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Abstract—This work investigates the fundamental constraints
of anonymous communication (AC) protocols. We analyze the
relationship between bandwidth overhead, latency overhead, and
sender anonymity or recipient anonymity against the global
passive (network-level) adversary. We confirm the trilemma that
an AC protocol can only achieve two out of the following three
properties: strong anonymity (i.e., anonymity up to a negligible
chance), low bandwidth overhead, and low latency overhead.

We further study anonymity against a stronger global passive
adversary that can additionally passively compromise some of the
AC protocol nodes. For a given number of compromised nodes,
we derive necessary constraints between bandwidth and latency
overhead whose violation make it impossible for an AC protocol
to achieve strong anonymity. We analyze prominent AC protocols
from the literature and depict to which extent those satisfy our
necessary constraints. Our fundamental necessary constraints
offer a guideline not only for improving existing AC systems
but also for designing novel AC protocols with non-traditional
bandwidth and latency overhead choices.

1. INTRODUCTION

Millions of users from all over the world employ anonymous
communication networks, such as Tor [1], to protect their
privacy over the Internet. The design choice made by the
Tor network to keep the latency and bandwidth overheads
small has made it highly attractive to its geographically
diverse user-base. However, over the last decade, the academic
literature [2]-[8] has demonstrated Tor’s vulnerability to a
variety of traffic correlation attacks. In fact, Tor also has been
successfully attacked in practice [9].

It is widely accepted that low-latency low-bandwidth over-
head of anonymous communication (AC) protocols, such as
Tor [10], can only provide a weak form of anonymity [11].
In the anonymity literature, several AC protocols were able
to overcome this security barrier to provide a stronger anony-
mity guarantee (cryptographic indistinguishability based ano-
nymity [12], [13]) by either increasing the latency overhead or
the bandwidth overhead. In particular, high-latency approaches
(such as threshold mix networks [14]) can ensure strong
anonymity by introducing significant communication delays
for users messages, while high-bandwidth approaches (such as
Dining Cryptographers network [15] and its extensions [16]—
[18]) can provide strong anonymity by adding copious noise
(or dummy) messages.

There have been a few efforts to propose hybrid ap-
proaches [19]-[24] that try to provide anonymity by simultane-
ously introducing latency and bandwidth overhead. However,
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it is not clear how to balance such system parameters to ensure
strong anonymity while preserving practical performance.

In general, in the last 35 years a significant amount of
research efforts have been put towards constructing novel
AC protocols, deploying them, and attacking real-world AC
networks. However, unlike other security fields such as cryp-
tography, our understanding regarding the fundamental limits
and requirements of AC protocols remains limited. This work
takes some important steps towards answering fundamental
question associated with anonymous communication. “Can we
prove that strong anonymity cannot be achieved without intro-
ducing large latency or bandwidth overhead? When we wish to
introduce the latency and bandwidth overheads simultaneously,
do we know the overhead range values that still fall short at
providing stronger anonymity?”’

Our Contribution. We confirm a previously conjectured [24],
[25] relationship between bandwidth overhead, latency over-
head and anonymity. We find that there are fundamental
bounds on sender and recipient anonymity properties [12],
[13], [26], [27] of a protocol that directly depend on the
introduced bandwidth and latency overheads.

This work presents a generic model of AC protocols using
petri nets [28], [29] such that different instantiations of this
model will represent different AC protocols, covering most
practical AC systems in the literature. We derive upper bounds
on anonymity as functions of bandwidth overhead and latency
overhead, against two prominent adversary classes: global pas-
sive network-level adversaries and strictly stronger adversaries
that additionally (passively) compromise some protocol parties
(e.g., relays in case of Tor). These bounds constitute necessary
constraints for anonymity. Naturally, the constraints are valid
against any stronger adversary class as well.

For both adversary classes, we analyze two different user
distributions (i.e., distributions that determine at which time or
rate users of the AC protocol send messages): (i) synchronized
user distributions, where users globally synchronize their mes-
sages, and (ii) unsynchronized user distributions, where each
user locally decides when to send his messages independent
of other users.

We analyze the trade-off between latency overhead and
bandwidth overhead required to achieve strong anonymity,
i.e., anonymity up to a negligible (in a security parameter 7))
chance of failure. For any AC protocol where only a fraction
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of B € [0,1] users send noise messages per communication
round, and where messages can only remain in the network
for ¢ > 0 communication rounds, we find that against
a global network-level adversary no protocol can achieve
strong anonymity if 26¢ < 1 — 1/poly(n) even when all
the protocol parties are honest. In the case where a strictly
stronger adversary additionally passively compromises c¢ (out
of K) protocol parties, we show that strong anonymity is
impossible if 2(¢ — c)8 < 1 — 1/poly(n) (for ¢ < ), or
2p¢ < 1—1/poly(n) and £ € O(1) (for c > ).

We also assess the practical impact of our results by
analyzing prominent AC protocols. Our impossibility results
naturally only offer necessary constraints for anonymity, but
not sufficient conditions for the AC protocol. However, these
necessary constraints for sender and recipient anonymity are
crucial for understanding bi-directional anonymous commu-
nication. In fact, we find that several AC protocols in the
literature are asymptotically close to the suggested constraints.
Moreover, designers of new AC protocols can use our nec-
essary constraints as guidelines for avoiding bad trade-off
between latency and bandwidth-overhead.

II. OVERVIEW

A. Formalization and Adversary Model

AC Protocols as Petri Nets. We define a view of AC
protocols as petri nets [28]-[30], i.e., as graphs with two
types of labeled nodes: places, that store colored tokens, and
transitions, that define how these tokens are sent over the
graph. In our case, each colored token represents a message,
places are the protocol parties that can receive, hold and send
messages, and transitions describe how parties exchange and
relay messages. Our model captures all AC protocols under the
assumption that messages are transmitted directly, i.e., in order
for Bob to receive a message from Alice, Alice has to send the
message and the message (albeit relayed, delayed and crypto-
graphically modified) eventually has to reach Bob. While this
requirement may sound strict, as elaborated in Section IV-B,
we effectively only exclude few esoteric protocols.

User Distributions, Communication Rounds, Bandwidth
Overhead, and Latency. We consider two types of user
distributions. In the first user distribution (synchronized) N
users send their messages in exactly N rounds (see Figure 1
for notations). Per round, exactly one user sends a message.
The protocol decides which users send noise messages in each
round. In the second user distribution (unsynchronized) each
user independently decides whether to send a message in a
round using a coin flip, with a success probability p.

The model considers synchronous communication rounds as
in [16], [17], [31], [32]. We model latency overhead ¢ as the
number of rounds a message can be delayed by the protocol
before being delivered. We formalize bandwidth overhead f3
as the number of noise messages per user that the protocol
can create in every round, i.e., the dummy message rate.

Our two types of user distributions cover a large array of
possible scenarios. Results for our user distributions imply
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Latency overhead for every message

Bandwidth overhead for every user per round
Probability to send a message per user per round
Number of (internal) protocol parties

Number of compromised protocol parties
Number of online users (that may send messages)
Adversarial advantage in the anonymity game

A protocol. IT € M: II is within our model

The security parameter

A (very small, but non-negligible) function

A HoZ20 X e

Fig. 1. Notation

results for similar distributions, if a reduction proof can show
that they are less favorable to the protocol.!

Adversaries. We consider global passive non-compromising
adversaries, that can observe all communication between
protocol parties; and strictly stronger partially compromising
(passive) adversaries, that can compromise protocol parties to
learn the mapping between inputs and outputs for this party.

Anonymity Property. We leverage an indistinguishability
based anonymity notion for sender anonymity: the adversary
has to distinguish two senders of its own choosing [12], [13].

For a security parameter 7, we say that a protocol achieves
strong anonymity, if the adversary’s advantage remains negligi-
ble in . Strong anonymity is relative to a strength 7, which is
bound to system parameters or analysis parameters such as the
number of users or protocol parties, the latency overhead and
the bandwidth overhead. These parameters typically increase
as 7 increases, which improves the protocol’s anonymity.?
Anonymity in relation to 7 unifies a wide variety of possible
analyses on how the anonymity bound changes with changing
system parameters, and user numbers and behaviors.

B. Brief Overview of the Proof Technique

As non-compromising adversaries are a subset of partially
compromising adversaries, our proof technique for the former
is a simplified case of the latter. In general, we derive our
results in four main steps.

First, we define a concrete adversary A, 1,5, that uses a well
established strategy: upon recognizing the challenge message
(as soon as it reaches a receiver) Apq:ps constructs the possible
paths this message could have taken through the network, and
tries to identify the user who has sent the message.

Second, given the concrete adversary Apq:hs, We identify a
necessary invariant that any protocol has to fulfill in order to
provide anonymity. Intuitively: both challenge users chosen by
the adversary must be active (i.e., send at least one message)
before the challenge message reaches the recipient, and it
must be possible for these messages to meet in at least one
honest party along the way. We prove that indeed this natural
invariant is necessary for anonymity.

ISuch distributions might contain usage patterns, irregularities between
users and synchronization failures that the adversary can exploit.

’In some analyses, individual parameters may reduce with increasing 7,
such as the bandwidth overhead per user, as the other parameters, such as the
number of users, increase.



Next, we propose an ideal protocol I, 4.,; that is optimal in
terms of satisfying the invariant: The probability that I1;geq;
fulfills the necessary invariant is at least as high as for any
protocol within our model (limited by the same constraints for
[ and ¢). Moreover, whenever 11;4.,; satisfies the invariant, the
advantage of A,qps is zero. Thus, 1l,ge4; is at least as good
as any protocol within our model at winning against Ap.¢ps.

Finally, we calculate the advantage of A, against 1L;eq
to obtain a lower bound on the adversarial advantage against
all protocols within our model.?

C. Scenarios and Lower Bounds

We devise necessary constraints for four different scenarios.
Let II be a protocol in our model, with N users, restricted by
bandwidth overhead 5 € [0,1] and latency overhead ¢ > 0.
For the compromising cases, the adversary can compromise
c out of K protocol parties. We derive the following lower
bounds for §-sender anonymity in the respective scenarios.

Synchronized Users, Non-compromising Adversaries:
d > 1— fp(f), where fg(x) = min (1, ( ))

Synchronized Users, Partially Compromising Adversaries:

5> {1 — 1= ()/()fs(0) .y

z+BNxz
N—1

L= 1= 1/(1fa(0) = falt =) c<t.
Unsynchronized Users, Non-compromising Adversaries:

0 > 1 — L2+ fp(£)], where for p ~ S we have
fp(z) = min(1/2, 1 — (1 —p)*) for a positive integer .

Unsynchronized Users, Partially Compromising Adv.:

1=[1= )/ + fp(0]  c>¢
52> (1= 11— 1/ (/2 + fr(e))
x (1 - [1/2+f,;(zfc)]) c<?.

To keep the presentation concise, we focus on how to derive
bounds for sender anonymity. As the bounds for recipient
anonymity are obtained analogously, we only explain the
adjustments in the proofs and the corresponding resulting
bounds. The omitted canonical analysis can be found in [33].

D. Interpretation and Interesting Cases

Our first and third lower bounds, for respectively synchro-
nized and unsynchronized user behaviors against in a non-
compromised AC network, suggest an anonymity trilemma.
Both lower bounds can be simplified under some natural
constraints to the following simplified lemma:

Lemma 1 (Informal Trilemma). For security parameter n, no
protocol can achieve strong anonymity if 205 < 1 — e(n),
where €(n) nl—d for any positive constant d.

