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Abstract 
 

Wearable computing devices have become increasingly 

popular and while these devices promise to improve our 

lives, they come with new challenges. One such device is 

the Google Glass from which data can be stolen easily as 

the touch gestures can be intercepted from a head-mounted 

device. This paper focuses on analyzing and combining two 

behavioral metrics, namely, head movement (captured 

through glass) and torso movement (captured through 

smartphone) to build a continuous authentication system 

that can be used on Google Glass alone or by pairing it with 

a smartphone. We performed a correlation analysis among 

the features on these two metrics and found that very little 

correlation exists between the features extracted from head 

and torso movements in most scenarios (set of activities). 

This led us to combine the two metrics to perform 

authentication. We built an authentication system using 

these metrics and compared the performance among 

different scenarios. We got EER less than 6% when 

authenticating a user using only the head movements in one 

scenario whereas the EER is less than 5% when 

authenticating a user using both head and torso movements 

in general. 
 

1. Introduction 
People often carry multiple devices such as smartphones 

and smartwatches to access different applications and 
personal data and most wearable devices in the market have 
different sensors that can be used to capture behavioral 
metrics of a user [1]. Google Glass (GG) is one such device 
gaining prominence as a light-weight head mounted device 
[2]. This paper focuses on authenticating a user to improve 
the security of GG by analyzing the accelerometer and 
gyroscope data from glass and smartphones.  
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Google Glass is a wearable device, worn on the head like 
normal glasses, with a small display near the eye in the 
wearer’s line of vision. However, being a head mounted 
device, it is easily prone to thefts; for example, passwords 
can be easily intercepted, and device can be stolen easily 
[1]. The voice commands used for unlocking the glass can 
also be easily overheard. The other authentication 
mechanism for the glass is either a PIN or Password given 
using swipe and tap gestures, which can be easily observed 
for a head mount device [3]. This calls for better security 
measures in GG. A continuous authentication on GG will 
provide one such better authentication mechanism.  

 

 
A relevant question is, why ‘continuous’ authentication 

on GG? GG is used only by pairing it with an email account 
or with a smartphone. This makes the user’s data more 
vulnerable, as losing account information to an imposter or 
the login information of the paired smartphone 
compromises the GG and vice versa. So, a continuous 
authentication mechanism will add an additional layer of 
security to prevent an imposter from accessing sensitive 
information on GG. Also, continuous authentication helps 
users have a higher level of security on GG as they need not 
depend on voice commands or touch gestures to unlock the 
device.  

Being a head mount device, glass provides an 
opportunity to capture head movements using the sensors 
on the GG [4]; some of the sensors locations on GG are 

Figure 1: Google Glass (GG) with the location of some of 
the main sensors  
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shown in Figure 1. This gives us an opportunity to compare 
head movements with the torso movements captured by 
smartphones [5]. In this paper, we consider Linear 
Accelerometer- we will refer it as Accelerometer in rest of 
the paper - and Gyroscope data captured in GG and a 
smartphone. Our main contributions are as follows: 

 We perform a correlation analysis of the head and torso 
movements captured through GG and smartphone 
respectively. The analysis shows that there are very 
few feature pairs between the head and torso 
movements with a correlation coefficient above 0.3 
and a p-value < 0.001. These results motivated us to 
use a combination of head and torso movements to 
authenticate a user. 

 We propose a continuous authentication system on GG 
for generic scenarios. Authentication performances are 
shown for a different set of activity scenarios using 
state-of-the-art classifiers. Our results show that the 
EER is less than 6% in one scenario using only the head 
movements and less than 5% in all the scenarios when 
a combination of head and torso movements are used. 
 

The rest of the paper is organized as follows: Section 2 
describes the related work; section 3 discusses our 
methodology in detail for both the correlation analysis and 
authentication system, and section 4 concludes the paper. 

