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Abstract—We develop an economic model of an offline pass-
word cracker which allows us to make quantitative predictions
about the fraction of accounts that a rational password attacker
would crack in the event of an authentication server breach. We
apply our economic model to analyze recent massive password
breaches at Yahoo!, Dropbox, LastPass and AshleyMadison.
All four organizations were using key-stretching to protect user
passwords. In fact, LastPass’ use of PBKDF2-SHA256 with 10°
hash iterations exceeds 2017 NIST minimum recommendation
by an order of magnitude. Nevertheless, our analysis paints
a bleak picture: the adopted key-stretching levels provide
insufficient protection for user passwords. In particular, we
present strong evidence that most user passwords follow a
Zipf’s law distribution, and characterize the behavior of a
rational attacker when user passwords are selected from a
Zipf’s law distribution. We show that there is a finite threshold
which depends on the Zipf’s law parameters that character-
izes the behavior of a rational attacker — if the value of
a cracked password (normalized by the cost of computing
the password hash function) exceeds this threshold then the
adversary’s optimal strategy is always to continue attacking
until each user password has been cracked. In all cases (Yahoo!,
Dropbox, LastPass and AshleyMadison) we find that the value
of a cracked password almost certainly exceeds this threshold
meaning that a rational attacker would crack all passwords
that are selected from the Zipf’s law distribution (i.e., most user
passwords). This prediction holds even if we incorporate an
aggressive model of diminishing returns for the attacker (e.g.,
the total value of 500 million cracked passwords is less than 100
times the total value of 5 million passwords). On a positive note
our analysis demonstrates that memory hard functions (MHF's)
such as SCRYPT or Argon2i can significantly reduce the
damage of an offline attack. In particular, we find that because
MHFs substantially increase guessing costs a rational attacker
will give up well before he cracks most user passwords and
this prediction holds even if the attacker does not encounter
diminishing returns for additional cracked passwords. Based
on our analysis we advocate that password hashing standards
should be updated to require the use of memory hard functions
for password hashing and disallow the use of non-memory hard
functions such as BCRYPT or PBKDF2.

1. Introduction

In the last few years breaches at organizations like Ya-
hoo!, Dropbox, Lastpass, AshleyMadison, LinkedIn, eBay
and Adult FriendFinder have exposed over a billion user
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passwords to offline attacks. Password hashing algorithms
are a critical last line of defense against an offline attacker
who has stolen password hash values from an authentication
server. An attacker who has stolen a user’s password hash
value can attempt to crack each user’s password offline by
comparing the hashes of likely password guesses with the
stolen hash value. Because the attacker can check each guess
offline it is no longer possible to lockout the adversary after
several incorrect guesses.

An offline attacker is limited only by the cost of com-
puting the hash function. Ideally, the password hashing al-
gorithm should be moderately expensive to compute so that
it is prohibitively expensive for an offline attacker to crack
most user passwords e.g., by checking millions, billions or
even trillions of password guesses for each user. It is perhaps
encouraging that AshleyMadison, Dropbox, LastPass and
Yahoo! had adopted slow password hashing algorithms like
BCRYPT and PBKDF2-SHA256 to discourage an offline
attacker from cracking passwords. In the aftermath of these
breaches, the claim that slow password hashing algorithms
like BCRYPT [1] or PBKDF2 [2] are sufficient to protect
most user passwords from offline attackers has been re-
peated frequently. For example, LastPass [3] claimed that
“Cracking our algorithms [PBKDF2-SHA256] is extremely
difficult, even for the strongest of computers.” Security ex-
perts have made similar claims about BCRYPT e.g., after the
Dropbox breach [4] a prominent security expert confidently
stated that “all but the worst possible password choices are
going to remain secure” because Dropbox had used the
BCRYPT hashing algorithm.

Are these strong claims about the security of BCRYPT
and PBKDF?2 true? Despite all of their problems passwords
remain prevalent and are likely to remain entrenched as the
dominant form of authentication on the internet for years to
come because they are easy to use and deploy, and users
are already familiar with them [5], [6], [7]. It is therefore
imperative to develop tools to quantify the damages of
password breaches, and provide guidance to organizations
on how to store passwords. In this work we seek to address
the following question:

Can we quantitatively predict how many user pass-
words a rational attacker will crack after a breach?

We introduce a game-theoretic model to answer this
question and analyze recent data-breaches. Our analysis
strongly challenges the claim that BCRYPT and PBKDF2-
SHA256 provide adequate protection for user passwords. On
the positive side our analysis indicates that more modern



password hashing algorithms [8] (e.g., memory hard func-
tions [9]) can provide meaningful protection against offline
attackers.

1.1. Contributions

We first develop a new decision-theoretic framework
to quantify the damage of an offline attack. Our model
generalizes the stackelberg game-theoretic model of Blocki
and Datta [10]. A rational password attacker is economi-
cally motivated and will quit guessing once his marginal
guessing costs exceed his marginal reward. The attacker’s
marginal reward is given by the probability p; that the
next (ith) password guess is correct times the value of
an additional cracked password to the adversary e.g., the
additional revenue of selling that password on the black
market or the expected amount of additional money that
could be extorted from this user. Given the average value v
of each cracked password for the adversary', the cost k of
computing the password hash function and the probability
distribution p; > p2 > ... over user selected passwords,
our model allows us to predict exactly how many passwords
a rational adversary will crack. Unlike the model of Blocki
and Datta [10] we can use our framework to model a setting
in which the attacker encounters diminishing returns as we
would expect in most (black)markets i.e., the total value
of 500 million cracked passwords may be significantly less
than 100 times the total value of 5 million passwords.

Second, we present the strongest evidence to date that
Zipf’s law models the distribution of user selected passwords
(with the possible exception of the tail of the distribution).
These findings strongly support previous conclusions of
Wang and Wang [11]. In particular, we show that Zipf’s
law closely fits the Yahoo! password frequency corpus. This
dataset was collected by Bonneau [12] and later published
by Blocki et al. [13]. In contrast to datasets from password
breaches the Yahoo! dataset was collected by trusted parties,
and is representative of active Yahoo! users (researchers
have observed that hacked datasets contain many passwords
that appear to be fake [14]). Our sample size, 70 million
users, is also more than twice as large as the datasets Wang
and Wang[11] used to support their argument that Zipf’s
law closely models password datasets.

Third, we show that there is a finite threshold T(.) which
characterizes the behavior of a rational value v-adversary
whenever the distribution over passwords follows Zipf’s
law. In particular, if the first cracked password has value
v > T(.) X k then the adversary’s optimal strategy is always
to continue guessing until he cracks the user’s password. The
threshold T(y, 1, a) is parameterized Zipf’s law parameters
y and r and a parameter a representing the rate of password
value decay. We remark that, even if Zipf’s law fails to
model the tail of the password distribution, the threshold
T(y,r,a) still provides a useful characterization of the

1. More precisely, if there are N users in the dataset and the total
value of all N cracked passwords is V then v = V/N. When there are
diminishing returns for additional cracked passwords the parameter v may
be significantly lower than the value of the first cracked password.

attacker’s behavior. In particular, if (1 —x)% of passwords
in a distribution follow Zip’s law and the other x% follow
some unknown (possibly uncrackable) distribution then our
bounds imply that an attacker will compromise at least
(1 —x)% of user passwords whenever v > T(y,r,a) x k.

Fourth, we also derive model independent upper and
lower bounds on the fraction of passwords that a rational
adversary would crack. While these bounds are slightly
weaker than the bounds we can derive using Zipf’s law these
bounds do not require any modeling assumptions e.g., it is
impossible to determine for sure whether or not Zipf’s law
fits the tail of the password distribution. Interestingly, the
lower bounds we derive suggest that state of the art password
crackers [15] could still be improved substantially.

Fifth, we apply our framework to analyze recent large
scale password breaches including LastPass, AshleyMadi-
son, Dropbox and Yahoo! Our analysis strongly challenges
the claim that BCRYPT and PBKDF2-SHA256 provide
adequate protection for user passwords. In fact, if the
password distribution follows Zipf’s law then our analy-
sis indicates that a rational attacker will almost certainly
crack 100% of user passwords e.g., unless the value of
Dropbox/LastPass/AshleyMadison/Yahoo! passwords is sig-
nificantly less valuable than black market projections [16].

Finally, we derive model independent upper and lower
bounds on the % of passwords cracked by a rational ad-
versary. These bounds do not rely on the assumption that
Zipf’s law models the tail of the password distribution®.
Nevertheless, our predictions are still quite dire e.g., a
rational adversary will crack 51% of Yahoo! passwords at
minimum. Our analysis indicates that, to achieve sufficient
levels of protection with BCRYPT or PBKDF?2, it would be
necessary to run these algorithms for well over a second
on modern CPU which would constitute an unacceptable
authentication delay in many contexts [17]. On a more
positive note our analysis suggests that the use of more
modern password hashing techniques like memory hard
functions can provide strong protection against a rational
password attacker without introducing inordinate delays for
users during authentication. In particular, our analysis sug-
gests that it could be possible to reduce the % of cracked
passwords below 22.2% without increasing authentication
delays to a full second.

