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Abstract—Inthepastfewyearsbillionsofuserpasswords

havebeenexposedtothethreatofofflinecrackingattempts.

Suchbrute-forcecrackingattemptsareincreasinglydangerous

aspasswordcrackinghardwarecontinuestoimproveandas

userscontinuetoselectlowentropypasswords.Key-stretching

techniquessuchashashiterationand memoryhardfunctions

canhelptomitigatetherisk,butincreasedkey-stretchingeffort

necessarilyincreasesauthenticationdelaysothisdefenseis

fundamentallyconstrainedbyusabilityconcerns. Weintro-

duceJustinTime Hashing(JIT),aclientsidekey-stretching

algorithmtoprotectuserpasswordsagainstofflinebrute-force

crackingattemptswithoutincreasingdelayfortheuser.The

basicideaistoexploitidletime whiletheuseristypingin

theirpasswordtoperformextrakey-stretching. Assoonas

theusertypesinthefirstcharacter(s)oftheirpasswordour

algorithmimmediatelybeginsfilling memorywithhashvalues

derivedfromthecharacter(s)thattheuserhastypedthus

far. Weconductauserstudytoguidethedevelopmentof

JITe.g.bydetermininghow muchextrakey-stretchingcould

beperformedduringidlecyclesorhow manyconsecutive

deletionsJITmayneedtohandle.Oursecurityanalysisdemon-

stratesthatJITcansubstantiallyincreaseguessingcostsover

traditionalkey-stretchingalgorithmswithequivalent(orless)

authenticationdelay.Specificallyanempiricalevaluationusing

existingpassworddatasetsdemonstratesthatJITincreases

guessingcostsbynearlyanorderof magnitudeincomparison

tostandardkey-stretchingtechniqueswithcomparabledelay.

Weprovideaproof-of-conceptimplementationofaJustin

Time Hashingalgorithmby modifyingArgon2.

1.Introduction

Inthepastfewyearsbillionsofuserpasswordshave
beenexposedtothethreatofofflinecrackingattempts.
Recenthighprofileexamplesinclude Yahoo!, Dropbox,
Lastpass,AshleyMadison,LinkedIn,AdultFriendFinderand
eBay.Onceasuchabreachoccurstheattackercancheckas
manypasswordguessesass/hewantsoffline.Theattacker
isonlylimitedbytheresourcess/heinveststocrackuser
passwordsandbytheunderlyingcostofcomputingthehash
function.

Offlinebrute-forcecrackingattacksareincreasinglydan-
gerousaspasswordcrackinghardwarecontinuestoim-

proveandas manyuserscontinuetoselectlow-entropy
passwords,findingittoodifficultto memorize multiple
strongpasswordsforeachoftheiraccounts.Keystretching
servesasalastlineofdefenseforusersafterapassword
breach.Thebasicideaistoincreaseguessingcostsforthe
attackerbyperforminghashiteration(e.g., BCRYPT[75]
orPBKDF2[59])orbyintentionallyusingapassword
hashfunctionthatismemoryhard(e.g.,SCRYPT[74,74],
Argon2[12]).

Unfortunately,thereisaninherentsecurity/usability
trade-off whenadoptingtraditional key-stretchingalgo-
rithmssuchasPBKDF2,SCRYPTorArgon2.Ifthekey-
stretchingalgorithmcannotbecomputedquicklythen we
increaseauthenticationdelayforlegitimateusers.Since
usabilityisafirstorderconstraintmostorganizationsselect
theirkey-stretchingparameterstoensurethatauthentication
delayistolerable.Thus,usabilityconsiderationsinherently
upperboundthemaximumnumberofcallsthatcanbemade
toanunderlyinghashfunction(e.g.,SHA256,Blake2b)as
wellastheamountofRAMthatcanbefilled.Forexample,
LastPasshadbeenusingPBKDF2-SHA256 withjust105

SHA256iterationswhentheywerebreached,whichmeans
thatitcouldpotentiallycostanattackeraslittleas$1
(USD)tovalidate1010passwordguesses1.Blockietal.[18]
recentlypresentedaneconomicargumentthatiterativehash
functionssuchasBCRYPTandPBKDF2cannotprovide
sufficientprotectionforuserpasswordswithoutintroducing
anintolerableauthenticationdelay[18].Even with more
advancedkey-stretchingmechanismssuchasmemoryhard
functionsitisnotclear whetherornotitispossibleto
performsufficientkey-stretchingtoprotect most(lower
entropy)userpasswords withoutsubstantiallyincreasing
authenticationdelay.