2. Related Work 
Behavioral metrics for continuous authentication has 

been a challenge for researchers in computing for several 
years now [6, 7]. Different sensors on the wearable devices 
are still being explored to capture user behavior to perform 
authentication. These sensors include but are not limited to 
Accelerometer, Gyroscope, keystroke pattern, Touch, etc. 
[8, 9, 10, 11, 12]. Google Glass with its positioning to wear 
on the head gives us a different focus area to capture head 
movements and verify if they can be used for 
authentication. Since the release of Google Glass, its 
sensors are used in different medical applications. Some 
such medical applications include capturing Heart rate, 
Respiration rate [13], and delivering social cues to autism 
patients [14].  

There are different applications that propose to increase 
the one-time authentication on Google Glass i.e., increase 
the PIN Password protection. PIN is not secure enough as 
it can be inferred through various side channels [15]. 
Although, such attacks can be stopped by using random PIN 
pad [3], they pose usability issues. 

Another system for authenticating Google Glass is by 
Pan Chan and team is scanning a QR Code Key and storing 
the private key in the Glass and use it for sub-sequent scans 
of OTP [1]. However, the private key may be vulnerable to 

theft if the glass or the linked Gmail account gets 
compromised, as it is stored on the Google Glass itself. 

There are some biometric user identification mechanisms 
for Google Glass using the Bone Conductance sensor and 
music Cues [16, 17]. The Skull Conduct system uses bone 
conduction of sound through the user’s skull and the 
microphone. When sound passes through the skull the 
frequency generated will be unique to every user, The Skull 
Conductance system uses these frequencies when the user 
is listening to audio tracks and capture them through the 
microphone to record it in the glass [16]. Another biometric 
authentication system, which is close to our work, identifies 
user using the accelerometer and Gyroscope data when the 
user is listening to set of music cues [17]. Here, the users 
head movements are captured while sitting and a certain set 
of music cues are played to the user. The study states that 
each user reacts differently to the music being played and 
hence the sensor readings are different for each user 
enabling the system to identify the users. Both these 
systems, however, cannot be used effectively for 
continuous authentication as they involve playing music 
clips which reduces usability for the user and even 
consumes additional resources on the glass. 

A continuous authentication using the in-built sensors 
will be a better form to identify the user and increase the 
privacy and security of the data [6]. Fusion of accelerometer 
and gyroscope data from different devices can be used for 
this purpose [18, 19, 20]. In this paper, we propose one such 
continuous authentication using the behavioral data 
collected from the Accelerometer and Gyroscope of the 
Google Glass and smartphone. 

 

 

3. Methodology 
In our approach, we leverage the Accelerometer and 

Gyroscope sensors in the GG and on two smartphones, one 
placed in the participant’s front trouser pocket (SF) and one 

Figure 2: Series of activities performed by the users while 
wearing GG and carrying the SF and SB 
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placed in the participant’s back trouser pocket (SB), to 
collect data from users while they are performing activities 
mentioned in Figure 2. The two smartphones are used to 
make the system independent of the placement of the 
phone. As the Accelerometer and Gyroscope are running on 
the devices continuously, this approach does not use any 
additional resources, which is an advantage in GG as it has 
limited resources. 

We use multiple devices for our experiment and consider 
the following combinations for analyzing data and to 
authenticate the user. 

1. data from Only GG 
2. combining the data from GG with SF 
3. combining the data from GG with SB 
We perform a correlation analysis for the above 

combinations to see whether there exists a correlation 
between the head and torso movements captured by GG and 
smartphones (SF and SB) respectively.  Both the correlation 
analysis and authentication are performed on all the 
activities and a subset of activities. 

Scenarios Mean Std.  
 

#1 All activities 97.89 12.74 
#2 Climbing up and down 
Stairs 36.42 14.58 
#3 Activities with no stairs 61.47 20.43 

Table 1: Average mean and standard deviation of time 
taken to perform the activities (in seconds) 

 3.1. Experiment Design 
We designed the experiment considering that users may 

place their phones either in the front pocket or back pocket. 
To satisfy this requirement, we used two smartphones along 
with one GG for collecting data. The activities mentioned 
in Figure 2 are designed to represent the general walking 
patterns of a user. 

3.2. Data Collection 
We collected data from 17 participants, after obtaining 

approval from the Institutional Review Board (IRB). After 
the volunteers were explained the experiment, they were 
asked to walk at their usual pace. The data was collected in 
two sessions for each participant; one session for training 
and one session for testing. These sessions were spread 
across 28 days, depending on the availability of the 
participants.   

