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Abstract—Free-text keystroke is a form of behavioral biomet-
rics which has great potential for addressing the security limi-
tations of conventional one-time authentication by continuously
monitoring the user’s typing behaviors. This paper presents a
new, enhanced continuous authentication approach by incorpo-
rating the dynamics of both keystrokes and wrist motions. Based
upon two sets of features (free-text keystroke latency features
and statistical wrist motion patterns extracted from the wrist-
worn smartwatches), two one-vs-all Random Forest Ensemble
Classifiers (RFECs) are constructed and trained respectively.
A Dynamic Trust Model (DTM) is then developed to fuse the
two classifiers’ decisions and realize non-time-blocked real-time
authentication. In the free-text typing experiments involving 25
human subjects, an imposter/intruder can be detected within no
more than one sentence (average 56 keystrokes) with an FRR of
1.82% and an FAR of 1.94%. Compared with the scheme relying
on only keystroke latency which has an FRR of 4.66%, an FAR
of 17.92% and the required number of keystroke of 162, the
proposed authentication system shows significant improvements
in terms of accuracy, efficiency, and usability.

I. INTRODUCTION

Conventional one-time authentication methods, such as

password, fingerprints, and face recognition have dominated

the access authentication of computers today, which however,

suffer from severe security limitations. For instance, intruders

can potentially access the system before its being locked out

or logged off. Continuous authentication has proven to be

an effective approach for defending against the authentication

attacks on the fly. Through uninterrupted monitoring of the

user’s behavioral interaction with the computer during the

work session, continuous authentication can seamlessly val-

idate the user’s presence and detect fraudulent behaviors.

In designing a reliable and effective continuous authenti-

cation mechanism, there have been several popular biometric

methods known as soft biometrics [1], bio-signal biometrics

[2], mouse dynamics biometrics [3], and keystroke dynam-

ics biometrics [4]–[8]. Compared with soft biometrics and

bio-signals biometrics, behavioral biometrics such as mouse

and keystroke dynamics usually do not need extra sensors

adhering to the human body and can achieve a very high

recognition accuracy. Other merits of keystroke or mouse be-

havioral biometrics for continuous authentication include, non-
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invasiveness, simplicity, cost-effectiveness, and resilience to

counterfeit attempts. Existing research on keystroke dynamics

primarily focus on the static, fixed-text, one-time authentica-

tion, as a complementary security mechanism for password

login access. Recently, many research efforts have explored the

intrinsic characteristic patterns of free-text keystroke dynamics

for continuous authentication [9]–[12].

In this paper, we propose and develop an enhanced con-

tinuous authentication system by incorporating the dynamics

of both keystrokes and wrist motions. With the increasing

advances and popularity of wearable devices, such as wrist-

bands and smartwatches, human wrist motion behaviors can

be recorded and associated with the keystrokes while typing.

Compared with the traditional keystroke-based authentication,

our wrist motion enhanced, free-text keystroke approach can

provide higher efficiency and accuracy for continuous au-

thentication, without sacrificing user experience or involving

extra overhead. Based upon two sets of features (free-text

keystroke latency features and statistical wrist motion patterns

extracted from the wrist-worn smartwatches), two one-vs-all

Random Forest Ensemble Classifiers (RFECs) are constructed

and trained respectively. With a Dynamic Trust Model (DTM)

similar to the one in [7], the proposed system can achieve a

real-time decision making for nearly every keystroke. To the

best of our knowledge, this is the first work that incorporates

wrist motion behaviors with free-text keystroke dynamics to

implement a true, on-the-fly continuous authentication. The

specific contributions of this study include:

- Leveraging the one-vs-all RFECs, the proposed system

can effectively detect both imposters (a subject who

belongs to the training database and whose identity is

labeled as the attacker) and intruders (a subject of other

cases who does not belong to the database).

- The wrist motion behavioral patterns captured by the

wrist-worn smart devices (e.g., smartwatches) can signif-

icantly improve the detection accuracy of imposters and

intruders and also reduce the detection latency.