Contributions Weintroduceanovelclient-sidekey
stretchingtechniquethatwecallJustInTimehashing(JIT
hashing) whichcansubstantiallyincreasekey-stretching
without increasingauthenticationdelayfortheuser.The
basicideaistoexploitidletime whiletheuseristyping
intheirpasswordtoperformextrakey-stretching.Assoon

1. WhileLastPass[25]claimedthat“Crackingouralgorithmsisex-
tremelydifficult,evenforthestrongestcomputers”,ithasbeenestimated
thatthecosttoevaluatetheSHA256hashfunctiononcustomizedhard-
ware[44]isaslowas$10 15(USD)[23],whichtranslatesto$1(USD)
per1010computationsPBKDF2-SHA256with105SHA256iterations.



as the user types in the first character(s) of their password
our algorithm immediately begins filling memory with hash
values derived from the character(s) that the user has typed
thus far. The key challenge in designing such a function
is that the final output must be a deterministic function of
the input password, while users do not always enter their
password at exactly the same speed.

We conduct a user study to investigate password typing
habits and inform the design of JIT. In particular, we aimed
to answer the following questions: How fast do users type
when entering passwords? Is this password typing speed
equivalent to regular typing speed? How often do users
press backspace when entering a password? We find that
for over 95% of PC users (resp. mobile users) the delay
between consecutive key-strokes during password entry is
over 180 ms (resp. 319 ms). While users do occasionally
press backspace during password entry we find that the
pattern is highly predictable (e.g., a user either erases ≤ 3
characters or erases the entire password). Both of these
observations are encouraging trends for JIT since it means
that there is lots of time to perform key-stretching between
consecutive key-presses, and at any time we only need to be
able to restore JIT state for the last three characters of the
password that the user typed. In the unlikely case that there
are additional deletions the algorithm can restart from the
first state and reprocess, resulting in a delay for the user.

Several of our findings from the user study may be of
independent interest. For example, we find that password
typing speed is only weakly correlated with regular typing
speed, which may have implications for the design and
evaluation of implicit authentication mechanisms based on
keystroke dynamics during password entry. We conjecture
that the differences in typing times are due to muscle
memory as well as the use of less common characters and/or
character sequences in passwords.

We analyze the security of a JIT password hashing algo-
rithm using graph pebbling arguments. On the negative side,
our analysis demonstrates that JIT password hashing with
hash iteration as the underlying key-stretching mechanism
provides minimal benefits over traditional key-stretching al-
gorithms based on hash iteration (e.g., BCRYPT, PBKDF2).
On the positive side, we find that JIT hashing can be com-
bined with memory hard functions to dramatically increase
guessing costs for an offline attacker. For example, we find
that if users select passwords similarly to those found in the
Rockyou data set [36] then an offline attacker will need to
perform more than 6 times as much work to crack a pass-
word protected with JIT hashing. Similarly, it will be more
than 9 times as much work for an attacker to check every
password in a standard password cracking dictionary [37].
We remark that these advantages are based on a pessimistic
assumption that the adversary has an unbounded amount of
parallelism available. If the adversary is sequential then he
must perform 13.3 (resp. 12.5) times as much work to crack
a RockYou (resp. cracking dictionary) password protected
with JIT.

Finally, we provide a proof-of-concept implementation
of JIT highlighting key design decisions made along the

way. Our implementation is based on a modification of Ar-
gon2 [12], winner of the password hashing competition [3].
The execution of JIT can remain hidden from the user
to provide the benefit of increased key-stretching without
affecting the user’s authentication experience.

2. Related Work

Password Cracking The issue of offline password
cracking is far from new, and has been studied for many
years [70]. Password cracking tools have been created and
improved through the exploration of new strategies and
techniques such as probabalistic password models [72],
probabalistic context free grammars [91, 60, 90], Markov
chain models [31, 32, 65, 89], and neural networks [68].
For sentence-based passwords attackers may turn to public
or online resources as a source of password possibilities, or
they may use training data from previous large breaches like
Rockyou [93, 92]. Public and open-source password crack-
ing tools like John the Ripper are easily available online,
and can be modified or provided with specific strategies to
attempt to crack lists of passwords offline [37].

Improving Password Strength It has proven difficult to
convince or force users to choose stronger passwords [28,
62, 82, 83, 55, 80], and methods that do work have usability
issues [1]. Strategies to convince users to select stronger
passwords have included providing continuous feedback
(e.g. password strength meters [63, 88, 30]) and providing
instructions or enforcing composition policies [93, 21, 28,
62, 82, 83, 80, 81]. However it has been shown these these
methods also suffer from usability issues [55, 84, 48, 1]
and in some cases can even lead to users selecting weaker
passwords [20, 62]. Password strength meters have also
been shown to provide inconsistent feedback to users, often
failing to persuade them to select a stronger password [88,
30].

Key Stretching Key stretching, the process of artificially
increasing the difficulty of computation of a hash function,
is designed to protect low entropy passwords and secrets
from offline cracking attempts. By making each guess more
expensive, it becomes more difficult for an adversary to
crack each password as each attempt costs them more. The
method was proposed by Morris in 1979 [70] who used
it in the context of password security. Key stretching was
originally performed by repeated calculations of the hashing
function, i.e. rather than storing the hash of the password
and salt the result is first run through the hash function
many more times. This method is still used by the functions
BCRYPT [75] and PBKDF2 [59]. However these functions
require small amounts of memory, and the hash functions
that these are based on can now be computed very quickly
for a reasonable cost using hardware such as the Antminer
[44], which can computer trillions of base functions per
second e.g., Bonneau and Schechter estimated that, even if
we ran PBKDF2-SHA256 with τ = 107 hash iterations (1
second), a human would need to memorize a 56-bit secret
to provide adequate security against an offline attacker [23].
Additional key stretching methods have been proposed to



introduce asymmetric costs by keeping part of the salt secret
and requiring that it be guessed iteratively [17, 67].