Each participant walked for 85-120 seconds, depending 
on their pace, performing a series of activities in the same 
sequence: - opening a door, walking on a flat surface for 83 
feet, opening another door, climbing up 2 flights of stairs 
with 12 steps per flight, climbing down the same 2 flights 
of stairs with 12 steps per flight, then opening another door 

and walking on a flat surface for 83 feet (Figure 2). 
Participants performed two types of activities: 1) walking 
on flat surface with door opening i.e., activities with no 
stairs 2) climbing up and down stairs. Distance covered and 
average time consumed by each of the activities are 
mentioned in Figure 2 and Table 1 respectively. The 
activities were same for training and testing sessions. 

We developed two Android applications to collect data 
from glass and smartphones. We used the default sensor 
delay for capturing the sensors’ data in the GG because GG 
gets overheated for higher delay times and we used the 
fastest sensor delay for the smartphones. The sampling rate 
for GG is 5Hz and for smartphones it is 48Hz; this varies 
because of the in-built hardware settings. The camera in the 
GG is used to record the activity being performed to map 
the timing for each activity [21]. 

Features Extracted 

Accelerometer (1-48) Gyroscope (49-96) 
1-4 Mean 49-52 Mean 
5-8 Standard Deviation 53-56 Standard Deviation 
9-12 Band Power 57-60 Band Power 
13-16 Energy 61-64 Energy 
17-20 Median Frequency 65-68 Median Frequency 
21-24 IQR 69-72 IQR [22] 
25-28 Range 73-76 Range 

29-32 
Signal to Noise 
Ratio 77-80 Signal to Noise Ratio 

33-36 Spectral Entropy 81-84 Spectral Entropy 
37-39 DTW 85-87 DTW [23] 

40-45 Mutual Information 88-93 
Mutual Information 
[24] 

46-48 Correlation 94-96 Correlation [24] 

Table 2: Features extracted from the accelerometer and gyroscope 
data for each device, GG, SF and SB 

3.3. Feature Description 
The data collected from the Accelerometer and 

Gyroscope have three dimensions each (X-axis, Y-axis, Z-
axis). We preprocess the data by removing noise using 
median filtering and smoothing. We computed the 
magnitude (M) for the sensors and used it as a fourth 
dimension. We extracted 48 features using the four 
dimensions, each for Accelerometer and Gyroscope for all 
three devices, giving 96 features per device. The features 
were extracted with a sliding window of two seconds, with 
a 50% overlap between the windows, as found this time 
window to be the best. A detailed list of features extracted 
can be seen in Table 2. The description of the features is 
available in Appendix. 

We extracted basic features like Mean and Standard 
Deviation; we also extracted other features like Band 
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Power, Mutual Information, and Spectral Entropy to get 
more insight into the data collected from the GG and both 
SF and SB. Band Power is the average power in the range 
of each frequencies calculated for each pair of the 
dimensions. We extracted the Mutual Information between 
the dimensions to see the change of each dimension with 
respect to the other. We extracted Signal to Noise ratio for 
each user to be able to differentiate the correlated feature 
pairs depending on the noise ratio. We are calculating Inter 
Quartile Range (IQR) to find the span of the signals from 
GG, SF and SB [7, 18, 19, 25]. 

Features #1-36 are computed using all the four 
dimensions (X, Y, Z, M) of the Accelerometer. These 
features are computed as Mean of X and Y, Mean of Y and 
Z, Mean of Z and M and, Mean of X and M, similarly for 
other features.  The features #37-39 (Dynamic Time 

Wrapping) and #46-48 (Correlation) are computed by 
comparing only three X, Y, Z. Features #40-45 are 
computed by doing a comparison among the three 
dimensions (X, Y, Z) and between the X, Y, Z and M. Then 
we repeated the same process to extract features #49-96 
from Gyroscope data. The Accelerometer and Gyroscope 
data are combined at feature level and then fed as inputs to 
the classifiers for authentication. 