3.Apath s is a possible adversary against all protocols within our model. If
Apaths has an advantage of § against our ideal protocol IT;geq; (bounded
by 8 and £), then Apq;5, Will also have an advantage of at least § against
any protocol within our model (that is also bounded by /3 and ¢). Thus, our
bound for § describes a lower bound on the adversarial advantage against
any protocol within the model, while against particular protocols there can be
other adversaries (in the same adversary class) with an even higher advantage.
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Ideal asymptotic values for latency overhead is ¢ = O(1)
(i.e., a constant number of hop separation from the receiver),
while ideal asymptotic values for bandwidth overhead is
B = O(1/N) = O(1/poly(n)) (i-e., a constant number of
message per round from all N = poly(n) users combined). It
is easy to see that for this ideal overhead ¢8 = O(1/poly(n)),
the trilemma excludes strong anonymity, while, with latency
overhead ¢ = N = O(poly(n)) or with bandwidth overhead
B = O(1), the trilemma does not exclude strong anonymity.

We find some interesting possible overhead constraints for
strong anonymity (e.g. £ = O(n) and 8 = O(1/n)) demanding
some compromise in both latency and bandwidth. These con-
straints can help understand and improve existing AC protocols
as well as inform the design of future AC protocols.

For partially compromised scenarios the requirements are
naturally stronger. All constraints discussed for compromised
case in the following part are in addition to the requirements
from the non-compromised case. While bandwidth overhead
might be sufficient against non-compromising adversaries, it
is not sufficient if parts of the protocol are compromised. With
¢ =mn and % = constant strong anonymity may be possible,
whereas with £ = O(1), strong anonymity is impossible, even
for K € poly(n) and ¢ = O(1).

In case ¢ < ¢, strong anonymity guarantees may be possible
only if 2(£ — ¢)p > 1 — ¢(n), where p = p’ + 8 combines the
genuine user messages p’ with their bandwidth overhead .
Our result shows a connection between the expected usage
behavior p and the latency ¢. If p is not particularly large,
the latency cannot be low; otherwise, the path-length cannot
be sufficiently high to ensure mixing at an honest node. In
other words, unless p is very large (as should be the case for
some file sharing applications), a low latency renders the AC
protocol cheap to compromise, i.e., ¢ can be low.

Our necessary constraints enable protocol designers of
AC protocols to avoid bad trade-offs between latency and
bandwidth overhead. For a given expected user behavior and
a given target attacker against which the AC shall provide
anonymity, our constraints clearly state which combinations
of latency and bandwidth overhead to avoid.

E. Related Work

In contrast to previous work, our work provides necessary
constraints for strong anonymity w.r.t. to bandwidth and la-
tency overhead. While there is a successful line of work on
provable anonymity guarantees [12], [26], [27], [34]-[37], it is
incomparable since it provides lower bounds on anonymity for
specific protocols, and does not prove any general statements
about sufficient conditions for strong anonymity.

Previous work on attacks against anonymous communica-
tion protocols, except for Oya et al. [38], solely provides
upper bounds on anonymity for specific protocols [39]-[42].
Oya et al. [38] cast their attack in a general model and
provide a sophisticated generic attacker. However, they only
compute bounds w.r.t. a dummy message rate against timed
pool mixes, not against other protocols and not w.r.t. latency
and compromisation rate. Even more important, none of these



results discuss the relationship of the lower bounds for latency
and bandwidth overheads.

IIT. ANONYMITY DEFINITION AND USER DISTRIBUTIONS
A. AnoA-Style Anonymity Definition

We define our anonymity notions with a challenge-response
game similar to AnoA [26], [27], where the challenger sim-
ulates the protocol and the adversary tries to deanonymize
users. The challenger Ch(II,«,b) allows the adversary to
adaptively control user communication in the network, up to
an uncertainty of one bit for challenges, and is parametric in
the following parts: (i) the AC protocol 1I to be analyzed, (ii)
the so called anonymity function ., that describes the specific
variant of anonymity such as sender anonymity, recipient
anonymity and relationship anonymity, (iii) and the challenge
bit b which determines the decision the challenger takes in
challenge inputs from the adversary.

Given a security parameter 7, we quantify the anonymity
provided by the protocol II simulated by Ch(Il, v, b) in terms
of the advantage the probabilistic polynomial time (PPT)
adversary A has in correctly guessing Ch’s challenge bit b. We
measure this advantage in terms of indistinguishability of ran-
dom variables additively, where the random variables in ques-
tion represent the output of the interactions (A|Ch(LL, «,0))
and (A|ch(1l, a,1)).

Definition 1 ((®,0)-IND-ANO). A protocol II s
(o, §)-IND-ANO * for the security parameter 1, an adversary
class C, an anonymity function « and a distinguishing factor
d(-) >0, if for all ppt machines A € C,

Pr[0 = (A|ch(IL, o, 0))] < Pr[0 = (A|Ch(IL, o, 1))] + (n).

For an anonymity function «, we say that a protocol 1T
provides strong anonymity [12], [13] if it is (e, §) — IND-ANO
with § < neg(n) for some negligible function neg. If § is
instead non-negligible in n, then we say that II provides
weak anonymity. Note that 1 does not measure the size of
the anonymity set, but the computational limitation of the
adversary.

Sender Anonymity. Sender anonymity characterizes the ano-
nymity of users against a malicious server through the inability
of the server (or some intermediary) to decide which of two
self-chosen users have been communicating with the server.
We borrow the sender anonymity g4 definition from the
AnoA framework [26], where agy selects one of two possible
challenge users and makes sure that the users cannot be
distinguished based on the chosen recipient(s) or message(s).

Definition 2 (Sender anonymity). A protocol 11 provides §-
sender anonymity if it is (agy,d)-IND-ANO for gy as
defined in Figure 2.

Recipient Anonymity. Recipient anonymity characterizes
that the recipient of a communication remains anonymous,
even to observers that have knowledge about the sender in

4AnoA also allows a multiplicative factor ; we use the simplified version
with € = 0, such that § directly corresponds to the adversarial advantage.
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Adaptive AnoA Challenger Ch(II, o, b)
Upon message (Input,u, R, m): RunProtocol(u, R, m)
Upon message (Challenge,ug,u1, Ro, Ri,m):

if this is the first time, such a message is received then
Compute (u*, R*) « a(uo,u1, Ro, R1,b)
RunProtocol(u*, R*, m))

end if

RunProtocol (u, R, m):

Run IT on r = (u, R, m) and forward all messages that are sent by
IT to the adversary A and send all messages by the adversary to II.

QSA(U(),ul, ]?'07R17 b) = (ubx RO)

apa (ug, ut, Ro, R1,b) = (uo, Rp)

Fig. 2. Adaptive AnoA Challenger [26]

question. Similar to sender anonymity, we borrow the recipient
anonymity apy definition from the AnoA framework, where
app selects one of two possible recipients for a message and
makes sure that the recipients cannot be distinguished based
on the chosen sender(s) or message(s).

Definition 3 (Recipient anonymity). A protocol 11 provides
d-recipient anonymity if it is (agg,0)-IND-ANO for apy as
defined in Figure 2.

We omit the detailed technical notation of the anonymity
functions in the following sections, and write Pr [0 = A|b = ]
instead of Pr [0 = (A|Ch(IT, aga,1))].

B. Game Setup

Let S be the set of all senders, R be the set of all recipients,
and P be the set of protocol parties that participate in the
execution of the protocol (like relays/mix-nodes in Tor/mix-
nets, for DC-net or P2P mixing users and protocol parties are
the same). We consider a system of total |S|= N senders.
Given our focus on sender anonymity, we need only a single
element in R. We allow the adversary to set the same entity
(say R) as the recipient of all messages, and expect R to be
compromised by the adversary. The adversary uses a challenge
(as defined in Figure 2) of the form (ug,u1, R,_, mp), where
up, u1 € S, for our sender anonymity game.

We consider a completely connected topology, which means
any party can send a message directly to any other party.
We assume a standard (bounded) synchronous communication
model as in [16], [17], [31], [32], where a protocol operates
in a sequence of communication rounds.’ In each round, a
party performs some local computation, sends messages (if
any) to other party through an authenticated link. By the
end of the round, every party receives all messages sent by
the other parties to her the same round. With our focus on
computing lower bounds, our model abstracts from the time

SWhile a time-sensitive model [43] would be more accurate, e.g., for low-
latency protocols like Tor [44], such a model would only strengthen the
attacker. As we present necessary constraints, our results also hold for the
more accurate setting.



the computations at the node take and also the length of the
messages. Nevertheless, as we are interested in quantifying the
communication/bandwidth overhead, unlike [16], [17], [32],
we do not assume that the parties have access to ready-made
broadcast communication channels; Parties are expected to
communicate with each other to implement broadcast fea-
tures [31], [45]. Lastly, the use of the asynchronous communi-
cation model offers more capabilities to the attacker, and thus,
our impossibility results for the synchronous model naturally
apply to the asynchronous model as well.

We define the latency overhead ¢ as the number of rounds a
message can be delayed by the protocol before being delivered.
We define the bandwidth overhead (3 as the number of noise
messages per user that the protocol can create in every round
(i-e., the dummy message rate) and we do not restrict the time
these noise messages reside within the protocol.

We consider two types of global passive adversaries:
Our non-compromising adversaries (which model network-
level eavesdroppers) can observe all communication be-
tween all protocol parties, but do not compromise any party
of the AC protocol except the recipient R. We say that
the AC protocol is non-compromised. Our strictly stronger
partially compromising adversaries (which model hacking and
infiltration capabilities) can additionally compromise some of
the AC parties in the setup phase of the game to obtain
these parties’ mapping between the input messages and output
messages during the protocol’s runtime. We say that the AC
protocol is partially compromised.

C. User Distributions

We consider two kinds of user distributions in our anony-
mity games and both of them assume an N sized set S of users
that want to send messages. In both cases, the adversary can
choose any two senders ug,u; € S. However, the time and
method by which they actually send messages differs:

o In the synchronized user distribution the users globally
synchronize who should send a message at which point in
time. We assume that each user wants to send exactly one
message. Consequently, we choose a random permutation of
the set of users S and the users send messages in their
respective round. In every single round out of a total of N
rounds exactly one user sends a message. Since the users
globally synchronize their sending of messages, we allow the
protocol to also globally decide on the bandwidth overhead
it introduces. Note that here the requirements are identical to
those of the Bulk protocol in [17].

o In the unsynchronized user distribution each of the N users
wants to send messages eventually and we assume that each
user locally flips a (biased) coin every round to decide whether
or not to send a message. In this case we define the bandwidth
overhead as an increased chance of users sending messages.
Since the protocol does not globally synchronize the input
messages, for noise messages also we allow the users to decide
it locally and send noise messages with a certain probability.
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Protocol

Fig. 3. Petri net of an AC protocol with K = 3 parties.

IV. A PROTOCOL MODEL FOR AC PROTOCOLS

An AC protocol allows any user in the set of users S to
send messages to any user in R, via a set of anonymizing
parties P. We define protocols that are under observation of
an eavesdropping adversary A that may have compromised
a set of c parties P. C P and that furthermore observes the
communication links between any two parties, including users.

Technically, whenever a party P; € PUS sends a message
to another party P, € P UR, the adversary is able to observe
this fact together with the current round number. However,
we assume the protocol applies sufficient cryptography, s.t.,
the adversary can not read the content of any message except
the messages sent to the malicious recipient, which technically
results in simply being able to additionally recognize when the
challenge reaches the recipient.

For an actual protocol, the sets S, R, and P might not be
mutually exclusive [15], [16], [18]. Since we have only one
malicious party in R, and the content of a message can only
be read when it reaches its final recipient, we consider R to be
mutually exclusive from S U P for the purpose of simplicity.

With the above preliminaries in mind, we shall now formally
define our generic AC protocol using a petri net model.