Memory Hard Functions Memory Hard Functions
(MHFs) were introduced in 2009 by Percival [73]. The
key insight behind MHFs is that, while computation power
is asymmetric between users and adversaries, the cost of
using memory is more equitable. Ideally a MHF should have
τ2 area-time complexity, where τ is a parameter setting
the amount of time and memory the function should use.
Functions like BCRYPT or PBKDF2 would instead have an
area-time complexity of τ as they use a constant amount
of space. Data-dependent MHFs are MHFs which have a
data access pattern that depends on the input. Examples
include Argon2d [12] and SCRYPT [73]. Because data-
dependent MHFs have a data access pattern that depends
on the input they are potentially vulnerable to side-channel
attacks that determine memory access patterns [11, 49].
Data-independent MHFs are a particular class of MHF that
are designed to help prevent side-channel attacks, and have
a data access pattern independent from the input. It has
recently been shown that SCRYPT is optimally memory-
hard [9]. Blocki et al. [18] recently presented an economic
argument that iterative hash functions such as BCRYPT and
PBKDF2 cannot provide sufficient protection for user pass-
words and argued that NIST standards should be updated to
require the use of memory hard functions [18].

Other defenses against offline attacks It is possible to
distribute the storage and computation of password hashes
across multiple servers [24, 27, 45]. Juels and Rivest [58]
proposed storing the hashes of fake passwords (honeywords)
and using a second auxiliary server to detect authentica-
tion attempts that come from cracking the fake passwords.
These methods require the purchase of additional equipment,
which may prevent those with more limited financial re-
sources from employing them. A second area of research
has investigated the use of hard artificial intelligence prob-
lems that require a human to solve [29, 16, 19]. This
would require an offline attacker to employ human oversight
throughout the process by having them solve a puzzle (e.g.
a CAPTCHA [29, 19]). In comparison, data independent
MHFs have a set memory access pattern that does not in-
volve the input. These data independent MHFs are typically
the recommended type to use for password hashing [3, 12].
Several of the most prominent iMHFs from the literature are:
(1) Argon2i [13, 14], the winner of the password hashing
competition [3], (2) Catena [49], a PHC contestant which
received special recognition from the PHC judges and (3)
Balloon Hashing [22]. Several attacks have been found for
Catena [13, 7, 4] and for Argon2i and Balloon Hashing [4,
5]. Constructions for iMHFs with cumulative complexity
Ω
(
n2/ log n

)
have been shown [6] using a concept called

depth-robust graphs [43]. This is asymptotically the best
possible result given the attack shown by Alwen and Blocki
[4] showing that any “natural” iMHF has cumulative com-
plexity O(n2 log log n/ log n), but the construction remains
theoretical at this time.

Password Managers The number of passwords peo-
ple must keep track of has increased greatly over the

years, and will continue to increase in the future. Pass-
word managers such as PwdHash, Password Multiplier and
LastPass [77, 50] offer to relieve much of this cognitive
burden [52] by allowing a user to derive multiple pass-
word from a single master password. However, password
managers have been criticized since the compromise of a
master password (e.g., via key-logging, phishing or brute-
force guessing) can be fatal [64]. JIT password hashing can
be used to mitigate the risk of brute-force guessing in the
event of a breach such as the one at LastPass.

Disk Encryption Users have plenty of options when
it comes to encrypting the storage on their machines [15,
38, 54], and work has been done to design cryptographic
systems completely dedicated to this task [47]. Each of these
options in some way encrypts the user’s disk(s) (or only a
portion, such as a home folder) so that the data can only
be accessed with a provided password. As with password
managers, it is possible to run an offline attack against disk
encryption, such as in the case of a stolen mobile phone.

3. Just in Time Hashing

Our proposed solution to the problem of increasing key
stretching without inconveniencing users is Just in Time
Hashing, a method that allows for extended key stretching
without a user being aware that it is being done. Where a
user may have noticed that authentication was taking several
seconds before, using JIT hashing they could perform the
same amount of key stretching and barely notice any delay
once they have finished entering their password.