1.2. Discussion

In light of our analysis we contend that that there is
a clear need to update standards for password storage to
provide developers with clear guidance about the importance
of using memory hard functions such as SCRYPT [9] or
Argon2id [18]. In a recent recent user study Naiakshina
et al. [19] asked developers to select a password hash
function for a new social networking platform. None of the

2. Wang and Wang [11] observed that the tails of empirical password
datasets are not inconsistent with a Zipf’s law distribution. However, we
cannot be entirely confident that Zipf’s law models the tail of the distribu-
tion since, by definition, we do not have many samples for passwords in
the tail of the distribution.



developers in this study selected a memory hard function?
and the strongest password hashing algorithms selected were
PBKDF2 with 20,000 hash iterations and BCRYPT with
1,024 iterations. The selection of PBKDF2 with 20,000 hash
iterations would be deemed acceptable under 2017 NIST
standards [20] — PBKDF?2 with at least 10, 000 iterations is
presented an acceptable selection for password hashing®. In
this sense, LastPass’ use of PBKDF2-SHA256 with 100, 000
iterations greatly exceeds current NIST standards. Neverthe-
less, our analysis suggests that even PBKDF2-SHA256 with
100, 000 hash iterations is insufficient to protect a majority
a user passwords while memory hard functions such as
SCRYPT [9] or Argon2id [18] would provide meaningful
protection. In addition to memory hard functions we also
advocate for the use of secure distributed password hashing
protocols [22], [23], [24] whenever feasible so that an
attacker cannot mount an offline attack without breaching
multiple authentication servers.

2. Economic Model

2.1. Preliminaries

Given a dataset D of N user passwords we use f; to de-
note the frequency of the 1’th most common password in the
dataset and we use pwd; to denote the i’th most common
password in the dataset. We use p1,p2,... to denote the
actual distribution over passwords pwd;,pwd,,.... That
is py is the probability that a random user selects password
pwd;i. We use p; = fi/N to denote an empirical estimate
of p; given a dataset D which was sampled from the real
password distribution. We also use A; = 2;21 P; to denote
the cumulative probability of the i most likely passwords.
Equivalently, A; denotes the probability that an adversary
cracks the user’s password within the first i guesses.

We say that the probability distribution py > p2...
follows Zipf’s law if p; = % for some constants s and z.
We say that a probability distribution follows a CDF-Zipf
distribution if A; = yi" for some constants r and y.

Offline Attack. To authenticate users password
authentication servers traditionally store salted pass-
word hashes. In more detail to authenticate user u
the authentication stores a record like the following:
(W, su, H(pwdylsy)). Here, u is the the username and
pwd,, is the user’s password, s, is a random string called
the salt value used to protect against rainbow table attacks
and H is a cryptographic hash function. An adversary who
breaches the authentication server will be able to obtain
the hash value along with the secret salt value. This ad-
versary can now attempt as many guesses as he desires
offline by computing the hashes of likely passwords guesses
H(g1,su), H(g2,S1u), ... and comparing these values with

3. On a positive note the authors did find that priming developers about
the importance password security resulted in the selection of stronger
password hashing algorithms.

4. An upgrade from 1,000 iterations as the minimal acceptable number
of hash iterations for PBKDF2 in an older 2010 NIST standard [21].

the stolen password hash. The attacker is only limited by
the resources that he is willing to invest trying to crack the
user’s password.

Key Questions and Parameters. We aim to address
the following questions: How many guesses will our rational
adversary attempt? What fraction of the user passwords
will an adversary manage to break? The answer to these
questions will depend on several factors. How valuable is a
cracked password to the adversary? How much does it cost
to compute H each time we validate a new password guess?
What does the distribution over user passwords look like?

We use v to denote the value of a cracked password
to the adversary measured in units of Cyy, where H is an
underlyng cryptographic hash function like SHA256. We
can estimate v* by looking at black market prices for cracked
passwords. For example, Fossi et al. [16] found that the
market price for hacked passwords tends to lie in the range
[$4, $30]. A more recent analysis of Yahoo! passwords found
that they sell for between $0.7 and $1.2 [25] — the drop
in price may be due to an increased supply of Yahoo! pass-
words. Herley and Florencio found that dishonest behavior
can significantly inhibit trade on black markets [26]. Thus,
these prices may underestimate the true value of a cracked
password.

Password hash functions are often constructed from an
underlying cryptographic hash function H. For example,
PBKDF2-SHA256 simply iterates the SHA256 hash func-
tion multiple times. We use k to denote the cost of a
computing the final password hash function — once again
measured in units of Cpy. We use vv = v x Cy (resp.
k® =k x Cyy) to denote the value (resp. cost) in USD given
an estimate of Cyy.

2.2. Rational Adversary

We model a rational adversary who has obtained the
salted password hash of a user’s password. Our model gen-
eralizes the stackelberg game-theoretic framework of Blocki
and Datta [10] by introducing a parameter 0 < a < 1
which models diminishing returns. We assume that adver-
sary knows the password distribution p1,p2,... as well as
the corresponding passwords pwdi,pwda;,.... However,
the adversary does not know which password the user
selected.

Attacker Game. We model password cracking using
a single-shot game. In the game we sample a random pass-
word pwd from the password distribution Pr[pwd;] = p;.
The adversary picks a threshold t > 0. The threshold t
specifies an ordered list L(t) = pwdy,...,pwd; of the t
most likely passwords. If the real password is contained
in the list of adversary guesses, pwd € L(t), then the
adversary receives a payment of v and we charge the ad-
versary j - k, where j is the index of the correct password
guess pwd = pwd;. If the real password is not contained
in the list pwdy,...,pwd; of adversary guesses then the
adversary receives no payment (v = 0) and the adversary is
charged t-k. Notice that t = O corresponds to the strategy in
which the adversary gives up without guessing, and t = oo



corresponds to the strategy in which the adversary never
quits. Observe that Ay = 2;21 pj denotes the fraction of
user passwords that are cracked by a threshold t adversary.

About the Attacker. In our analysis we consider an
attacker that is

(1) Informed: The attacker knows the password dis-
tribution pi1,p2... and the associated passwords
pwdi,pwd,; .... However, the attacker does not know
which password a particular user u selected.

(2) Untargeted: The attacker does not have personal
knowledge about the user that can be exploited to
improve the guessing attack.

(3) Rational: The attacker is economically motivated, and
will stop attacking the user once marginal guessing
costs exceed the marginal guessing rewards.

Discussion. Our attacker model captures the most
common types of password attacks. It is generally reason-
able to assume that the attacker knows the password distri-
bution — possibly excluding of the tail of the distribution.
In particular, previous password breaches provide plenty of
training data for the attacker and it is reasonable to assume
that password cracking models will continue to improve as
attackers obtain more and more training data from future
password breaches. We focus on an untargeted attacker in
our analysis. However, we stress that our model may also be
useful when considering a targeted attacker with background
knowledge of the user (e.g., name, birthdate, hobbies etc...).
In particular, let p; denote the probability that a targeted
adversary’s 1’th guess is correct. Wang et al. observed that
a targeted distribution over user passwords pi,pz... still
seems to follow Zipf’s law [27].

Rational Attacker Behavior. If the adversary chooses
a threshold t then his expected guessing costs are

t t
Cy=t{1=> pj|k+k> j-p;.

j=1 j=1

Similarly, his expected reward is

R(t) =v ij
j=1

where the parameter 0 < a < 1 allows us to model
diminishing returns for the attacker as he obtains additional
cracked passwords. For example, let t;4, (resp. t,q,) be given
such that p7 + ...+ p¢,, = 0.01 (p1 + ... + P, = 0.02)
then for a < 1 we have R(t2q) = 2%R(t19) < 2 X R(t14)
even though an adversary cracks twice as many passwords
by increasing his threshold from t¢, to ts¢,.

Diminishing Returns: We note that the original model of
Blocki and Datta [10] is a special case of our model when
a = 1 (no diminishing returns). There are a number of
reasons why an attacker may encounter diminishing returns
(a < 1) for additional cracked passwords. First, if the
attacker plans to sell the passwords on the black market
then basic economics suggests that increasing the supply of
cracked passwords is likely to drive down prices. In the case

a

of a large breach like Yahoo! (500 million passwords) it is
conceivable the number of available passwords on the black
market might quickly increase by two orders of magnitude.
Second, the more user accounts that are hacked/actively
exploited the more likely it is that the original breach will be
detected. If the breach is detected then an organization can
ask (or require) users to change their passwords or require
two-factor authentication, which will reduce the value of
each cracked password®.
Interpreting model parameter v: We note that we have
v = R(o0), where R(oo) x N denotes the total value of
a completely cracked password dataset of size N. Thus,
the parameter v denotes the average value of a cracked
password given that all password have been cracked. We can
estimate this parameter v based on black market sales data.
For example, suppose that we know that R(t14) = $4 x 1%
e.g., from equilibrium black market prices when only 1% of
cracked passwords are on the market. In this case we can
extrapolate
$4

v =R(0c0) = R(t100%) = 100°R(t14) = T00T-a ° ey
Rational Attacker Behavior: Formally, the rational ad-
versary will select the threshold t* maximizing his overall
utility

t* = arg max (R(t) — C(t)) .

