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Abstract—Free-text keystroke is a form of behavioral biomet-
rics which has great potential for addressing the security limi-
tations of conventional one-time authentication by continuously
monitoring the user’s typing behaviors. This paper presents a
new, enhanced continuous authentication approach by incorpo-
rating the dynamics of both keystrokes and wrist motions. Based
upon two sets of features (free-text keystroke latency features
and statistical wrist motion patterns extracted from the wrist-
worn smartwatches), two one-vs-all Random Forest Ensemble
Classifiers (RFECs) are constructed and trained respectively.
A Dynamic Trust Model (DTM) is then developed to fuse the
two classifiers’ decisions and realize non-time-blocked real-time
authentication. In the free-text typing experiments involving 25
human subjects, an imposter/intruder can be detected within no
more than one sentence (average 56 keystrokes) with an FRR of
1.82% and an FAR of 1.94%. Compared with the scheme relying
on only keystroke latency which has an FRR of 4.66%, an FAR
of 17.92% and the required number of keystroke of 162, the
proposed authentication system shows significant improvements
in terms of accuracy, efficiency, and usability.

I. INTRODUCTION

Conventional one-time authentication methods, such as
password, fingerprints, and face recognition have dominated
the access authentication of computers today, which however,
suffer from severe security limitations. For instance, intruders
can potentially access the system before its being locked out
or logged off. Continuous authentication has proven to be
an effective approach for defending against the authentication
attacks on the fly. Through uninterrupted monitoring of the
user’s behavioral interaction with the computer during the
work session, continuous authentication can seamlessly val-
idate the user’s presence and detect fraudulent behaviors.

In designing a reliable and effective continuous authenti-
cation mechanism, there have been several popular biometric
methods known as soft biometrics [1], bio-signal biometrics
[2], mouse dynamics biometrics [3], and keystroke dynam-
ics biometrics [4]-[8]. Compared with soft biometrics and
bio-signals biometrics, behavioral biometrics such as mouse
and keystroke dynamics usually do not need extra sensors
adhering to the human body and can achieve a very high
recognition accuracy. Other merits of keystroke or mouse be-
havioral biometrics for continuous authentication include, non-
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invasiveness, simplicity, cost-effectiveness, and resilience to
counterfeit attempts. Existing research on keystroke dynamics
primarily focus on the static, fixed-text, one-time authentica-
tion, as a complementary security mechanism for password
login access. Recently, many research efforts have explored the
intrinsic characteristic patterns of free-text keystroke dynamics
for continuous authentication [9]-[12].

In this paper, we propose and develop an enhanced con-
tinuous authentication system by incorporating the dynamics
of both keystrokes and wrist motions. With the increasing
advances and popularity of wearable devices, such as wrist-
bands and smartwatches, human wrist motion behaviors can
be recorded and associated with the keystrokes while typing.
Compared with the traditional keystroke-based authentication,
our wrist motion enhanced, free-text keystroke approach can
provide higher efficiency and accuracy for continuous au-
thentication, without sacrificing user experience or involving
extra overhead. Based upon two sets of features (free-text
keystroke latency features and statistical wrist motion patterns
extracted from the wrist-worn smartwatches), two one-vs-all
Random Forest Ensemble Classifiers (RFECs) are constructed
and trained respectively. With a Dynamic Trust Model (DTM)
similar to the one in [7], the proposed system can achieve a
real-time decision making for nearly every keystroke. To the
best of our knowledge, this is the first work that incorporates
wrist motion behaviors with free-text keystroke dynamics to
implement a true, on-the-fly continuous authentication. The
specific contributions of this study include:

- Leveraging the one-vs-all RFECs, the proposed system
can effectively detect both imposters (a subject who
belongs to the training database and whose identity is
labeled as the attacker) and intruders (a subject of other
cases who does not belong to the database).

