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Abstract—Monitoring of a linear diffusive network dynamics
that is subject to a stationary stochastic input is considered, from
a graph-theoretic perspective. Specifically, the performance of
minimum mean square error (MMSE) estimators of the stochas-
tic input and network state, based on remote noisy measurements,
is studied. Using a graph-theoretic characterization of frequency
responses in the diffusive network model, we show that the
performance of an off-line (noncausal) estimator exhibits an exact
topological pattern, which is related to vertex cuts and paths
in the network’s graph. For on-line (causal) estimation, graph-
theoretic results are obtained for the case where the measurement
noise is small.

I. INTRODUCTION

Several applications require estimation of network dynamics
and models from sparse ambient measurements [1], [3], [4].
A number of model-based and model-free algorithms for
estimation from ambient data have been developed in recent
years, which broadly draw on traditional linear-systems con-
cepts along with specialized understanding of the application
domains. Some studies have also aimed to develop bounds
or confidence intervals on the estimated quantities [5]. While
these efforts are a promising start, several challenges remain
in estimating network processes from ambient data. First,
the scale, complexity, and uncertainty of the processes often
dictate that simple graphical rubrics rather than precise algo-
rithms are needed for estimation and performance evaluation
[6]. Additionally, methods for resource-constrained sensor
placement need to be developed [7], [8].

The purpose of this study is to develop graph-theoretic
insights into the estimation of network processes from ambient
data, with the view of informing performance analysis and
sensor selection. Specifically, a network synchronization or
diffusion process that is subject to a persistent stochastic
stimulation is considered, and both input and state estima-
tion from noisy local measurements is pursued. The perfor-
mance of minimum-mean-square-error filters and smoothers
are compared, for different sensor locations. The estimator
performance is shown to exhibit an exact topological pattern in
the case of off-line estimation, which relates to cuts or paths
in the graph. Meanwhile, in the case of on-line estimation,
the network’s topology determines whether or not perfect
estimation is possible in the low-noise limit. Implications in
budget-constrained sensor placement are briefly discussed.
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This study connects with a recent literature on optimal
budget-constrained sensor and actuator placement in networks
[8]–[11]. As a whole, these studies have demonstrated that
optimal sensor placement in networks is a computationally
difficult problem, but in some cases performance-bounded
suboptimal solutions can be found using simple algorithms
(e.g., greedy algorithms). Beyond the computational difficulty,
sensor design is also complicated by the lack of an explicit
solution to the Riccati equation which gives the performance
(achieved error covariance) of a sensing scheme. Relative to
this literature, our work puts forth an optimistic perspective,
that specially-structured network processes may sometimes
admit structural insights into estimator performance which can
support good (albeit perhaps suboptimal) sensor placement.

Our work also contributes to a research effort on observ-
ability, estimation/detection, and input-output behaviors of
network processes [7], [12]–[16]. It is particularly aligned with
graph-theoretic studies which consider metrics for estimation
[11], [14]. However, these earlier studies have largely consid-
ered performance only in the presence of observation noise, in
which case the Riccati equation admits an explicit solution. In
contrast, here the estimation of dynamics driven by ambient
process noise is considered. For this case, comparisons of
transfer functions for different input-output channels are used
to identify topological patterns in estimation performance. This
study also connects to notions of isotropy in networks [17],
and to frequency-domain analysis of string-stability [18].

The article is organized as follows. The estimation problem
and estimator performance analysis are formulated in Section
II. Graph-theoretic analyses of network transfer functions,
which enable characterization of estimator performance, are
developed in Section III. The main results characterizing
estimator performance are presented in Section IV.

II. PROBLEM FORMULATION

A linear diffusive network dynamics that is subject to a
stationary stochastic input signal (process noise) at a single
network node is considered. Formally, a network with n nodes,
labeled 1, . . . , n, is considered. Each node i has a scalar
state xi(t), which evolves in continuous time. The network’s
dynamics are defined by a weighted digraph Γ with n vertices
labeled 1, . . . , n, which correspond to the nodes. The weight
of the directed edge from a vertex i to a vertex j is labeled
aij , and is assumed positive. If the graph does not have an
edge from i to j, then the weight is considered to be aij = 0.
The network graph Γ is assumed to be strongly connected, i.e.
there is a directed path between any two vertices.