Intuitively, a rational adversary should stop guessing
if the marginal cost of one more password guess exceeds
the marginal benefit of that guess. Thus, we will have
MC(t*) = C(t*)—C(t*—1) =~ MR(t*) = R(t*)—R(t*—1).
The marginal cost of increasing the threshold from t —1 to
tis

t—1
MCt)=C)—Clt—T)=k[T=> p;| . @

j=1

Intuitively, the attacker pays an extra cost k to hash pwd.
if and only if the first t — 1 guesses are incorrect. Similarly,
the attacker’s marginal revenue is MR(t) = R(t) —R(t—1)
when a = 1 we have MR(t) =v X p¢ otherwise

t t—1
MR =v | [> p| — (D p xpe. 3
j=1 j=1

Note that Ay« denotes the expected fraction of passwords
compromised by an rational attacker. Given a specific as-
sumption about the password distribution (e.g., Zipf’s law)
we can derive bounds on A¢«.

Competition. We do not attempt to directly model the
behavior of an adversary who faces competition from other
password crackers. Many breaches (e.g., Yahoo!, LinkedIn,

5. However, the cracked passwords arguably still have significant value
after the breach is detected for two reasons. First, many users will not
update their passwords unless they are required to do so. Second, many
of the users that do update their passwords may do so in a predictable
way [28]. Third, many users will have the same password for other
accounts.



Dropbox) remained undetected for several years. In these
cases it may be reasonable to assume that the password
cracker faced no competition. However, competition cer-
tainly could occur in the event that the breach is public
(e.g., Ashley Madison). In an extremely competitive setting
(e.g., password for a cryptocurrency wallet) only the first
attacker to crack the password will be rewarded®. Such
competition would decrease the expected reward for each
cracked password and could potential reduce the total % of
passwords cracked by each individual attacker.

However, from the defender’s point of view the goal is
to minimize the % of passwords that are cracked by any
attacker. Thus, we can argue that competition will have a
minimal impact on the total % of cracked passwords. In
particular, even in an extremely competitive setting where
only the first attacker to find the password is rewarded we
still have

CompCrack(v,a) > Oingré1 max{Cracked(pv,a),1 —p}.
Here CompCrack(v) (resp. Cracked(v)) denotes the % of
passwords that are cracked by some attacker when the value
of a password is v and attackers face competition (resp. do
not face competition). This follows because the expected
reward for attacker when faced with competition is at least
Reomp (t) > Prirst X R(t) where pirst is the probability
that no competing attacker managed to crack the password
already. If pirs¢ is small then the marginal rewards will also
be small so the attacker may quit earlier, but in this case it
is likely that another attacker has already compromised the
account (1 — Prirst)-

Defender Actions. The value A+ will depend on k,
v as well as the underlying password distribution p; >
P2 > .... The goal of key-stretching is to increase k so that
we can reduce Ai-, the fraction of compromised accounts,
in the event of an authentication server breach. However,
the defender is constrained by server workload and by
authentication times. In particular, the number of sequential
hash iterations (T) is bounded by usability constraints as
users may be unhappy if they need to wait a long time
to authenticate e.g., it would at least a second to compute
PBKDF2-SHA256 with T = 107 hash iterations on a mod-
ern CPU [29]. Similarly, the total workload k is similarly
bounded by workload constraints e.g., the authentication
server must be able to handle all of the authentication re-
quests even during traffic peaks. If the value v is sufficiently
large (in proportion to the cost k of a password guess) then
a rational attacker will crack every password Ay« = 1. In
this case we say that all of the key-stretching effort was
useless against a value v rational adversary.

Password hashing algorithms like BCRYPT, PBKDF2
and SCRYPT have parameters that control the running time
(number of hash iterations) T and total cost k of computing
the password hash function. Thus, the cost k of computing

6. However, we remark that in many instances attackers may unknow-
ingly “share” the benefit of a cracked account. For example, an attacker
who cracks a password may not actually change the password since such
an action would alert the legitimate user of the breach.

PBKDF2 or BCRYPT is k = T x Cy, where Cy denotes
the cost of computing the underlying hash function (e.g.,
SHA256 or Blowfish). We will treat C as a unit of mea-
surement when we report the cost k and write k = T for
the BCRYPT and PBKDF2 functions. Given an estimate of
Cyy in USD we will use k® = k x Cy to denote the cost of
computing the password hash function in USD.

Intuitively, a memory hard function is a function whose
computation requires large amounts of memory. One of the
key advantages of a memory hard function is that cost k
potentially scales with T2 instead of T making it possible to
increase costs without introducing intolerable authentication
delays. An ideal memory hard function runs in time T and
requires T blocks of memory to compute. Thus, the Area
x Time (AT) complexity of computing the Memory Hard
Function scales with T2 because the adversary must allocate
T blocks of memory for T units of time. In particular, we
use k = T x Cyy + T X Cpem to model the approximate
cost of computing a memory hard function which iteratively
makes T calls to the underlying hash function H and requires
T blocks of memory. By contrast, the AT complexity of
BCRYPT and PBKDF?2 is just k = T since these functions
can be computed with a single block of memory. Here,
Cmem 1s a constant representing the core memory-area
ratio. That is the area of one block of memory on chip
divided by the the area of a core evaluating H on chip.
In this paper we use the estimate Cyem =~ 1/3000 as in
[30], [31] though we stress that our analysis could be easily
repeated with different parameter choices.

Model Limitations. To keep exposition simple we do
not attempt to incorporate any model of equilibrium prices
for cracked passwords on the black market and instead
assume that the value of a cracked password v* is static for
all users. A targeted adversary may have higher valuations
for specific user passwords e.g., celebrities, politicians. Sim-
ilarly, an attacker who floods a black market with cracked
passwords may drive equilibrium prices down. Our primary
findings would not be altered in any significant way by
including such a model unless equilibrium prices drop by
1-2 orders of magnitude [16]. We also remark that our
intention is to model an untargeted economically motivated
attacker and not a nation state focused on cracking the
passwords of a particular person of interest. However, it may
still be reasonable to believe that a nation state attacker will
be largely be constrained by economic considerations (e.g.,
expected value of additional intelligence gained by cracking
the password versus expected cost to crack password).

3. Yahoo! Passwords follow Zipf’s Law

Zipf’s law states that the frequency of an element in a
distribution is related to its rank in the distribution. There
are two variants of Zipf’s law for passwords: PDF-Zipf
and CDF-Zipf. In the CDF-Zipf model we have Ay =

Z;‘:1 pi =y-t", where the constants y and r are the CDF-

Zipf parameters. In the PDF-Zipf model we have f; = i%,

where s and C are the PDF-Zipf parameters. Normalizing

by N the number of users we have p; = %, where z = %



Wang et al. [32] previously found that password frequen-
cies tend to follow PDF-Zipf’s law if the tail of the password
distribution (e.g., passwords with frequency f; < 5) is
dropped. Wang and Wang [11] subsequently found that
CDF-Zipf’s model is superior in that the CDF-Zipf fits
were more stable than PDF-Zipf fits and that the CDF-
Zipf fit performed better under Kolmogorov-Smirnov (KS)
tests. Furthermore, the CDF-Zipf model can fit the entire
password distribution (e.g., without excluding passwords
with frequency f; < 5). These claims were based on analysis
of several smaller password datasets (N < 32.6 million
users) which were released by hackers.

In 2016 Yahoo! allowed the release of a differentially
private list of password frequencies for users of their ser-
vices [13]. We refer an interested reader to [12], [13] for
additional details about how the Yahoo! data was collected
and how it was perturbed to preserve differential privacy.
The Yahoo! dataset is superior to other datasets in that
it offers the largest sample size N = 70 million and the
dataset was collected and released by trusted parties. We
show that the Yahoo! dataset is also well modeled by CDF-
Zipf’s law. Our analysis comprises the strongest evidence
to date of Wang and Wang’s premise [11] that password
distributions follow CDF-Zipf’s law due to the advantages
of the Yahoo! dataset. We focus on the CDF-Zipf’s law
model in this section since it can fit the entire password
distribution [11]. We also verified that the Yahoo! dataset is
also well modeled by PDF-Zipf’s law if we drop passwords
with frequency f; < 5 like Wang et al. [32], but we omit
this analysis from the submission due to lack of space.

The rest of this section is structured as follows: First, in
section 3.1 we discuss the advantages of using the Yahoo!
dataset over leaked datasets like RockYou. In 3.2 we show
that the noise that was added to preserve differential privacy
will have a negligibly small impact on CDF-Zipf fittings. In
section 3.3 we use subsampling to show that the CDF-Zipf
fittings for Yahoo! converge to a stable solution. Finally, in
section 3.4 we present the CDF-Zipf fitting for the entire
Yahoo! dataset.

