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Abstract— Given a linear dynamical system, we consider the
problem of selecting (at design-time) an optimal set of sensors
(subject to certain budget constraints) to minimize the trace
of the steady state error covariance matrix of the Kalman
filter. Previous work has shown that this problem is NP-hard
for certain classes of systems and sensor costs; in this paper,
we show that the problem remains NP-hard even for the
special case where the system is stable and all sensor costs
are identical. Furthermore, we show the stronger result that
there is no constant-factor (polynomial-time) approximation
algorithm for this problem. This contrasts with other classes
of sensor selection problems studied in the literature, which
typically pursue constant-factor approximations by leveraging
greedy algorithms and submodularity of the cost function. Here,
we provide a specific example showing that greedy algorithms
can perform arbitrarily poorly for the problem of design-time
sensor selection for Kalman filtering.

I. INTRODUCTION

Selecting an appropriate set of actuators or sensors in
order to achieve certain performance requirements is an
important problem in control system design (e.g., [1], [2],
[3]). For instance, in the case of linear Gauss-Markov sys-
tems, researchers have studied techniques to select sensors
dynamically (at run-time) or statically (at design-time) in
order to minimize certain metrics of the error covariance of
the corresponding Kalman filter. These are known as sensor
scheduling problems (e.g., [4], [5], [6]) and design-time
sensor selection problems (e.g., [7], [8], [9], [10]), respec-
tively. These problems are NP-hard in general (e.g., [10]),
and various approximation algorithms have been proposed
to solve them. For example, the concept of submodularity
[11] has been widely used to analyze the performance of
greedy algorithms for sensor scheduling and selection (e.g.,
[12], [13], [6], [14]).

In this paper, we consider the design-time sensor selection
problem for optimal filtering of discrete-time linear dynam-
ical systems. We study the problem of choosing a subset
of sensors (under given budget constraints) to optimize the
steady state error covariance of the corresponding Kalman
filter. We refer to this problem as the Kalman filtering sensor
selection (KFSS) problem. We summarize some related work
as follows.

In [7], the authors considered the design-time sensor selec-
tion problem of a sensor network for discrete-time linear dy-
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namical systems, also known as dynamic data-reconciliation
problems. Their objective was to minimize the estimation
error subject to network defined mass-balance equations.
In contrast, we consider the problem of minimizing the
estimation error under a cardinality constraint on the chosen
sensors and analyze the complexity of the problem.

In [9], the authors studied the design-time sensor selection
problem for discrete-time linear time-varying systems over
a finite time horizon. The objective is to minimize the
number of chosen sensors while guaranteeing a certain level
of performance (or alternatively, to minimize the estimation
error with a cardinality constraint on the chosen sensors). In
contrast, we focus on minimizing the steady state estimation
error of the Kalman filter. The same problem was considered
in [15] and [10]. In [15], the authors expressed the problem as
a semidefinite program (SDP) without theoretical guarantees
on the performance of the proposed algorithm. The paper
[10] showed that the problem is NP-hard and the cost
function is not submodular in general. Upper bounds (which
are functions of system parameters) were provided on the
performance of algorithms for the problem. Although [10]
showed via simulations that greedy algorithms performed
well for randomly generated systems, the question of whether
such algorithms (or other polynomial-time algorithms) could
provide constant-factor approximation ratios for the problem
was left open.

Our contributions to this problem are as follows. First, we
show that the KFSS problem is NP-hard even for the special
case when the system is stable and all sensors have the
same cost. This complements and strengthens the complexity
results in [10]. Our second (and most significant) contribution
is to show that there is no constant factor approximation
algorithm for this problem (unless P = NP ). This stands
in stark contrast to other sensor selection problems studied
in the literature, which leveraged submodularity of their
associated cost functions to provide greedy algorithms with
constant-factor approximation ratios [9]. Our inapproxima-
bility result above immediately implies that greedy algo-
rithms cannot provide constant-factor guarantees for our
problem. Our third contribution in this paper is to explicitly
show how greedy algorithms can provide arbitrarily poor
performance even for very small instances of the KFSS
problem.