The Mutual Information between the features in all the 
three devices - GG, SF and SB - is shown in Figure 3. The 
x-axis of the graphs in figure 3 represent the features, the 
features #1-96 correspond to GG, #97-192 represent the 
features from SB and #193-288 represent the features from 
SF. The first graph represents the Mutual Information of the 
features for user labels while the participants are climbing 
up or down stairs.

 

(a) 

(b) 
Figure 3: Mutual Information among features and class labels of GG, SB and SF, X-axis: Feature # 1-96 are for GG, 97-192 are for 
SB and 193-288 are for SF. (a) while user is climbing up or down stairs. (b) while user is not using stairs.  
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The second graph in figure 3 represents the mutual 
Information of the features for user labels for the data 
collected during the activities that does not involve 
climbing up or down stairs.  

The patterns in Figure 3 indicate that the mutual 
information between the features of GG and the class labels 
is significantly less than those of SF and SB. This suggests 
that the features of GG alone form poorer indicators for 
authenticating a user. So, we proceeded to combine the 
features from GG, SF and SB to authenticate a user. 

3.4. Correlation Analysis 
We performed a correlation analysis on the training data 

for three combinations: correlation between Accelerometer 
and Gyroscope of GG; correlation between features of GG 
and SF; correlation between features of GG and SB. The 
correlation coefficient below 0.3 (absolute value) is 
considered as weak correlations [26]. 

Table 3: Comparison of number of feature pairs with correlation 
coefficient > CT and p-value < 0.001 for all activities data, data 
collected from climbing up and down stairs activities, data 
collected from activities other than climbing up and down stairs 
(Acce is Accelerometer, Gyro is Gyroscope) 

 

Acce Gyro Acce Gyro
0.15 238 1 14 2 0

0.2 172 0 0 1 0
0.3 97 0 0 0 0

0.15 243 286 142 33 2

0.2 193 207 109 3 0
0.3 114 49 49 0 0

0.15 723 20 0 0 0

0.2 575 0 0 0 0
0.3 350 0 0 0 0

Activities 
with no 
stairs

GGScenarios CT
GG with SF GG with SB

All 
activities

Stairs

(a) (b) 

(c) (d) 
Figure 4: Heatmap of correlation coefficient between feature pairs of (a) Accelerometer of GG and SF (b) Gyroscope of GG 
and SF (c) Accelerometer of GG and SB (d) Gyroscope of GG and SB 
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We varied the Correlation Threshold (CT) values to 

check the number of correlated feature pairs. We also 
computed the p-values for the correlation coefficients to 
check their significance. Table 3 shows the number of pairs 
of features with a correlation coefficient > CT and with p-
value < 0.001 for each CT value. The results show that the 
number of feature pairs with correlation > CT reduced as 
the CT is increased for any activity.  

When all activities are considered, there are a few 
correlated feature pairs between GG and SF when CT=0.15 
(1 feature pair for accelerometer and 14 pairs for 
Gyroscope) whereas there are no correlated feature pairs 
between GG and SF with CT >= 0.2. Similarly, for GG and 
SB, there are no correlated feature pairs for Gyroscope, 
while there are 1 and 2 correlated feature pairs for 

accelerometer when CT=0.2 and 0.15, respectively. 
However, the number of correlated feature pairs between 
GG and SF and, GG and SB are higher when the participant 
is climbing up or down stairs. The number of feature pairs 
that are correlated between GG and SF are higher when the 
users are climbing up and down the stairs but the features 
are very weakly correlated when the user is performing 
other activities or all the activities.  

We found that, for GG, the accelerometer and gyroscope 
have more feature pairs with correlation coefficient (CC) 
greater than CT while there are very few correlated features 
between GG and SF and GG and SB for any set of activities. 
The heatmaps for the correlation coefficients can be seen in 
Figures 4 and 5. It can be seen from the heatmaps in figures 
4 and 5 that the correlation between GG and SF for both 
Accelerometer and Gyroscope is very low, and, the 
correlation between GG and SB is much lower. This 
motivated us to use a combination of devices to perform the 
authentication because this provides us a safeguard against 
using one set of features to mimic other set of features. The 
intrinsic characteristics of this mechanism prevent attacks 
like spoof-forge-replay. 

