in the culture vials was then replaced with fresh calcein-labeled treatment water. On day 3, 24 hours after
feeding, 10-12 foraminifera per treatment were selected at random for oxygen consumption measurements and
were triple-rinsed in filtered seawater to remove any calcein. Following respirometry trials, foraminifera were fed
and returned to freshly poured calcein-labeled treatment water. Foraminifera were then observed every day and
fed and imaged every other day with an accompanying water change, until death or gametogenesis.

Respirometry. Individual foraminifera were placed in ~1 mL gas-tight biological oxygen demand (BOD)
vials and sealed without headspace for 24 hours in darkness at 16 °C, along with two control vials containing only
treatment water. After 24 hours, ~700 pL of seawater from each BOD vial was injected into a glass measurement
cell, and the final oxygen concentration was read in triplicate using an optode, calibrated using a saturated solu-
tion of sodium sulfite (0% O,) and air-saturated seawater (100% O,). Oxygen consumption over the 24-hour
incubation (nmol O, foram ™! hr™!) was calculated with respect to the control vials.

Fluorescence. Total calcite added was assessed by determining average pixel intensity of the visible shell.
Incorporated calcein was excited and imaged at a wavelength of 495 nm using an epifluorescent AZ100 micro-
scope with a standardized exposure time of 1.5s. Average pixel intensity, a direct measure of calcein uptake into
the shell during culture, was determined from the images using MetaMorph (Molecular Devices). Comparing
average pixel intensity among treatment groups provides a relative quantification of the effects of seawater car-
bonate chemistry on shell calcification. See supplement for further details.

Results and Discussion
When G. bulloides was exposed to lower seawater pH, shell calcification was reduced (Fig. 1). Using an approach
based on the incorporation of a fluorescent dye (calcein) into calcium carbonate shells, we documented a signif-
icant positive correlation between the amount of calcite added and pH (total scale) (p-value < 0.01; R2=0.26;
Fig. 1a; Fig. S1A). Due to an increase in the calcite saturation state, a similar trend arose between calcification and
carbonate ion concentration, [CO;*~] (p-value < 0.01; R*=0.21; Fig. 1b; Fig. S1B). These patterns concurred with
results from previous culture studies, including one concerning the planktic foraminifera, Orbulina universa® 3!,
which showed a linear decrease in shell weight over a similar range of [CO5>~]. While a reduction in [CO;*~] over
the range shown here would negatively impact foraminiferal calcification at the population level, the amount of
CaCOj; added to the shell varied among individuals (Fig. S1B). If this variability in performance has a heritable
genetic basis, natural selection may play an important role as a mechanism for increasing tolerance in foraminif-
era populations to decreasing ocean pH, as has been suggested in other calcifiers** . In the absence of such
genetic adaptation, the documented reductions in calcification indicate decreased overall mass density (less shell
per body volume), and thus decreased contribution to inorganic carbon export as ocean acidification progresses.
Planktic foraminifera are encapsulated by a calcite shell, which grows both by sequential addition of chambers
and by thickening over pre-existing chambers** **~*> and many species, including G. bulloides, also possess calcite
spines that extend outward from the shell wall. Interestingly, we observed a decoupling between chamber forma-
tion and addition of new calcite layers onto pre-existing chambers. Some foraminifera in our low-pH treatments
added new chambers without adding detectible calcite onto older chambers. In contrast, in higher pH treatments,
calcite was usually added over multiple existing chambers, including in individuals that did not form a new
chamber in culture (Fig. 2). These observations differ from a common conceptual model in which the production
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Figure 1. Mean calcification in Globigerina bulloides as measured by calcein uptake (average pixel intensity),
with respect to (a) pH and (b) [CO;*"]. Error bars show standard deviation in both the x and y directions. These
data are fit with a linear model with a 95% confidence envelope. The R? and p-value refer to the fit of individual
foraminifera to this curve (data for individual foraminifera can be found in Supplementary Data).

of each new chamber occurs concomitantly with the addition of a new layer of calcite on all older chambers*» 4,

For some individuals, the majority of calcification was concentrated in the most recent chamber, while in others,
chamber formation was accompanied by detectable shell thickening on all chambers (Fig. 2). Furthermore, there
were no significant differences across treatments in the proportion of foraminifera that added a new chamber
in culture. Thus, chamber formation, rather than concurrent thickening, seems to be conserved during periods
of stress, suggesting that it may be more essential for organismal functioning (e.g. reaching milestones such as
attaining a minimal size for reproduction or accommodating cytoplasmic growth).