The rest of this paper is organized as follows. In Section II,
we formulate the KFSS problem. In Section III, we analyze
the complexity of the KFSS problem. In Section IV, we study
a greedy algorithm for the KFSS problem and analyze its
performance. In Section V, we conclude the paper.
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A. Notation and terminology

The set of natural numbers, integers, real numbers, rational
numbers, and complex numbers are denoted as N, Z, R, Q
and C, respectively. For any x ∈ R, denote dxe as the least
integer greater than or equal to x. For a matrix P ∈ Rn×n,
let PT be its transpose. Denote Pij as the element in the
ith row and jth column of P . The set of n by n positive-
semidefinite matrices is denoted by Sn+. The identity matrix
with dimension n is denoted as In×n. For a vector v, denote
vi as the ith element of v and let supp(v) be its support,
where supp(v) = {i : vi 6= 0}. Denote the Euclidean norm of
v by ‖v‖2. Define ei to be a row vector where the ith element
is 1 and all the other elements are zero; the dimension of
the vector can be inferred from the context. For a random
variable ω, let E(ω) be its expectation. For a set A, let |A|
be its cardinality.

II. PROBLEM FORMULATION

Consider the discrete-time linear system

x[k + 1] = Ax[k] + w[k], (1)

where x[k] ∈ Rn is the system state, w[k] ∈ Rn is a zero-
mean white Gaussian noise process with E[w[k](w[k])T ] =
W for all k ∈ N, and A ∈ Rn×n is the system dynamics
matrix.

Consider a set Q consisting of q sensors. Each sensor
i ∈ Q provides a measurement of the system in the form

yi[k] = Cix[k] + vi[k], (2)

where Ci ∈ Rsi×n is the state measurement matrix for sensor
i, and vi[k] ∈ Rsi is a zero-mean white Gaussian noise
process. We further define y[k] ,

[
(y1[k])T · · · (yq[k])T

]T
,

C ,
[
CT1 · · · CTq

]T
and v[k] ,

[
(v1[k])T · · · (vq[k])T

]T
.

Thus, the output provided by all sensors together is given by

y[k] = Cx[k] + v[k], (3)

where C ∈ Rs×n and s =
∑q
i=1 si. We denote

E[v[k](v[k])T ] = V and consider E[v[k](w[j])T ] = 0,
∀k, j ∈ N.

Consider that there are no sensors initially deployed on
the system. Instead, the system designer must select a subset
of sensors from the set Q to install. Each sensor i ∈ Q has
a cost bi ∈ R≥0; define the cost vector b ,

[
b1 · · · bq

]T
.

The designer has a budget B ∈ R≥0 that can be spent on
selecting sensors from Q.

After a set of sensors is selected and installed, the Kalman
filter is then applied to provide an optimal estimate of the
states using the measurements from the installed sensors in
the sense of minimizing the mean square estimation error
(MSEE). We define a vector µ ∈ {0, 1}q as the indicator
vector of the selected sensors, where µi = 1 if and only if
sensor i ∈ Q is installed. Denote C(µ) as the measurement
matrix of the installed sensors indicated by µ, i.e., C(µ) ,[
CTi1 · · · CTip

]T
, where supp(µ) = {i1, . . . , ip}. Similarly,

denote V (µ) as the measurement noise covariance matrix
of the installed sensors, i.e., V (µ) = E[ṽ[k](ṽ[k])T ], where

ṽ[k] =
[
(vi1 [k])T · · · (vip [k])T

]T
. Let Σk|k−1(µ) and

Σk|k(µ) denote the a priori error covariance matrix and the
a posteriori error covariance matrix of the Kalman filter at
time step k, respectively, when the sensors indicated by µ
are installed. We will use the following result [16].

Lemma 1: Suppose the pair (A,W
1
2 ) is stabilizable. For

a given indicator vector µ, both Σk|k−1(µ) and Σk|k(µ) will
converge to finite limits Σ(µ) and Σ∗(µ), respectively, as
k →∞ if and only if the pair (A,C(µ)) is detectable.

The limit Σ(µ) satisfies the discrete algebraic Riccati
equation (DARE) [16]:

Σ(µ) = AΣ(µ)AT +W−

AΣ(µ)C(µ)T
(
C(µ)Σ(µ)C(µ)T + V (µ)

)−1
C(µ)Σ(µ)AT .