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5427-9/$31.00 ©2018 AACC 1796



The network states evolve according to:

ẋ = −L(Γ)x + esw(t). (1)

In Equation (1), L(Γ) is an (asymmetric) Laplacian or
grounded Laplacian matrix associated with the directed graph
Γ. That is, Lij = −aij for i 6= j, and the diagonal entries
Lii ≥ −

∑
j 6=i Lij . Also, es is 0–1 indicator vector with entry

s equal to 1. The input w(t) is assumed to be a stationary
zero-mean stochastic input with autocorrelation Rw(t), which
has finite power (i.e., the integral of the power spectrum is
finite). We refer to s as the source or input node, and the
corresponding graph vertex as the source or input vertex.

Noisy measurements of the network dynamics at a single
node q are considered. The measurement signal is:

y(t) = eTq x + v(t), (2)

where v(t) is a zero-mean stationary stochastic signal with
autocorrelation Rv(t).

The problem of interest is to recover the input w(t) and the
state process x(t) from the measurement signal y(t). Min-
imum mean-square error (MMSE) estimation is considered,
and both off-line and on-line estimation tasks are pursued.
Our primary focus is on characterizing the performance of the
estimators. The following four problems are studied:

1) Off-line input estimation. The goal is to find the MMSE
estimate ŵoff (t) of the input w(t), using the measurement sig-
nal y(t) over the infinite horizon. The estimator’s performance
is denoted as Pw−off = E[(w(t)− ŵoff (t))2].

2) On-line input estimation. The goal is to find the MMSE
estimate ŵon(t) of the input w(t) at each time t, using the
measurement prior to time t (y(τ) for τ ≤ t). The estimator’s
performance is denoted as Pw−on = E[(w(t)− ŵon(t))2].

3) Off-line state estimation. The goal is to find the MMSE
estimate ẑoff (t) of a state projection z(t) = cTx(t), using the
measurement y(t) over the infinite horizon. The estimator’s
performance is denoted as Pz−off = E[(z(t)− ẑoff (t))2].

4) On-line state estimation. The goal is to find the MMSE
estimate ẑon(t) of a state projection z(t) = cTx(t) at each
time t, using prior measurements (y(τ) for τ ≤ t). The esti-
mator performance is denoted as Pz−on = E[(z(t)−ẑon(t))2].

The four estimation problems are classical filtering and
smoothing problems for linear systems driven by wide-sense-
stationary inputs, which can be solved using the Wiener filter-
ing theory [19]. Our aim here is to characterize the estimators’
performance in terms of the graph Γ, and the positions of
the input and measurement relative to the graph. Many of the
analyses compare the performance for different measurement
locations (nodes). For such comparisons, we often delineate
the measurement location in the performance measure, e.g. as
Pz−on(q∗) when the measurement location is q = q∗. One
result concerned with measurement at multiple nodes is also
presented, see Section IV.

III. GRAPH-THEORETIC ANALYSES OF NETWORK
INPUT-OUTPUT DYNAMICS

We are concerned with MMSE estimators for inputs/states
of a linear system with a stationary drive. The Wiener filtering

theory relates the estimator performance to the frequency
response of the driven system [19]. Thus, to develop graph-
theoretic results on MMSE estimator performance, we first
develop graph-theoretic characterizations of the transfer func-
tion and frequency response from the driving input to the
measurement in the diffusive network model.

To develop the graph-theoretic analyses, we consider the
diffusive network dynamics with a general input u(t) at the
node s, and a measurement y(t) at the node q:

ẋ = −L(Γ)x + esu(t) (3)
y(t) = eTq x,

The notation Hq(s) (respectively Hq(jω)) is used for the
transfer function (respectively frequency response) of this
system (i.e. from u to y), where we have explicitly indicated
the dependence on q to permit comparisons.

Fig. 1. A separating vertex cutset is illustrated.