3.1. On Ecological Validity

The Yahoo! frequency corpus offers many advantages
over breached password datasets such as RockYou or
Tianya.

o The Yahoo! password frequency corpus is based on 70
million Yahoo! passwords — more than twice as large
as any of the breached datasets analyzed by Wang and
Wang [11].

o The records were collected in a trusted fashion. No
infiltration, hacking, tricks, or general foul play was
used to obtain any of this data. There was no ulterior
motive behind collecting these passwords other than
to provide valuable data in a way that can be used
for scientific research. By contrast, it is possible that
hackers strategically omit (or inject) password data
before they release a breached dataset like RockYou or

List Version y Oy

RockYou Standard 0.0288

RockYou Diff. Private | 0.0302 1.348 % 10~°
T o

RockYou Standard 0.2108

RockYou Diff. Private | 0.2077 2.94 %« 10~°
R2 OR2

RockYou Standard 0.9687

RockYou Diff. Private | 0.9681  6.50 % 10—

TABLE 1: Impact of Differential Privacy on CDF Fit

Tianya! Why should we trust rogue hackers to provide
researchers with representative password data?

« Breached password datasets often contain many pass-
words/ accounts that look suspiciously fake. In 2016
Yang et al [14] suggested that such passwords can
be removed with DBSCAN [33]. Cleansing operations
ended up removing a reasonable portion of the dataset
(e.g., 5 million passwords were removed from Rock-
You’s data). With the Yahoo! data such cleansing is
not needed, as it was collected in a manner that ensured
collected passwords were in use. Previous work that has
been done on Zipf distributions in breached password
datasets [11] did not perform any sort of sanitizing step
on the data. It is unclear how such operations would
affect the Zipf law fit.

o The information is released in a responsible way that
preserves users’ privacy. The differential privacy mech-
anism means that even with the released data it is
not possible to determine any new information about
Yahoo’s users that an adversary would not be able to
obtain anyways.

« Data from the Yahoo! password frequency corpus ulti-
mately is derived from the passwords of active Yahoo!
users who were logging in during the course of the
study as opposed to passwords from throwaway ac-
counts that have been long forgotten.

3.2. On the Impact of Differential Privacy on CDF-
Zipf Fits

The published Yahoo! password frequency lists were
perturbed to ensure differential privacy. Before attempting
to fit this dataset using Zipf’s law we seek to answer the
following question: Does this noise, however small, affect
our CDF-Zipf fitting process in any significant way? We
claim that the answer is no, and we offer strong empirical
evidence in support of this claim. In particular, we took the
RockYou dataset (N = 32.6 million users) and generated
30 different perturbed versions of the frequency list by
running the (e, )-differentially private algorithm of Blocki
et al. [13]. We set € = 0.25, the same value that was
used to collect the Yahoo! dataset that we analyze. For
each of these perturbed frequency lists we compute a CDF-
Zipf law fit using linear least squares regression. To apply
Linear Least Squares regression we apply logarithms to the



Sample Size y T R?
(Millions)

15 0.00949 | 0.2843 | 0.9542
30 0.01321 | 0.2544 | 0.9531
45 0.01592 | 0.2384 | 0.9529
60 0.01810 | 0.2277 | 0.9530
Full 0.02112 | 0.2166 | 0.9544

TABLE 2: Yahoo! CDF-Zipf with Sub-sampling

CDF-Zipf equation Ay =y - t" to obtain a linear equation
logAy =logy + rlogt.

Our results, shown in Table 1, strongly suggest that
the differential privacy mechanism does not impact the
parameters y and r in a CDF-Zipf fitting in any significant
way. In particular, the parameters y and r we obtain from
fitting the original data with a CDF-Zipf model are virtually
indistinguishable from the parameters we obtain by fitting on
one of the perturbed datasets. Similarly, differential privacy
does not affect the R? value of the CDF-Zipf fit. Here, R?
measures how well the linear regression models the data
(R? values closer to 1 indicate better fittings). Thus, one
can compute CDF-Zipf’s law parameters for the Yahoo!
data collected by [13] and [12] without worrying about the
impact of the (e, b)-differentially private algorithm used to
perturb this dataset. We also verified that the noise added to
the Yahoo! dataset will also have a negligible affect on the
parameters s and z in a PDF-Zipf fitting.

3.3. Testing Stability of CDF-Zipf Fit via Subsam-
pling

There are two primary ways to find a CDF-Zipf fit:
Golden Section Search (GSS) and Linear Least Squares
(LLS). Wang et al. [11] previously found that CDF-Zipf fits
stabilize more quickly with GSS than with LLS. This was
particularly important because the largest dataset they tested
had size ~ 3 x 107. In this section we test the stability of
LLS by subsampling from the much larger Yahoo! dataset.
In particular, we subsample (without replacement) datasets
of size 15 million, 30 million, 45 million and 60 million and
use LLS to compute the CDF-Zipf parameters y and v for
each subsampled dataset. Our results are shown in table 2
graphically in Figure 1. While the CDF-Zipf fit returned by
LLS does take longer to stabilize our results indicate that
it does eventually stabilize at larger (sub)sample sizes (e.g.,
the Yahoo! dataset).

We also found that the PDF-Zipf parameters s and z
stabilize before N = 7 x 107 samples.

3.4. Fitting the Yahoo! data set with CDF-Zipf

We used both LLS regression and GSS to obtain separate
CDF-Zipf fittings for the Yahoo! dataset. The results, shown
in table 3 and graphically in Figure 6 showed that both
methods produce high quality fittings. In addition to the
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Fig. 1: Yahoo! CDF-Zipf Subsampling

Method y T R? KS
LLS 0.0211 | 0.2166 | 0.9544 | 0.0094328
GSS 0.03315 | 0.1811 | 0.9498 | 0.022282

TABLE 3: Yahoo! CDF-Zipf Test Results

parameters y and 1 we report R? values and Kolmogorov-
Smirnov (KS) distance. The KS test can be thought of as
the largest distance between the observed discrete distribu-
tion F,, (x) and the proposed theoretical distribution F (x).
Formally,

Dxs = sup [Fn(x) — F(x)|

Intuitively, smaller Dys values (resp. larger R? values)
indicates better fits.

3.4.1. Discussion. Both LLS and GSS produce high quality
CDF-Zipf fittings (e.g., R? = 0.9544) for the Yahoo! dataset.
LLS regression outperforms the golden section search under
both R? and Kolmogorov-Smirnov (KS) tests. Wang and
Wang [11] had previously adopted golden section search
because the results stabilized quickly. While this was most
likely the right choice for smaller password datasets like
RockYou, our analysis in the previous section suggest that
LLS eventually produces stable solutions when the sample
size is large (e.g., N > 60 million samples) as it is in the
Yahoo! dataset. Thus, in the remainder of the paper we use
the CDF-Zipf parameters y = 0.0211 and = 0.2166 from
LLS regression. We stress that the decision to use the CDF-
Zipf parameters from LLS instead of the parameters returned
by GSS does not affect our findings in any significant way.

We remark that LLS is also more efficient computation-
ally. While we were able to run GSS to find a CDF-Zipf
fit for the Yahoo! dataset (N ~ 7 x 107), running GSS on
a dataset of N = 1 billion passwords (e.g., the size of the
most recent Yahoo! breach [34]) would be difficult if not
intractable. By contrast, LLS could still be used to find a
CDF-Zipf fitting and our analysis suggests that the fit would
be superior.



Dataset y T T(y,7v,1) | T(y,r,0.8)
RockYou | 0.0374 0.1872 | 1.70 x 107 | 2.04 x 10
000webhost | 0.0059 0.2816 | 3.67 x 107 | 4.27 x 10
Battlefield | 0.0103 0.2949 | 2.37 x 10° | 2.77 x 10°
Tianya 0.0622  0.1555 | 2.28 x 107 | 2.76 x 10
Dodonew | 0.0194 0.2119 | 4.92 x 107 | 5.87 x 10
CSDN 0.0588 0.1486 | 7.63 x 107 | 9.24 x 10
Mail.ru 0.0252 0.2182 | 8.75 x 10° | 1.04 x 10
Gmail 0.0210 0.2257 | 1.14 x 107 | 1.36 x 107
Flirtlife.de | 0.0346 0.2916 | 4.44 x 10* | 5.19 x 10%
Yahoo! 0.0211 0.2166 | 2.25 x 10 2.69 x 107

TABLE 4: CDF-Zipf threshold T(y,r,a) < v/k at which
adversary cracks 100% of passwords for a € {1,0.8}.

4. Analysis of Rational Adversary Model for
Zipf’s Law

In this section, we show that there is a finite threshold
T(y,r,a) which characterizes the behavior of a rational
offline adversary when user passwords follow CDF-Zipf’s
law with parameters y and r i.e., A; = yi'. In particular,
Theorem 1 gives a precise formula for computing this
threshold T(y,r,a)’. If v/k > T(y,r,a) then a rational
value v adversary will proceed to crack all user passwords
as marginal guessing rewards will always exceed marginal
guessing costs for a rational attacker. In Table 4 we use
this formula to explicitly compute T(y, T, a) for the Yahoo!
dataset as well as for nine other password datasets analyzed
by Wang and Wang [11].