- The new context-aware keystroke latency feature cell

generation and selection method can inspect the latency

of every single keystroke in the context, boost the au-

thentication accuracy, and solve the latency fluctuation

problem (Different digraphs or trigraphs often have dif-

ferent latencies in different words).



The remainder of this paper is organized as follows. Section

II describes the state of the art of keystroke dynamics based

continuous authentication. Section III presents the processing

flow and methodological details of our proposed continuous

authentication approach, including feature extraction, classi-

fication, Dynamic Trust Model (DTM), and decision fusion

and decision making. The experimental setting and results are

discussed in Section IV & V. Finally, Section VI concludes

this research and foresees the future work.

II. RELATED WORK

Keystroke dynamics, given its unique advantages of low

implementation cost, transparency, and non-invasiveness, have

recently emerged as a popular approach for continuous au-

thentication. Monaco et al. [4] extract the statistical features

of key press duration times and digraph transition times and

achieves a very high authentication accuracy based on distance

measurement (99% on 14 subjects, 96% on 30 subjects).

Shimshon et al. [5] use a clustering approach to combine the

digraphs which have similar fly-time together as one feature.

The experiment on 10 true users and 15 imposters can reach a

FRR of 0.63% and FAR of 0.41%. A recent study [6] employs

12 algorithms for free-text keystrokes authentication system on

different devices with PC keyboard, soft keyboard and touch

keyboard, and conducts a comparative study about different

algorithms on different keyboards. Ceker et al. [9] implement

a two-component Gaussian Mixture model to reach a EER of

0.08% for the 30 users dataset. Brain et al. [8] investigate

whether typing behavior is affected by the cognitive demands

of a given task and the demographic features of the typist.

Roth et al. [11] design and evaluate an authentication system

based on keystroke sounds for both static-text and free-text.

Although many prior work have demonstrated very high

recognition rates of keystroke dynamics, most existing re-

search on keystroke-based continuous authentication often ne-

glects a very important aspect in evaluating their effectiveness

and performance — detection latency. Without loss of gen-

erality, we use the number of keystrokes required before the

detection of an imposter/intruder as an indicator of detection

latency, instead of the individual-specific typing speed. Bours

et al. [7] implement a dynamic scoring mechanism to present

the estimated trust level while the user is typing to achieve

real-time decision-making. The keystrokes used for detection

of imposters will be different (less keystrokes are needed for

the imposters who type in an obviously different way). In our

study, we improve this dynamic trust model by integrating the

decision fusion to achieve a comprehensive evaluation on both

accuracy and detection latency.

Furthermore, as the recent advances of wearable sensors

and smart devices (like smartwatches), many studies have

explored the use of those wearable devices for authentication

and security purposes. For example, researchers have used

the motion sensor data from the smartwatches to infer the

specific keystroke actions and even what the user is typing

[13]–[15]. Some other work [16] focus on using the motion

sensor on smartwatches to build a touch-based authentication

Fig. 1. Data flow diagram of the proposed system.

system. However, few studies have explored the use of wear-

able sensors or smartwatches to enhance the keystroke-based

biometric authentication on computers. As widely reported

in literature [17], [18], gait and arm movement patterns

recorded by smartwatches have been successfully adopted as

an effective authentication approach. In this study, we propose

to investigate the user’s wrist motion patterns during the typing

process and then incorporate these features into the keystroke-

based authentication through a strategic decision fusion.