A main result developed here is that the transfer gain of the
diffusive network model at each frequency falls off in a certain
sense, as the measurement location is moved away from the
source (input) location. This concept can be formalized by
considering a target measurement node q = q∗, and a vertex-
cutset Q that separates the input vertex s from q∗ in the sense
that any directed path from s to q∗ passes through Q (Fig. 1).
Without loss of generality, we assume that Q has m vertices,
say q(1), . . . , q(m). The spatial fall-off in the transfer gain can
be formalized by comparing the frequency response at cutset
nodes (network nodes corresponding to cutset vertices) with
the frequency response at the target location, as follows:

Theorem 1: Consider the frequency response of the diffusive
network model for the target node q∗ and for the cutset nodes
Q = q(1), . . . , q(m). At each frequency ω > 0, |Hq∗(jω)| ≤
|Hq(i)(jω)| for some i = 1, . . . ,m.

Proof: The proof is presented first for the case where L
is a grounded Laplacian matrix. We consider driving the
diffusive network model (3) with the persistent sinusoidal
input u(t) = cos(ωt), t ∈ R. Since (3) is linear and
asymptotically internally stable, the response at each node q
is xq(t) = |Hq(jω)|cos(ωt+ ∠(Hq(jω))).

Next, as an alternative to analyzing the sinusoidal input
response directly, let us imagine that the responses xq(t) for
q ∈ Q (i.e. on the cutset) to the sinusoidal input are already
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known. Then consider finding the state response at only the
nodes that are separated from the source s by the cutset Q;
we refer to this set of nodes as P . The state responses xq(t)
for q ∈ P can then be found without knowledge of the input
u(t) or the states of any nodes outside P and Q. Using this
approach, we aim to compare the extremal values of xq∗(t)
with the extremal values xq(t) for q ∈ Q.

To develop a comparison, let us define h =
maxq∈Q|Hq(jω)|. We prove by contradiction that, for any
q ∈ P , it must be true that |xq(t)| ≤ h for all t. Assuming the
claim is false, there exists q ∈ P and a time t and xq(t) > h
(since the signal is a pure sinusoid). Now let q̂ be the q ∈ P
for which xq(t) is maximized, i.e. q̂ = argmaxqmaxtxq(t).
Since additionally xq̂(t) is sinusoidal, there must exist a
time t = t such that: 1) xq̂(t) ≥ 0, 2) xq̂(t) ≥ xq(t)

for all q ∈ Q ∪ P and 3) dxq̂(t)
dt > 0. However, notice

that dxq̂(t)
dt =

∑
j 6=q̂ Lq̂,j(xj − x

(̂q)
) − ∆xq̂ , where

∆ = Lq̂,q̂ −
∑

j 6=q̂ Lq̂,j . It follows immediately from this

expression that dxq̂(t)
dt ≤ 0. Hence, a contradiction is reached,

and it follows that |xq(t)| ≤ h for all t, for q ∈ P . Since
q∗ ∈ P , we immediately find that |xq∗(t)| ≤ h for all t. Thus,
it follows that |Hq∗(jω)| = maxtxq∗(t) ≤ maxq∈Q|Hq(jω)|.
The result has thus been proved for grounded-Laplacian L.

If L is a (true) Laplacian matrix, then it is easy to check
that a sinusoidal input at any frequency other than ω = 0 still
produces only a sinusoidal output at the same frequency. The
remainder of the proof follows as above. �

The theorem formalizes that the frequency response has
smaller magnitude at the target node as compared to at least
one cutset, at each non-zero frequency. This majorization also
holds for the DC (zero-frequency) response, for a grounded-
Laplacian state matrix. (For a true-Laplacian state matrix, the
DC gain is infinite, hence there is no steady-state.)

Remark: Theorem 1 has a similar flavor to other topological
majorizations of diffusive network processes [26], however the
previous work was focused on transient rather than persistent
responses. Transfer functions of linear systems with grounded-
Laplacian state matrices have also been characterized in [27],
although for networks with inputs at all nodes.

The cutset-based characterization of the frequency response
can also be readily phrased in terms of paths from the source
to the target vertex, as formalized in the following corollary:

Corollary 1: Consider the magnitude of the frequency
response of the diffusive network model at a target node q∗,
i.e. |Hq∗(jω)|. For each frequency ω > 0, there exists a path
from the source to target node, say (s, r(p), . . . , r(1), q∗), such
that the frequency response is non-increasing along the path:
|Hs(jω)| ≥ |Hr(p)(jω)| ≥ . . . ≥ |Hr(1)(jω)| ≥ |Hq∗(jω)|.