We note that we choose to focus on CDF-Zipf’s law
in this section as it is believed to be better than PDF-
Zipf models. However, we stress that similar bounds can be
derived using PDF-Zipf’s law though we omit these results
from the submission for lack of space.

Theorem 1. Let k denote the cost of attempting a password
guess. If
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then a value v rational attacker will crack 100% of
passwords chosen from a Zipf’s law distribution with
parameters y and s.

where

Proof : Suppose a password frequency distribution fol-
lows Zipf’s Law, for some parameters 0 < v < 1 and
Yy, so that A, = yn'. Since the marginal revenue is
MR(n) = v(A2—A{ ;) and the marginal cost is MC(n) =

k (1 - Z:L:1 pn>, a rational adversary can be assumed to

7. We remark that when a = 1 it is possible to derive a closed form
expressing for the threshold T(y, T, a).

continue attacking as long as MR(n) > MC(n). Therefore,
the attacker will not quit as long as

vyttt =yt -1 = k(1 - (t— D7)

In particular, the attacker will not quit as long as
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Notably, if > maxq Mz for all t, then
a rational adversary will eventually crack all passwords.

Since Yyt ¢ —y%(t—1)"¢ = J",L1 y%(ra)x® 1 dx we have
ya(ra) (t— 1 )arfl < yatra —ga(t— 1 )ru < ya(ra)trafl

and
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Let f(t) = W . We note that lf vt > Z f ( )

0 then for any value of t exceeding Z it will always be true
that ¢ > 0, and thus an adversary will be expected to crack
all passwords. Then it follows that
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Thus by setting

5. Analysis of Previous Password Breaches
In this section, we apply our economic model to ana-

lyze the consequences of recent password breaches and the
impact of defenses that could have been adopted.

5.1. Breaches

We focus on the following breaches in our analysis:

5.1.1. Yahoo!. Attackers stole password hashes for 500
million Yahoo! users in 2014, though the breach was un-
known to the general public until 2016 [35]. While Yahoo!



used BCRYPT to hash passwords 8, they have not publicly
specified the number of hash iterations T that they used.
However, we do have empirical password frequency data
from 70 million Yahoo! users which allowed us to derived
CDF-Zipf parameters y = 0.0211 and r = 0.2166 for
Yahoo! passwords. Thus, we can predict the % of cracked
passwords for different values of T that Yahoo! might have
chosen.

5.1.2. Dropbox. Attackers stole password hashes for ~
68.7 million Dropbox users though the breach was unknown
to the general public until 2016 [4]. Dropbox used BCRYPT
at level 8 (i.e., T = 28 = 256 hash iterations) to hash
passwords. We don’t have empirical password data from
Dropbox users from which we can derive Zipf’s law pa-
rameters Yy and r. However, we have Zipf’s law parameters
for many other datasets such as RockYou, Tianya, CSDN
and Yahoo! allowing us to predict how many passwords a
value v adversary would crack if, say, Dropbox passwords
and RockYou passwords have similar strength. Arguably,
Dropbox passwords could be quite valuable as they are often
used to protect sensitive data.

5.1.3. AshleyMadison. Attackers stole nearly 40 million
AshleyMadison password hashes [36] in 2015 and released
the stolen data publicly a month later. AshleyMadison pri-
marily used BCRYPT at level 12 (T = 2'2 = 4,096 hash it-
erations) to hash passwords [37]. However, CynoSure Prime
noticed that some passwords were effectively protected with
MDS5 instead of BCRYPT due to an implementation error.
CynoSure Prime managed to crack approximately 11 million
of these MD5 hashes in just 10 days [36], though it has been
claimed that most of the passwords protected by BCRYPT
are uncrackable [37]. Similar to Dropbox, we do not have
Zipf’s law parameters for AshleyMadison users. However, it
is plausible to believe that these parameters are comparable
to the parameters derived from other datasets such as Yahoo!
or RockYou!

5.1.4. LastPass. LastPass was using PBKDF2-SHA256
with T = 10° rounds of iteration when they were breached
in 2015. Similar to AshleyMadison and Dropbox breaches
we don’t currently have Zipf’s law parameters for LastPass
passwords though we can still predict how many passwords
would be breached under the assumption that these pass-
words have similar strength to passwords in other datasets
like RockYou or Yahoo! Arguably master passwords will
be more valuable to an attacker than regular passwords as
a master password will unlock multiple user accounts. On
the other hand previous research [12] has not found a clear
correlation between password strength and account value.

8. An earlier 2013 Yahoo! breach affected approximately 1 billion Ya-
hoo! users [34]. We focus on the 2014 breach because the breach occurred
after Yahoo! upgraded their password hashing algorithm from MDS5 to
BCRYPT. We note that any negative findings about the 2014 breach will
certainly extend to the earlier breach since a weaker hashing algorithm was
involved.

Estimating v. As described in Section 2 the value v
represents the value per password when all passwords are re-
leased on the market. Thus, although the actual black market
prices may vary with supply, the parameter v is fixed. Our
estimate of this value parameter will depend on the current
black market price, and model parameter a (diminishing
returns). In Table 5 we show various estimates of v obtained
from multiple estimates of black market password prices.
These estimates include measurements from Fossi [16] and
more recent estimates from [25], which finds that Yahoo!
passwords go for 0.70-1.20 USD on the black market. To
obtain the estimates in Table 5, we assume that the black
market prices were observed when just 1% of the passwords
were on the market. This allows us to esimate the value v
if all passwords were to be released using equation 1. We
remark that the difference between the two estimates [25]
and [16] may be explained due to additional black market
supply. We view a = 0.8 as substantial diminishing returns
e.g., the marginal revenue decreases by a factor of 1/3
when the attacker compromises all accounts. An interesting
direction for future work may be to estimate the parameter
a from a longitudinal study of black markets.

Translating between v and V®. Bonneau and
Schechter [29] observed that in 2013, Bitcoin miners were
able to perform approximately 27> SHA-256 hashes in
exchange for bitcoin rewards worth about $257M. Corre-
spondingly, one can estimate the cost of evaluating a SHA-
256 hash to be approximately Cyy = $7 x 107>, Alterna-
tively, the cost can be viewed as the economic opportunity
cost of evaluating each hash function (for instance, renting
a botnet or computing on a cloud platform.) Because Bit-
coin mining is almost exclusively performed on application
specific integrated circuits (ASICs) the above cost analysis
implicitly assumes that the attacker is willing to fabricate
an an ASIC to evaluate PBKDF2-SHA256 or BCYRPT.
We contend that this is a plausible scenario for a rational
attacker, since fabrication costs would amortize over the
number of user accounts being attacked (e.g., 500+ million).
Furthermore, we note that an attacker who is not willing to
pay to fabricate an ASIC could obtain similar performance
gains using a field programmable gate array (FPGA).

5.2. Results

In section 4 we showed that, if passwords follow CDF-
Zipf’s law with parameters y and r, and v/k > T(y, T, a)
then a rational adversary will crack 100% of user passwords.
Figure 2(a) plots v =k x T(y, r,0.8) for various thresholds
from Table 4 including Yahoo! and RockYou. Thus, for a
point (v,T) lying on the blue line, a value v rational ad-
versary will crack 100% of Yahoo! passwords when he can
compute the hash function at cost k = T. Note that T = k
for hash functions like BCRYPT and PBKDF2 — the ones
used by Yahoo!, Dropbox, AshleyMadison and LastPass.
For reference, Figure 2(a) includes the actual values of T
selected by AshleyMadison, Dropbox and LastPass as well
as the value T = 107. Bonneau and Schechter estimated
that SHA256 can be evaluated 107 times in 1 second on



R(t14) (USD) [ a=08 | a=09 [a=1.0
0.70 0.28 0.44 0.70
1.20 0.48 0.76 1.20
4.00 1.59 2.52 4.00
30.00 11.94 18.93 30.00

TABLE 5: v conversion chart

a modern CPU [38]. Thus, 107 upper bounds the value of
T that one could select without delaying authentication for
more than T second when using PBKDF2-SHA256.

The plots predict that, unless we set T > 107, the adversary
will crack 100% of passwords in almost every instance.
In particular, the levels of key-stretching performed by
Dropbox, AshleyMadison and even Lastpass are all well
below the thresholds necessary to protect Yahoo!, RockYou
or CSDN passwords.

Figure 2(b) is similar to Figure 2(a) except that we
rescale to y axis to show v*, given monetary estimations
of computation cost and password values, so that we can
focus on the number of hash iterations necessary to simply
avoid all passwords being cracked.