A. Protocol Model

We model any AC protocol with K parties by a timed
colored petri net [28]-[30] M, consisting of places S for
the users, Py, ..., P« symbolizing the protocol parties, $1 for
randomness and R for recipients of messages, and colored
tokens m symbolizing the messages (real or noise) sent by
clients or protocol parties, and transitions Ts for inserting
messages into the network and Tp,,...,Tp as functions for
sending the messages from one party to another. The structure
of the petri net with its places, tokens and transitions remains
the same for every AC protocol. However, the implementation
of the guards within the transitions is different for different
protocols: protocols can choose to which party messages are
to be sent next and whether they should be delayed. But,
protocols in M are oblivious to the challenge message or the
challenge users. We refer to Figure 3 for a graphical depiction
of petri net model M.



Definition 4 (Colored token). A colored token is represented
by the tuple m = (msg, meta, t,, IDy, prev, next, ts), where,
msg is the content of the message, meta is the internal protocol
meta-data for this message, t, is the time the message can
remain in the network, 1Dy is a new unique ID generated by
each transition for each token by honest parties; dishonest
parties instead keep |Dy untouched to allow the adversary to
link incoming and outgoing messages, prev is party/user that
sent the token and next is the user/party that receives the
token. Finally, ts is the time remaining for the token to be
eligible for a firing event (a feature of timed petri-net). Here,
ts either describes when new messages are introduced into the
petri net or is set to the next round, such that messages can be
processed in every round as soon as they enter the network.

The four fields 1Dy, prev, next, ts are public, and are visible
to the adversary. The remaining three fields msg, meta and t,
in a token are private and can not be observed by the adversary,
with the exception that msg can be observed when a message
reaches its destination, i.e, is received by a recipient. Formally,
we introduce a set Tokens, that is initially empty and in which
we collect the pair (¢,r), where ¢ is a copy of a token and r
the round number in which the token was observed.

Places. Any AC protocol with K parties P = { P, ...
consists of the following places:

o S: A token in S denotes a user message (real or noise)
which is scheduled to enter the network after ts rounds.

o $1: This place is responsible for providing randomness.
Whenever a transition picks a token from this place, the
transition basically picks a random value.

e P; with P, € P: A token in P; denotes a message which
is currently held by the party P; € P.

e R: A token in R denotes a message which has already
been delivered to a recipient.

aPK}

Transitions. As part of the initial configuration, the chal-
lenger populates S on behalf of the protocol. All other places
are initially empty. The transitions then consumes tokens from
one place and generate tokens to other places, to modify the
configuration of the petri-net. The event of consumption of a
token from one place by a transition and generation of a new
token represents the movement of a message from one party to
another. We define the following transitions (refer to Figure 4
for the pseudocodes of the transitions):

e Ts: takes a token (msg,_,_, ,u,_,ts) from S and a
token from $1 to write t = (msg, meta, ¢, IDy, u, P;,ts = 1) to
P;; the values of 7 and meta are decided by the AC protocol.

e Tp: takes a token (msg,meta,t,,IDy,_, P;,ts)
from P; and a token from $1 to write ¢
(msg, meta’,t, — 1,ID’, P;, P',1) to P’. If P; is an honest
party ID;’ is freshly generated, but if P; is a compromised
party ID;" = ID;. The place P’ € {Py,..., P} U{R} and
meta’ are decided by the AC protocol, with the exception
that if t, = 0, P’ always is R.

In either case, the transition also adds an element (¢', ) to the
set Tokens, where r is the current round number and ¢’ is a
copy of the respective (new) token ¢, with the fields meta and

113

Ts on tokens ¢ = (msg, u, _, ts) from S and $ from $1:

— =

(P;, meta) = fr1(q,$); IDy = a fresh randomly generated ID
r = current round; ¢ = (msg, meta, £, D, u, P;, 1)
if P; = R then Tokens = Tokens U ({msg, _, _, ID¢,u, P;,1),7)
else Tokens = Tokens U ((_, ID¢, w, P, 1),7)
Output: token ¢ at P;

- =

Tp, on tokens g = (msg, _, t, ID, _, P;,ts) from P;, $ from $1:

(P, meta’) = fn(q,$) ; r = current round
iftr—1=0then P =R
if P; is honest then ID;’ = a fresh randomly generated ID
else if P; is compromised then IDY’ = ID;
t = (msg, meta’, t, — 1,IDy/, P;, P, 1)
if P, = R then Tokens = TokensU ((msg, _, _,ID/, P;, P, 1),7)
else Tokens = Tokens U ((_, ID, P, P',1),7)
Output: token ¢ at P’

—r—

fri: A function provided by II to determine routing and the meta field.

Fig. 4. Transitions in petri net model M

t, are removed. If the place where ¢ was written to is not R,
then additionally the field msg is removed.

Game Setting. Recall that we define anonymity as a game
between a PPT adversary A and an honest challenger Ch.

Validity of the Protocol Model. The above protocol model
M behaves as expected (more details in Lemma 2 in Ap-
pendix A). We show in Lemma 2 that the protocols indeed
have a bandwidth overhead of § and a latency overhead of
¢. For every message that is sent from one party in S U P
to another party in P U R, the adversary learns the time, the
sender, and the receiver. When a message leaves the network,
the attacker learns whether it was the target (i.e., the challenge)
message. The attacker also learns the mapping between the
input and output messages of compromised parties.

B. Expressing Protocols

Our protocol model M allows the expression of any AC
protocol with very few, esoteric exceptions.

Mix networks can be naturally embedded into our model, in
particular any stop-and-go mix [46] that uses discrete distri-
bution and even AC protocols with specialized path selection
algorithms [47], [48]. For the sake of our necessary constraints,
low-latency protocols (with time-bounded channels) that are
not round-based (e.g., Tor [44]) can be expressed in a round-
based variant, since it only strengthens the protocols anony-
mity properties. This section illustrates embedding techniques
into our model for some other kinds of protocols, but a much
larger variety of protocols can be expressed in our model.

Users as protocol parties. In peer-to-peer protocols like
dining cryptographers networks (DC net) [16], [18], there are
no separate protocol parties, users act as a type of relays. Also,
any noise sent by users counts into the bandwidth overhead of
the protocol (we will see in Claim 2 that noise sent by nodes
that are not users can be treated differently). Whenever a user
wants to send a message it should use the transition Ts, but
when it acts as a relay it should use the transition T’p,. For



interested readers, we show in Appendix A how to model a
specific DC net type protocol using our petri net model.

Splitting and Recombining Messages. We model protocols
that split and later re-combine messages by declaring one of
the parts as the main message and the other parts as noise,
which may count into the bandwidth overhead. This declara-
tion is mainly required for the analysis, i.e., for evaluating the
success of the adversary and for quantifying the amount of
noise messages introduced by the protocol. We do not restrict
the strategy by which the protocol decides which message
is “the main share” (i.e., the message that is sent on) and
which is “an additional share” (i.e., a fresh noise message). A
more complex scenario involves threshold schemes in which
a smaller number of shares suffices for reconstructing the
message and in which some shares are dropped randomly.
In such cases we consider the protocol to decide beforehand
which of the constructed shares will be dropped later and to
declare one of the remaining shares the “main share”.

Broadcasting Messages. If the protocol chooses to copy or
broadcast messages to several receivers, we consider the copy
sent to the challenge receiver to be the main message and
copies sent to other receivers to be noise (which, if the copies
are created by nodes that are not users, will not count into the
bandwidth overhead).®

Private Information Retrieval. In schemes based on private
information retrieval we require that the receiver retrieves the
information sufficiently fast (within the latency limit). Other-
wise, our method is similar to the broadcasting of messages:
the receiver of interest will retrieve the main message, whereas
other receivers will retrieve copies that are modeled as noise.

Excluded Protocols. For this work we exclude protocols that
cannot guarantee the delivery of a message within the given
latency bound (except if this occurs with a negligible proba-
bility). Moreover, we cannot easily express the exploitation of
side channels to transfer information, e.g., sending information
about one message in the meta-data of another message, or
sending bits of information by not sending a message.

C. Construction of a Concrete Adversary

Given two challenge users 1 and 1, and the set of observed
tokens (t,r) € Tokens, where ¢ is the token and r the round
in which the token was observed, an adversary can construct
the sets S; (for j € {0,1}). Assume the challenge message
arrives at the receiver R in a round r. We construct possible
paths of varying length k, s.t., each element p € S; represents
a possible path of the challenge message starting from u; (j €
{0,1}) and the challenge message then arrives at R in round
ri = r. With challenge bit b, S, cannot be empty, as the actual
path taken by the challenge message to reach R has to be one
element in Sy.

SWe note that in some cases, where users act as nodes and broadcast
messages to other users, our quantification of the bandwidth overhead might
be a bit harsh. If the group of users to which the broadcast will be sent is
known in advance (i.e., if messages are broadcast to all users or to pre-existing
groups of users), we can allow the protocol to use a single receiver for these
messages instead.
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S; = {p = (t1.prev, ..., ty.prev,t;.next) :
((t1,71), ..., (tg, 1)) € Tokens s.t.
t1.prev = u; Atg.next = R
Atp.msg =Challenge ANk </
AVig{1,... k—1}(ti-next =t;p1.prev Aripr =73 + 1
A ( 3t§+1 : (t;+1,ri+1) € Tokens A t:;+1.prev = t;.next
Atiy 11D = £;.1D¢) = tip 1 = tit1)}

Definition 5 (Adversary A,q:ns). Given a set of users S,
a set of protocol parties P of size K, and a number of
possibly compromised nodes c, the adversary Apqins proceeds
as follows: 1) Apains selects and compromises c different
parties from P uniformly at random. 2) Ayqins chooses two
challenge users uy,u1 € S uniformly at random. 3) Apuins
makes observations and, based upon those, constructs the sets
So and Si. For any i € {0,1}, if S; = 0, then Apgns returns
1 — 4. Otherwise, it returns 0 or 1 uniformly at random.

Apains thus checks whether both challenge users could have
sent the challenge message. We explicitly ignore differences
in probabilities of the challenge users having sent the chal-
lenge message, as those probabilities can be protocol specific.
Naturally, when ¢ = 0, Aj,q41,s Tepresents a non-compromising
adversary; but when ¢ # 0, A,quns is partially compromising.

D. Protocol Invariants

We now investigate the robustness of protocols against our
adversary. We define an invariant that, if not satisfied, allows
Apaths to win against any protocol. Moreover, we present
a protocol that maximizes the probability of fulfilling the
invariant. Moreover, we show that whenever the invariant is
fulfilled by our protocol, the advantage of Ap.xs reduces to
zero (as it is forced to randomly guess b).

Necessary invariant for protocol anonymity. It is necessary
that at least both challenge users send messages in one of the
¢ rounds before the challenge message reaches the recipient,
as otherwise there is no way both of them could have sent
the challenge message. Moreover, on the path of the actual
challenge message, there needs to be at least one honest
(uncompromised) party, as otherwise the adversary can track
the challenge message from the sender to the recipient ( Sy
will have exactly one element and S;_;, will be empty). Those
two conditions together form our necessary protocol invariant.

Invariant 1. Let ug and u, be the challenge users; let b be the

challenge bit; and let 1y be the time when uy, sends the chal-

lenge message. Assume that the challenge message reaches the

recipient at r. Assume furthermore that uy_, sends her mes-

sages (including noise messages) at V.= {t1,ta,t3, ..., tr}.

Now, let T={t:t e VA(r—2{) <t <r}. Then,

(i) the set T is not empty, and

(ii) the challenge message passes through at least one honest

node at some time t' such that, t' € {min(T'),...,r — 1}.