Proof:
The proof is by induction. First consider the set of neighbors

of the target vertex q∗ in Γ (i.e., vertices from which there is
a directed link to q∗). Since this set of vertices is a cutset
separating the source and the target, it follows from Theorem
1 that |Hq(jω)| ≥ |Hq∗(jω)| for some q∗ in the set.

Now say that there is a connected subgraph of Γ containing
the p̂ vertices Ω, which has the following four properties: 1)
|Hq(jω)| ≥ |Hq∗(jω)| for each vertex q ∈ Ω, 2) the subset of
vertices Ω within Ω for which |Hq(jω)| is maximized induce
a connected subgraph of Γ, 3) there is a path from q∗ to Ω
along which |Hq(jω)| is non-decreasing, and 4) the source
vertex is not within the set. Now consider the set of neighbors
of Ω. This cutset either separates the source vertex from Ω, or
contains the source vertex. If the set contains the source vertex,
it follows immediately that there is a directed path from q∗ to s
along which |Hq(jω)| is non-decreasing, since the frequency
response is necessarily maximized at the source vertex per
Theorem 1. Alternately, consider the case the cutset separates
the source vertex from Ω. Then from Theorem 1, the cutset
contains at least one vertex q for which |Hq(jω)| is greater
than or equal to the frequency-response magnitude for a vertex
in Ω. Further, this vertex is not contained in Ω, since the
vertices in Ω that are not in Ω have smaller frequency-response
magnitude. Including this new vertex, we have thus found a
set of p̂ + 1 vertices which also satisfy the four properties
listed above. The iteration is repeated until the source vertex
is included, and hence the corollary is proved. �

The above results show that the frequency response degrades
along some paths away from the source. However, that the
paths along which the frequency response is decreasing may be
different at each frequency. Conceptually, different frequencies
may be filtered differentially by the network.

The performance of the causal Wiener filter, which is used
for on-line estimation of stationary time series, is also closely
related to the stability and finite-zero structure of the input-
to-measurement transfer function [19]–[21]. For the diffusive
network model, the transfer function Hq(s) is necessarily
bounded-input bounded-output stable, provided if state matrix
L(Γ) is a grounded Laplacian. The transfer function, how-
ever, may either be minimum-phase or nonminimum-phase
depending on the input and measurement locations. Graph-
theoretic conditions which indicate minimum-phase or non-
minimum-phase dynamics have been developed in recent work
[7], [16], [22], [24], [25]. Broadly, minimum-phase dynamics
are guaranteed if there is a single path between the input
and output, or the shortest input-output path is dominant.
In contrast, if the network graph has alternate input-output
paths that are sufficiently long and strong, the dynamics are
nonminimum phase, see [16]. In the following section, we
will also draw on these results to characterize the MMSE
estimation performance.

IV. GRAPH-THEORETIC ANALYSIS OF ESTIMATION
PERFORMANCE

The transfer-function analysis developed in Section III is a
starting point for developing graph-theoretic understandings of
estimation performance for the off-line and on-line estimation
problems considered here. In this section, several graph-
theoretic results for the estimation performance are developed,
based on classical Wiener filtering theory [19].
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We consider off-line estimation first. The first result shows
that measurements on single-node cuts near the input permit
good estimation compared to remote measurements:

Theorem 2: Consider a diffusive network model that has
single-node cut, say at node q∗. Let q̂ be any vertex in Γ that
is separated from the source vertex s by the cut, in the sense
that any path between s and q̂ passes through q∗. Off-line
input estimation using measurements from node q∗ achieves
better performance than estimation using measurements from
node q̂, i.e. Pw−off (q∗) ≤ Pw−off (q̂). Likewise, off-line state
estimation using measurements from node q∗ achieves a better
performance than estimation using measurements from node
q̂, i.e. Pz−off (q∗) ≤ Pz−off (q̂) for any projection vector c.