While we do not have CDF-Zipf parameters for other
breaches such as AshleyMadison, Dropbox, or LastPass,
we do have the value T = k for each of these breaches.
Figure 2(c) plots v = k x T(y,r,0.8) only this time we
hold k constant and allow T(y, r,0.8) to vary. For example,
in the black line we fix k = T = 10° since LastPass
used PBKDF2-SHA256 with T = 10° hash iterations and
allow T(y,r,0.8) to vary. The vertical lines represent the
thresholds T(y,r,0.8) we derive from CDF-Zipf’s law fits
for RockYou, Tianya and Yahoo! Table 4 shows the value
of T(y, r,0.8) obtained from 10 different password datasets.
Observe that in all of cases we had T(y,T,0.8) < 7.64x107.
As in Figure 2(b) the y-axis in Figure 2(c) is scaled to
show the value v* in USD (estimated). Thus, if Dropbox
(resp. AshleyMadison/LastPass) passwords have compara-
ble strength to Yahoo! passwords (resp. Tianya, RockYou)
then a rational adversary would crack 100% of these pass-
words. Indeed, Figure 2(c) shows that unless the thresholds
T(y,r,a) for Dropbox/LastPass/AshleyMadison are signif-
icantly larger than the previously observed thresholds, a ra-
tional adversary would be compelled to crack all passwords,
given the range of password values. For example, even if the
threshold T(y,r, a) for Dropbox exceeds the threshold for
Yahoo! by four orders of magnitude then the adversary will
still crack 100% of these passwords.

5.3. Discussion

Figures 2(a), 2(b) and 2(c) paint a grim picture. PBKDF2
and BCRYPT most likely provide dramatically insufficient
protection for most AshleyMadison, Dropbox, Yahoo! and
LastPass users — even if we used the lowest estimation
of the value parameter v from Table 5 (v¥ = 0.28 USD)

and we assume that the attacker faces substantial dimin-
ishing returns (a = 0.8) for additional cracked passwords.
Furthermore, it would not have been possible to provide
sufficient protection for users using PBKDF2 or BCRYPT
without introducing intolerable authentication delays (> 1
second).

Our analysis assumes that the password distribution truly
follows CDF-Zipf’s law. While previous research (e.g., [32],
[11] and our own results in Section 3) strongly supports the
hypothesis that most of the password distribution follows
Zipf’s law, it is not possible to definitively state that the
tail of the password distribution does not follow Zipf’s law
since each of the passwords in the tail were (by definition)
observed with low frequency. We stress that even if CDF-
Zipf’s law does not fit the tail of the password distribution
that T(y,r,a) still characterizes adversary behavior. For
example, suppose that the (100 — x)% of passwords follow
a Zipf’s law distribution with parameters y,r while x% of
passwords in the tail of the password distribution do not. In
this case, whenever v/k > T(y, r, a) we a rational adversary
will crack at least (100—x)% of the user’s passwords which
follow Zipf’s Law.

5.4. Memory Hard Functions

Memory hard functions potentially provide a way of
increasing computation cost without drastically increasing
computation time. As the name suggests memory hard
functions require a large amount of memory to evaluate.
Thus, the cost of purchasing/renting hardware for pass-
word cracking, approximated by a functions Area x Time
(AT) complexity, can be substantial for an attacker. Specif-
ically, AT complexity of SCRYPT [9], scales quadratically
with the number of time steps [39]. Thus, as discussed
in Section 2, we estimate k¥ = TCy + T>Cmem, Where
Ch ~$7x1071° [29] and Crnem ~ scoﬁ as in [30], [31].

In the last section we assumed that the attacker faced ag-
gressive diminishing marginal returns for additional cracked
passwords and we used the lowest possible estimations of
adversary value finding that an attacker still cracks 100%
of passwords from a Zipf’s law distribution. By contrast, in
this section we operate under the conservative assumptions
that the attacker does not face diminishing returns and we
use the larger estimations of adversary value in our analysis.
Nevertheless, we find that the use of MHFs can substantially
reduce the % of cracked passwords.

Figure 3 plots v* (estimate) versus the minimum value
of T necessary to prevent a rational attacker from cracking
100% of passwords. For example, the blue line predicts that
if Yahoo! had adopted memory hard functions with only
T = 220 iterations (0.1 seconds) then a value $30 adversary
will not crack all passwords selected from a CDF-Zipf’s law
distribution with the parameters y = 0.0211 and v = 0.2166,
the parameters for our CDF-Zipf’s fit for Yahoo! passwords.
By contrast, Yahoo! would need to set T = 2%¢ (=~ 7
seconds) when using a function like PBKDF2 or BCRYPT
just to ensure that the adversary does not crack 100% of
passwords when a = 1.
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Fig. 2: (a =0.8)

Effects of Memory Hard Functions

Fig. 3: Memory Hard Functions: v¢ vs T when v
k x T(y,r,1) using thresholds T(y,r,1) for RockYou and
Yahoo! k = TCx + T?Cyem for MHFs and k = Cyy X T
otherwise.

Figure 3 predicts that MHFs prevent a rational adversary
from cracking all passwords from a Zipf’s law distribution.
Of course, if the adversary still cracks 99.9% of passwords
then this result would not be particularly exciting. Figure 4
plots % cracked passwords vs. T against a value v* = $4
adversary. These plots provide an optimistic outlook for
MHFs. For example, the plots predict that we can signif-
icantly reduce the % of cracked passwords (easily below
20%) with out introducing unacceptably long authentication
delays when passwords follow a Zipf’s law distribution. By
contrast, the plots predict that we would need to set T ~ 232
(400+ seconds) to achieve the same result using PBKDF2
or BCRYPT when a = 1.

Effects of Memory Hard Functions
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Fig. 4: Memory Hard Functions: % cracked by value v = $4
adversary against MHF with running time parameter T.

6. Model Independent Analysis

In this section we derive model-independent upper and
lower bounds on the % of users whose passwords would be
cracked by a rational adversary. The advantage of a model
independent analysis is that the bounds we derive apply even
if we do not make any assumptions about the shape of the
password distribution. As we observed previously it is not
possible to definitively claim that the tail of the password
distribution follows Zipf’s law — even if the tail of the
distribution is not known to be inconsistent with Zipf’s
law [32], [11]. The disadvantage of a model independent
analysis is that the bounds we are able to derive may not
always be tight as the bounds we may be able to derive
using specific modeling assumptions e.g., Zipf’s law. In this
section we assume for the sake of simplicity that a = 1
i.e., the marginal value of each additional cracked password
remains constant.

Suppose that we are given N independent samples



pwd',..., pwd™ « X from an (unknown) distribution
X. As before, we will let f; denote the number of users
who chose password pwd; in a dataset and without loss of
generality assume that these frequencies are sorted so that
fi > fi+1. We can use f; to obtain an estimate P; = fN—‘ for
Pi, the true probability that that a random user selects the
password pwd;. While we do have p; > D1 we stress
that we may no longer assume that p; > pi41 since our
empirical value P; (resp. Pir1) may over/under estimate
the true probability p;.

6.1. Lower Bound

Theorem 2 lower bounds the number of passwords that
will be cracked by a rational adversary in expectation. The
expectation is taken over N passwords sampled from XN,

Theorem 2. If % > NL and a =T then a rational adversary
will crack at least

N
2 fi o

i:fi>j
user passwords, in expectation.

The proof of Theorem 2 is in appendix A. The proof
begins with the observation that a password pwd"' = pwd;
will certainly be cracked by a value V adversary if p; > ﬁ
We then introduce the notion of a (j, L)-bad overestimate. In
particular, a (j, L)-bad overestimate for pwd' occurs when
pi < ﬁ but f; > j. If we have f; > j then either p; > ﬁ
and the password will be cracked, or we have a (j, L)-bad
overestimate for the password pwd®. We can then show that

N
G—ino—T upper bounds the expected number of passwords
pwd' with (j, L)-bad overestimates.

6.2. Upper Bound

In contrast to Theorem 2 , Theorem 3 upper bounds the
% of passwords that we expect an attacker to compromise.

Theorem 3. If % < NL (1 — “Nre ZJ{:] fi> then, except

with probability exp <_LZN Zz i1 P

), a rational adver-
sary will crack at most Zi:fpj fi + u(N,L,j) user
passwords where p(N,L,j) =
5 f'E N=T\ / 1\ /NL=T\N T
' ¢ NL NL '

10<fi<j  €=0

The proof of Theorem 3 is in appendix A. Briefly,
we apply Chernoff bounds to show that, if { <

NL (1 — eyt fi), then with high probability the
number of user passwords in our dataset that a rational
adversary cracks is at most

Z fi-f—ZfiXCi.

fi>j

Here, C; denotes the event that we have a (j, L)-bad under-
estimate for the password pwd;. We then separately upper
bound the sum »_ ; fi x C; to obtain the bound in Theorem
3.

6.3. Applications

Theorems 2 and 3 allows us to derive different upper and
lower bounds by plugging in different values of j and L. For
example, by increasing j we decrease the term M%
in Theorem 2, but we also decrease the sum } ;. ; fi.
Increasing (resp. decreasing) L is equivalent to assuming
the adversary has a higher (resp. lower) value for cracked
passwords, which intuitively allows us to establish higher
lower bounds (resp. smaller upper bounds) on the percentage
of passwords cracked.