Formally we define a k-limited Just In Time hashing
function as a streaming algorithm A, with a random oracle
H , and an initial state q0 that makes at most k sequential
calls to the random oracle for each state update. As each
character ci of the input enters the algorithms the state is
updated, up until a special terminating character $. The
input must be of the form C ∈ (Σ \ $)

∗ |$, where once
the terminating character is read the output τ based on
the final state is returned. On each update a just in time
hashing algorithm returns one of two types of outputs. If
the character was not the terminating character $ then the
function returns a new state qi from the set of possible states
Q. If it is $ then it returns an output t from the set of
possible outputs T . The just in time algorithm transitions
between states according to the following function:

AH(qi=1, ci) =

{
qi ∈ Q ci 6= $

τ ∈ T ci = $

We use AH(C) to denote the final output given a se-
quence of the form C ∈ (Σ \ $)

∗ |$.
The Backspace Challenge: We allow the character set

Σ to include a special character J (backspace). We require
that a AH is consistent meaning that we should get the same
output when the user types 1, 2, f, g,J,J, 3 that we would
if the user had typed the sequence 1, 2, 3, $ the output τ .
Formally, for all input sequence C ∈ (Σ \ $)

∗ |$ we require
that AH(C) = AH (Prune(C)), where Prune(C) ∈



(Σ \ {$,J})∗ |$ is the character sequence we obtain after
applying each backspace operation J.

A naive way to handle backspaces would be to revert to
state q0 and repeat the entire computation, but this approach
would result in noticeably large authentication delays for the
user. A second way to handle backspaces would be to store
all previous states so that we can quickly revert to a prior
state. The key challenge is that states can quickly become
very large (e.g., 1GB) because our instantiation of AH is
memory hard.

We can relax the requirement that AH always updates
after at most k sequential calls to the random oracle to say
that AH always updates after at most k sequential calls for
β-good input sequences. Intuitively, a sequence is β good if
it does not contain too many backspaces J within a short
interval so that once we are in state qi+β we will never be
asked to revert to a state qj for j < i. We allow for one
exception: if the user wipes out the entire password then the
sequence is not β-bad because it is easy to revert to state
q0.

Definition 1. We say that a sequence C = c1, . . . , ct, $ ∈
(Σ \ $)

∗ |$ is β-bad if we can find indices i ≤ j ≤ t such
that

β <

j∑
i=1

(
1ci=J − 1cj 6=J

)
,

and Prune(c1, . . . , cj) 6= ∅. If no such indices exist then we
say that the sequence is β-good. We say that a sequence is
β-bad if AH is a β-tolerant k-limited Just In Time hashing
function if for all β-good sequences C ∈ (Σ \ $)

∗ |$ the
algorithm AH(C) never requires more than k-sequential
calls to the random oracle between updates.

Examples: Say that someone is using a β-tolerant JIT
hashing algorithm with β = 3, and that this user unwisely
decided to use the password ”password”. If the user typed
”pasS JJ ssw0 J ord” then the sequence of keystrokes
is β-good, but if the user typed ”passwo JJJ s JJ
ssword” then the sequence of keystrokes is β-bad. We stress
that a β-tolerant JIT hashing algorithm will allow the user to
authenticate in either case, though the user may experience
some delay in the second instance. In particular, a β-tolerant
JIT hashing algorithm is allowed to introduce authentication
delay whenever the sequence of keystrokes is β-bad since
the algorithm may need to revert to state q0 even though the
user has only erased part of the password. Similarly, if a user
types his password faster than expected then the characters
will be stored in a queue to be processed in the future. The
user does not lose protection from fast typing, but instead
notices a delay depending on how fast they typed since the
JIT hashing algorithm may not have enough time to catch
up before the user finishes typing the password. In Section
4 we present the results from our user study showing that
95% of users take more than 180ms per character typed. We
remark that the JIT parameters could be adjusted when we
know the user is a fast typist.

Applications: In this paper we focus on the context of
password hashing and key stretching, specifically using the

time users spend typing in their passwords. However, in the
broadest sense JIT is a method to hide computation within
idle cycles by streaming input instead of working in batches,
and thus potential applications are not necessarily limited to
password hash computation. For example, the JIT technique
could be used to generate proofs of work for email. As the
user types an e-mail the JIT algorithm could continually
update the proof of work for the current email message.
Using this approach could help deter spammers by making
it prohibitively expensive to generate the proof of work for
each message. One intriguing challenge would be to develop
a JIT proof of work with a more efficient verification algo-
rithm in case the receiver does not have time to regenerate
the entire JIT proof. Another possible application domain
for authentication would be to take advantage of the longer
delays induced by two-factor authentication.

Salting: In the context of password hashing it is vital
to have a method of introducing salt. We remark that a JIT
hashing algorithm can incorporate salt by including it in
the calculation of the initial state q0 and then storing the
salt value. In many contexts (e.g., disk encryption, password
vaults) the salt value could simply be stored on the client
machine. Similarly, a stateful password manager could store
salt values on the client or on the cloud. A stateless password
manager (e.g., PwdHash) could derive a salt value from
public parameters (e.g., username, domain).