III. METHODS

Figure 1 illustrates the data flow diagram of our proposed

keystroke continuous authentication system, including two

RFECs and a DTM. During the training phase, through the

feature extraction, the training data are fed into two separate

RFECs for learning digraph/trigraph latency data and wrist

motion data. In the meantime, part of the genuine users’ data

and the imposters’ data, which are not included in either

training or testing dataset, are taken as the characterization

data. With the well-trained RFECs and the characterization

data, the DTM without lockout function can characterize the

lockout threshold for the genuine user and the weights of

these two RFECs for further decision fusion. In the application

phase, with the two well-trained RFECs and the characterized

lockout threshold, the DTM can fuse the decisions from the

two RFECs and make a final decision of lockout or not on

the testing data. It is worthy to note that characterization data

will be solely used for generating the classifiers’ weights and

threshold of genuine users, instead of being used for any appli-

cation or evaluation purpose. The details of those components

in this framework will be discussed in the following.

A. Context-Aware Keystroke Latency Features

The digraph and trigraph latency (i.e., the time elapsed

between the two or three keys) have been proven to be the

most effective features in keystroke biometrics [4]. However,

depending on the specific word where the digraph or trigraph

is extracted, the latency can vary significantly [19]. Many

existing solutions to address the latency fluctuation issue in

free-text keystrokes rely on the post statistical analysis of

a large amount of keystrokes [4], [5], [9]. This solution,

however, is ineffective in representing the context-aware varia-

tions of digraph/trigraph latency and prohibitive for on-the-fly

continuous authentication using the real-time keystroke data.



TABLE I
EXAMPLE OF DIGRAPH/TRIGRAPH FEATURE CELL

TH HE IN ... AND ION

53ms 101ms 78ms ... 201ms 230ms
72ms 101ms 78ms ... 201ms 230ms

In this study, we propose to alleviate the context-aware

latency fluctuation problem by automatically constructing and

selecting a set of representative features. Specifically, instead

of using the raw latency data of any single digraph or trigraph,

we define a feature cell as the latencies of a entire set of

bigraphs/trigraphs and create a new feature cell when a new

keystroke alters one of the latency value. In this way, the

context-aware relationship between the latency of a specific

bigraph/trigraph and the latency of the rest bigraphs/trigraphs

can be largely retained. Then we utilize the feature importance

estimation function by RFEC to choose the optimized feature

set for each individual genuine user. Through experiments, it

is shown that the feature selection can filter out many noisy

features to mitigate the influence of latency fluctuations.

a) Generation of Feature Cells: Prior research [10] used

a complete latency feature table, i.e., a 26-by-26 matrix in

which each cell corresponds to an English digraph and may

contain multiple latency values due to the typing variations.

However, each cell is obtained through isolated statistical

analysis, that is, without the knowledge of the specific word

and context where the bigraph is located. In this study, we

propose to use the latency of 50 most frequently used digraphs

[TH HE IN ER AN RE ON AT EN ND TI ES OR TE OF

ED IS IT AL AR ST TO NT NG SE HA AS OU IO LE

VE CO ME DE HI RI RO IC NE EA RA CE LI CH LL

BE MA SI OM UR] and 10 most frequently trigraphs [THE

AND ING ION TIO ENT ATI FOR HER TER] in the English

language [20], as a feature cluster. As illustrated in Table

I, only if one digraph or trigraph in the feature cell has a

new latency (resulted from a new keystroke), a new feature

cell will be formed in which all other latency values remain

unchanged. For example, if the user types the two keys “T”

and “H” sequentially with a latency of 72ms, the TH digraph is

updated and a new feature cell is generated. In this way, every

individual keystroke will no longer be analyzed in an isolated

manner. Instead, it will be collectively inspected along with the

latency of those most recent and relevant bigraphs/trigraphs

in the context (i.e., those latency values remain in the feature

cell). Moreover, this mechanism allows the system to verify the

likelihood of every single keystroke in a continuous manner,

without sacrificing the generalization performance.

b) Optimization of Feature Cells: Because our feature

cells only contain the raw latency of digraphs and trigraphs,

the classifier can have more flexibility to extract and capture

the characters for different genuine users. To further find

the optimal digraphs and trigraphs for different users, we

utilize the filtering and retraining model similar to the gene

selection in [21]. In this filtering and retraining model, the

RFEC is iteratively trained. In each iteration, according to

the estimation of significance, part of the less important

feature cells are discarded and then a new RFEC is trained

Fig. 2. Cumulative distribution of acceleration and angle acceleration

with the updated feature set. Through the testing using the

characterization data, the RFEC which performs the best and

the corresponding feature set are kept as the characterized

feature set for this user.