6.3.1. Lower Bounds. Applying Theorem 2 we can derive
specific lower bounds for each of the datasets studied by
[11] as well as for the Yahoo! frequency corpus. For most
datasets we obtain our lower bound by setting j = 2 and
L = 10. For the Yahoo! and RockYou datasets we obtained
better lower bounds by setting j = 3 and L = 10. The result
appears below:

Dataset Unique PWs  Total PWs % % cracked
RockYou 14,326,970 32,581,870 | 3.2582 x 10° 46.03
000webhost | 10,583,709 15,251,073 | 1.5251 x 108 20.60
Battlefield 417,453 542,386 | 5.4239 x 10° 13.03
Tianya 12,898,437 30,901,241 | 3.0901 x 108 48.26
Dodonew 10,135,260 16,258,891 | 1.6259 x 108 27.66
CSDN 4,037,605 6,428,277 | 6.4283 x 10 27.19
Mail.ru 2,954,907 4,932,688 | 4.9327 x 10 30.01
Gmail 3,132,028 4,929,090 | 4.9291 x 10 26.46
Flirtlife.de 115,589 343,064 | 3.3406 x 10° 56.04
Yahoo! 2.94 x 10 7 %10 7 x 108 51
Remark: When j =1 we have } ;. -;fi— (J—U% =

N—N = 0 meaning that Theorem 2 provides no lower bound
on the % of cracked passwords. At first glance this may
appear to be a shortcoming of the theorem. However, we ob-
serve that it is impossible to obtain better lower bounds with-
out making assumptions about the password distribution. In
particular, let X7 (resp. X>) be the uniform distribution over
a set of 23™ (resp. 28™) passwords. Observe that X7 and X,
can induce dramatically different rational attacker behavior
(e.g., if the value of a password is 23™k, the adversary will
crack 100% of passwords if the true password distribution
is X7 and 0% of passwords if the true distribution is X>).
However, if we draw N = 2™ samples from X; and A3,
then the frequency lists for the two password distributions
will be indistinguishable (f; = f, = ... = fy = 1) by
birthday bounds (N < 21-5™).

6.3.2. Upper Bounds. Similarly, we may use Theorem 3 to
derive model independent upper bounds on the percentage
of Yahoo! passwords cracked by a rational adversary as
shown in Figure 5. As Figure 5 shows we could potentially
use memory hard functions to reduce the % of cracked
passwords to ~ 20% without increasing authentication time



V/k 108 [5x107 ] 10 5x 10° 10°
% cracked | 100 99 61.38 | 56.53 | 52.42
V/k 5x 10° 10° [ 5x 107 107
% cracked 42.64 37.46 26.30 22.24

TABLE 6: Model Independent Upper Bound % cracked

past 1 second. This is particularly, impressive when one
considers that an attacker only needs a single guess to
achieve success rate 1%!

% Cracked for Memory Hard Functions
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Fig. 5: Memory Hard Functions: % cracked by value v* €
{$4, $30} adversary against an ideal MHF with running time
parameter T.

7. Related Work

7.0.1. Password Cracking. The issue of offline password
cracking has been known for decades [40]. Password crack-
ing tools have improved steadily as researchers have ex-
plored probabilistic password models [41], Probabilistic
Context Free Grammars for passwords [42], [43], [44],
Markov chain models [45], [46], [47], [48] and even neural
networks [49]. Attackers may also use public resources
(e.g., quotes from the Internet Movie Database or project
Gutenberg to crack sentence based passwords [50], [51]) as
well as ‘training data’ from previous breaches at companies
like RockYou or Tianya to improve cracking algorithms.
Improved password cracking tools make it all the more
crucial to develop secure tools for key-stretching (e.g., data-
independent MHFs) to minimize the number of guesses an
attacker can try. Allodi has studied the economics of the
black market for certain attacks and malware, which may
be useful in understanding how password cracking markets
may work [52].

7.0.2. Improving Password Strength. Efforts to encourage
(or force) users to select stronger passwords have shown

limited success [53], [54], [55], [56], [57], [58] and often
induce high usability costs [59]. Users can be encouraged
to select stronger passwords by providing feedback during
the password creation policy (e.g., [60], [61], [62]) or by
providing clear instructions for the user to follow when
creating passwords [50], [63]. Another extensive line of
research explored the use of password composition policies
in which a user is required to select a password satisfying
certain requirements e.g., contains numbers and/or capital
letters [53], [54], [55], [56], [58], [64]. Password compo-
sition policies also introduce a high usability cost [57],
[65], [66], [59], and they typically do not increase password
strength significantly. In fact, sometimes these policies result
in weaker user passwords [67], [54]. Similarly, password
strength meters often provide inconsistent feedback [61],
[62] and they often fail to persuade users to select strong
passwords.

Another line of research has focused on helping users to
generate and remember passwords. One prominent sugges-
tion is to turn a phrase or a sentence into a password. It has
been claimed that these passwords are as strong as random
ones [50], [51], and this has been promoted by NIST and
by security experts such as Bruce Schneier [68]. However,
subsequent research indicates that these suggestions are less
secure than previously believed [69], [70]. Another line of
research seeks to develop and promote secure and usable
strategies for password management when the user needs
to create and remember multiple passwords [71], [72], [73],
[74]. However, all of these schemes require a motivated user.
Bonneau and Schechter [29] and Blocki et al. [63] showed
that users are capable of memorizing higher entropy secrets
(e.g., 56 bits) by following spaced repetition schedules.

7.0.3. Other Defenses Against Offline Attacks. If an
organization has multiple authentication servers then they
could distribute storage and/or computation of the password
hashes across multiple servers [75], [22], [23], [24]. Juels
and Rivest [76] proposed storing the hashes of fake pass-
words (honeywords) and using a second auxiliary server to
detect authentication attempts with honeywords (alerting the
organization that an breach has occurred). The expensive
requirement to purchase and maintain extra servers may pre-
vent widespread adoption of these proposals. Even if these
defenses were adopted there is still a clear need to use secure
key-stretching mechanisms — an adversary who breaches
both servers can still mount an offline attack. Another line
of research has sought to include the solution(s) to hard
artificial intelligence problems in the password hash so that
an offline attacker needs human assistance to verify each
password guess [77], [78], [79]. These solutions increase
user workload during authentication e.g., by requiring the
user to solve a CAPTCHA puzzle [77], [79].

7.0.4. Modeling the Distribution of User Selected Pass-
words. Malone and Kevin initially explored the feasibility
of modeling the distribution of user password choices using
Zipf’s law [80]. Wang et al. [32] and Wang and Wang [11]
continued this line of work by providing improved tech-



niques to fit Zipf’s law parameters to a dataset. Bonneau [12]
took a different approach: collect and analyze a massive
password frequency corpus with permission from Yahoo!
The Yahoo! dataset was recently released using a differen-
tially private algorithm [13]. We elaborate on Zipf’s law
and the Yahoo! frequency corpus at length in the body of
the paper.

7.1. Key-Stretching

Key-stretching was proposed as early as 1979 [40] with
the goal of protecting lower-entropy secrets like passwords
against offline attacks by making it economically infeasible
for an offline attacker to try millions or billions of guesses.
Traditionally key stretching has been performed using hash
iteration e.g., PBKDF2 [2] and BCRYPT [1]. However,
password hash functions like PBKDF2 and BCRYPT require
minimal memory to evaluate and thus passwords protected
by these hash functions are highly vulnerable to attackers
with customized hardware [81]. Memory hard functions
(MHFs), first explicitly introduced by Percival [9], are a
promising tool for constructing an ideal key-stretching func-
tion. MHFs are motivated by the observation that the cost of
storing/retrieving items from memory is relatively constant
across different computer architectures. At a high level a
memory hard function is moderately expensive to compute
and most of the costs associated with computing the function
are memory related (e.g., storing/retrieving items from mem-
ory). Ideally we want the Area x Time complexity of com-
puting a MHF to scale with T2, where T denotes the running
time on a standard PC. Intuitively, to compute the MHF once
the attacker must dedicate T blocks of memory for T time
steps, which ensures that the cost of computing the function
is equitable across different computer architectures (memory
on an ASIC is still expensive). By contrast, Area x Time
complexity to compute BCRYPT or PBKDF?2 is simply T.
Recall that we want to increase costs quickly to minimize
delay during authentication. If costs scale with T2 then
we can rapidly drive up costs, and if computation requires
memory then an adversary will not be able to significantly
reduce guessing costs by constructing an ASIC. Almost all
of the entrants to the recent Password Hashing Competition
(PHC) [8] claimed some form of memory-hardness.

7.1.1. Data (In)dependent Memory Hard Functions.
There is a type of MHF called a data-independent MHF
(iMHF) which is designed to be resistant to side-channel
attacks such as cache timing [82], [83]. These functions
have a data access pattern independent of the input. Multi-
ple attacks have been shown in several iMHFs [30], [84],
[31], [85], [86], [87], [88]. Data dependent MHFs such as
SCRYPT [9] have the previously mentioned side-channel
vulnerabilities. Even so, SCRYPT has been found to be
optimally memory hard in respect to AT complexity [39],
[89].