(4)

Applying the matrix inversion lemma [17], we can rewrite
Eq. (4) as

Σ(µ) = W +A(Σ−1(µ) +R(µ))−1AT , (5)

where R(µ) , C(µ)TV (µ)−1C(µ) is the sensor information
matrix corresponding to sensor selection indicated by µ. Note
that the inverses in Eq. (4) and Eq. (5) are interpreted as
pseudo-inverses if the arguments are not invertible. For the
case when V = 0, we compute Σ(µ) via Eq. (4).

The limits Σ(µ) and Σ∗(µ) are coupled as [18]:

Σ(µ) = AΣ∗(µ)AT +W. (6)

For the case when the pair (A,C(µ)) is not detectable, we
define the limit Σ(µ) = +∞. The Kalman filter sensor
selection (KFSS) problem is defined as follows.

Problem 1: (KFSS) Given a system dynamics matrix A ∈
Rn×n, a measurement matrix C ∈ Rs×n containing all of
the individual sensor measurement matrices, a system noise
covariance matrix W ∈ Sn+, a sensor noise covariance matrix
V ∈ Ss+, a cost vector b ∈ Rq≥0 and a budget B ∈ R≥0,
the Kalman filtering sensor selection problem is to find the
sensor selection µ, i.e., the indicator vector µ of the selected
sensors, that solves

min
µ

trace(Σ(µ))

s.t. bTµ ≤ B
µ ∈ {0, 1}q

where Σ(µ) is given by Eq. (4) if the pair (A,C(µ)) is
detectable, and Σ(µ) = +∞, otherwise.

III. COMPLEXITY ANALYSIS

As mentioned in the Introduction, the KFSS problem was
shown to be NP-hard in [10] for two classes of systems
and sensor costs. First, when the A matrix is unstable and
sensor costs are identical, [10] provided a reduction from the
“minimal controllability” (or minimal detectability) problem
considered in [2] to KFSS. Second, when the A matrix
is stable, [10] showed that when the sensor costs can be
arbitrary, the 0 − 1 knapsack problem can be encoded as a
special case of KFSS, thereby again showing NP-hardness
of the latter problem.
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In this section, we provide a stronger result and show that
KFSS is NP-hard even for the special case where the A
matrix is stable and all sensors have the same cost. We will
consider throughout this paper the case when Ci ∈ R1×n,
∀i ∈ {1, . . . , q}, i.e., each sensor corresponds to one row
of matrix C, and the sensor selection cost vector is b =
[1 · · · 1]T , i.e., each sensor has cost equal to 1.

We will use the following Lemmas, whose proofs can be
found in [21].

Lemma 2: Consider a discrete-time linear system as de-
fined in (1) and (3). Suppose the system dynamics matrix
is of the form A = diag(λ1, . . . , λn) with 0 ≤ |λi| < 1,
∀i ∈ {1, . . . , n}, the system noise covariance matrix W is
diagonal, and the sensor noise covariance matrix is V = 0.
Then, the following holds for all sensor selections µ.

(a) For all i ∈ {1, . . . , n}, (Σ(µ))ii satisfies

Wii ≤ (Σ(µ))ii ≤
Wii

1− λ2
i

. (7)

(b) If ∃i ∈ {1, . . . , n} s.t. Wii = 0, then (Σ(µ))ii = 0.
(c) If ∃i ∈ {1, . . . , n} s.t. λi = 0, then (Σ(µ))ii = Wii.
(d) If ∃i ∈ {1, . . . , n} s.t. Wii 6= 0 and the ith column of

C(µ) is zero, then (Σ(µ))ii = Wii

1−λ2
i

.
(e) If ∃i ∈ {1, . . . , n} s.t. ei ∈ rowspace(C(µ)), then

(Σ(µ))ii = Wii.