- The wrist motion behavioral patterns captured by the
wrist-worn smart devices (e.g., smartwatches) can signif-
icantly improve the detection accuracy of imposters and
intruders and also reduce the detection latency.

- The new context-aware keystroke latency feature cell
generation and selection method can inspect the latency
of every single keystroke in the context, boost the au-
thentication accuracy, and solve the latency fluctuation
problem (Different digraphs or trigraphs often have dif-
ferent latencies in different words).



The remainder of this paper is organized as follows. Section
IT describes the state of the art of keystroke dynamics based
continuous authentication. Section III presents the processing
flow and methodological details of our proposed continuous
authentication approach, including feature extraction, classi-
fication, Dynamic Trust Model (DTM), and decision fusion
and decision making. The experimental setting and results are
discussed in Section IV & V. Finally, Section VI concludes
this research and foresees the future work.

II. RELATED WORK

Keystroke dynamics, given its unique advantages of low
implementation cost, transparency, and non-invasiveness, have
recently emerged as a popular approach for continuous au-
thentication. Monaco et al. [4] extract the statistical features
of key press duration times and digraph transition times and
achieves a very high authentication accuracy based on distance
measurement (99% on 14 subjects, 96% on 30 subjects).
Shimshon et al. [S] use a clustering approach to combine the
digraphs which have similar fly-time together as one feature.
The experiment on 10 true users and 15 imposters can reach a
FRR of 0.63% and FAR of 0.41%. A recent study [6] employs
12 algorithms for free-text keystrokes authentication system on
different devices with PC keyboard, soft keyboard and touch
keyboard, and conducts a comparative study about different
algorithms on different keyboards. Ceker et al. [9] implement
a two-component Gaussian Mixture model to reach a EER of
0.08% for the 30 users dataset. Brain er al. [8] investigate
whether typing behavior is affected by the cognitive demands
of a given task and the demographic features of the typist.
Roth ef al. [11] design and evaluate an authentication system
based on keystroke sounds for both static-text and free-text.

Although many prior work have demonstrated very high
recognition rates of keystroke dynamics, most existing re-
search on keystroke-based continuous authentication often ne-
glects a very important aspect in evaluating their effectiveness
and performance — detection latency. Without loss of gen-
erality, we use the number of keystrokes required before the
detection of an imposter/intruder as an indicator of detection
latency, instead of the individual-specific typing speed. Bours
et al. [7] implement a dynamic scoring mechanism to present
the estimated trust level while the user is typing to achieve
real-time decision-making. The keystrokes used for detection
of imposters will be different (less keystrokes are needed for
the imposters who type in an obviously different way). In our
study, we improve this dynamic trust model by integrating the
decision fusion to achieve a comprehensive evaluation on both
accuracy and detection latency.

Furthermore, as the recent advances of wearable sensors
and smart devices (like smartwatches), many studies have
explored the use of those wearable devices for authentication
and security purposes. For example, researchers have used
the motion sensor data from the smartwatches to infer the
specific keystroke actions and even what the user is typing
[13]-[15]. Some other work [16] focus on using the motion
sensor on smartwatches to build a touch-based authentication
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Fig. 1. Data flow diagram of the proposed system.

system. However, few studies have explored the use of wear-
able sensors or smartwatches to enhance the keystroke-based
biometric authentication on computers. As widely reported
in literature [17], [18], gait and arm movement patterns
recorded by smartwatches have been successfully adopted as
an effective authentication approach. In this study, we propose
to investigate the user’s wrist motion patterns during the typing
process and then incorporate these features into the keystroke-
based authentication through a strategic decision fusion.