Proof: The off-line MMSE estimator for the input w(t)
from the measurement signal y(t) is the non-causal Wiener
filter. For the linear model (1,2), time- and frequency- domain
expressions for the Wiener filter’s performance (mean-square
error) are well known. Specifically, the performance of the
off-line estimator for a measurement at node q∗ is given by:

Pw−off (q∗) =
1

2π

∫ ∞
−∞

Sww(ω)Svv(ω)

Sww(ω)|Hq∗(jω)|2 + Svv(ω)
dω,

(4)
where Sww(ω) and Svv(ω) are the power spectra of w(t) and
v(t), . The performance for a measurement at node q̂ is:

Pw−off (q̂) =
1

2π

∫ ∞
−∞

Sww(ω)Svv(ω)

Sww(ω)|Hq̂(jω)|2 + Svv(ω)
. dω

(5)
From Theorem 1, we have that |Hq̂(jω)|2 ≥ |Hq∗(jω)|2 for
ω ∈ R. Since the power spectra Sww(ω) and Svv(ω) are real
and positive, it follows that Pw−off (q̂) ≤ Pw−off (q∗).

To characterize the MMSE estimator performance for the
state projection z(t) = cTx(t), notice that z(t) can be
computed from w(t) via processing by a linear causal filter;
we use F (jω) for the frequency response of this filter. Then

Pz−off (q∗) =
1

2π

∫ ∞
−∞

|F (jω)|2Sww(ω)Svv(ω)

Sww(ω)|Hq∗(jω)|2 + Svv(ω)
dω

(6)
and

Pz−off (q̂) =
1

2π

∫ ∞
−∞

|F (jω)|2Sww(ω)Svv(ω)

Sww(ω)|Hq̂(jω)|2 + Svv(ω)
dω. (7)

Thus, Pz−off (q̂) ≤ Pz−off (q∗). �
The majorization developed in the previous theorem holds

regardless of the autocorrelation functions of the input and
measurement noise, provided that: 1) the input has finite power
and 2) the measurement noise model does not change with
the measurement location; these properties hold in many ap-
plications, and are assumed in our formulation. An immediate
consequence of the theorem is that measurements at the source
location permit better input and state estimation as compared
to any other node.

Let us next consider the special case that the network graph
has a unique path between any two nodes, i.e. the network
graph without edge directions is a tree. The single-node cutset

result can be applied repeatedly to demonstrate degradation
in estimation performance along paths in the network graph.
Specifically, the following corollary is immediately obtained:

Corollary 2: Consider a diffusive network model that has
a unique path between any two nodes. Consider a path in the
network graph starting from and moving away from the source
node, say vertices s, q(1), . . . , q(m). Off-line input estimation
using measurements from the corresponding nodes degrades
along the path. That is, Pw−off (s) ≤ Pw−off (q1) ≤ . . . ≤
Pw−off (qm). Likewise, off-line state estimation using mea-
surements from the corresponding nodes degrades along the
path. That is, Pz−off (s) ≤ Pz−off (q1) ≤ . . . ≤ Pz−off (qm).

The graph-theoretic performance analysis can also be gen-
eralized to the multi-node-cut case, by comparing estimation
using measurements from all nodes on the cut with estima-
tion using a single downstream measurement. The analysis
requires considering off-line MMSE estimation of the input
and state projections from noisy measurements of multiple
nodes. Specifically, let us consider that state measurements are
available for a set of nodes Q, subject to statistically-identical
additive noise. Formally, the measurements yq = eTq x + vq
are assumed to be available for each q ∈ Q, where the
vq are stationary white-noise signals which have the same
autocorrelation as v(t). We again refer to MMSE estimation
of the input and state projections from these measurement
signals over the infinite horizon as the off-line estimation
problem, and use the notation Pw−off (Q) and Pz−off (Q)
for the performance (MMSE) of the optimal estimator.

This performance comparison for the multi-node-cut case is
formalized in the following theorem:

Theorem 3: Consider a diffusive network model that has
a multi-node cut Q = (q(1), . . . , q(p)). Let q̂ be any vertex
in the graph that is separated from the source vertex s by
the cut, i.e. any path between s and q̂ passes through the
cut. Off-line input estimation using measurements from all
nodes along the cut achieves better performance than esti-
mation using measurements from node q̂, i.e. Pw−off (Q) ≤
Pw−off (q̂). Likewise, off-line state estimation using measure-
ments from all nodes along the cut achieves better performance
than estimation using measurements from node q̂. That is,
Pz−off (Q) ≤ Pz−off (q̂), for any projection vector c.