Growth and maintenance of spines declined at lower pH (Fig. 3). In the water column, G. bulloides is sur-
rounded by an array of thin rounded spines. Although the function of spines remains poorly understood, previ-
ous researchers have proposed that the spines are likely utilized in the capture and retention of live prey; spines
will also act to slow sinking rates and therefore may act to maintain preferred vertical positioning in the water
column*®¥7, Whereas spinose foraminifera (including G. bulloides) drop their spines due to shock or mechan-
ical damage during collection, lost spines are usually regenerated in culture within 1-2 days*. Complete spine
recovery was observed in the highest pH treatments, in which all G. bulloides eventually regrew their spines,
with longer recovery times of four and five days observed for some individuals. In marked contrast, only 30% of
foraminifera cultured in pH group 7.5 regrew and maintained their spines (Fig. 3), a significant reduction from
that of higher pH groups (F; 3; = 13.64; p < 0.01; Fig. 3). Foraminifera lacking spines may experience reduced
buoyancy and/or difficulty capturing prey, and might therefore experience elevated non-reproductive mortal-
ity. Although foraminifera complete their life cycle by converting most of their tissue to gametes that are then
expelled into shallow waters, individuals that die and sink prematurely would do so with soft tissue intact, which
is ballasted by the shell itself. As spineless shells sink faster than shells with spines*, this non-reproductive mor-
tality would enhance transport of foraminiferal organic carbon to depth.

Respiration rates of foraminifera incubated under the lowest pH conditions were reduced to rates indistin-
guishable from background microbial respiration (Fig. 4; Fig. S2). Such low respiration rates are indicative of
metabolic depression, a common response of marine invertebrates to physiological stress in which the organism
minimizes energy-consuming processes, stalling growth and reproduction, in an effort to survive transient epi-
sodes of environmental stress. A range of respiration rates was observed in each experimental run varying from
indistinguishable from background (<0.5nmol O, foram ™! hr™!) to 3.5nmol O, foram ! hr™! (Fig. S3). Average
oxygen consumption increased with pH up to an inflection point at pH 8.1 ([CO;*"] 180 pmol kg™?), although
with a large spread in individual respiration rates not explained by observed variables (Fig. S4). The pH condi-
tions associated with maximum average respiration rates coincide with near surface conditions at collection, and
thus it is possible that prior acclimatization to in situ pH may play some role in shaping the measured physiologi-
cal responses. However, the observed variance in metabolism was not found to be significantly related to the abso-
lute difference between carbonate chemistry conditions at collection and laboratory exposure (Supplementary
Table S1). Thus acclimatization cannot be a primary driver for the observed response in oxygen consumption
across the range of pH conditions.

The hypothesis that formation or maintenance of elevated pH vacuoles within the cytoplasm is necessary
for foraminiferal calcification leads to the prediction that greater energy expenditure is required under low pH
conditions®* #. If the existing physiological capacity of G. bulloides for aerobic metabolism can accommodate
increased energy demands under low seawater pH, rates of oxygen consumption would be expected to increase
with decreasing pH. However, oxygen consumption declined with pH < 8.1, suggesting that conditions of ocean
acidification may elicit metabolic depression in this population. Metabolic depression is an effective adap-
tive strategy for tolerating short-term environmental stress®®. Under metabolic depression, energy turnover is
decreased in order to ensure short-term survival of the organism; reproduction and growth are delayed or sac-
rificed, with implications for population dynamics®”'. Signs of metabolic depression at pH < 7.7 indicate that
satisfying any increase in demand for energy under acidified conditions was beyond the metabolic scope of the
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Figure 2. Patterns of calcein incorporation from Globigerina bulloides in culture. Several examples of the
different patterns in shell calcification seen from foraminifera collected on the same date. Individuals F24

(a), F34 (c), and F40 (e) did not form a chamber in culture, although calcification occurred over the entire
shell in F24, was focused on select chambers in F34 and was minimal in F40. Foraminifera F19 (b), F36 (d),
and F44 (f) all grew a chamber with F19 showing calcification in both the new chamber as well as over the rest
of the shell, F36 calcified most heavily in the new chamber and less over the rest of the shell, and F44 calcified
primarily in the new chamber.

foraminifera. While metabolic depression may allow G. bulloides to tolerate short-term perturbations of low
seawater pH (for example, upwelling events), individual fitness may be reduced if this species exhibits regulated
reduction in metabolism to future long-term ocean acidification. Thus, a response of metabolic depression to
long-term acidification would likely act in concert with reduced spine repair to increase non-reproductive mor-
tality and organic carbon export.