III. METHODS

Figure 1 illustrates the data flow diagram of our proposed
keystroke continuous authentication system, including two
RFECs and a DTM. During the training phase, through the
feature extraction, the training data are fed into two separate
RFECs for learning digraph/trigraph latency data and wrist
motion data. In the meantime, part of the genuine users’ data
and the imposters’ data, which are not included in either
training or testing dataset, are taken as the characterization
data. With the well-trained RFECs and the characterization
data, the DTM without lockout function can characterize the
lockout threshold for the genuine user and the weights of
these two RFECs for further decision fusion. In the application
phase, with the two well-trained RFECs and the characterized
lockout threshold, the DTM can fuse the decisions from the
two RFECs and make a final decision of lockout or not on
the festing data. It is worthy to note that characterization data
will be solely used for generating the classifiers’ weights and
threshold of genuine users, instead of being used for any appli-
cation or evaluation purpose. The details of those components
in this framework will be discussed in the following.

A. Context-Aware Keystroke Latency Features

The digraph and trigraph latency (i.e., the time elapsed
between the two or three keys) have been proven to be the
most effective features in keystroke biometrics [4]. However,
depending on the specific word where the digraph or trigraph
is extracted, the latency can vary significantly [19]. Many
existing solutions to address the latency fluctuation issue in
free-text keystrokes rely on the post statistical analysis of
a large amount of keystrokes [4], [5], [9]. This solution,
however, is ineffective in representing the context-aware varia-
tions of digraph/trigraph latency and prohibitive for on-the-fly
continuous authentication using the real-time keystroke data.



TABLE I
EXAMPLE OF DIGRAPH/TRIGRAPH FEATURE CELL

TH HE IN AND ION
53 ms 101 ms 78 ms 201 ms 230 ms
72ms 101 ms 78 ms 201 ms 230 ms

In this study, we propose to alleviate the context-aware
latency fluctuation problem by automatically constructing and
selecting a set of representative features. Specifically, instead
of using the raw latency data of any single digraph or trigraph,
we define a feature cell as the latencies of a entire set of
bigraphs/trigraphs and create a new feature cell when a new
keystroke alters one of the latency value. In this way, the
context-aware relationship between the latency of a specific
bigraph/trigraph and the latency of the rest bigraphs/trigraphs
can be largely retained. Then we utilize the feature importance
estimation function by RFEC to choose the optimized feature
set for each individual genuine user. Through experiments, it
is shown that the feature selection can filter out many noisy
features to mitigate the influence of latency fluctuations.

a) Generation of Feature Cells: Prior research [10] used
a complete latency feature table, i.e., a 26-by-26 matrix in
which each cell corresponds to an English digraph and may
contain multiple latency values due to the typing variations.
However, each cell is obtained through isolated statistical
analysis, that is, without the knowledge of the specific word
and context where the bigraph is located. In this study, we
propose to use the latency of 50 most frequently used digraphs
[TH HE IN ER AN RE ON AT EN ND TI ES OR TE OF
ED IS IT AL AR ST TO NT NG SE HA AS OU IO LE
VE CO ME DE HI RI RO IC NE EA RA CE LI CH LL
BE MA SI OM UR] and 10 most frequently trigraphs [THE
AND ING ION TIO ENT ATI FOR HER TER] in the English
language [20], as a feature cluster. As illustrated in Table
I, only if one digraph or trigraph in the feature cell has a
new latency (resulted from a new keystroke), a new feature
cell will be formed in which all other latency values remain
unchanged. For example, if the user types the two keys “T”
and “H” sequentially with a latency of 72ms, the TH digraph is
updated and a new feature cell is generated. In this way, every
individual keystroke will no longer be analyzed in an isolated
manner. Instead, it will be collectively inspected along with the
latency of those most recent and relevant bigraphs/trigraphs
in the context (i.e., those latency values remain in the feature
cell). Moreover, this mechanism allows the system to verify the
likelihood of every single keystroke in a continuous manner,
without sacrificing the generalization performance.

b) Optimization of Feature Cells: Because our feature
cells only contain the raw latency of digraphs and trigraphs,
the classifier can have more flexibility to extract and capture
the characters for different genuine users. To further find
the optimal digraphs and trigraphs for different users, we
utilize the filtering and retraining model similar to the gene
selection in [21]. In this filtering and retraining model, the
RFEC is iteratively trained. In each iteration, according to
the estimation of significance, part of the less important
feature cells are discarded and then a new RFEC is trained
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Fig. 2. Cumulative distribution of acceleration and angle acceleration

with the updated feature set. Through the testing using the
characterization data, the RFEC which performs the best and
the corresponding feature set are kept as the characterized
feature set for this user.