Claim 1 (Invariant 1 is necessary for anonymity). Let 11 be
any protocol € M with latency overhead ¢ and bandwidth



overhead . Let ug,uy,b and T be defined as in Invariant 1.
If Invariant 1 is not satisfied by 11, then our adversary Apqins
as in Definition 5 wins.

We refer to Appendix B for the proof. We next claim that it
suffices to consider noise messages sent by users that also
remain within the system for at most ¢ rounds, i.e., noise
messages that follow the same rules as real messages. Note that
we consider every new message originating from any user’s
client as a fresh noise message.

Claim 2 (Internal noise does not influence Invariant 1). Any
message not originating from an end user u € S does not
influence the probability for Invariant 1 being true. Moreover,
noise messages do not contribute to the probability for Invari-
ant 1 being true after they stayed in the network for { rounds.

We refer to Appendix B for the proof. We henceforth
consider noise messages as a protocol input.

E. Ideal Protocol

We construct a protocol 1l;4e,; that maximizes the prob-
ability of fulfilling Invariant 1. We show that the invariant
is sufficient for Il;geq; to win against Apqps, i.€., to reduce
Apatns’s advantage to 0. Claim 1 shows that for any protocol
in our model A, 41,5 Wins whenever Invariant 1 does not hold.
Thus, an upper bound on the probability that 11;4.,; satisfies
Invariant 1 yields an upper bound for all these protocols.

Given the set of all protocol parties P = { P, ..., Pc_1} of
size K, the strategy of I1;4¢4; is as follows: in a round r, I;4eq;
delivers all messages scheduled for delivery to a recipient. All
other messages (including the messages that enter 1104, in
round r) are sent to the protocol party P; with i = r mod K.
For every message that enters the protocol, I1;4.4; queries an
oracle O for the number of rounds the message should remain
in the protocol. We define the following events:

o w.sent(z,y) : user u has sent at least one message within
rounds from z to y. For a single round we use u.sent(x).

e Cmpr(z) : Apqens has compromised the next = consecu-
tive parties on the path.

e =H : NOT of event H.

Given a message sent at ty by sender z, and delivered to the
recipient at (to + t), we define P, for sender v € S\ {z}:

to . .
P, = Z]_ . Pr[v.sent(j) A —w.sent(j + 1, ¢0)] X Pr[-~Cmpr(t)]

+ Zj:t0+1 Pr [U.Sen[(j) N _‘U.Sent(r —0,j— 1)]
 Pr [-Cpr(r — )]

When v = u;_p, and the message is the challenge message,
P, is the probability of fulfilling Invariant 1, for the strategy
above. For each message, oracle O chooses an optimal t that
maximizes the expectation of P; over all users. After the oracle
has decided the latencies for all messages, it sets the time ¢
for the messages from wu;_; to . Since the oracle uses the
knowledge of uj_p, Iligeq; is slightly more powerful than
protocols in M. Due to the over-approximation with this
(not realizable) oracle, the resulting protocol is optimal w.r.t.
Invariant 1 (Refer to Claim 3 and Claim 4).
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Claim 3 (Ideal protocol is ideal for the invariant). Against
the given adversary Apaihs, idear satisfies Invariant 1 with
probability at least as high as any other protocol in M.

Claim 4 (Ideal protocol wins). If I1;4.4; satisfies Invariant 1,
Apaths has an advantage of zero:
Pr[b = Apaths | Invariant 1 holds] = %

We refer to Appendix B for the proofs of Claim 3 and Claim 4.

V. SYNCHRONIZED USERS WITH NON-COMPROMISING
ADVERSARIES

Our first scenario is a protocol-friendly user distribution
Up, where inputs from all users are globally synchronized:
over the course of N rounds, exactly one user per round sends
a message, following a random permutation that assigns one
round to each user. Analogously, the protocol globally instructs
the users to send up to 8 € [0, 1] noise messages per user per
round, or B = BN noise messages per round in total.

In real life, the user distribution is independent of the
protocol. However, to make the user distribution protocol-
friendly in our modeling we consider a globally controlled user
distribution. For this scenario, we consider non-compromising
passive adversaries that can observe all network traffic.

A. Lower Bound on Adversarial Advantage

Theorem 1. For user distribution Up, no protocol 11 € M
can provide §-sender anonymity, for any 6 < 1— fz(¢), where

fa(x) = min(1, ((z + BNz)/(N — 1))).

Proof. By Claim 3 and Claim 4, we know that II;4.,; is an
optimal protocol against Apq¢ps; and with ¢ = 0, A4 is our
representative non-compromising adversary. Thus, it suffices to
calculate the advantage of Ajq.ns against Il;geq as a lower
bound of the adversary’s advantage against any protocol.

Let, up and u; be the users chosen by the adversary and
let b be the challenge bit. Let ¢y be the round in which w,
sends the challenge message and let r be the round in which
the challenge message reaches the recipient.

Recall that Invariant 1 is necessary for the protocol to pro-
vide anonymity; u;_j sends her messages (can be a noise mes-
sage) at V = {t1,t2,t3,...,tp, then T ={t:t € VA (r—
¢) <t < r}. Since we are considering a non-compromising
adversary, Pr [Invariant 1 is true] = Pr [T is not empty] .
With the above in mind, let us define the following events:

Hy: In ¢ rounds u;_;, sends at least one noise message.

Hj: wuy_yp sends his own message within the chosen ¢ rounds.

Hj: there is at least one message from w_j, within the chosen
¢ rounds = T is not empty = Invariant 1 is true.

Consider any slice of ¢ rounds around the challenge message,
there are exactly (¢ — 1) user messages other than the chal-
lenge message. Hence, any slice of ¢ rounds yields the same
probability of containing a user message from wu;_;, except
when r < £ OR r > N where the probability is smaller. Thus,
no matter what value of ¢ is returned by O, Pr [Hs] < %
Given any values ¢, 5 > 0, Ap,q:ns has the least chance of
winning, if for a given interval of ¢ rounds, SN/ unique users



are picked to send the noise messages in such a way that they
are not scheduled to send their own messages in that interval.

Pr[—H3| = Pr[—Hy, = H2] > max(0, (N — ¢ — fN£)/(N — 1)).
Pr[Hsz| =1— Pr[—-H3| < min(1, ((¢ + N£)/(N — 1))).

Thus, we can bound the probability for the adversary as
Pr(0 = Apains|b = 1] = Pr[l = Apauns|b = 0] = $Pr[Hs);
and Pr[0 = Apans|b=0] =1 — $Pr[Hs]. And therefore,
since § > Pr[0 = Apgns|b = 0] — Pr{0 = Apans|b = 1],
0>1—Pr[Hs] >1- fg(l). O

B. Impossibility for Strong Anonymity

We now investigate under which constraints for ¢ and
Theorem 1 rules out strong anonymity.

Theorem 2. For user distribution Ug with { < N and
BN > 1, no protocol 11 € M can achieve strong anonymity if
208 < 1 —€(n), where €(n) = n% for a positive constant d.

We refer to Appendix B for the proof.

Interesting Cases. For illustration, we now discuss a few
examples for different values of ¢, 5, and N.

1) If £ = N, we can have § = 0 even for 8 = 0. Anonymity
can be achieved trivially by accumulating all messages from
all N users and delivering them together at round (N + 1). In
this case 28 =0 < 1 — ¢(n), but also SN =0 < 1.

2) =1 ,é:n:Wehaveézwz%’. In ¢ rounds
the protocol can send /SN = N noise messages and achieve
strong anonymity (all N users send a noise message each).

3) 8= %, ¢ = 7, where T is a positive integer: Here we

N—7—N
have,§ > ——2 = 1_ 1

N> = 3 — - Here, strong anonymity is possible
if & > % —neg(n). Even though 208 = 1 > 1 — neg(n),
anonymity depends on the relation between 7 and N.

4) B =4,¢=3Forn >3and N > 4, which is a very

natural assumption, we have 2¢3 = % < 1—neg(n). Then, § >

_3_ N
N ?\I 2 > neg(n). In £ rounds 11;4.4; receives only (% +3)

messages, and thus, with high probability u;_; does not send
a message. Hence, 11;4.,; cannot achieve strong anonymity.

VI. SYNCHRONIZED USERS WITH PARTIALLY
COMPROMISING ADVERSARIES

We now extend our analysis of the previous section by
having compromised protocol parties. Given the set of protocol
parties P, now our adversary A,q;,s can compromise a set of
c parties Pc C P. If Aj,q5s can compromise all the parties
in P, anonymity is broken trivially - that’s why we do not
analyze that case separately. Recall from Section IV-C that
Apains picks the c parties from P uniformly at random. We
consider the same user distribution Up as in Section V.

A. Lower Bound on Adversarial Advantage

Theorem 3. For user distribution Up, no protocol 11 € M
can provide §-sender anonymity, for any

. {Hl—(i)/(?)}fﬁ(f) c>
1=[1=1/()1fs(c) = falt—c) c<t
where fg(z) = min(1, ((z + BNz)/(N — 1))).
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Case c > /:

r—c r—/ to r
Casec<t<¥:

| | | |

| | | |

r—~ to r—c r
Caset <c< ¥

| | | |

| | | |

r—4~ r—c to r

Arriving messages satisfy Invariant 1.
Arriving messages satisfy Invariant 1 depending on Pc.

Arriving messages don’t satisfy Invariant 1.

Fig. 5. Satisfying Invariant 1 depending on the arrival time of messages from
uy—yp in the cases of the proof for Theorem 3.

Proof. Let up,u; be the challenge users and let b be the
challenge bit. Moreover, let ¢y, be the time the challenge
message is sent by u; and let r = ty + ¢ be the time it is
received by the recipient, where ¢ is the delivery time decided
by the oracle O. Similar to Section V, we now calculate the
advantage of Ajq:ns against 1;geqr-

We distinguish two cases, depending on ¢ and c: 1) First,
where the number of compromised parties c is at least as large
as the maximal latency ¢. In this case, all parties on the path
of the challenge message could be compromised. 2) Second,
where not all parties on the path of the challenge message
can be compromised. And hence, the analysis focuses on the
arrival times of messages from wu;_;. For a graphical depiction
of the relationship between the rounds a message from wuq_y
arrives and it satisfying Invariant 1 we refer to Figure 5.

1) Case c > (. We know, ¢ > t holds by definition. The
invariant is true only if u;_; sends at least one message in
one of the rounds between (r —¢) and (r — 1). Additionally, if
u1_p sends at least one message in {r—/¢,...,to}, the invariant
holds only if there is at least one non-compromised party on
the path between ty and (r — 1). Whereas, if u;_, does not
send any message in {r — ¢,... %o}, and the first message
from wuy_; in the interval {to + 1,7 — 1} arrives at ¢, the
invariant holds only if there is at least one non-compromised
party on the path between ¢ and (r — 1).

Note that K > ¢ > /. Also recall from Section IV that
Apatns picks the c parties uniformly at random from K parties.

Hence,
Pr [Invariant 1 is true]

< Z;n:r,g Pruy_p.sent(j) A ~uy_p.sent(j + 1,0)]
x Pr [-Cmpr(t)]
T . .
+ Zj:to+1 Prluy_p.sent(j) A —~uq_p.sent(r — £,5 — 1)]
x Pr [-Cmpr(r — j)]
< Pr[=Cmpr(¢)] x Pr[uj_p.sent(r — £,r — 1)]

C

< (1= (§)/(')1 % min(1, (¢ + BNO/(N = 1)),



By Claim 1 the adversary wins whenever Invariant 1 is not
true, and by Claim 4 Ap.,s has zero advantage whenever
11;4eq; satisfies the invariant. Hence, we know that the proba-
bility that the adversary guesses incorrectly is bounded by:
Pr{0 = Apuns|b = 1] = Prl = Apains|b = 0]

< 1Pr[Invariant 1 is true] < [1— (2)/(?)] x min(1, (

Thus, 5 > 1 [1— (§)/()] x min(1, (524)),

2) Case c < (: The probability that all parties on the
mutual path of the challenge message and a message from the
alternative sender uq_; are compromised now mainly depends
on the arrival time of the messages from u,_;,. We find two

sub-cases depending on the oracle’s choice for ¢.