At pH > 8.1, respiration rates of G. bulloides decreased (Figs 1 and 4). In contrast to low pH, respiration rates
remained above background levels, while foraminifera added more calcite, demonstrated complete spine recov-
ery, and performed well according to qualitative metrics including rhizopodial extent and cytoplasm color. Under
high pH conditions, G. bulloides may require less energy expenditure to achieve high calcification rates. This
could be due to lower acid-base regulation needed to maintain favorable conditions at the sites of calcification,
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were found between foraminifera exposed to pH 7.5 vs. pH 8.0 and 8.3 (ANOVA; F; 43 = 13.64; p-value < 0.01).
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Figure 4. Oxygen consumption of Globigerina bulloides in response to changing carbonate chemistry
conditions. Average rate of oxygen consumption for foraminifera over 24 hours, normalized to the longest shell
diameter relative to the (a) pH and (b) [CO;*"] of exposure conditions (data for individual foraminifera can be
found in Supplementary Data). Error bars show standard deviation in both the x and y directions. Data are fit
with a 3" order polynomial with a 95% confidence envelope.

or a higher proton gradient between the organism and the environment®. As a result, calcification may be less
dependent on the rate of aerobic metabolism, and foraminifera may be able to precipitate more calcite with the
same or even a reduced portion of their energy budget. In other protozoans, respiration rate has been closely
linked to cell growth rate®. If the energetics of calcareous foraminifera are similar to those of naked ciliates,
respiration rate may be considered representative of cell growth rate. Calcification may thus be energetically
favored by any increase in environmental pH or [CO;2~] (over the range studied), while maximum cell growth
rates are restricted to a narrower range of pH, reflected in rates of maximum respiration. Overall, the decoupling
of respiration rate and total calcification observed at the highest pH treatment suggests that an increase in aerobic
metabolism is not required to support increased calcification at higher pH.

A more complete picture of the relationship between seawater chemistry and foraminiferal calcification and
physiology can improve predictions of how carbon cycling will be altered in an acidifying ocean. Foraminifera
play an important role in ocean carbon cycling with a small but significant global organic carbon biomass of
0.0009-0.002 Gt C** and shells that are one of the most important constituents of inorganic carbon flux?>?'. An
overall decrease in foraminiferal calcite under low pH conditions could potentially impact the amount of calcite
both contributed to the alkalinity pump and available for “ballast’, although this later outcome remains difficult to
quantify®. As both respiration and spine repair were significantly inhibited under low [CO;*~] conditions, there
is also potential for greater non-reproductive mortality in G. bulloides under future low [CO;*~] scenarios, which
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Average Foraminifera | Average CaCO; Flux | Average POC Flux | Change in CaCO; | Change in Change in
Location Flux (pgm~'day™') |(pgm~'day™!) (pgm~'day~?') Flux (%) POC Flux (%) | Rain Ratio (%)
Santa Barbara Basin 57 58 58
(Coastal Upwelling) 6350 181000 96000 1% <1% 2%
Station Papa 12110¥ 120009 15000 38% 9% 43%
(Open Ocean)
Cariaco Basin 61 58 58
(Equatorial Upwelling) 14495 37000 34000 15% 5% 19%
Global Average 0.36 Gt/y-0.88 Gt/y*! | 1.1 Gt/y* 0.86 Gt/y* 12-30% 5-11% 15-38%

Table 1. Potential changes in foraminiferal contribution to CaCO; and POC flux, and the ‘rain ratio. Fluxes are
taken from the deepest available published sediment-trap measurements at each site for Santa Barbara Basin
(500m) in the Southern California Current System, Station Papa (1000 m) in the North Pacific, and Cariaco
Basin (1200 m) in the tropical Atlantic®*-*!. Global averages assume a depth of >1000m and are based on a
range of potential contributions of foraminifera calcite to CaCO; flux at depth?"¢1-63,

could increase export of organic carbon within the cytoplasm from surface waters by means of a rapidly sinking
shell (29-552m day!)*.