B. Wrist Motion Features

In addition to the well-acknowledged difference in keystroke
latency dynamics, human typing behaviors may also involve
the difference in wrist motion patterns. It has been demon-
strated that the statistical distributions of acceleration and an-
gular acceleration features captured by a smartwatch when the
user is performing gesture-based operations on smartphones
are individually unique [16]. Given the observation that every
person has their own habit and preference of moving their
hands when they are transiting from one key to another,
it is thus argued that the individual uniqueness also exists
when typing on computers. This assumption can be proved,
as shown in Fig. 2, via the cumulative distributions of the
acceleration and angular acceleration in the 2-minute free-
text typing sessions by 7 subjects (the experimental setup
remains the same as the standard protocol described in Section
IV). In Figure 2, each color represents one subject and each
curve represents one session (each subject took at least three
independent sessions). Apparently, most of the curves in the
same color are closely clustered, and the curves with different
color are distinguishably separated.

We use the accelerometer and gyroscope available in smart-
watches to capture the acceleration and angular acceleration
data. For feature extraction, we segment the signals into a
series of time sliding windows of size 500 and the moving
step is set as 50 for continuous monitoring purpose. We
extract the probability distribution features of acceleration and
angular acceleration from each sliding window, according to
their amplitudes computed as m = /22 + y2 + 22. Then two
separate filters are designed to remove the noises resulting
from some non-typing activities, such as the fast movements
while reaching the mouse. The distribution features obtained
from the two sensors on the tth window is annotated as:

disacc(t) = pdfacc(t); disgyr(t) = pdfgyr(t) (1
Auth(t) = [disace(t), dis e (1) %)

During the data collection process, the subjects are in-
structed to wear two smartwatches on both hands. The ac-
quired sensory data from both hands are trained and tested



TABLE II
THE KEYSTROKE VERIFICATION PERFORMANCE BASED ON
SMARTWATCH MOTION SENSOR ON LEFT AND RIGHT HANDS

Genui Left Hand Right Hand

User FRR FAR OOB | ppr FAR 00B

Index Error Error
Subjectl | 143% | 11.38% | 0058 | 0.49% | 4.39% | 0.037
Subject2 | 15% | 3.24% | 0.049 | 05% | 31.03% | 0.097
Subject3 | 2.67% | 16.69% | 0.079 | 0.34% | 8.57% | 0.032
Subjectd | 1.96% | 18.83% | 0.059 1% 0.24% | 0.028
Subject5 | 4.42% | 16.37% | 0.046 | 121% | 2881% | 0.083
Subject6 | 185% | 941% | 0057 | 0.65% | 7.02% | 0.030
Subject7 | 486% | 2141% | 0088 | 0.02% | 14.08% | 0.006

separately. Through experiment, we found that the better

performance is always obtained from the hand with a smaller
Out-Of-Bag (OOB) error as Table II (the definition of OOB
will be introduced in section III-C). Thus a more suitable hand
to wear smartwatch for different individuals can be chosen
according to the corresponding OOB. In the following study,
all users will always wear the smartwatch on the preferred
hand when they are typing.