Lemma 3: Consider a discrete-time linear system as de-
fined in Eq. (1) and Eq. (3). Suppose the system dynamics
matrix is of the form A = diag(λ1, 0, . . . , 0) ∈ Rn×n,
where 0 < |λ1| < 1, the measurement matrix C = [1 γ],
where γ ∈ R1×(n−1), the system noise covariance matrix
W = In×n, and the sensor noise covariance matrix V = 0.
Then, the (steady state) MSEE of state 1, i.e., Σ11, satisfies

Σ11 =
1 + α2λ2

1 − α2 +
√

(α2 − α2λ2
1 − 1)2 + 4α2

2
, (8)

where α2 , ‖γ‖22. Moreover, if we view Σ11 as a function
of α2, denoted as Σ11(α2), then Σ11(α2) is a strictly
increasing function of α2 ∈ R≥0 with Σ11(0) = 1 and
limα→∞Σ11(α2) = 1

1−λ2
1

.

A. NP-hardness of the KFSS problem

To prove the KFSS problem (Problem 1) is NP-hard, we
relate it to the problem described below.

Definition 1: (X3C) Given a finite set D with |D| = 3m
and a collection C = {c1, . . . , cτ} of 3-element subsets of
D, an exact cover for D is a subcollection C′ ⊆ C such that
every element of D occurs in exactly one member of C′.

Remark 1: Note that if τ < m, it is clear that there does
not exist an exact cover for D. Hence, we assume τ ≥ m.
Since each member in C is a subset of D with exactly 3
elements, if there exists an exact cover for D, then it must
consist of exactly m members of C.

We will use the following result [19].
Lemma 4: Given a finite set D with |D| = 3m and a

collection C of 3-element subsets of D, the problem of

determining whether C contains an exact cover for D is NP-
complete.

We are now in place to prove the following result.
Theorem 1: The KFSS problem is NP-hard when the

system dynamics matrix A is stable and each sensor i ∈ Q
has identical cost.

Proof: We give a reduction from X3C to KFSS.
Consider an instance of X3C as described in Definition
1. For each element ci ∈ C, define the column vector
gi ∈ R3m to encode which elements of D are contained in
ci. Specifically, for i ∈ {1, 2, . . . , τ} and j ∈ {1, 2, . . . , 3m},
(gi)j = 1 if element j of set D is in ci, and (gi)j = 0
otherwise. Define the matrix G =

[
g1 · · · gτ

]
and the

vector d = [1 · · · 1]T ∈ R3m. Thus Gx = d has a solution
x ∈ {0, 1}τ such that x has m nonzero entries if and only
if the answer to the instance of X3C is “yes” [20].

Given the above instance of X3C, we then construct an
instance of KFSS as follows. We define the system dynamics
matrix as A = diag(λ1, 0, . . . , 0) ∈ R(3m+1)×(3m+1), where
0 < |λ1| < 1.1 The set Q is defined to contain τ + 1 sensors
with the collective measurement matrix

C =

[
1 dT

0 GT

]
, (9)

where G and d are defined based on the given instance of
X3C as above. The system noise covariance matrix is set
to be W = I(3m+1)×(3m+1), and the measurement noise
covariance matrix is set to be V = 0(τ+1)×(τ+1). The sensor
cost vector is set as b = [1 · · · 1]T ∈ Rτ+1, and the
sensor selection budget is set as B = m + 1. Note that
the sensor selection vector for this instance is denoted by
µ ∈ {0, 1}τ+1. For the above construction, since the only
nonzero eigenvalue of A is λ1, we know from Lemma 2(c)
that

∑3m+1
i=2 (Σ(µ))ii =

∑3m+1
i=2 Wii = 3m for all sensor

selections µ.
We claim that the solution µ∗ to the constructed instance

of the KFSS problem satisfies trace(Σ(µ∗)) = trace(W ) =
3m+1 if and only if the answer to the given instance of the
X3C problem is “yes”.

Suppose that the answer to the instance of the X3C
problem is “yes”. Then Gx = d has a solution such that x
has m nonzero entries. Denote the solution as x∗ and denote
supp(x∗) = {i1, . . . , im}. Define µ̃ as the sensor selection
vector that indicates selecting the first and the (i1 + 1)th
to the (im + 1)th sensors, i.e., sensors that correspond to
rows C1, Ci1+1, . . . , Cim+1 from (9). Since Gx∗ = d, we
have [1 − x∗T ]C = e1 for C as defined in Eq. (9). Noting
that supp(x∗) = {i1, . . . , im}, it then follows that e1 ∈
rowspace(C(µ̃)). Hence, we know from Lemma 2(a) and
Lemma 2(e) that (Σ(µ̃))11 = 1, which is also the minimum
value of (Σ(µ))11 among all possible sensor selections µ.
Since

∑3m+1
i=2 (Σ(µ))ii = 3m always holds as argued above,

we have trace(Σ(µ̃)) = trace(W ) = 3m + 1 and µ̃ is the
optimal sensor selection, i.e., µ̃ = µ∗.