 
3.5. Discussion on Authentication Performance 

  We implemented four different classifiers, Support 
Vector Machine (SVM), Linear Discriminant Analysis 
(LDA), Logistic Regression (LR) and Random Forest (RF) 
for authenticating a user using publicly available R 
packages. We measured authentication performance on 
each of the scenarios discussed in Figure 2. We considered 
three combinations of data, as mentioned earlier, only GG, 
GG with SF and GG with SB, on each of these scenarios. 

Figure 5: Heatmap of correlation coefficients between feature 
pairs of accelerometer and gyroscope in GG 
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Figure 6: Authentication Performance in terms of EER (%) for combinations: only GG, GG with SF and GG with SB; for the classifiers 
used and different activities: including all activities, climbing up and down stairs, activities with no staircase 
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We used all the extracted features (refer Table 2) for each 
case. The performance results are shown in Figure 6. The 
values on top of each bar represent the percentage of EER 
value. For each classifier group, each bar represents the 
combinations in order of only GG, GG with SF and GG 
with SB. It can be inferred from the graph that GG with SF 
has a better performance compared with other combinations 
in most of the classifiers and scenarios. GG with SB also 
produced low EER value in most classifiers. GG alone 
performed well in scenario #3 (refer Table 1) with an EER 
value less than 6% for all the classifiers. The authentication 
performance is higher for all the activities when features of 
GG are combined with any of the mobile phones SF and SB 
in comparison with stairs and no stairs activities. 
 

From these observations, it can be said that GG alone is 
sufficient to authenticate a user for scenario #3 that does not 
include any stairs while a combination of GG with 
smartphone works better in scenarios #1 and #2. So, in 
general, a combination of GG with smartphone (SF or SB) 
i.e., head and torso movements will provide a better 
authentication in a generic scenario. 

4. Conclusion 
In this paper, we are using head and torso movements 

using GG and two smartphones (SF and SB). The 
smartphones are placed in two different places, user’s front 
pocket and back pocket of the trouser to collect the data, 
which gives a more generic scenario of usage of the device. 
We performed an analysis to check if correlations exist 
between these behavioral metrics. We observed from the 
analysis results that there exists very little correlation 
between these two-behavioral metrics in most scenarios. 
This characteristic prevents imposter to mimic one set of 
features using the other set.  This motivated us to build an 
authentication system by combining these two metrics.  

We performed user authentication using state-of-the-art 
classifiers. From the results, we observed that combination 
of these two-behavioral metrics successfully authenticated 
a user with EER value less than 5% and when the only the 
head movements are used, the authentication system gave 
an EER value less than 6% for one of the scenarios.  
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7. Appendix 
Description for the features extracted is given in Table I. 

 
Feature Name Description 

Mean 
The mean value of x, y, z-axis and m 
within a time window. It constitutes 4 
features. 

Standard Deviation The standard deviation within x, y, z-axis 
and m within a time window. 

Band Power 

The average power in the given 
frequency range (0 to Fs/2). This feature 
depends on the sampling frequency (Fs) 
of the signal. 

Energy The energy of x, y, z-axis and m within a 
time window. 

Median Frequency 

A frequency that divides the power 
spectrum into two regions with equal 
amplitude is known as the median 
frequency. This feature depends on the 
sampling frequency (Fs) of the signal. 

IQR 
Inter Quartile Range (IQR) is the 
difference between signal quarter 3 (Q3) 
and quarter 1 (Q1). 

Range 
The difference between maximum and 
minimum value within x, y, z-axis and m 
within a time window. 

Signal to Noise 
Ratio 

Measure to compare actual signal to 
background Noise. Ratio of signal power 
to noise. 

Spectral Entropy 

It describes the complexity of the signal 
and is directly proportional to the peak of 
the signal power spectrum and similar to 
Shannon’s entropy. With the use of the 
power spectral density as a probability 
density. 

DTW 

Dynamic Time Wrapping (DTW) 
distance is computed between pair of 
signals to find the best mapping for 
minimum distance. 

Mutual 
Information 

Mutual information is computed 
between pair of signals. 

Correlation Pearson correlation coefficient is 
computed between pair of signals. 

Table I: Description for the features extracted. 