C. Random Forest Ensemble Classification

Due to the high variance of keystroke dynamics and the
large feature dimension, traditional classifiers are vulnerable to
overfitting. Thus, it is necessary to seek a classifier which can
handle the high variance data, be resistant to overfitting, and
automatically select the most important and suitable features.
In this study, the Random Forest Ensemble Classifier (RFEC)
is proposed which is an aggregation of all base classifiers
{h(X,0),k=1,2,..., K}. O is the parameter set for each
individual decision tree, and K represents the number of trees.
The construction process of the RFECs and the principle of
feature importance estimation by RFEC are as follows:

1) K subsets are randomly extracted from the original
training data set by the Bootstrap algorithm, based upon
which K decision trees are trained. For each extraction,
the subset which is not chosen is named as the “Out-
Of-Bag” (OOB) data (OO By,);

2) For each decision tree, if there are /N features, each time
M features are selected (M < N). The decision tree
keeps choosing and splitting out the “most significant”
features (F' € M) until it is fully grown;

3) Aggregation at the decision level is realized through the
majority voting of these K decision trees with their
corresponding weights wy (wg o m, in which
FE is the error estimation function);

4) The feature importance estimation is calculated by per-
muting values of one feature each time across OOB data
and measuring how worse the MSE of RFEC predictions
becomes after the permutation.

Fully growing each decision tree allows RFEC to be ca-
pable of processing high dimensional features. The majority
voting with wy aggregation method makes RFEC resistant
to overfitting and effective in handling high variance data.
With the importance estimation of the random forest, a feature
optimization strategy is presented (see Section III-A).

D. Decision Fusion and Dynamic Trust Model

With the goal of combining the classification results from
the two RFECs, a Dynamic Trust Model (DTM) [7] is adopted
and modified using the decision fusion [22] to improve the
efficiency and stability of intrusion detection in the proposed
authentication system. According to the FAR and FRR of the
two RFECs on the characterization data from both the genuine
user and the imposters, the weights a; for the N classifiers are
calculated as follows (where H; is the estimation hypothesis
made by the ith classifier, 1 represents the genuine user while
0 represents the attacker):

logt B8R - if Hy =1 &)
" logtEa, i Hy =0

The parameters u; is defined under different hypothesis:

1, if H;=1
U; = . 4
-1, ifH;=0

With the parameters u; and weight a;, the final fused decision

flu,...up,) from N classifiers can be made as follow:
1, it 7 au; >0
flug,..up) = szl 3)
—1, otherwise

The algorithmic details of DTM is presented in Algorithm 1.

The trust score’s range is from O to 100. During the training

phase, with the fused decisions on the current genuine user’s

characterization data, through the DTM with lockout function

(i.e., lines 8-14 in Algorithm 1), the minimum score is taken as

the lockout threshold for the genuine user. In the application
Algorithm 1: Dynamic Trust Model

Input: S represents the Trust Score, 1" represents the Lockout
Threshold, E is the estimation result from the decision fusion
of two RFECs

Output: Invalid_User_Detection (T'rue or False)

1 Set the initial trust score S = 100;

2 if S > 0 and Ey is invalid user then

3 S ——

4 el‘se if S < 100 and Ey is true user then

s | S++

6 else if S > T then

7 Invalid_User_Detection < False;

8 Go back to Step 2 with the updated E'y by RFEC based on new

wrist motion and latency data;

9 else

Invalid_User_Detection < True;

System lock out, the number of keystrokes for the detection is
recorded;

12 end

phase, the trust score of the system is initially set as 100.
When a new sample of both the keystroke latency and the
wrist motion pattern arrives, the decision fusion is performed
to determine if this sample belongs to the genuine user or
the imposters/intruders, and accordingly the trust score is
incremented or decremented by one. If the trust score drops
below the lockout threshold, the current user will be locked
out immediately, and the number of keystrokes used for this
detection is recorded for further performance evaluation. The
system is capable of evaluating the validity of the current user
nearly for every keystroke sample.
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IV. EXPERIMENTAL SETTING