Conversely, suppose that the answer to the X3C problem
is “no”. Then, for any union of l ≤ m (l ∈ Z) subsets

1We take λ1 = 1
2

for the proof.
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in C, denoted as Cl, there exist ω ≥ 1 (ω ∈ Z) elements
in D that are not covered by Cl, i.e., for any l ≤ m and
L , {i1, . . . , il} ⊆ {1, . . . , τ}, GL ,

[
gi1 · · · gil

]
has ω

zero rows, for some ω ≥ 1. We then show that trace(Σ(µ)) >
3m + 1 for all sensor selections µ that satisfy the budget
constraint. First, for any possible sensor selection µ that
does not select the first sensor, we have the first column of
C(µ) is zero (from the form of C as defined in Eq. (9)) and
we know from Lemma 2(d) that (Σ(µ))11 = 1

1−λ2
1

= 4
3 ,

which implies that trace(Σ(µ)) = 3m + 4
3 > 3m + 1.

Thus, consider sensor selections µ that select the first sensor,
denote supp(µ) = {1, i1, . . . , il}, where l ≤ m and define
G(µ) =

[
gi1−1 · · · gil−1

]
. We then have

C(µ) =

[
1 dT

0 G(µ)T

]
, (10)

where G(µ)T has ω zero columns, for some ω ≥ 1. As ar-
gued in Lemma 5 in the appendix, there exists an orthogonal
matrix T ∈ R(3m+1)×(3m+1) of the form T = [ 1 0

0 N ] such
that

C̃(µ) , C(µ)T =

[
1 γ β

0 0 G̃(µ)T

]
.

In the above expression, G̃(µ)T ∈ Rl×r is of full column
rank, where r = rank(G(µ)T ). Furthermore, γ ∈ R1×(3m−r)

and ω of its elements are 1’s, and β ∈ R1×r. We perform a
similarity transformation on the system with T (which does
not affect the trace of the error covariance matrix in general
and does not change A and W in this case), and perform
additional elementary row operations to transform C̃(µ) into
the matrix

C̃ ′(µ) =

[
1 γ 0

0 0 G̃(µ)T

]
. (11)

Since A and W are both diagonal, and V = 0, we can
obtain from Eq. (4) that the steady state error covariance
Σ̃′(µ) corresponding to the sensing matrix C̃ ′(µ) is of the
form

Σ̃′(µ) =

[
Σ̃′1(µ) 0

0 Σ̃′2(µ)

]
,

where Σ̃′1(µ) ∈ R(3m+1−r)×(3m+1−r), denoted as Σ for
simplicity, satisfies

Σ = A1ΣAT1 +W1 −A1ΣCT1
(
C1ΣCT1

)−1
C1ΣAT1 ,

where A1 = diag(λ1, 0, . . . , 0) ∈ R(3m+1−r)×(3m+1−r),
C1 = [1 γ] and W1 = I(3m+1−r)×(3m+1−r). We then
know from Lemma 3 that (Σ(µ))11 = (Σ̃′(µ))11 > 1 since
‖γ‖22 ≥ ω ≥ 1 > 0. Hence, we have trace(Σ(µ)) > 3m+ 1.

This completes the proof of the claim above. Suppose that
there is an algorithm A that outputs the optimal solution
µ∗ to the instance of the KFSS problem defined above. We
can call algorithm A to solve the X3C problem. Specif-
ically, if the algorithm A outputs a solution µ∗ such that
trace(Σ(µ∗)) = trace(W ), then the answer to the instance
of X3C is “yes”; otherwise, the answer is “no”.

Hence, we have a reduction from X3C to KFSS. Since
X3C is NP-complete and KFSS /∈ NP , we conclude that
the KFSS problem is NP-hard.