4. Usability Analysis

In the last section we introduced the notion of a β-
tolerant k-limited JIT scheme which updates the state at
most k times given any β-good input sequence. Before
instantiating any JIT scheme it is crucial to understand how
people type passwords in practice. In particular, to avoid
delays during authentication we need to tune k so that the
time to update the state is less than the expected delay
between consecutive keystrokes. Thus, the parameter k will
depend on the user’s password typing speed. Furthermore,
we also need to ensure that JIT is β-tolerant for a sufficiently
large value of β to ensure that the input sequence we receive
when a user types their password is β-good.

In this section we aim to answer the following questions.
How quickly do users type their passwords? To what extent
is password typing speed correlated with regular typing
speed? What fraction of login attempts are β-good for
β = 1, 2, 3? And to what extend does password typing speed
Change over time?

To answer these questions we first analyze two publicly
available datasets [34, 61]. While we can extract useful
insights from both datasets, there are significant method-
ological limitations when we attempt to use these datasets
to answer each of our questions e.g., users in the passwords
typo dataset [34] were not actually typing their own pass-
words. To address these limitations we also conduct our
own user study in which we asked users to type in their
real passwords so that we could measure password typing
speed.



4.1. Password Typos dataset
Chatterjee et al [34] ran a user study designed to

“. . . identify common typos and trends”. To do this they
used Amazon Mechanical Turk (MTurk), an online platform
that allows users to post or complete small tasks, called
Human Intelligence Tasks (HIT), for compensation. In
their study they asked users to type in several passwords
sampled from the Rockyou password leak, a 2009 leak
that exposed users passwords in plaintext [36]. For each
password that users typed a JSON entry was created that
contained a list of the user’s key presses as well as the
corresponding timestamps.

Analysis of Deletion Patterns: We analyzed deletion
patterns in the password typos dataset and found that if a
user starts deleting a password, there is a 74.9% chance that
they will clear the entire field. For implementation of JIT
hashing this is convenient, because it means that with most
deletions the user starts from scratch and we don’t have to
worry about reverting. In addition, of those that delete some,
but not all, of the password, 89.5% will delete fewer than 3
characters and 94.7% will delete fewer than 5. This suggests
that it would be sufficient to ensure that the JIT algorithm
is β-tolerant with β ∈ {3, 5}.

4.2. Keystroke Dynamics dataset

Killoughy and Maxion also performed a user study that
recorded user’s password typing habits with the goal of
creating a dataset that could be used to test authentication
methods based on user’s individual typing trends [61].
In their study they recruited 51 subjects and had them
type the same password 400 times. For each recording the
researchers recorded key press timing data. All participants
used the same preset password (.tie5Roanl).

Impact of Muscle Memory: We used the keystroke dynam-
ics dataset to estimate the impact of muscle memory on pass-
word typing speeds. The dataset is particularly well suited
for this estimation because each user typed the password
400 times. We found that the time spend typing passwords
on their last entry was, on average, 0.4877% of the time
spend typing it the first time (σ = 0.1611). This was strong
evidence in favor of our hypothesis that over time people
will tend to speed up their password typing speed over time
as they gain more practice.

4.3. Limitations

Both of these studies provided valuable data for the
analysis of just in time hashing, but the data was not without
limitations for our purposes. In the typos data set users
were given multiple passwords sampled from the Rockyou
password list. While these passwords are sampled from
a large database of user-chosen passwords, they are not
necessarily the style of password that particular user may
pick. In addition they typed these passwords only one time

- while throughout their daily lives they may be typing their
own chosen passwords multiple times, possibly improving
their speeds along the way. Thus, it is possible that the
typing speeds and deletion patterns observed during the
study are not representative of real world password typing
speeds/deletion patterns.

Similarly the users in the keystroke dynamics study all
typed the same randomly-generated password. They were
also typing the passwords in large batches during several
sessions, which may not match everyday password typing
habits.

These limitations restrict the ecological validity of any
conclusions that we draw from these datasets, thus we
perform our own user study to further investigate how JIT
hashing could best be implemented.

4.4. Study Design

To address the previous limitations we designed a user
study to investigate user’s typing speed and correction habits
on their real passwords. Briefly, in the study users were
asked to type their password, type a paragraph and then type
their password again. The instructions emphasized that we
wanted users to type in their actual password and reassured
users that we only collected statistics on typing speeds and
would never receive their actual password. Previous work
has found that conducting password studies poses many
challenges, and that care must be taken when analyzing the
results [46]. Thus we strived to ensure that we were learning
valuable information while taking care to design the study
properly.

To give an idea of how much key stretching could be
performed with JIT hashing the specific data that is needed is
how quickly people type their passwords in practice. While
previous work did have people type in passwords, they were
either typing a pre-defined password list [61] or randomly
generated passwords [34]. To give an idea of how much time
we have for key stretching in practice we need to know
how long users spend typing per character on their own
passwords. To obtain this information we performed a user
study in which we collected the time it took for people to
type in their real passwords.

The IRB-approved user study was conducted using
MTurk and a website we hosted locally. We asked partic-
ipants to take part in a quick 5 minute survey that was
investigating password typing habits, and were recruited
with the following advertisement on MTurk:

Participate in a study investigating password
typing speeds and muscle memory: For this HIT
you will be asked to help investigate how long
users take to type in their passwords. This involves
several typing tasks, including filling in password
boxes and typing a full paragraph. At no point in
this study are the passwords you type transmitted
or stored by the researchers.