Increased export of foraminiferal soft tissue, a constituent of particulate organic carbon (POC) flux, would
generally intensify the biological pump and the drawdown of CO, into the deep sea. In parallel, sinking foraminif-
era shells would be less calcified, resulting in less CaCOj; precipitated and then exported out of surface waters,
reducing the foraminiferal contribution to the alkalinity pump. The opposing roles of the biologic and alkalinity
pumps in ocean carbon cycling can be summarized by the “rain ratio” of CaCOs/POC of particles exported to
the sediment, which represents the strength of the biologic pump relative to the alkalinity pump. Our results
suggest that foraminiferal responses to ocean acidification will result in a decreased rain ratio of CaCO,/POC,
by a more efficient export of organic carbon out of the surface ocean relative to the counterbalancing effect of the
drawdown of alkalinity due to calcification. Such a decrease in the rain ratio could represent a negative climate
feedback to ocean acidification®!-%*, exporting more organic carbon than alkalinity. The simultaneous response of
both reduced calcification and increased organic carbon export by foraminifera at low pH would strengthen the
efficiency of CO, drawdown by the biologic pump. Therefore, in areas in which foraminifera are major contribu-
tors to carbon flux, stress-induced changes to foraminiferal CaCO,/POC at pH < 7.7 could provide a significant
negative feedback on near-surface acidification and climate change.

For a pH drop from a baseline of 8.0 to a future condition of 7.6 units, we estimate a corresponding decrease
in the rain ratio, based on our observations of reduced foraminifera calcification and likely increased cytoplasm
export associated with spine loss at low pH (independent of other biological consequences of ocean acidification).
We use previously published records of foraminiferal CaCOj3, total CaCOj;, and POC flux below 1000 m (Table 1).
For this estimate, we assume that an average individual foraminifera contains 5ug CaCOj3, based on sediment trap
total weights and counts of individual foraminifera, and 1.7 ug POC, based on observations of a global average
CaCO; to POC ratio of 3:1 in planktic foraminifera®-*!. We furthermore assume that our calcification results are
typical for all foraminifera at pH < 8.0, that species composition and therefore biomass production remains con-
stant, and that absence of spine repair is a reasonable predictor of increased non-reproductive mortality. Under
these circumstances, a reduction in foraminiferal calcification would decrease total CaCO; flux by 12-30%, and
increase POC flux by 5-11%. This results in a decrease of the global rain ratio of 15-38% due to changes in
foraminifera calcification and physiology alone, with the primary uncertainty being the foraminiferal contribu-
tion to global CaCO; flux*. This same set of assumptions can be applied to single locales in which carbon fluxes
and foraminifera contribution are better constrained (Table 1).

The observed reduction in calcification with possible metabolic depression in response to reduced [CO;*7]
also suggests a potential for ambiguity in the fossil record. Although some studies have shown more complexity in
the field than in the tightly coupled weight:[CO,*~] relationships seen in culture?” 3!, no field studies of foraminif-
eral calcification have been conducted at [CO;*>~] below modern open ocean values or the extremes at which
corresponding metabolic depression and reduced spine repair are here observed. Thus, there may be a limit to the
ability of foraminiferal calcification to compensate for [CO5?] variability occurring in some natural systems. As
G. bulloides calcifies less under low [CO;>7], they may record fewer extreme low [CO;*] environmental condi-
tions, such as upwelling events, that occur within a foraminiferal lifetime (~4 weeks). This may pose little problem
for reconstructions of long-term acidification events in the open ocean due to relatively slow rates of change and
the potential for adaptation. However, bias against calcification at reduced [CO5?"] could be important in more
variable environments, where foraminifera may respond to low [CO,*~] events with a temporary reduction in
calcification and metabolic rate, or increased mortality. Thus, low [CO;?"] conditions may be underrepresented
in the fossil record.

This study emphasizes the biological and physiological consequences of pH extremes, even in short exposures,
for planktic foraminifera. While the California Current and other eastern boundary current upwelling regions are
among the first to experience large departures from global-average values of ocean pH, downward shifting baselines
and new pH minima are likely to be encountered in an increasing number of environments over the next cen-
tury* 4. In upwelling regions, pH is already seasonally comparable to the lowest pH treatments tested here, and the
upwelling seasons can also coincide with the greatest flux of G. bulloides and other planktic foraminifera®® *. The
potential for changes originating in low-trophic marine calcifiers, such as planktic foraminifera, to impact regional
and global carbon cycling and ecosystems is therefore of increasing concern and relevance for the future ocean.
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