2a) Case c < t:
Pr [Invariant 1 is true]
< Prluy_p.sent(r — 4,7 — c)] + Pr[—uy_p.sent(r — £,r — )]

X Pr[uj_p.sent(r — c,r)] x Pr[-Cmpr(c)]
< min(1, ({LEARED))
+ min(1, (Nf(éfﬁ\}:fN(ch))

< falt =)+ fp0) —1/(9)]-

Note that the probability that there are no messages from
uy_p in [(r—£), (r —c)] and that there is at least one message
from wy_y in [(r —c), r] are not independent from each other.
The best thing a protocol can do with the noise messages is
to have N3¢ unique users, different from the ¢ users who send
their actual message, send the noise messages. Thus, if a user
sends a message in [(r—/), (r—c)], he can not send a message
in [(r—c), r]. The above calculations are done considering that
best scenario. Also note that the value of K may be larger or
smaller than ¢ and ¢, but as long as ¢ < K, the bound given
above holds. Hence, § > 1 — fa(¢ —c) — [L = 1/(5)] x fa(c).

2b) Case t < c :

Pr [Invariant 1 is true]

< Prluy_p.sent(r — £,7 — c)] x Pr [-Cmpr(t)]

+ Pr[—uy_p.sent(r — £,r — c)]

£+BNL
).

( c+BNc
N—(¢—c)—BN(f—c)

1
NI - @}

X Pr[uq_p.sent(r — c),r)] x Pr[-~Cmpr(t)]
< Pruj_p.sent(r — £, r — c)] + Pr [~uq_p.sent(r — £, 7 — )]
x Pr[uy_p.sent(r — c,r)] x Pr[-Cmpr(t)]
The event expression above is the same as in the previous
case (t > c). The bound on § thus follows analogously.  [J

B. Impossibility for Strong Anonymity

Theorem 4. For user distribution Ug with K € poly(n), K >
c>/?¢, £t <N and BN > 1, no protocol 11 € M can
achieve strong anonymity if 2(8 <1 —¢€(n) or €€ O(1),
where €(n) = 1/n% for a positive constant d.

We refer to Appendix B for the proof. To achieve strong
anonymity against A5, we need ¢ € w(1), additional to the
constraint of 2/ > 1—neg(n). We now focus on the constraint
¢ € w(l) and refer to Section V-B for a comprehensive case
study on the other constraint.

Interesting Cases. Now we are going to discuss a few
interesting cases for different values of ¢ < ¢, and K.
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1) £ = n and K/ constant: In this case we have,
(6)/(5) = St < (¢/K) = (¢/K)". Hence, (9)/(%)
becomes negligible and strong anonymity is possible. Even
though c has a high value, because of the high value of ¢ it is
highly likely that the challenge message will meet a message
from u;_; at some honest node, given a high value of /3 such
that 208 > 1 — neg(n).

L = O(1),c O(1): Now we have, (§)/(5) =
RS > (e = 0)/(K—0)*. But K € poly(n), and ¢
and £ can only have integer values. Hence ((c — £)/(K — £))* is
non-negligible, and hence (§) /(%) is also non-negligible. Even
though ¢ has a small value, ¢ is also small. Hence, it is unlikely
that the challenge message will mix with a message from
u1_p at some honest node. Thus, strong anonymity cannot

be achieved.

Theorem 5. For user distribution Ug with K € poly(n), c €
O(1), K>¢>c, £<N and BN > 1, no protocol 11 € M
can achieve strong anonymity if 2(€ — c)8 < 1 — €(n), where
e(n) = 77% for a positive constant d.

We refer to Appendix B for the proof. The analysis in this
case is exactly same as Section V-B, except that here we need
to consider the slice of (¢ — c) rounds instead of ¢ rounds.

It is worth repeating here, all the constraints we have derived
in Section V and Section VI are necessary for anonymity, but
they are not sufficient conditions for anonymity.

VII. UNSYNCHRONIZED USERS WITH
NON-COMPROMISING ADVERSARIES

In this and the subsequent section we use an unsynchronised
user distribution Up: In each round, independent of other
users and other rounds, each client tosses a biased coin with
success probability p € (0, 1]. On a success the client sends a
message in that round, otherwise it does not send a message.
Consequently, the number of messages per round follows
Binomial distribution Binom(N,p) if the number of users
N is large and p sufficiently small, the resulting binomial
distribution reduces to a Poisson distribution, which is a close
approximation of real-life traffic patterns.

For a protocol with bandwidth overhead (3, we distinguish
between the actual probability that users want to send mes-
sages p’ and the value for p that we use in our analysis, i.e., we
set p = p’ + (. In this unsynchronised scenario the bandwidth
of genuine messages contributes to the anonymity bound. As
in Section V we consider a non-compromising adversary.

A. Lower Bound on Adversarial Advantage

Theorem 6. For user distribution Up, no protocol 11 € M
can provide 0-sender anonymity, for any § < 1— (% + fp(f)),
where f,(xz) =min(1/2, 1 — (1 —p)®) for a positive integer .

Proof. Since we consider a non-compromising adversary,

Pr [Invariant 1 is True] = Pr|[T is not empty], where 7' is
defined as in Invariant 1.
Let us consider the random variables X1, X x(N)|

where X () denotes the event of the i*" user sending her own



message within a given interval of ¢ rounds [a,b], with (b —
a) = ¢. All X(s are mutually independent and we have,

0 with probability (1 — p)*

1 with probability (1 — (1 —p)).

Next, let X = Z::\I:1 X be a random variable representing
the number of users that send messages in an interval of ¢
rounds. We calculate for the expected value E[X] of X,

E[X] = YV, BXO] = N(1 - (1 -p)) = pu.

Using the Chernoff Bound on the random variable X we
derive Pr[X — p > Na] < exp(—2a®N), which for a = § lets
us estimate, Pr[X > 2u] < exp (—2(x*/n?)N). For brevity in the
following calculation we denote, Pr[X > 2u] by E and the
event that 7" is non-empty by Y and since all users are acting
independently from each other we get for j € {0,...,N},
PrlY|X =4]=1-Pr[~Y|X =j] = .

For 2; < N, we have,

Pr[Y]
=Pr[X > 2u] x Pr[Y|X > 2u] + Pr[X < 2u| x Pr[Y|X < 2u]
<Pr[X >2u] xPr[Y|X =N]+Pr[X < 2u] x Pr[Y|X = 2y
=ExPr[Y|X =N]+ (1 — E) x Pr[Y|X = 2y

2y (1—E)(1—2£,(0)).

« ZH
N
If 20 > N, we get with f(¢) = min (3, 1—(1—p)’),
PriY]<E+(1-E)1<1<1-(1-E)(1-2f,(0).
Thus, 6 > 1 —Pr[Y] > (1—-E) (1 —2f,(¢)). We now use
Markov’s Inequality on X and derive E = Pr [X > 2u] < %,
which means, § > 1 (1 —2f,(¢)) > 3 — f,(0). O

X)) —

N
=Ex y+(1-B)

Note that in the proof of Theorem 6, in case p is a constant and
N is a very high value, then E goes towards zero and instead
of using Markov’s inequality, we can derive 6 > 1 — 2f,(¢).

B. Impossibility for Strong Anonymity

Theorem 7. For user distribution Up and p > 0, no protocol
I € M can achieve strong anonymity if 2¢p < 1 — €(n),
where e(n) = 1/n? for a positive constant d.

We refer to Appendix B for the proof. Similar to the
constraints in Section V and Section VI, this is also a necessary
constraint for anonymity, not a sufficient condition. There can
exist £ and p such that 2¢p > 1 —neg(n), but still no protocol
can achieve strong anonymity.

Interesting Cases. Now we are going to discuss a few
interesting cases for different values of ¢, p, and N.

1) p=2,0=n:Here, f,({) =1-(1-p)° > 1-1/e > }.
Hence, § > % — fp(€) = 0. Since p{ = 1, in ¢ rounds the
protocol has 1 message per user on an average. So, the protocol
has a high chance of winning. Whereas in Section V-B, we
saw that I1;4.; can win with absolute certainty in this case.

2) p= %, ¢ =T, T is a positive integer: even for 7 > 2,
fp(6) = 1—(1 - p)* < 0.45. Hence, § > 1 — f,(¢) > 0.05. Even
though 2¢p = 1, strong anonymity can not be achieved. In an
expected scenario, in a slice of ¢ rounds only p¢ = % portion of
the total users send messages, and hence there is a significant
chance that uq_ is in the other half. Note that this is different
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from the scenario with synchronized users where 11;;.,; could
achieve strong anonymity in this case (c.f. Section V-B).

3) p=1, =3 Here, f,(0) = 1-(1—p) =1—(&)" < 0.29,
and § > 5 — f,(¢) > 0.21; because of low values of both p
and ¢ only a few users send messages within the interval of
¢ rounds, and hence the protocol has a small chance to win.
As in Section V-B, Il;4.,; can not achieve strong anonymity
in this case, since the necessary constraints are not satisfied.

VIII. UNSYNCHRONIZED USERS WITH PARTIALLY
COMPROMISING ADVERSARIES

Finally, we consider partially compromising adversaries that
can compromise a set of c parties P. C P for the user
distribution Up defined in Section VII.

A. Lower Bound on Adversarial Advantage

Theorem 8. For user distribution Up, no protocol 11 € M
can provide §-sender anonymity, for any

L=[1= /(B +f0] c=¢
5<{ (1= 1=/ + Sl
x(1—[1/2+fp(e—c)]) c<t

where f,(x) =min(t/2, 1 — (1 —p)®) for a positive integer x.

We derive the bound in Theorem 8 by combining the
techniques presented in Section VI and Section VII. Since
the proof does not introduce novel techniques, we omit it and
instead refer the interested reader to Appendix B for the proof.

B. Impossibility for Strong Anonymity

To analyze the negligibility condition of § in this scenario,
we heavily borrow the analyses that we already have con-
ducted in Section VII-B and Section VI-B. We are going to
analyze this scenario in two parts:

Case ¢ > (: We have, § >1—[1— (5)/(5)][3 + f-(0)].

To make & negligible, both the factors [1 — (§)/(})] and
[L/2+ f»(¢)] have to become overwhelming. From Theorem 4,
we know that we need ¢ € w(l) to make [L — (§)/(})]
overwhelming. This is a necessary condition, but not sufficient.
For a detailed discussion, we refer to Section VI-B. From
Section VII-B we know that the necessary condition for
['/2 + fp(€)] to be overwhelming is 2¢p > 1 — neg(n). Hence,
both conditions are necessary to achieve strong anonymity.

Case c < ¢: We have,

52 (1—[o+ full — N~ [1— 1/ ()2 + fulc)))-
In the above expression, we can see two factors:
() Fr = (L[5 + fp(t—0. (i) Fo = (1-[1-1/ ()12 + Fo(©)):

To make d negligible, it suffices that F; or F, become
negligible. Unlike Section VI, here f,(¢ — c) and f,(c) are
independent, which allows us to analyze F; and F5 inde-
pendently. First, F} is similar to the §-bound in Section VII,
except that we consider f,(¢ — c) instead of f,(¢). Hence,
the analysis of F} is analogous to Section VII-B. Second,
F, is negligible if both [1 — 1/(¥)] and [tz + f,(c)] are
overwhelming. From Section VI-B we know that [1 — 1/(%)]
can not be overwhelming for a constant c. Moreover, fp(c)
can be analyzed exactly as f,,(¢) in Section VII-B.