We used Mechanical Turk due to its ability to recruit a
larger amount of subjects than we would normally be able



to recruit locally. It is known that Mechanical Turk tends
to recruit users who are younger, more educated, and more
technically proficient than the general population [26]. In
addition Mechanical Turk users tend to be more diverse than
populations that would be recruited on a standard campus
[56]. Mechanical Turk is not without its flaws, and has been
criticized by Adar. Though he criticizes it, he states that he
has no issues with its use if the study involves understanding
humans and human interactions[2]. We believe that this
study falls within this category, and that it has been used in
an appropriate and useful manner. In addition, to ensure that
we had reliable results we restricted our survey to MTurk
users with an approval rating of 90% or higher. We recruited
400 participants, each of whom were paid $0.50 for an
estimated 5 minute survey.

To participate, users were linked to a website where they
were given instructions and consent information about this
study. Participants were told that the study was investigating
password typing habits, and that they would be asked to
answer a few quick questions and type a short paragraph.
They were also told that the study was not expected to take
any more than 5 minutes to complete. To begin, we asked
users what platform they were using, either desktop/laptop,
a mobile device (phone or tablet), or something else. We
only accepted those who selected the first two options.

Once users had consented to the study and entered
in what platform they were using they were taken to the
first page which contained a password input field and the
following bolded instructions:

In the form below please enter a commonly used
password. It is important to type one of your
own commonly used passwords, as we are
studying how quickly people normally type
their passwords!...

Subjects were also reassured that at no point do we transmit
their actual password, and that we only collect the timing
data from their input. Particularly concerned users had the
ability to verify this by checking the code on the site. Once
they had finished typing in the password, they were taken to
a second timing page and asked to type in a short paragraph
to gauge their typing speed. As before, the instructions told
the participants to type the paragraph and hit enter once they
were done. At the end they were taken to a page similar to
the first password entry page, where they were asked to type
in the same commonly used password as before in the same
manner.

Previous research has found that when users in studies
are asked to use either their real password or very similar
ones, some participants will behave strangely or even in an
antagonistic way [46]. Thus, it is possible that some users
typed in a fake password instead of using one of their real
ones as we repeatedly requested. To address these concerns
we asked users to self-report whether or not they had typed
in their real passwords. In particular, once the final timing
data was collected the participants were taken to a page with
the following statement:

It is important for us to know if you used a

commonly written password. If what you typed
was not a commonly used password, please select
the appropriate response. We appreciate that you
may have done this in the interest of your own
security, but we need to ensure the collected data
is usable. Even if you select ”I did NOT type a
commonly used password on the previous page”
you will be paid for completing the study.
� I typed a commonly used password on the
previous page
� I did NOT type a commonly used password on
the previous page

We felt it was important to clearly state that the users are
paid whether or not they self-reported typing one of their
real passwords to eliminate incentive to lie about the last
question.

As a final step users were asked to optionally provide
some demographic information, including age, ethnicity,
education, and gender. After this page the users were di-
rected to a page containing a code that they could enter on
Mechanical Turk to claim their payment.

The main data that were collected were per character
password and standard typing speeds. To record this, an
action was triggered when the first character was entered
into the provided field that recorded the starting time. If, at
any point, a user cleared out the field, the timer was reset.
Once the user hit enter or clicked the continue button the
timer stopped, calculated the total time over the number
of characters, and transmitted the per character speed over
the encrypted connection. In addition to timing data we
also collected data on how many consecutive backspaces
occurred in the worst case, as well as how many times users
cleared the entire field. The results were stored in a database
at our institution for analysis.

Ethical Considerations As this study involved the use
of human subjects and sensitive information great care was
taken to ensure this study was designed and run in a way
that would offer the most benefit with the least risk to users.
A large number of security precautions to prevent password
theft were put in place, described in the following paragraph.
Another potential concern is that an attacker might conduct
a copycat “study” to phish for user passwords. To minimize
the risk of such copycat studies we provided full contact
information for the PI and for the IRB board at Purdue. The
study site was also hosted on an https server using a domain
name affiliated with Purdue University. Finally, we note that
in user studies in which users are asked to create a new
password that many users simply type in one of their own
passwords [62]. Thus the risk of phishing ‘studies’ is present
whether or not the user is explicitly asked to type in their
own password. The study was submitted to and approved by
the IRB board at Purdue before the study was conducted.

4.5. Security precautions

We took several precautions to ensure that at no point
would a user’s password be revealed, either to us or even
to someone monitoring the user’s network traffic. The first



step for ensuring security is to make sure that all data
involving the user’s password was computed locally on the
user’s machine. To accomplish this we wrote Javascript
code to monitor the time between key presses and watched
for the enter key to be pressed when the user was done
typing. Once they finished our code transmitted only the
time typed per character, the number of field clears, and the
maximum number of consecutive backspaces to the server.
At no point was the password or its length transmitted, only
the time it takes to type each character, which is the relevant
information for tuning JIT parameters.