8. Discussion

Our economic analysis decisively shows that traditional
key-stretching tools like PBKDF2 and BCRYPT fail to pro-
vide adequate protection for user passwords, while memory
hard functions do provide meaningful protection against
offline attackers. It is time for organizations to upgrade
their password hashing algorithms and adopt modern key-
stretching such as memory hard functions [9], [8]. Alter-
natively, could a creative organization adapt customized
Bitcoin mining rigs for use in password authentication?
For example, the Antminer S9 [81], currently available on
Amazon for approximately $3, 000, is capable of computing
SHA256 14 trillion times per second. If the organization
stored salted and peppered [90], [10] password hash values
U, Sy, SHA256(pwdy|sy|pw) then it could potentially use
the Antminer S9, or a similar Bitcoin mining rig, to validate
a password by quickly enumerating over a (very) large space
of secret pepper values p (briefly, a secret salt value that is
not stored which even an honest party must brute force).

While our analysis demonstrates that the use of mem-
ory hard functions can significantly reduce the fraction of
cracked passwords, the damage of an offline attack may
still be significant. Thus, we recommend that organizations
adopt distributed password hashing [75], [22], [23], [24]
whenever feasible so that an attacker who only breaches
one authentication server will not be able to mount an
offline attack. Furthermore, we recommend that organiza-
tions take additional measures to mitigate the affect of an
authentication server breach. Solutions might include mech-
anisms detect password breaches through the use of honey
accounts or honey passwords[76], multi-factor authentica-
tion and fraud detection/correction algorithms to prevent
suspicious/harmful behavior [91].

While solid options for password hashing and key-
derivation exist [9], [8], [18], [87] the reality is that many
organizations and developers select suboptimal password
hashing functions [92], [19]. Thus, there is a clear need
to provide developers with clear guidance about selecting
secure password hash functions. On a positive note recent
2017 NIST guidelines do suggest the use of memory hard
functions. However, NIST guidelines still allows for the
user of PBKDF2 with just 10,000 hash iterations. Based
on our analysis we advocate that password hashing stan-
dards should be updated to require the use of memory hard
functions for password hashing and disallow the use of non-
memory hard functions such as BCRYPT or PBKDF2. It
may be expedient for policy makers to audit and/or penalize
organizations that fail to follow appropriate standards for
password hashing.

We recommend that users primarily focus on selecting
passwords that are strong enough to resist targeted online
attacks [27] as there is a often a vast gap between the
required entropy to resist online and offline attacks [7]. Extra
user effort to memorize a high entropy password might be
completely wasted if an organization adopts poor password
hashing algorithms like SHA1, MD5 [36] or the identity



function [92]. This effort would likely be more productively
spent on trying to reduce password reuse [72].
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Appendix

Reminder of Theorem 2. If % > NL and a =1 then a
rational adversary will crack at least

> o5

j—1)ID-1
ify>j G )
user passwords, in expectation.

Proof of Theorem 2:

We observe that a user password pwd' = pwd; will
be certainly cracked if V x Pr[pwd] = Vp; > k since
the marginal cost of including an extra guess pwd in the
dictionary is at most k. Thus, the adversary will compromise
atleast 3 ; -  fi accounts. The problem with this lower
bound is that we need to know p; = Pr[pwd;] for each
password pwd; to compute it. However, the values p; are
unknown if we do not make assumptions about the shape of
the password distribution. However, we can lower bound this
quantity. In particular, we say that the estimate p; = f;/N
is a (j,L)-bad overestimate if p; < ﬁ, but f; > j. Let
B; be an indicator random variable for the that p; is (j, L)-
bad. Then the sum Zi fi x By computes the total number
of users whose password got a (j, L)-bad overestimate. The
proof now follows from Claims 4, 5 and 6. Claim 4 lower
bounds the fraction of cracked passwords in terms of the
events Bj.

Claim 4. If % > NL then the number of user passwords in

our dataset that a rational adversary cracks is at least
Z f,'. — Z fi X Bi .
i

fi>j
Proof : Suppose that a user selects a password pwd; with
pi > ﬁ Since Vp; > k > maxy MC(t) the marginal
reward of guessing pwd; always exceeds the marginal
cost. Thus, a rational attacker must eventually guess pwd.
However, if p; < ﬁ then either f; < j or Py is a (j, L)-bad
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overestimate of p;. Let S denote the set of users who picked
a password i such that f; > j and let T C S denote the set
of users whose password got a (j, L)-bad overestimate. Any
user in the set S\ T will be compromised eventually. Thus, at
least [S\T| =3 ¢ 55 f —> fixBysince [T| =), fi xB;
and [S| =3 ;¢ 5; fi. O

Claim 5 bounds the probability of the event B; — that is
the probability that we observe password pwdi, with p; <
NL, at least f; > j times conditioned on the event that we
observe pwd; at least once.

Claim 5. Pr[B{] <

We first observe that

Pr[By] < (j TJP{] .

Recall that for an event which is (j, L)-bad, we have that by
definition, p; < NL Thus

( N >p) - N! o
j—1)"" G=DIN—=j+1""

N 1

< T v ivT s 7 .
e L c T

Proof :

O

Finally, Claim 6 shows that we cannot have too many
bad overestimates.

Claim 6. 3_; f; x E [Bi] < g—jj7—r

Proof Follows immediately from Claim 5 by substituting
W for E [Bi] in the above sum. O

j
0

Reminder of Theorem 3. If Y < NL (1 He Zl 1 fi )
e’N Zt 1 Pi
2

fi+ (N,L,j) user

then, except with probability exp g , a ratio-

nal adversary will crack at most
passwords where w(N,L,j) =

Zon (O (R

iy >

Proof of Theorem 3: Given N independent sam-
ples pwd',...,pwd™ « X we use Pop, =
{pwd;,...,pwd¢} to denote the t most common passwords
from these samples and let X; be an indicator variable for
the event pwd' € Pop,.

Claim 7. N .
Z Xi < Z fi
i=1 i=1

Proof : Let pwdy,...,pwdy,... denote the list of ob-
served passwords ordered by observed frequency. Let i >

. > i be given such that Pop, = {pwd;,,...
Now we have

)deit}o

N t t
ZX]' :Zfi’i Sij .

j=1 j=1 j=1

Claim 8. We have

t
1+
pi <
2

except with probability

P"[ZX = 1+e Zpl} = <_€2NZzt1p)

€) i
X3

i=1

Proof : Since Pr[Xi = 1} = Y. ,pi then
E{Z{\; Xi} = NJY i ,pi. Then applying Chernoff
bounds,

N t 2 t
Y N 5 eNY i 1pi
P [ ' < .} < o 17] ’
ri:1XL_]+€i:1pl _exp< 2 )

a
Claim 9. With high probability,
MC(t) > 1—1+€if- K
- N . 1 .
i=1
Proof : By Claims 7 and 8,
t
1+e€
Zpi <
i=1 =
The proof follows from the observation that MC(t) =
(1—Z§;;>kand pe > 0. 0

Now, we define P; = fi/N as a (j, L)-bad underestimate
if pi > ﬁ but f; < j. Then define C; as the indicator
variable for the event that p; is a (j, L)-bad underestimate
and f; > 1.

Claim 10. If Y < NL (1 — eyt | fi> then the number
of user passwords in our dataset that a rational adversary
cracks is at most

Zf+Zf x C;

i:fi>j
Proof :  Suppose that a user selects a password pwd;
with pi < p. Since Vpi < NL(1- L5 T i)k <

MC(t) the marginal reward of guessing pwd; never ex-
ceeds the marginal cost. Thus, a rational attacker never
chooses to guess pwd;. If p; > ﬁ then either f; > j

or P; is a (j, L)-bad underestimate of p;. Let S denote the



set of users who picked a password i such that f; > j and
let T C S denote the set of users whose password got a
(j,L)-bad underestimate. Only the users in the set SU T
may be compromised eventually. Thus, at most [SUT| <
Y i oy fi+ Xy fix Cosince [T = Y ;. ;i x Ci and
S| = ii:fi>j fi. U

Then the following immediately holds, noting that there can
be at most NL passwords which are (j,L)-bad underesti-
mates:

Corollary 11. If ¥ < NL (1 — 1te S fi) then the
number of user passwords in our dataset that a rational
adversary cracks is at most

i+NL
Z fi + Z fi.
> i

Claim 12.

j—1 3 N—¢—1
N-—-1 1 NL -1
. > <§ N -
Pr[clf“”‘k_o< ¢ )(m) ( NL >

Proof : Recall that for C; = 1, we require p; > ﬁ > ﬁ

but f; <j. Then for j < N/2,

=N
PriCi|fi>1=) ( . >p$(1 —p) !
k=0
<E N=T) 1\ N\
S NL NL

O
Claim 13. 3 o <; Ti x E[Ci | fi > 1.

Proof : Follows immediately from Claim 12 by substituting
into E[C; | fi > 1] in the above sum. O
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