A total of 25 human subjects in age of 23-33 years old
(5 female and 20 male) were recruited to participate in the
experiments. 7 subjects (Subjects 1-7) were taken as the
genuine user and imposters, and the rest 18 subjects (Subjects
8-25) were the intruders. Each time, one of 7 subjects was
randomly designated as the genuine user, and the rest 6
subjects were designated as the imposters. For the genuine
user and imposters, the data collected from each subject
contained 9,030 keystrokes on average from five sessions
during a period of two weeks. For each intruder, an average
of 1,784 keystrokes were collected from one session. During
the training, 60% of data from the genuine user and 10%
of data from each imposter were fed into the classifier. 20%
of data from the genuine user and imposters were used to
characterize the classifiers’ weights and the lockout threshold.
We then used the rest 20% of the genuine user’s data, 70% of
the imposters’ data and the entire data from each intruder to
evaluate system’s performance. The Internal Review Board of
Binghamton University approved the experimental protocol.

Figure 3 describes the specific composition of the training
dataset, characterization dataset, and testing dataset. The dif-
ferent roles of the subjects are defined as follows:

- Genuine User: The authorized person who can access the
system.

- Imposters: The people who attempt to illegally access the
system and whose data has been partially known by the
classifier.

- Intruders: The people who attempt to illegally access
the system but whose data is entirely unknown by the
classifier. Intruder data is solely used for testing purposes.

In the experiments, subjects were instructed to type a transcript
randomly chosen by the subjects themselves. Correction of
typing mistakes is allowed but not required. Subjects were
required to choose a different transcript for different sessions.
We used the computers with the identical configuration (Intel
i7-6700 CPU @ 3.4GHz, 16GB RAM) and the same type of
keyboards (Dell SK-8175 USB Keyboard 104 Key Standard
QWERTY Layout). The subjects were seated on the same
type of office chairs with a fixed height of 40 cm during
the entire experimental sessions. The keystroke latency data
(in milliseconds) was collected through a custom, webpage-
style software programmed in HTML, PHP and JavaScript.
The smartwatches used in experiments are Sony SWRS50

TABLE III
PERFORMANCE BASED ON KEYSTROKE LATENCY
. Avg # of Keystrokes for
Ggsl:;:e FRR FAR Detection of Attacks
Imposters | Intruders All Imposters | Intruders All
Subl 1.7% 18.4% 34.8% 22.6% 60 102 79
Sub2 0.8% 21.9% 43.7% 35.3% 77 158 94
Sub3 3.9% 7.2% 36.9% 15.5% 70 113 79
Sub4 0.7% 8.4% 11.9% 9.6% 37 60 43
Sub5 8.9% 23.3% 29.5% 26.3% 333 400 376
Sub6 8.9% 5.2% 7.5% 6.6% 284 293 286
Sub7 1.9% 3.7% 5.1% 4.1% 33 44 39
Ave 4.6% 12.7% 28.8% 17.9% 128 195 162
TABLE IV
PERFORMANCE BASED ON KEYSTROKE LATENCY AND WRIST MOTIONS
. Avg # of Keystrokes for
Ggsl:rl:e FRR FAR Detection of Attacks
Imposters Intruders All Imposters Intruders All
Subl 1.5% 0.8% 1.4% 1.1% 61 72 67
Sub2 1.9% 0.9% 1.6% 1.2% 33 43 38
Sub3 3.1% 0.0% 1.7% 0.8% 46 52 49
Sub4 1.0% 0.1% 1.5% 0.6% 23 30 28
Sub5 9.1% 2.7% 4.4% 4.0% 116 122 120
Sub6 0.6% 3.2% 8.4% 7.3% 45 54 52
Sub7 2.2% 0.0% 1.2% 0.8% 33 42 38
Ave 1.8% 1.0% 2.4% 1.9% 51 60 56

1.6-Inch Display SmartWatch 3 running Android Wear. The
accelerometer and gyroscope recordings (at a frequency of 50
Hz) were collected through a custom program programmed
in ActionScript 3.0. During the experimental sessions, all
the subjects were required to wear the smartwatches in the
traditional position on top of the wrist.