B. Wrist Motion Features

In addition to the well-acknowledged difference in keystroke

latency dynamics, human typing behaviors may also involve

the difference in wrist motion patterns. It has been demon-

strated that the statistical distributions of acceleration and an-

gular acceleration features captured by a smartwatch when the

user is performing gesture-based operations on smartphones

are individually unique [16]. Given the observation that every

person has their own habit and preference of moving their

hands when they are transiting from one key to another,

it is thus argued that the individual uniqueness also exists

when typing on computers. This assumption can be proved,

as shown in Fig. 2, via the cumulative distributions of the

acceleration and angular acceleration in the 2-minute free-

text typing sessions by 7 subjects (the experimental setup

remains the same as the standard protocol described in Section

IV). In Figure 2, each color represents one subject and each

curve represents one session (each subject took at least three

independent sessions). Apparently, most of the curves in the

same color are closely clustered, and the curves with different

color are distinguishably separated.

We use the accelerometer and gyroscope available in smart-

watches to capture the acceleration and angular acceleration

data. For feature extraction, we segment the signals into a

series of time sliding windows of size 500 and the moving

step is set as 50 for continuous monitoring purpose. We

extract the probability distribution features of acceleration and

angular acceleration from each sliding window, according to

their amplitudes computed as m =
√

x2 + y2 + z2. Then two

separate filters are designed to remove the noises resulting

from some non-typing activities, such as the fast movements

while reaching the mouse. The distribution features obtained

from the two sensors on the tth window is annotated as:

disacc(t) = pdfacc(t), disgyr(t) = pdfgyr(t) (1)

Auth(t) = [disacc(t), disgyr(t)] (2)

During the data collection process, the subjects are in-

structed to wear two smartwatches on both hands. The ac-

quired sensory data from both hands are trained and tested



TABLE II
THE KEYSTROKE VERIFICATION PERFORMANCE BASED ON

SMARTWATCH MOTION SENSOR ON LEFT AND RIGHT HANDS

Genuine

User

Index

Left Hand Right Hand

FRR FAR
OOB

Error
FRR FAR

OOB

Error

Subject1 1.43% 11.38% 0.058 0.49% 4.39% 0.037

Subject2 1.5% 3.24% 0.049 0.5% 31.03% 0.097

Subject3 2.67% 16.69% 0.079 0.34% 8.57% 0.032

Subject4 1.96% 18.83% 0.059 1% 0.24% 0.028

Subject5 4.42% 16.37% 0.046 1.21% 28.81% 0.083

Subject6 1.85% 9.41% 0.057 0.65% 7.02% 0.030

Subject7 4.86% 21.41% 0.088 0.02% 14.08% 0.006

separately. Through experiment, we found that the better

performance is always obtained from the hand with a smaller

Out-Of-Bag (OOB) error as Table II (the definition of OOB

will be introduced in section III-C). Thus a more suitable hand

to wear smartwatch for different individuals can be chosen

according to the corresponding OOB. In the following study,

all users will always wear the smartwatch on the preferred

hand when they are typing.

C. Random Forest Ensemble Classification

Due to the high variance of keystroke dynamics and the

large feature dimension, traditional classifiers are vulnerable to

overfitting. Thus, it is necessary to seek a classifier which can

handle the high variance data, be resistant to overfitting, and

automatically select the most important and suitable features.

In this study, the Random Forest Ensemble Classifier (RFEC)

is proposed which is an aggregation of all base classifiers

{h(X,Θk), k = 1, 2, ...,K}. Θk is the parameter set for each

individual decision tree, and K represents the number of trees.