B. Inapproximability of the KFSS Problem

In this section, we analyze the achievable performance
of algorithms for the KFSS problem. Specifically, consider
any given instance of KFSS. For any given algorithm A, we
define the following ratio:

rA(Σ) ,
trace(ΣA)

trace(Σopt)
, (12)

where Σopt is the optimal solution to KFSS and ΣA is the
solution to KFSS given by algorithm A.

In [10], the authors showed that there is an upper bound
for rA(Σ) for any sensor selection algorithm A, in terms
of the system matrices. However, the question of whether
it is possible to find an algorithm A that is guaranteed to
provide an approximation ratio rA(Σ) that is independent of
the system parameters has remained open up to this point. It
is typically desirable to find constant-factor approximation
algorithms, where the ratio rA(Σ) is upper-bounded by some
(system-independent) constant. Here, we provide a strong
negative result showing that for the KFSS problem, there is
no constant-factor approximation algorithm in general, i.e.,
for all polynomial-time algorithms A and ∀K ∈ R≥1, there
are instances of KFSS where rA(Σ) > K.

Theorem 2: If P 6= NP , then there is no polynomial-
time constant-factor approximation algorithm for the KFSS
problem.

Proof: Suppose that there exists such a (polynomial-
time) approximation algorithm A, i.e., ∃K ∈ R≥1 such that
rA(Σ) ≤ K for all instances of the KFSS problem, where
rA(Σ) is as defined in Eq. (12). We will show that A can be
used to solve the X3C problem. Given an arbitrary instance
of the X3C problem as described in Definition 1, we
construct a corresponding instance of KFSS in a similar way
to that described in the proof of Theorem 1. Specifically, the
system dynamics matrix is set as A = diag(λ1, 0, . . . , 0) ∈
R(3m+1)×(3m+1), where λ1 = K(3m+1)−3m−1/2

K(3m+1)−3m . The set Q
contains τ + 1 sensors with collective measurement matrix

C =

[
1 εdT

0 GT

]
, (13)

where G, d depend on the given instance of X3C and are as
defined in the proof of Theorem 1. The constant ε is chosen
as ε = 2[(K(3m+1)−3m)]

⌈√
K(3m+ 1)− 3m− 1

⌉
+1.

The system noise covariance matrix W , the measurement
noise covariance matrix V , the sensor cost vector b, and the
selection budget B are set to be the same as in the proof of
Theorem 1.

We claim that algorithm A will return a sensor selection
vector µ such that trace(Σ(µ)) ≤ K(3m+ 1) if and only if
the answer to the X3C problem is “yes”.

Suppose that the answer to the X3C problem is “yes”.
We know from Theorem 1 that there exists a sensor selection
µ∗ such that trace(Σ(µ∗)) = 3m + 1. Since A has approx-
imation ratio K, it returns a sensor selection µ such that
trace(Σ(µ)) ≤ K(3m+ 1).

Conversely, suppose that the answer to the X3C problem
is “no”. We follow the discussion in Theorem 1. First, for
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any sensor selection µ that does not select the first sensor,
we have (Σ(µ))11 = 1

1−λ2
1

. Hence, by our choice of λ1,
we have (Σ(µ))11 > K(3m + 1) − 3m, which implies
trace(Σ(µ)) > K(3m + 1) since

∑3m+1
i=2 (Σ(µ))ii = 3m

for all possible sensor selections. Thus, consider sensor
selections µ that include the first sensor. As argued in the
proof of Theorem 1 leading up to Eq. (11), we can perform
an orthogonal similarity transformation on the system, along
with elementary row operations on the measurement matrix
C(µ) to obtain a measurement matrix of the form

C̃ ′(µ) =

[
1 εγ 0

0 0 G̃(µ)T

]
, (14)

where ω ≥ 1 elements of γ ∈ R3m−r are 1’s and r =
rank(G̃(µ)T ). Then, we have α2 , ε2‖γ‖22 ≥ ωε2 ≥ ε2. We
then obtain from Lemma 3 that Σ11(α2) ≥ Σ11(ε2), i.e.,

Σ11(α2) ≥ 1 + ε2λ2
1 − ε2 +

√
(ε2 − ε2λ2

1 − 1)2 + 4ε2

2
,

where we view (Σ(µ))11 as a function of α2, denoted as
Σ11(α2). By our choices of λ1 and ε, we have (Σ(µ))11 >
K(3m+1)−3m, which implies trace(Σ(µ)) > K(3m+1).