IX. RECIPIENT ANONYMITY

‘We derive impossibility results for recipient anonymity anal-
ogous to our results for sender anonymity via the same strategy
we employed in the previous sections. In this case, since
we are considering recipient anonymity, we assume only one
sender in S, and N’ users in R. Here, the adversary is naturally
not informed about the delivery of the challenge message by a
recipient, but of the sending of the challenge message by the
sender. Moreover, instead of ignoring all internally generated
messages in Claim 2 we ignore all internally terminating
messages. Note that this gives § a slightly different flavor.

Synchronized Users. We slightly tweak the user distribution
to suit the definition of recipient anonymity. We assume
that all the input messages come within N’ rounds, exactly
one message per round, following a random permutation
that assigns one round to each recipient. In a given round,
the sender sends a message to the assigned recipient. Then,
the protocol decides when to deliver the message to the
recipient, but not delaying more than ¢ rounds. Let ng(x)
1 (z+€)+(z+£)BN’
) N’

min ( ) Then we get that no protocol 11
€ M can provide §-recipient anonymity in the following cases:
« Without compromisation: § < 1 — fFA(¢).

o For adversaries that compromise up to c parties:
—ife>eo<1—[1— (55 ).
—ifce<tzo<1—[1-1/(Of5 () — 5 (- o).

Moreover, no protocol M with K € poly(n) can achieve
strong recipient anonymity when ¢ < N’ and SN’ >1 in
the following cases, where €(n) is a non-negligible function.

« Without compromisation: if 4¢5 < 1 — ¢(n),

« For adversaries that compromise up to c parties:
—ifK>c>0: 48 <1—¢€(n) OR LeO(1).
—ifK>/¢>c 4l —c)f<1—¢€n).

Unsynchronized Users. Similar to the previous case, here
also we borrow the definition of user distribution from Sec-
tion VII, with minor modifications. The biased coins are now
associated with recipients instead of senders — in each round
the sender sends a message for a recipient, with probability
p. Let ff(z) = min(1/2, 1 — (1 —p)***). Then we get that
no protocol IT € M can provide d-recipient anonymity in the
following cases:
« Without compromisation: § < 1 — (124 fF4(¢)).
o For adversaries that compromise up to c parties:
—~Ic> 60 <[1—(5)/(NI/2+ R0
—Ifc<l:b< (1 - [1/2+f§A(e—c)])

x (1= D2+ I = 1/(9)))-
Moreover, for p > 0, no protocol can achieve strong recipient
anonymity if 2¢p < 1 — €(n), where ¢(n) is a non-negligible
function. For a detailed recipient-anonymity analysis, we refer
the readers to the extended version [33].

X. IMPLICATIONS

To put our result into perspective, we discuss whether our
trilemma excludes strong anonymity for a few AC protocols
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from the literature. More precisely, this section exemplarily
applies the results from Theorem 2 and Theorem 7, i.e.,
with synchronized and unsynchronized user distributions and
a global network-level, non-compromising adversary. We use
both results since for some AC protocols (e.g., DC-nets [15])
the synchronized user distribution is more accurate and for
other protocols (e.g., Tor [10]) the unsynchronized user dis-
tribution is more accurate. Our constraints mark an area on
a 2D graph (see Figure 6) with latency overhead (x-axis)
versus bandwidth overhead (y-axis) where strong anonymity is
impossible. As the latency of some AC protocols depends on
system parameters and we want to place the protocols in a 2D
graph, we carefully choose system parameters and make a few
simplifying assumptions, which are subsequently described.

This section is solely intended to put our impossibility result
into perspective. It is not meant and not qualified to be a
performance and scalability comparison of the discussed AC
protocols. Table I in the appendix summarizes bounds on the
bandwidth (§ and latency overhead ¢ (in the sense of this work).

Technically, this section considers translations of AC pro-
tocols into our protocol model. As these translations do not
provide any additional insights, we do not present the full
translated protocols but only the abstraction steps. We abstract
away the cryptographic instantiation of messages including
the bandwidth overhead they introduce over the plaintext. We
assume an upper bound on the latency of the protocol and
are oblivious to server-side noise (see Claim 2). Moreover,
recall that we are only interested in the question whether our
trilemma excludes strong anonymity for the ten AC protocols
from the literature; hence, we consider the upper bound on the
latency and bandwidth overhead for deterministic latency. For
randomized latency, such as Loopix [24], we list for simplicity
the expected delay as the latency bound.

Low-latency protocols such as Tor [10], Hornet [49], and
Herd [25] are low-latency AC protocols, i.e., they immediately
forward messages. While Tor and Hornet do not produce
asymptotically more than a constant amount of both bandwidth
overhead and latency overhead and thus cannot provide strong
anonymity, Herd produces dummy traffic linearly proportional
to the number of users (bandwidth overhead § € 6(N/N)),
thus the trilemma does not exclude strong anonymity for Herd.

Riposte [50] uses secure multiparty computation and a
variant of PIR to implement an anonymous bulletin board.
Riposte operates in epochs and for each epoch the set of users
is public. Hence, Riposte is expected to be run with long
epochs to maximize the number of users that participate in
an epoch, which leads us to estimating the latency overhead
to be £ € 6(N). To counter traffic analysis attacks, Riposte
clients send constant dummy traffic, resulting in a bandwidth
overhead of 8 € §(N/N). Thus, the trilemma does not exclude
strong anonymity for Riposte.

Vuvuzela [20] is a mix-net that is tailored towards mes-
sengers. Clients communicate by deposing their encrypted
messages in one of the mix net nodes. To achieve strong
resistance against compromised servers, Vuvuzela takes a path
through all servers, resulting in a latency overhead of ¢ € §(K)
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Fig. 6. Asymptotic latency overhead (¢) and bandwidth overhead (/3) together
with the “area of impossibility” where 2¢38 < 1 — e(n). We portray protocols
as dots depending on their choices for ¢ and B. Technically, if we use
Theorem 7, we f3 is replaced by p = S+p’, where p’ is the rate at which users
send messages. This graph assumes N is ca. poly(n), the number of nodes
K is ca. logn. The threshold for Threshold Mix 7" = 1 and for Threshold
Mixsee 7' = N = poly(n). In the graph, both the axes are approximately
in logarithmic scale. (For a more accurate visual representation we refer the
readers to Appendix C and [51].)

(for K servers). Additionally, Vuvuzela utilizes constant traffic,
leading to a bandwidth overhead of § € ¢(N/N), and has the
potential for strong anonymity.

Riffle [21] uses a verifiable mix-net. Just as Vuvuzela, Riffle
also chooses paths that traverse all K servers, leading to ¢ €
O(K) and if we assume K € 6(log(n)), we get £ € 6(log(n)).
We assume that the clients send dummy traffic up to a constant
rate (depending on the user’s sending rate p’), so we have
B € 6(N/N) and the potential for strong anonymity.

In a threshold mix net, each of the K mix servers waits
until it received up to a threshold 7" many messages before
relaying the messages to the next mix, resulting in ¢ € 6(T" x
K). Threshold mixes [14] do not provide strong anonymity
unless their threshold 7 is of the order of the number of users
N. As such a large threshold are impractical for a large number
of users, we judge it impossible to achieve strong anonymity
for practical of Threshold mixes.

Loopix [24] is a mix net that combines exponentially dis-
tributed delays at each mix-node and dummy messages from
each user. Ignoring so-called loop messages (meant to counter
active attacks), Loopix naturally enforces our unsynchronised
user distribution: the rate at which Loopix clients send mes-
sages is the sum of a dummy-message rate (3) and a payload
message rate (p), which are system parameters. We assume
that the path lengths in Loopix’ stratified topology is v K
with the number of nodes K € f(log(n)). If 54" > 1/,/n,

. . / 77
and if every hop introduces an expected delay of ¢ > i

the expected latency overhead is ¢ = /K x ¢, in particular
é.e 0(\/(n)). We get (p + )¢ = ﬁ x vyn =1 gnd the
trilemma does not exclude strong anonymity for Loopix.
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In AC protocols based on DC-nets [15], [18] each party
broadcasts either a dummy or real message in every round
to every other party. As our bandwidth overhead only counts
dummy-message rates, it does not capture the broadcast, thus
B € (N/N). DC-nets use a combination operation (e.g., an
XOR) that causes dummy messages to cancel out. Then, all
parties output the resulting bitstring. If only one real message
is sent, the bitstring equals this message. As Theorem 7
assumes a synchronized user distribution, in each round only
one party sends a message, thus our model treats £ as £ € 0(1).

The Dissent-AT [22] scheme (the AnyTrust-variant of Dis-
sent) improves on the performance of DC-nets by relying
on dedicated servers. Instead of broadcasting to every other
client, clients in Dissent-AT send these messages to at least
one of these dedicated servers. These servers then perform a
DC-net communication round. Abstracting from an initial set-
up phase and only counting the client-messages, Dissent-AT
has 5 € O(N/N) for the clients (assuming that each client
communicates to one server), and ¢ € 6(1).

Dicemix [16] is a peer-to-peer AC protocol that is based on
the DC-net approach. While Dicemix includes a self-healing
mechanism that leads to 4 + 2f communication rounds for
one message if f peers are malicious, this mechanism does not
kick in if all peers are honest, leading to only 4 communication
rounds, resutling in ¢ € 6(1). As every party sends a message
in every round 5 € 6(N/N).

XI. CONCLUSION AND FUTURE WORK

This paper proves the anonymity trilemma: strong anony-
mity, low bandwidth, low latency—choose two! We derive
necessary constraints for sender anonymity and recipient ano-
nymity, and thereby presents necessary constraints that are
crucial for understanding bi-directional anonymous commu-
nication: sender anonymity for hiding the sender and recipient
anonymity for hiding the recipient of a message.

For future work, we plan to extend the work in four
natural directions: () derive tighter bounds by using more
sophisticated attackers, (i7) derive bounds for other anonymity
notions (e.g., unlinkability and relationship anonymity), (ii%)
extend the protocol mode with a notion of a throughput
limitation, (iv) relax the requirement that messages are sent
with certainty and allow for unreliable channels. For example,
for the first direction, we plan to take the same steps as
outlined in Section II-B, i.e., to formulate an invariant, to
construct a protocol optimal w.r.t. this invariant, and then
to compute the advantage of the more sophisticated attacker
against this protocol.
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TABLE 1
Latency vs. bandwidth vs. strong anonymity of AC protocols, with the
number of protocol-nodes K, number of clients N, and message-threshold
T, expected latency ¢’ per node, dummy-message rate /3.

Protocol Latency  Bandwidth  Strong Anonymity
Tor [10] 0(1) 0(1/N) impossible
Hornet [49] 0(1) 0(1/N) impossible
Herd [25] 0(1) O(N/N) possible
Riposte [50] O(N) O(N/N) possible
Vuvuzula [20] 0(K) O(N/N) possible
Riffle [21] 0(K) O(N/N) possible
Threshold mix [14] 0(TK) 0(1/N) impossible™
Loopix [24] 6(VKL) 6(B) possible
DC-Net [15], [18] 0(1) O(N/N) possible
Dissent-AT [22] 0(1) O(N/N) possible
DiceMix [16] 0(1) O(N/N) possible
*if T in o(poly(n))

APPENDIX A

PROTOCOL MODEL REVISITED
A. Validity of the Protocol Model (Contd.)