The construction process of the RFECs and the principle of

feature importance estimation by RFEC are as follows:

1) K subsets are randomly extracted from the original

training data set by the Bootstrap algorithm, based upon

which K decision trees are trained. For each extraction,

the subset which is not chosen is named as the “Out-

Of-Bag” (OOB) data (OOBk);

2) For each decision tree, if there are N features, each time

M features are selected (M ≤ N ). The decision tree

keeps choosing and splitting out the “most significant”

features (F ∈ M ) until it is fully grown;

3) Aggregation at the decision level is realized through the

majority voting of these K decision trees with their

corresponding weights wk (wk ∝ 1
E(OOBk)

, in which

E is the error estimation function);

4) The feature importance estimation is calculated by per-

muting values of one feature each time across OOB data

and measuring how worse the MSE of RFEC predictions

becomes after the permutation.

Fully growing each decision tree allows RFEC to be ca-

pable of processing high dimensional features. The majority

voting with wk aggregation method makes RFEC resistant

to overfitting and effective in handling high variance data.

With the importance estimation of the random forest, a feature

optimization strategy is presented (see Section III-A).

D. Decision Fusion and Dynamic Trust Model

With the goal of combining the classification results from

the two RFECs, a Dynamic Trust Model (DTM) [7] is adopted

and modified using the decision fusion [22] to improve the

efficiency and stability of intrusion detection in the proposed

authentication system. According to the FAR and FRR of the

two RFECs on the characterization data from both the genuine

user and the imposters, the weights ai for the N classifiers are

calculated as follows (where Hi is the estimation hypothesis

made by the ith classifier, 1 represents the genuine user while

0 represents the attacker):

ai =

{

log 1−FRRi

FARi

, if Hi = 1

log 1−FARi

FRRi

, if Hi = 0
(3)

The parameters ui is defined under different hypothesis:

ui =

{

1, if Hi = 1

−1, if Hi = 0
(4)

With the parameters ui and weight ai, the final fused decision

f(u1, ...un) from N classifiers can be made as follow:

f(u1, ...un) =

{

1, if
∑n

i=1 aiui > 0

−1, otherwise
(5)

The algorithmic details of DTM is presented in Algorithm 1.

The trust score’s range is from 0 to 100. During the training

phase, with the fused decisions on the current genuine user’s

characterization data, through the DTM with lockout function

(i.e., lines 8-14 in Algorithm 1), the minimum score is taken as

the lockout threshold for the genuine user. In the application

Algorithm 1: Dynamic Trust Model

Input: S represents the Trust Score, T represents the Lockout
Threshold, Ef is the estimation result from the decision fusion
of two RFECs

Output: Invalid User Detection (True or False)
1 Set the initial trust score S = 100;
2 if S > 0 and Ef is invalid user then
3 S −−;
4 else if S < 100 and Ef is true user then
5 S ++;
6 else if S > T then
7 Invalid User Detection ← False;
8 Go back to Step 2 with the updated Ef by RFEC based on new

wrist motion and latency data;
9 else

10 Invalid User Detection ← True;
11 System lock out, the number of keystrokes for the detection is

recorded;
12 end

phase, the trust score of the system is initially set as 100.

When a new sample of both the keystroke latency and the

wrist motion pattern arrives, the decision fusion is performed

to determine if this sample belongs to the genuine user or

the imposters/intruders, and accordingly the trust score is

incremented or decremented by one. If the trust score drops

below the lockout threshold, the current user will be locked

out immediately, and the number of keystrokes used for this

detection is recorded for further performance evaluation. The

system is capable of evaluating the validity of the current user

nearly for every keystroke sample.