This completes the proof of the claim above. Hence, if
algorithm A for the KFSS problem has rA(Σ) ≤ K for all
instances, it is clear that A can be used to solve the X3C
problem by applying it to the above instance. Specifically, if
the answer to the X3C instance is “yes”, then the optimal
sensor selection µ∗ would yield a trace of Σ(µ∗) = 3m +
1, and thus the algorithm A would yield a trace no larger
than K(3m + 1). On the other hand, if the answer to the
X3C instance is “no”, all sensor selections would yield a
trace larger than K(3m+ 1), and thus so would the sensor
selection provided by A. In either case, the solution provided
by A could be used to find the answer to the given X3C
instance. Since X3C is NP-complete, there is no polynomial-
time algorithm for it if P 6= NP , and we get a contradiction.
This completes the proof of the theorem.

IV. GREEDY ALGORITHM

Our result in Theorem 2 indicates that no polynomial-time
algorithm can be guaranteed to yield a solution that is within
any constant factor of the optimal solution. In particular, this
result applies to the greedy algorithms that are often studied
for sensor selection in the literature [10]. In particular, it was
shown via simulations in [10] that such algorithms work well
in practice (e.g., for randomly generated systems). In this
section, we provide an explicit example showing that greedy
algorithms for KFSS can perform arbitrarily poorly, even for
small systems. We will focus on the simple greedy algorithm
for KFSS defined as Algorithm 1, for instances where all
sensor costs are equal to 1, and the sensor selection budget
B = ps for some ps ∈ {1, . . . , q}. For any such instance
of KFSS, define rgre(Σ) =

trace(Σgre)
trace(Σopt)

, where Σgre is the
solution of the DARE corresponding to the sensors selected
by Algorithm 1.

Algorithm 1 Greedy Algorithm for KFSS
Input: System dynamics matrix A, set of all candidate
sensors Q, noise covariances W and V , budget ps
Output: A set S of selected sensors

1: k ← 1, S ← ∅
2: for k ≤ ps do
3: for i ∈ Q ∩ S do
4: Calculate trace(Σ(S ∪ {i}))
5: end for
6: j = arg mini trace(Σ(S ∪ {i}))
7: S ← S ∪ {j}, k ← k + 1
8: end for

Example 1: Consider an instance of KFSS with matrices
W = I3×3, V = 03×3, and A, C defined as

A =

λ1 0 0
0 0 0
0 0 0

 , C =

1 h h
1 0 h
0 1 1

 ,
where 0 < |λ1| < 1, λ1 ∈ R and h ∈ R>0. In addition, we
have the set of candidate sensors Q = {1, 2, 3}, the selection
budget B = 2 and the cost vector b = [1 1 1]T .

Theorem 3: For the instance of the KFSS problem defined
in Example 1, the ratio rgre(Σ) =

trace(Σgre)
trace(Σopt)

satisfies

lim
h→∞

rgre(Σ) =
2

3
+

1

3(1− λ2
1)
. (15)

We give a sketch of the proof here; the complete proof can
be found in [21].

Sketch of the proof:

Since the only nonzero eigenvalue of A is λ1, we know
from Lemma 2(c) that (Σ(µ))22 = 1 and (Σ(µ))33 = 1, ∀µ,
which implies that (Σgre)22 = 1 and (Σgre)33 = 1. Hence,
we focus on determining (Σgre)11.

Using Lemma 2 and Lemma 3, we prove that the greedy
algorithm defined as Algorithm 1 selects sensor 2 and sensor
3 in its first and second iterations, and (Σ(µ))11

∣∣
µ=[0 1 1]T

,
denoted as σ23, is given by

σ23 =
2√

(1− λ2
1 − 2

h2 )2 + 8
h2 + 1− λ2

1 − 2
h2

.

Hence, we have trace(Σgre) = σ23 + 2.
If µ = [1 0 1]T , then e1 ∈ rowspace(C(µ)) and we know

from Lemma 2(a) and Lemma 2(e) that trace(Σ(µ)) = 3 =
trace(W ), which is also the minimum value of trace(Σ(µ))
among all possible sensor selections µ. Combining the results
above and taking the limit as h → ∞, we obtain the result
in Eq. (15).