As a second layer of protection we required that all
connections to our server be encrypted. Thus, even in the
event that secure data was sent it would not be retrievable
by observing network traffic.

As a final precaution all of the code for the survey
was subjected to independent third-party analysis. The third
party used the automated tool Checkmarx to test for security
vulnerabilities. The analysis found no vulnerabilities that
would expose any sensitive user data.

4.6. Results

Of the 400 MTurk participants recruited 335 self-
reported that they had completed the study and used one of
their own passwords. In our analysis we dropped data from
the 65 users who self-reported not using their own password
in the study. Additionally, we discarded data from the 7 PC
users who left the password field blank (all mobile users
filled in the password field). Of the remaining 335 users,
313 reported using a desktop or a laptop while 22 reported
using some mobile device (phone, tablet, etc...).

Several users had exceptionally long typing times
(2000ms+ per character typed). In each of these cases either
the password per-character speed or the typing per-character
speed were unusually large, never both. These values are ex-
cluded from the charts and tables in this section as they make
it difficult to visualize the more common results. Statistical
analysis was performed using the statistical package R [86],
where one of the first things we looked at is whether or not
the time taken to type each user’s individual password had
anything to do with their individual typing speed.

We split the analysis into mobile and non-mobile users.
One of the first things to notice, especially in Figure 1, is that
there isn’t a very strong correlation (R2

adj = 0.1289, p <
0.001) between observed typing time and password typ-
ing time. The non-mobile data showed the same weak
correlation, meaning that typing time is not a particularly
good measure of how quickly someone might type their
passwords.

We noted that we found similar deletion habits to those
from Chatterjee et al’s data [34]. In particular, we observe
that people rarely have more than 3 consecutive deletions
without deleting the entire password, with only about 1%
of participants doing so2. In total we saw that, of the 612

2. The four users that did have larger numbers of consecutive deletions
without wiping out the entire password had very large numbers (26,19,22
and 27) for the maximum number of consecutive deletions.

entries from 306 users (two entries per user) who self-
reported using their real password and were on a non-mobile
device, only 4 showed more than 3 consecutive deletions.
Thus, we maintain that a large majority of users will not run
into more than a small number of deletions. In particular,
it should be sufficient to set β = 3 when implementing a
β-tolerant JIT scheme.

Of particular interest to JIT hashing are some of the
typing time percentiles, marked on Figure 1. For just in
time hashing it is valuable to know how long we can safely
run the key stretching per character so that users will not
notice any odd delays or slowdowns from the system. From
the provided data we can see that it should suffice to stop
after 183 or 213 milliseconds of computation for a non-
mobile user so that 95% and 90%, respectively, of users
will notice no delay from the key stretching. With mobile
data it does seem like we may have a bit more time to run
key stretching due to overall slower password typing speeds,
however due to the small mobile sample size this will likely
require further study to come up with statistically significant
claims. If it does turn out that we have more time on mobile
devices this may be a benefit, as we can make up for some
of the slower processing speeds with additional computation
time.

Using Regular Typing Speeds to Select Cutoffs We
further investigated the possibility of predicting typing
speeds by categorizing users into broader categories. We
began with the non-mobile users and then split this group
into those with speeds under 250ms/ch, those between 250
and 500, and those taking more than 500ms per character
typed. Each of these groups was further split into a training
set and a testing set. Each training set contained 70% of
the time group’s results, with the remainder reserved for
testing. Using the training data split by typing speed, we
determined each group’s 5th and 10th password typing
speed percentiles. We then looked at the cutoff line for the
percentiles and determined what proportion of the training
data fell below the cutoff line, giving an idea of how accurate
the predictions came out. The results are shown in Table 1,
which shows the percentile cutoffs from the training data
and the percentage of the testing data that fell below each
cutoff. We observe that we obtain reasonable predictions of
the testing percentiles, with the exception of the final timing
category. This category turned out to be more difficult to
predict due to the outliers contained in the set.

The practical benefit of being able to make some pre-
dictions based on larger standard typing time categories is
the potential optimization of JIT hashing times per character
by giving a user a typing speed test. If their typing speed
is known, and if they turn out to be in one of the slower
groups, our data suggests that it is possible to run just in
time hashing for more time per character for that individual.
While possible, usability may be an issue with this optimiza-
tion. Users may become impatient with a required typing
test before registering, and those with faster typing times
can argue that they are being cheated out of additional key-
stretching due to their typing speed. That is, they may prefer
the extra security they would have gained by increasing the



Figure 1. Results for non-mobile users

Typing speed range Train 5’th (ms) % ≤ Pred Train 10th(ms) % ≤ Pred
0 ≤ x < 250 170.01 0.078 180.025 0.100

250 ≤ x < 500 264.11 0.059 299.18 0.118
500 ≤ x 310.12 0.083 356.400 0.167

TABLE 1. SUMMARIZED RESULTS FROM SUBSAMPLING TESTS

per-character running time. The benefit of this method over
a universal set time would be that those who would have
experienced some annoying delay when typing would no
longer see this delay.