Fig. 3. Data Structure

IV. EXPERIMENTAL SETTING

A total of 25 human subjects in age of 23-33 years old

(5 female and 20 male) were recruited to participate in the

experiments. 7 subjects (Subjects 1-7) were taken as the

genuine user and imposters, and the rest 18 subjects (Subjects

8-25) were the intruders. Each time, one of 7 subjects was

randomly designated as the genuine user, and the rest 6

subjects were designated as the imposters. For the genuine

user and imposters, the data collected from each subject

contained 9,030 keystrokes on average from five sessions

during a period of two weeks. For each intruder, an average

of 1,784 keystrokes were collected from one session. During

the training, 60% of data from the genuine user and 10%

of data from each imposter were fed into the classifier. 20%

of data from the genuine user and imposters were used to

characterize the classifiers’ weights and the lockout threshold.

We then used the rest 20% of the genuine user’s data, 70% of

the imposters’ data and the entire data from each intruder to

evaluate system’s performance. The Internal Review Board of

Binghamton University approved the experimental protocol.

Figure 3 describes the specific composition of the training

dataset, characterization dataset, and testing dataset. The dif-

ferent roles of the subjects are defined as follows:

- Genuine User: The authorized person who can access the

system.

- Imposters: The people who attempt to illegally access the

system and whose data has been partially known by the

classifier.

- Intruders: The people who attempt to illegally access

the system but whose data is entirely unknown by the

classifier. Intruder data is solely used for testing purposes.

In the experiments, subjects were instructed to type a transcript

randomly chosen by the subjects themselves. Correction of

typing mistakes is allowed but not required. Subjects were

required to choose a different transcript for different sessions.

We used the computers with the identical configuration (Intel

i7-6700 CPU @ 3.4GHz, 16GB RAM) and the same type of

keyboards (Dell SK-8175 USB Keyboard 104 Key Standard

QWERTY Layout). The subjects were seated on the same

type of office chairs with a fixed height of 40 cm during

the entire experimental sessions. The keystroke latency data

(in milliseconds) was collected through a custom, webpage-

style software programmed in HTML, PHP and JavaScript.

The smartwatches used in experiments are Sony SWR50

TABLE III
PERFORMANCE BASED ON KEYSTROKE LATENCY

Genuine

Users
FRR

FAR
Avg # of Keystrokes for

Detection of Attacks

Imposters Intruders All Imposters Intruders All

Sub1 1.7% 18.4% 34.8% 22.6% 60 102 79

Sub2 0.8% 21.9% 43.7% 35.3% 77 158 94

Sub3 3.9% 7.2% 36.9% 15.5% 70 113 79

Sub4 0.7% 8.4% 11.9% 9.6% 37 60 43

Sub5 8.9% 23.3% 29.5% 26.3% 333 400 376

Sub6 8.9% 5.2% 7.5% 6.6% 284 293 286

Sub7 1.9% 3.7% 5.1% 4.1% 33 44 39

Ave 4.6% 12.7% 28.8% 17.9% 128 195 162

TABLE IV
PERFORMANCE BASED ON KEYSTROKE LATENCY AND WRIST MOTIONS

Genuine

Users
FRR

FAR
Avg # of Keystrokes for

Detection of Attacks

Imposters Intruders All Imposters Intruders All

Sub1 1.5% 0.8% 1.4% 1.1% 61 72 67

Sub2 1.9% 0.9% 1.6% 1.2% 33 43 38

Sub3 3.1% 0.0% 1.7% 0.8% 46 52 49

Sub4 1.0% 0.1% 1.5% 0.6% 23 30 28

Sub5 9.1% 2.7% 4.4% 4.0% 116 122 120

Sub6 0.6% 3.2% 8.4% 7.3% 45 54 52

Sub7 2.2% 0.0% 1.2% 0.8% 33 42 38

Ave 1.8% 1.0% 2.4% 1.9% 51 60 56

1.6-Inch Display SmartWatch 3 running Android Wear. The

accelerometer and gyroscope recordings (at a frequency of 50

Hz) were collected through a custom program programmed

in ActionScript 3.0. During the experimental sessions, all

the subjects were required to wear the smartwatches in the

traditional position on top of the wrist.