Lemma 2. Let 11 be a protocol € M with K parties with
parameters 3 and (. Then: 1) Messages are delivered within
{ steps. 2) The protocol adds (for the unsynchronised case on
average) a maximum of [3 noise messages per user per round.
3) Whenever a party in S U P sends a message to another
party in PUTR, the adversary learns that and in which round
this happens. 4) For every message that leaves the network
(received by R), the adversary additionally learns whether
the message is the target message. 5) For every compromised
party, the adversary learns the mapping between the input
messages and the output messages.

Proof. Let 11 be a protocol € M with K parties with param-
eters 3 and £. Part (2) of the Lemma holds, since we restrict
the user distributions accordingly and since the none of the
transitions in the petri-net can create more tokens within the
network than it consumes from its input place.

We show the part (1) of the lemma via structural induction
over fired transitions of the petri net. We additionally add to
the induction invariant that all tokens that are not in S have a
timestamp for their next transition of ts = 1 and a remaining
time of t, > 0 and there are at least t, rounds left in which
the token can be delivered.

Induction base: The protocol is initialized and no transi-
tions have happened. Thus, no messages have been sent so far,
i.e., there is no message that has not been delivered within ¢
steps. The only transition that can fire is T's and for ¢ > 0,
the message introduced into the network in this way does not
need to be delivered already (0 < t, = ¢). Moreover, Ts sets
the timestamp of this message token to ts = 1
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Induction step: Let ¢r be any execution trace s.t. the
induction invariant is satisfied and let ¢ be an arbitrary possible
transition that extends ¢r to tr :: ¢.

We distinguish two cases for ¢: In case ¢ is Ts, it consumes
a token from Ps and puts this token into a place P; and, by
definition we have t, > 0 and ts = 1. Otherwise, the transition
is T'p, for some ¢ and consumes a token from P; accordingly.
By the induction invariant, the token has t, > 0. If this token
has t,—1 = 0, the transition delivers the token to K. Otherwise,
t decreases t, by one (thus fulfilling the condition that there
are at least t, rounds left in which the token can be delivered)
and sets ts = 1. Since every token in any place F; needs to be
consumed in every round, the protocol delivers every message
in at most ¢ steps.

Other parts of the lemma: By definition of our petri net,
whenever a transition fires, an element (¢,7) is placed into
Tokens, containing the public fields of ¢, such as t.prev and
t.next, as well as the current round number r, which fulfills
part (3). Moreover, whenever the transition places the token
in R, the adversary can additionally see the field ¢.msg and no
transition can change the field msg, which allows the adversary
to effectively tag and recognize the challenge message and thus
fulfills part (4). Finally, if any party P; is compromised, P;
does not modify the unique (and otherwise freshly sampled)
field ¢.ID;, which allows the adversary to map incoming and
outgoing messages.

Since the transitions discussed here are the only way for
messages to be sent to a recipient, the model correctly enforces
the conditions from the lemma. O

B. Expressing Protocols in the petri net model

Modeling DC net. Here we show how to model an actual
DC net type protocol using our petri net model M as defined
in Section IV. Specifically we pick up the short DC net
protocol proposed by Golle and Juels [18], and present Mpc
which models the aforementioned protocol.

We model a DC net protocol with N participants, where
S =P, |S§| = |P| = N. We denote the parties with Py, ..., Py.
The protocol can be denoted by I, ={paramgen, keydist,
post, verify, extract}7 - as described below.

e paramgen: In prot pc, paramgen is executed by a trusted
entity and the output is published. Since we are mainly
interested in the anonymity game, we consider that paramgen
step is executed by our honest challenger and happens outside
the protocol run, and the output is globally known (to all the
transitions 1'p,).

e keydist: using the output of paramgen, this step yields for
each party P; a private key x; and a corresponding public key
yi;. In protpc, the above key generation part is done by a
trusted entity, and hence we consider that it is done by our
honest challenger and for each party P; the public-private
keypair z;, y; is already known to the corresponding transition

7Since we are mainly interested in the anonymity property, we don’t need
to model the part of the protocol where the protocol parties reconstructs the
keys in case of a failure. But it is easy to extend Mp¢ to include that step
by adding one more round to the current model.



function T'p,. As part of protocol each party P; publishes its
public key y;. Additionally, each party P; receives from F;
a share of private key x;; and a share of public key y; ;,
where the keys are shared in a (k, N) threshold manner for a
parameter k£ < N.

« post: Each player P; generates a vector of random pads
W; = {W;(1),Wi(2),...,W;(N)}® using x;. pc does not
handle collisions, instead assumes that the players decide
their positions by a consensus protocol. Similarly our model
assumes that each party P; knows its position, and assume
the position is g; (but not known to the adversary). Then each
player P; computes the vector V; such that V;(w) = W;(w)
for all w # i and V;(w) = W;(w) & m; for w = q;, where
m; is the message of P;. Also, each player P, computes
o; ={0i(1),04(2),...,0;(N)}, where o; includes the identity
of player P; and a proof of valid formatting of V;. Then P;
publishes both the vectors V; and ;. Our model assumes the
pair (V;(w), o;(w)) for each position w as a single message,
where V;(w) is a message content and o;(w) becomes a part
of meta field. For each position w player P, generates one
such message, and publishes the message to all other players.

« verify and extract are local computations after a party P;
receives messages from all other parties.

Although the protocol model assumes that the adversary can
not read the contents of any message, here we shall model
IIpe along with its cryptographic primitives to demonstrate
the expressiveness of our model. Alternatively, to get rid of
all the cryptographic primitives, the parties can send a dummy
message (= 0) whenever V;(w) = W;(w), and the actual
message m; whenever V;(w) # W;(w).

As per our anonymity definition in Section III, we assume
that up to (N—2) users can be compromised, which necessarily
makes up to (N — 2) protocol parties compromised. The
adversary chooses two challenge users, and one of them sends
the challenge message depending on the challenge bit b. All
other (N — 1) users send dummy messages.

In Mpc we model 1Ipc as a two round protocol. The
challenger sets the initial configuration of the petri-net with the
messages to be sent by each party. In the first round, each party
P; sends two kinds messages: (1) publishes the public key
message y; and (2) sends share of the public-private keypair
(@i,j,vi,;) to P; for all j # i. Here, one party can publish a
message to (N — 1) other parties by sending (N — 1) separate
messages. In the second round, each party P; publishes N
messages: one message for each position, only one of them
contains his own message. After second round, every party
receives messages from every other party, and then does local
computations to verify and extract the original messages.

For IIpc, we do not actually need a separate recipient R
in IIpco, if we make R = P. But, to be consistent with M,
in Mpc we keep a separate recipient. In the second round
whenever a party F; publishes a message, F; also sends a
copy to R. This easily models the fact that the adversary knows

8The anonymity game does not include multiple sessions. Also, in our
model all the N players participate in a protocol run.
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whenever a message is published, but avoids the complication
of modeling a subset of compromised recipients.

The meta fields of the tokens contains the following sub-
fields: (1) stage, (2) position, (3) sigma. stage can have three
possible values identifying three possible cases: (1) public
key distribution, (2) share of the public-private keypair, (3)
message. Using stage subfield, any party in the protocol
recognizes if the message is part of keydist messages, or part
of post messages. When the value of stage is message, the
user posts V;(w), and position takes the value of w. sigma
includes the identity of the sender and a proof of computation
whenever necessary. sigma fields helps in the verify stage, we
avoid the details here.

If we want to analyze the user distribution for 11 )¢, we do
not count the first round since it is used only for key exchange.
Note that, if we get rid of the cryptographic primitives, we do
not require the first round.

Modeling Tor. Since Tor does not operate in rounds, em-
bedding it into our model is not straight forward. Suppose, a
Tor node takes at least x milliseconds to process a message
when it receives a message, and it takes at least y milliseconds
for a message to travel from one node to the next node over a
network link. Then we define one round as x+ 1y milliseconds.
We assume a perfect condition where each node takes exactly
equal computation time for one message, and each link has
exactly same delay. In the real world, delays and computation
times are less stable, but can be estimated by an adversary.
Instead of analyzing this, we instead allow the messages to
remain within the node for the respective time.

Tor nodes and recipients are separate entities and hence, S,
P and R are mutually exclusive. Whenever a Tor node receives
a message, the node immediately processes and forwards that
message to the next node or recipient. We can either model
the latency overhead ¢ of Tor by estimating the time messages
spend within the network that exceeds the (minimal) round
length x4y from above, or we set it to the number of hops, i.e.,
¢ = 3. In either case, we assume that ¢ does not increase with
7 and thus get a latency overhead ¢ € O(1). For analyzing Tor
with a variable number h of hops, we can instead set £ = h.
When a party P; receives a message, 1'p, can retrieve the next
hop from the meta field of the message. Since Tor does not
add any noise messages, the bandwidth overhead is 5 = 0.

APPENDIX B
DELAYED PROOFS

Proof of Claim 1. If the set T' is empty, then S;_;, is empty as
well. However, by construction of our protocol mode, the set
Sy is always non-empty. Consequently, the adversary Apqips
will output b and thus win with probability 1. If 7" is not
empty, the following cases can occur:

1) The challenge message never passes through an honest
node: In this case, the field ID, of the message never changes
for the tokens. Thus, S, will have exactly one element, and
S1—p will be an empty set, and consequently A5 Wins.

2) The challenge message passes through one or more
honest nodes at times ¢/, such that ¢ < min(7"), but not



afterwards. Following the same reasoning as above, we see
that paths before min(7") can be ambiguous, but none of them
leads to u;—,. Hence, Sp, can have multiple elements, but S;_;,
will still be an empty set. Thus, Apqpns Wins.

3) The challenge message passes through an honest node
at time ¢’ with ¢ > min(T). In this case, the invariant is true.

In all of the above mentioned cases either the invariant is
true, or the adversary wins with probability 1. O

Proof of Claim 2. Let ug,u; be the challenge users and let
b be the challenge bit and let  be the round in which the
challenge message is delivered to the recipient. We discuss
both parts of the invariant separately:

(i) The set T" is not empty. Since by definition, 7" is the set
of messages sent by u;_;, messages originating in any party
not in § do not influence 7. Moreover, any message sent by
u1_p in a round previous to r — ¢ does not influence 71" either.
Thus, noise messages staying in the protocol for more than ¢
rounds, do not improve the probability of 7" being not empty.

(ii) The challenge message passes through at least one hon-
est node at some time ¢’ such that, ¢’ € {min(7),...,r — 1}.
Obviously this second part of the invariant does not depend
on any noise message. L

Proof of Claim 3. We want to prove our claim by contradic-
tion. Suppose, Il;4eq; is not the best protocol. That means,
there exists a protocol II,,.,,, which satisfies Invariant 1 with
a higher probability than IL;4.,;, against the adversary A, q;ps-

Now we construct a new protocol Il 4.4, which exactly
follows the strategy of 1l;4.,; With one exception: for a given
message Ilj,priq Selects the time delay ¢ same as Ileq,
instead of querying it from oracle O. Suppose, the challenge
message is delivered to the recipient at round r. Given the
set {min(7),...,r — 1}, the ideal strategy for ensuring that
at least one honest party is on the path of the challenge
message is to ensure that as many distinct parties as possible
are on this path. Also, given the time delay t, the value of
min(T) is independent of the protocol, since protocols in M
are oblivious to the challenge users and the challenge message.
Hence, IIjyriq has a probability of satisfying Invariant 1 at
least as high as IL,,¢,-

Now, if we compare Iy priq and I;geq;: they follow the
same strategy. But Il;zeq; picks the time delay ¢ for any
message from oracle O (except for messages from u;_;) such
that ¢ is optimal. The time delay ¢ can be picked for each
message independent of the time delays of other messages.
Hence, the value of ¢ received from oracle O for the challenge
message is optimal. Hence, 11;4.,; satisfies Invariant 1 with
probability at least as high as IIjybriq. Thus, IT,c,, does not
satisfy Invariant 1 with a higher probability than IT;4eq;. O

Proof of Claim 4. If the Invariant is true, the challenge mes-
sage passes through an honest party at ¢/, such that ¢ >
min(T). Hence, there is at least one message (noise or
original message) from wuq_; which visits the same honest
party together with the challenge message (11;4¢4; ensures that
all messages are always kept together until they are delivered).
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That ensures that in addition to Sy, # (J, we also have Sy # ()
and thus Apq:ns outputs a random bit (and has an advantage
of zero). O

Proof of Theorem 2. For strong anonymity, we require:
a(n) neg(n), and we know that for Il;4., we have:

5(n) > 1— f5(0) = (Nﬂfzfﬂw > N—ZE/SNZ) > 1—§—5€-

N—1 =
We assume for contradiction that there is a protocol limited
by ¢ and £ such that 25 < 1 — e(n) that still achieves strong
anonymity. Since §(n) = neg(n), we know that €(n) > §(n).