Proof:
To prove the result, we consider MMSE estimation of

the input signal from a signal y(t), which is computed by
filtering and combining the measurements on the cut. Pre-
cisely, we compute y(t) in the frequency domain as Y (jω) =∑p

i=1Bi(jω)Yq(i)(jω). The filters Bi(jω), i = 1, . . . , p, are
defined as follows. For each frequency ω, we choose one index
i = î such that |Hq(̂i)(jω)| ≥ |Hq∗(jω)|, and set Bî(jω) = 1

for this index i, while setting Bi(jω) = 0 for i 6= î. We notice
that there is necessarily such a î, from Theorem 1.

By expressing the measurements on the cutset in terms of
the input and noise signals in the frequency domain, the signal
Y (jω) can be rewritten as Y (jω) = H(jω)W (jω) + V (jω),
where H(jω) =

∑p
i=1Bi(jω)Hq(i)(jω) and V (jω) =
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∑p
i=1Bi(jω)Vq(i)(jω). From the definition of the filters

Bi(jω), it is immediate that V (jω) is a wide-sense stationary
stochastic process with the power spectrum Svv(ω), i.e. the
same power spectrum as v(t). Additionally, the filter definition
yields that |H(jω)| ≥ |Hq∗(jω)| at each frequency ω.

Next, from the Wiener filtering analysis, the MMSE in
off-line estimation of w(t) using y(t), which we denote by
Pw−off (Q), is given by the following:

Pw−off (Q) =
1

2π

∫ ∞
−∞

Sww(ω)Svv(ω)

Sww(ω)|H(jω)|2 + Svv(ω)
dω. (8)

Comparing this expression with the off-line estimator perfor-
mance using measurements from node q∗ (Equation 6), it
follows that Pw−off (Q) ≤ Pw−off (Q). Since the MMSE
estimator which uses measurements from all nodes in Q
performs at least as well as the MMSE estimator using y(t),
it further follows that Pw−off (Q) ≤ Pw−off (Q). Combining
the two inequalities, we have that Pw−off (Q) ≤ Pw−off (Q),
and the result is proved for off-line input estimation. The result
for off-line state-projection estimation follows according to the
same logic as Theorem 2. �

The graph-theoretic analysis of estimator performance de-
veloped in the above theorems informs sensor placement.
Broadly, the results show that sensors placed close to the
stochastic input source are effective for off-line input and
state estimation. More precisely, measurements on separating
cutsets of the network necessarily outperform downstream
sensing schemes. Thus, for resource-constrained sensor design
needs, an effective strategy is to find small node cutsets that
isolate the stochastic input (source location). We leave it
to future work to develop high-performance sensor-selection
algorithms based on this principle.

Our analysis thus far has focused on comparing the off-line
estimation performance for different measurement locations.
We are also interested to compare the off-line estimation
performance for different state projections, for a specified
measurement location. In particular, we seek to compare the
performance of estimators for different node’s states, for a
particular measurement location. For this development, the
notation Pxi−off (q) is used for the performance (MMSE)
achieved by an off-line estimator of node i’s state response
xi(t) from noisy measurements taken at node q. The following
theorem shows that the node state estimator performance
Pxi−off (q) for different estimated nodes also exhibits a topo-
logical pattern:

Theorem 4: Consider off-line estimation of node states using
measurements at a fixed node q. In particular, let us consider
the performance of the off-line estimator for a particular node
î’s state, where î specifies a single-vertex cutset in the network
graph Γ. Also, let us consider the estimation performance for
any node i that is separated the source vertex s by î. Then
Pxi−off (q) ≤ Pxî−off (q).

Proof: Estimation of a node i’s state is equivalent to estima-
tion of the state projection z(t) = eTi x(t). Thus, from (6), the

off-line estimation performance the node i’s state is given by:

Pxi
(q) =

1

2π

∫ ∞
−∞

|Hi(jω)|2Sww(ω)Svv(ω)

Sww(ω)|Hq(jω)|2 + Svv(ω)
dω, (9)

where we have used the fact that the transfer function from the
input sequence w(t) to node i’s state xi(t) is given by Hi(jω).
Per Theorem 1, |Hî(jω)| ≥ |Hi(jω)| at all frequencies ω, for
any vertex i that is separated from the the source vertex s
by î. The result then follows directly from the expression for
the estimation performance (9), since the integrand scales with
|Hi(jω)|2. � The result clarifies that estimation of network
states away from the stochastic input is easier, because these
signals are smoothed and reduced in magnitude compared to
states near the stochastic input.