Examining Eq. (15), we see that for the given instance
of KFSS, we have rgre(Σ) → ∞ as h → ∞ and λ1 → 1.
Thus, rgre(Σ) can be made arbitrarily large by choosing the
parameters in the instance appropriately. It is also useful to
note that the above behavior holds for any algorithm that
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outputs a sensor selection that contains sensor 2 for the above
example.

V. CONCLUSIONS

In this paper, we studied the KFSS problem for linear
dynamical systems. We showed that this problem is NP-
hard and has no constant-factor approximation algorithms,
even under the assumption that the system is stable and each
sensor has identical cost. We provided an explicit example
showing how a greedy algorithm can perform arbitrarily
poorly on this problem, even when the system only has three
states. Our results shed new insights into the problem of
sensor selection for Kalman filtering and show, in particular,
that this problem is more difficult than other variants of
the sensor selection problem that have submodular cost
functions. Future work on characterizing achievable (non-
constant) approximation ratios, or identifying classes of
systems that admit near-optimal approximation algorithms,
would be of interest.

APPENDIX

Lemma 5: Consider an instance of X3C as described in
Definition 1. For each element ci ∈ C, define the column
vector gi ∈ R3m such that for i ∈ {1, 2, . . . , τ} and
j ∈ {1, 2, . . . , 3m}, (gi)j = 1 if element j of set D is
in ci, and (gi)j = 0 otherwise. Define G =

[
g1 · · · gτ

]
and d = [1 · · · 1]T ∈ R3m. For any l ≤ m (l ∈ Z) and
L , {i1, . . . , il} ⊆ {1, . . . , τ}, define GL =

[
gi1 · · · gil

]
and denote rank(GL) = rL.2. If the answer to the X3C
problem is “no”, then for all L with |L| ≤ m, there exists
an orthogonal matrix N ∈ R3m×3m such that[

dT

GTL

]
N =

[
γ β

0 G̃TL

]
,

where G̃TL ∈ Rl×r is of full column rank, γ ∈ R1×(3m−r)

and ω ≥ 1 (ω ∈ Z) elements of γ are 1’s , and β ∈ R1×r.

Further elementary row operations on
[
γ β

0 G̃TL

]
transform

it into the form
[
γ 0

0 G̃TL

]
.

Proof: Assume without loss of generality that there are
no identical subsets in C. Since rank(GTL) = r, the dimension
of nullspace(GTL) is 3m−r. We choose an orthonormal basis
of nullspace(GTL) and let it form the first 3m − r columns
of N , denoted as N1. Then, we choose an orthonormal basis
of rowspace(GTL) and let it form the rest of the r columns
of N , denoted as N2. Hence, N =

[
N1 N2

]
∈ R3m×3m

is an orthogonal matrix. Furthermore, since the answer to
the X3C problem is “no”, for any union of l ≤ m (l ∈ Z)
subsets in C, denoted as Cl, there exist ω ≥ 1 (ω ∈ Z)
elements in D that are not covered by Cl, i.e., GTL has ω
zero columns. Denote these as the j1th, . . . , jωth columns
of GTL , where {j1, . . . , jω} ⊆ {1, . . . , 3m}. Hence, we can
always choose ej1 , . . . , ejω to be in the orthonormal basis
of nullspace(GTL), i.e., as columns of N1. Constructing N

2We drop the subscript L on r for notational simplicity.

in this way, we have GTLN1 = 0 and GTLN2 = G̃TL , where
G̃TL ∈ Rl×r is of full column rank since the columns of
N2 form an orthonormal basis of rowspace(GTL) and r ≤ l.
Moreover, we have dTN1 = γ and dTN2 = β, where ω
elements of γ are 1’s (since dT eTjs = 1, ∀s ∈ {1, . . . , ω}).
Combining these results, we obtain Eq. (5). Since G̃TL ∈
Rl×r is of full column rank, we can perform elementary

row operations on
[
γ β

0 G̃TL

]
and obtain

[
γ 0

0 G̃TL

]
.
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