V. RESULTS

Three performance indicators are used in the evaluation, in-
cluding the False Acceptance Rate (FAR), the False Rejection
Rate (FRR), and the average number of keystrokes required
for detection of each unauthorized access. Specifically, in
this study, FRR refers to the percentage ratio between the
keystroke test samples of the genuine user that are falsely
classified and labeled as the ‘attacker’ against the total number
of keystroke samples from the genuine user. FAR is defined as
the percentage ratio between the keystroke test samples of the
imposters/intruders that are falsely classified and accepted as
the ‘true user’ against the total number of keystroke samples
from the imposters and intruders accessing the system. Based
on the implemented DTM which locks out any unauthorized
user when the trust score drops below the lockout threshold,
the number of keystrokes required for detection of this unau-
thorized access is recorded as an indicator of the efficiency
of the proposed approach. It is obvious that less number of
required keystrokes will result in a much faster and earlier
detection of unauthorized access to the system.

There are two sets of experiments in this study. The first
experiment set is to evaluate the performance of the free-
text keystroke continuous authentication approach based on
solely digraphs and trigraphs latency features. As shown in
Table III, leveraging our novel context-aware keystroke latency
feature cell generation and feature selection, the proposed
approach can achieve a rather low FRR level for genuine users
(<5%) and an acceptable FAR level for imposters (~10%,




whose data was partially learned by the classifier). However,
due to the uncertainty of the intruders’ data (which was not
introduced to and learned by the classifier), unsurprisingly the
system has a relatively higher FAR for intruders (~30%). The
number of keystrokes required for detection of unauthorized
accesses ranges from 39 to 376, with an average of 162.
This performance is comparable to the results reported in
the literature [7]. Nevertheless, our approach demands much
less training samples, by taking advantage of the proposed
context-aware keystroke latency feature and RFEC’s capability
on dealing with high-dimensional, high-variance data.

The second experiment set is to evaluate the performance
of the enhanced free-text keystroke continuous authentication
approach based on both keystroke latency and wrist motion
behaviors. According to Table IV, it is shown that the pro-
posed approach can significantly improve the performance of
continuous authentication from all three aspects: average FRRs
for genuine users decrease to a level below 2%; average FARs
for both imposters and intruders decrease to a level below 3%;
and the average number of keystrokes required for detection
of attacks are only around 56. The results indicate that,
the wrist motion behaviors during typing contain individual-
specific characteristics which can help verify the user’s identity
when combined with the keystroke dynamics. It is worthy
to mention that, because our method relies on the statistical
distribution of wrist motions for feature extraction, a minimum
of 500 data samples from the smartwatch (window size) are
necessary at the beginning of the authentication process in
order to obtain the wrist motion patterns. That is, under a
frequency of 50 HZ, around 10 seconds of typing activities
which correspond to 20~25 keystrokes at a normal typing
speed need to be recorded at the beginning of each authenti-
cation process. After that, leveraging the sliding window and
context-aware keystroke latency feature extraction and feature
selection strategies, our proposed system can achieve real-time
analysis of keystroke dynamics and wrist motion behaviors,
resulting in the on-the-fly continuous authentication.

VI. CONCLUSIONS

Keystroke dynamics have been extensively investigated as
an effective behavioral biometric approach, especially for
increasing significant continuous authentication. Most of exist-
ing research focus on the fixed-text keystroke authentication,
which however, significantly limits its applicability and user
acceptance in real-world scenarios. In this study, we propose a
novel enhanced free-text keystroke continuous authentication
approach based on both keystroke latency patterns and wrist
motion behaviors captured by wrist-worn smartwatches. A
new feature cell generation and optimization strategy is also
proposed to maximize the context-aware verification capability
for every single bigraph/trigraph and minimize the influence
of latency fluctuations. The experimental results show that, the
proposed enhanced keystroke authentication framework can
significantly improve the accuracy and efficiency of detection
of unauthorized access, while ensuring the continuous moni-
toring of keystroke dynamics on the fly.
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