V. RESULTS

Three performance indicators are used in the evaluation, in-

cluding the False Acceptance Rate (FAR), the False Rejection

Rate (FRR), and the average number of keystrokes required

for detection of each unauthorized access. Specifically, in

this study, FRR refers to the percentage ratio between the

keystroke test samples of the genuine user that are falsely

classified and labeled as the ‘attacker’ against the total number

of keystroke samples from the genuine user. FAR is defined as

the percentage ratio between the keystroke test samples of the

imposters/intruders that are falsely classified and accepted as

the ‘true user’ against the total number of keystroke samples

from the imposters and intruders accessing the system. Based

on the implemented DTM which locks out any unauthorized

user when the trust score drops below the lockout threshold,

the number of keystrokes required for detection of this unau-

thorized access is recorded as an indicator of the efficiency

of the proposed approach. It is obvious that less number of

required keystrokes will result in a much faster and earlier

detection of unauthorized access to the system.

There are two sets of experiments in this study. The first

experiment set is to evaluate the performance of the free-

text keystroke continuous authentication approach based on

solely digraphs and trigraphs latency features. As shown in

Table III, leveraging our novel context-aware keystroke latency

feature cell generation and feature selection, the proposed

approach can achieve a rather low FRR level for genuine users

(<5%) and an acceptable FAR level for imposters (∼10%,



whose data was partially learned by the classifier). However,

due to the uncertainty of the intruders’ data (which was not

introduced to and learned by the classifier), unsurprisingly the

system has a relatively higher FAR for intruders (∼30%). The

number of keystrokes required for detection of unauthorized

accesses ranges from 39 to 376, with an average of 162.

This performance is comparable to the results reported in

the literature [7]. Nevertheless, our approach demands much

less training samples, by taking advantage of the proposed

context-aware keystroke latency feature and RFEC’s capability

on dealing with high-dimensional, high-variance data.

The second experiment set is to evaluate the performance

of the enhanced free-text keystroke continuous authentication

approach based on both keystroke latency and wrist motion

behaviors. According to Table IV, it is shown that the pro-

posed approach can significantly improve the performance of

continuous authentication from all three aspects: average FRRs

for genuine users decrease to a level below 2%; average FARs

for both imposters and intruders decrease to a level below 3%;

and the average number of keystrokes required for detection

of attacks are only around 56. The results indicate that,

the wrist motion behaviors during typing contain individual-

specific characteristics which can help verify the user’s identity

when combined with the keystroke dynamics. It is worthy

to mention that, because our method relies on the statistical

distribution of wrist motions for feature extraction, a minimum

of 500 data samples from the smartwatch (window size) are

necessary at the beginning of the authentication process in

order to obtain the wrist motion patterns. That is, under a

frequency of 50 HZ, around 10 seconds of typing activities

which correspond to 20∼25 keystrokes at a normal typing

speed need to be recorded at the beginning of each authenti-

cation process. After that, leveraging the sliding window and

context-aware keystroke latency feature extraction and feature

selection strategies, our proposed system can achieve real-time

analysis of keystroke dynamics and wrist motion behaviors,

resulting in the on-the-fly continuous authentication.

VI. CONCLUSIONS

Keystroke dynamics have been extensively investigated as

an effective behavioral biometric approach, especially for

increasing significant continuous authentication. Most of exist-

ing research focus on the fixed-text keystroke authentication,

which however, significantly limits its applicability and user

acceptance in real-world scenarios. In this study, we propose a

novel enhanced free-text keystroke continuous authentication

approach based on both keystroke latency patterns and wrist

motion behaviors captured by wrist-worn smartwatches. A

new feature cell generation and optimization strategy is also

proposed to maximize the context-aware verification capability

for every single bigraph/trigraph and minimize the influence

of latency fluctuations. The experimental results show that, the

proposed enhanced keystroke authentication framework can

significantly improve the accuracy and efficiency of detection

of unauthorized access, while ensuring the continuous moni-

toring of keystroke dynamics on the fly.
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