Many ambient-data-based network monitoring applications
require on-line algorithms. In contrast with the off-line case,
the estimator performance for the on-line problem does not
display a simple topological dependence on the measurement
location. However, interesting graph-theoretic insights into the
estimator performance can be developed, in the case where the
measurement noise is small. Specifically, it is well known that
the on-line estimator performance displays a binary behavior
in the limit of small measurement noise, with the estimator
error approaching zero in in some circumstances and reaching
a non-zero aymptote in others [20], [21]. The limiting behavior
of the estimator is depends precisely on whether or not the
system transfer function is minimum phase. This general
insight is specialized to the diffusive-network model setting
in the following lemma, as a starting point toward developing
graph-theoretic results.

Lemma 1: Consider the diffusive network model, with input
(source) location s and measurement location q. Also, assume
that the measurement noise signal has the form v(t) = αv̂(t),
where v̂(t) has fixed autocorrelation Rv̂(t) and α > 0 is a scal-
ing parameter. In the limit α→ 0, the on-line input-estimation
performance approaches zero error, i.e. Pw−on(q) → 0, if
and only if the transfer function Hq(s) is minimum phase.
Likewise, the on-line state estimation performance approaches
zero for all projection vectors c, i.e. Pz−on(q)→ 0, if and only
if Hq(s) is minimum phase.

The proof of the lemma is immediate from [20], [21], so de-
tails are omitted. The lemma allows the development of graph-
theoretic results for the on-line estimator performance, when
the measurement noise is made small. In particular, topological
conditions under which the diffusive network dynamics are
minimum-phase or non-minimum phase can be exploited to
obtain topological sufficient conditions for perfect or imperfect
estimation in the low-noise limit. One representative result of
this form is given here. In particular, using this approach, one
can show that perfect on-line estimation is possible in the low-
noise limit, in the case that there is a unique path between each
pair of vertices in the network graph:

Theorem 5: Consider a diffusive network model which
has a unique directed path between each pair of vertices.
Also, assume that the measurement noise signal has the form
v(t) = αv̂(t), where v̂(t) has fixed autocorrelation Rv̂(t) and
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α > 0 is a scaling parameter. In the limit α→ 0, the on-line
input-estimation performance (MMSE) approaches zero error,
i.e. Pw−on(q) → 0. Likewise, the on-line state estimation
performance approaches zero error for all projection vectors
c, i.e. Pz−on(q)→ 0.

Proof: Since the network graph has a unique path between
each pair of vertices, it necessarily has a unique path from
the source vertex s to the measurement vertex q. Thus, From
Theorem 5 in [16], the transfer function Hq(s) is minimum
phase. The result follows from Lemma 1. �

Several similar results can be developed by leveraging
other graph-theoretic analyses of minimum-phase and non-
minimum-phase dynamics in the diffusive network model,
further details are omitted.

Remark: Since estimation of stationary processes is con-
sidered, a Wiener filtering approach is sufficient. However,
the estimator and its error can equivalently be obtained using
the steady-state Kalman filter (for on-line estimation) and
smoother (for off-line estimation). Thus, the results on the
estimator performance can be interpreted as graph-theoretic
insights into the solution of the algebraic Riccati equation.

V. CONCLUSIONS

Off-line and on-line estimation of diffusive network dy-
namics from ambient measurements has been studied. The
performance of stochastic-input and state estimators have been
characterized from a graph-theoretic perspective. For off-line
estimators, the performance (MMSE) was shown to exhibit a
direct dependence on the network topology, with the estima-
tion quality degrading for sequential network cuts away from
the noise source. Meanwhile, for on-line estimation, graph-
theoretic analyses were developed in the low-measurement-
noise limit, using relationships between estimation perfor-
mance and phase properties of network transfer functions.
These results suggest that it may be possible to develop
simple topological rubrics for evaluating estimators, as well
as effective sensor placement schemes, for the special class of
diffusive network models.
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