) > 8n) = eln) > 1 — ¢

14 1
N 5(1*6(77))

= 20> N(1—e(n) ' L3'28>1—€(n)

= €(n) >1-

The above contradicts the assumption that 28 < 1 — e(n).
Note: In case SN < 1, no noise messages are allowed per
round (i.e., 8 = 0) and thus 6(n) > 1 — ¢/N, which is not
negligible unless ¢ = N, since N = poly(n). O
(2)

@] o

For & to become neg(n), we need both [1 — (5)/(%)]
and f3(¢) to become overwhelming. From Theorem 2 and
Theorem 1, we know that 2{8 > 1 — neg(n) is a necessary
condition for f3(¢) to become overwhelming. Now, we are left
with the factor [1 — (§)/()]. This can become overwhelming
iff [(§)/ ('2)] becomes negligible. We know that K > ¢ > /¢
and K € poly(n). Hence, for some constant x,

c—/ 1

4 1 £
i = () > ()
cc=1)...(c=¥) L
K(K_1)...(K_0)
i)
() \m
For any £ € O(1), (1/n*)" is non-negligible.
Proof of Theorem 5. When c < {:

621=[1-1/(%)] fs(0) = falt - ).

First consider the factor [1 — 1/(5)] Since K = poly(n)
and ¢ = constant, [1/ ('2)} can never be negligible. And thus,
[1—1/(¥)] can never be overwhelming. So, [1—1/(%)]fs(c)
can never be overwhelming as well, since fg(c) < 1.

Now, let’s consider f3(¢ —c) and fz(c) . Note that, these
two factors represent the probabilities of two dependent but
mutually exclusive events, and hence fz(c) + fg({ —c) < 1.
And we already know that [1 — 1/(%)] can never be over-
whelming. Thus, the only way § can become negligible is if
f8(€ — c) becomes overwhelming. Note that, if a+b < 1 and
¢ < 1, the only way ac+ b =1 is possible if b = 1.

Now we can follow exactly the same procedure as in
the proof of Theorem 2 to say: fz(¢ — c) can not become
overwhelming if 2(¢ —c)8 <1 — ¢(n). O

Proof of Theorem 4. Whenc > ¢: §>1— |1 —

c—V/
K—/¢

g

K

—



Proof of Theorem 7. We know 0 < E' < 1/2. When 2u < N,

6 2(1-E)(1-2f,(0) = 1/2 (21 -p)' =1)

>1/2(2(1— tp) — 1) = 1/2 (1 — 24p).

Thus, if 20p <1 —e€(n),
2Up <1—e€(n) < 1—2lp>¢€(n)
= § > 1/2 x ¢(n) = non-negligible.
Thus, when 2p < N, a necessary condition for § to become
negligible is 2¢p > 1 — neg(n).
When 24 > N, using = N(1 — (1 —p)e) we get:
IN(1—(1-p)) >N = (1-p)° <1f

= 1-pl< 1 < 2pl > 1. .

Proof of Theorem 8. Let XV (z) and X (z) be defined as in
the proof for Theorem 6, where we replace the fixed length ¢
of the slice by a variable . Using the Chernoff Bound on the
random variable X (z) calculate PriX(z)— p(x) > Na] <
exp(—2a?N), and for a = X m2) e define E(z) as

E(z) =Pr[X(x) > 2u(z)] < exp (—2u(=)*/N* x N)
<exp (201 (1-p)")N).

Note that, similar to X (z) and X (), u(x) is also defined
as in the proof for Theorem 6, but for a slice of variable
length x. We denote the event that sender w;_; sends at least
one message in an interval of size = by Y'(x) and since all
users are acting independently from each other we get for j €
{0,... N}, Pr[Y(2)[X(2) = j] = 1 - Pr[-Y|X(z) = j] =
%. Moreover, for any value of x with 2u(z) <N,

PrY (2)] = Pr[X(x) > 2u(2)] x Pr[Y (@)|X(2) = 2u(c)]

+ Pr[X(z) < 2u(x)] x PrY(2)[X(z) < 2u(x)]

Pr[X(x) > 2(2)] x Pr[Y ()| X (z) = N]

+ PrX(z) <2u(x)] x Pr[Y(z)|X () = 2u(z)]

E(z)Pr[Y|X(z) = N]

+ (1= B(@)) Pr [V X (2) = 20()

= B(2) () + (1 - B(@)) (+0))

=1-(1-E@)(1-2(1-(1-p))).

> N, we get with f(z) 1-(1-p)°):

Pr[Y(2)] < B(z) + (1 - B(z)) x 1< 1
<1-(1-E(z) (1—-2f(x)).

Now, we calculate the probability of Invariant 1 being true,
under our protocol IT;4.,; and as in the proof for Theorem 3.
We distinguish two cases depending on c and ¢:

Case 1): c >/

IN

If 2p1(z) = min (1,

Pr [Invariant 1 is true]
< Pr[-Cmpr(¢)] x Pr[uj_p.sent(r — £,r — 1)]
Pr [-Cmpr(¢)] x Pr[Y (¢)]

- /) b (o) - 2000)]

IA
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By applying Markov’s inequality on the random variable
X(z), we get E(z) = Pr[X(z) > 2u(x)] < i. Thus, we
derive for 0: 6 > 1 — 11 — (Z)/(IZ)} [+ fo(0] .

Case 2): c < /. As for the proof of Theorem 3 we split this
case into two sub-cases, depending on ¢ and c.

Case 2a): c <t
Pr [Invariant 1 is true|
< Prluj_p.sent(r — £,r — )| + Pr[—uy_p.sent(r — £,r — c)]
X Pr[uy_p.sent(r — ¢, r)] x Pr[-~Cmpr(c)]
PriY({—c)]+[1—Pr[Y(¢—c)]]Pr[Y(c)] Pr[—Cmpr(c)]
[1-(1—-E(—-0c)(1—2fp(—0))
+[(1 = E(—<) (1 -2fp(f—c))]
X [1— (1= E) (1= 2] [1 - /()]
Thus, for the adversarial advantage § we derive,
0 > 1 — Pr[Invariant 1 is true|
> 11— (1—B(t—c)(1—2£,( — )]
— (A= E( =) =2fp(t =)
X[1- (1 B@) (-2 [1- (¢
(1~ E(¢—c)) (1 —2fp(£ —c))]
x (11— (- B©) (1~ 24(0)) [1 ~1/(%
(L=[b+fue=0)) (1= [3+ 5@ [t - 1/(
We again use Markov’s inequality to replace E(z)
Case 2b): t < c

IA

©
%%

) by 1/a.

[\

Pr [Invariant 1 is true]
< Prluj_p.sent(r — ¢, r — c)] x Pr[-Cmpr(t)]
+ Pr[~uj_p.sent(r — £,r — c)]
x Pr[uy_p.sent(r — ¢, r)] x Pr[=Cmpr(c)]
< Prluj_p.sent(r — ,r — c)] + Pr[—uy_p.sent(r — &, r — c)]
x Pr[u1_p.sent(r — ¢, )] Pr [-Cmpr(c)]

The above event expression is exactly same as the expression
we had in the previous case (¢ > c). Thus, the rest of the
calculations and bounds are exactly same as the previous case.

O

APPENDIX C
VISUAL 3D REPRESENTATIONS OF THE RESULTS

In the paper, we focus on lower-bound results for strong
anonymity (or negligible § values). However, our key Theo-
rems 1, 3, 6 and 8 also offer lower bounds for non-negligilable
¢ values, which can be of interest to several AC protocols.

On our project webpage [S1], we visualize these lower
bounds using interactive 3D surface plots. In particular, we
plot the adversarial advantage § € [0,1] as a function of 3
and ¢. We encourage the readers to interact with these plots
to better understand our results for non-negligilbe § values.

Here, in Figures 7 to 10, we present and analyze four
snapshots of those lower bound plots for the number of users
N = 10000. The z-axis represents latency ¢ (ranging from 0
to 200), and the y-axis bandwidth overhead /8 (ranging from
0.0 to 0.04). But in Figure 9 and Figure 10, the y-axis actually
represents total bandwidth p = p’ + (8 as in Theorem 7.
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Fig. 7. Synchronized User Distribution with Non-compromising Adver-
saries. z = 1 — f3(¢), where fz(x) = min(1, ((z + BNz)/(N — 1))).

100
latency (¢)
150

Fig. 9. Unsynchronized User Distribution with Non-compromising Adver-
saries. z =1 — (2 4 f,(£)), where fy(z) = min(1/2, 1 — (1 —p)?).

A derived § lower bound for the non-compromising adver-
sary is also a valid lower bound for a (partially) compromising
adversary. For some edge cases (e.g., when ¢ is close to N
and [ is close to 0), due to some approximations employed in
the compromising adversaries scenario, the non-compromising
adversary lower bound is actually tighter than the compromis-
ing adversaries lower bound. Therefore, in Figure 10, while
plotting the 3D graph for a partially compromising adversary
scenario, we have used the maximum of the lower bounds on §
for compromising adversary and non-compromising adversary.

In each plot, the dark blue region indicates the possibility
of obtaining strong anonymity. For any point (z,y) outside
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Fig. 8. Synchronized User Distribution with Partially compromising Ad-
versaries. Total protocol parties K = 100, number of compromised parties

c=20.2=1-[1—(5)/(Nfs(0) for < c, 2 =1-[1-1/ ()] f5(c) -
fa(€ — c) otherwise.

bandwidth (p)

Fig. 10. Unsynchronized User Distribution with Partially compromising
Adversaries. Total number of protocol parties K = 100, number of
compromised parties ¢ = 20. 2/ = 1 — [1 — (§ )/( M5 + fo(0)] for
t<e 2 =(1-[L-1/(F N2+ fp(@)) x (1= (12 + (€ = <)])
otherwise. We set z = max(z 1— (/24 fp(£)))

those regions, strong anonymity is not possible. For example,
as shown in Figure 7, for ¢ = 100 the bandwidth overhead [
has to be at least 0.01 to expect strong anonymity.

For the chosen c and K, the plots in Figures 7 and 8 are
almost identical as the ¢ and S factors contribute more to
anonymity than the compromised parties can affect it. If we
instead compare Figure 9 with Figure 10, the effect of com-
promisation is noticeable: the dark blue region in Figure 10 is
much smaller than that in Figure 9. Also, we can see a steep
wall in Figure 10 for ¢ < ¢ = 20, demonstrating that providing
anonymity becomes difficult when ¢ < c; however, for ¢ > c,
the effect of compromisation is less noticeable.