5. Security analysis

In this section we investigate the performance of JIT
hashing with and without memory hardness. On the negative
side, our analysis demonstrates that the benefits of JIT hash-
ing without memory hardness are marginal. In particular,
if an iterated hash function is run in JIT mode we will
show that the adversary has a fairly efficient method to
guess passwords i.e., the cost of checking every guess in
a dictionary with JIT is only marginally higher than the
costs the attacker would incur if a comparable iterated hash
function (inducing the same authentication delay) were used.
Given this attack we warn that JIT hashing does not offer
its full benefits without memory hardness. In the second
section we will examine JIT hashing when implemented
with memory hardness. In this case we use a pebbling argu-
ment to demonstrate that JIT hashing substantially increases
guessing costs for an attacker.

5.1. Adversarial model

For analysis we assume the adversary is:
1) Offline: The adversary has obtained a hash and salt of

a password, and can verify password guesses offline.

2) Informed: The adversary is familiar with the specific
implementation of JIT hashing being used, and knows
exactly how the hash value they have was obtained. The
adversary is also assumed to posses a reasonably large
password dictionary containing all of the most likely
user password choices. The adversary is interested in
cracking the password using the minimum possible
number of guesses, and will use their knowledge to
optimize their strategy to crack the password with the
minimal possible amount of work.

3) Rational: An attacker is willing to continue cracking
as long as marginal guessing benefits (i.e., value of a
cracked password times the probability that the next
guess is correct) exceed marginal guessing costs. If
expected guessing costs exceed expected reward then
the attacker will quit his attack. In particular, it is
possible to discourage the attacker by increasing the
cost to validate each password guess.
a) Infinitely Parallel, Memory Unbounded: The ad-

versary has no time limit to their computation, al-
though there is an opportunity cost to allocating
additional resources (memory/processing cores) to
password cracking. Since the adversary is rational
the attacker may stop attacking if the opportunity
costs exceeds the expected reward. This model may
be overly pessimistic since a real world attacker does
not have infinite memory.

b) Sequential, Memory Unbounded: The attacker has
limited memory and each memory chip is associated
with a single processor. While this model may be
overly optimistic we note that in practice it is difficult
to route messages from a single shared memory chip
to many different cores.

5.2. Password Model

We consider three types of password distributions:
1) Empirical: The user selects a password from the Rock-

You dictionary. Probabilities are weighted by their em-
pirical frequency (e.g., in the RockYou dictionary con-
tains passwords from N = 32.6 million user accounts
and 291×103 users in the dataset selected ‘123456’ so
the probability our user selects the password ‘123456’
is Pr[‘123456′] ≈ 0.009).

2) XKCD (Random Words): The user selects several
words uniformly at random from a dictionary of En-
glish words. In particular, we use Google’s list of the
10,000 most common English words in our analysis.

3) Cracking Dictionary: Passwords are taken from a
cracking dictionary created by Openwall and intended
for use with John the Ripper [37]. This is designed to
mimic how a criminal may perform an online attack
against a standard password.

An additional analysis of uniform passwords is available in
the full version of this paper. Briefly, our analysis shows
that when we are protecting uniformly random passwords
JIT offers no advantage against a parallel memory bounded



attacker. However, JIT can increase costs for a sequential
attacker by an order of magnitude. We defer the analysis to
the full version of the paper because real users tend not to
pick uniformly random passwords.

5.3. JIT without memory hardness

In this section we analyze the performance of JIT
without memory hardness. We will present an executive
summary of our results and refer and interested reader to
the full version of this paper for more details. To begin,
assume that we have an unbounded adversary attempting to
run through their list of possible passwords as quickly as
they can, and that JIT hashing is being run using a hash
function H and key stretching is performed through hash
iteration. Note that under the JIT model the adversary can
think of the list of possible passwords as forming a trie of
possibilities. To explore all passwords the adversary simply
needs to calculate the entire trie, ensuring that they visit
every node at least once.

If we define the cost to traverse each edge to be
W = C(H) = 1 and define our alphabet as Σ and assume
that no password is of length 1 ≤ length ≤ ` then the
adversaries total work to check all password guesses is
given by the number of nodes in the trie. By comparison
if we had not used JIT and instead simply hashed the final
password with H then the total work is given by the total
number of passwords in the dataset that the attacker wants
to check (e.g., the number of leaf nodes in the trie). The
advantage of JIT is given by the ratio: #nodes/#leaves.

Empirical Distribution: For each value of T we
computed a trie from the T most popular passwords in the
RockYou list. Figure 2 plots the ratio #nodes/#leaves
for each point T . A typical value of the ratio is about 1.5.
Thus, JIT slightly increases the work that an attacker must
to to check the T most popular passwords.

XKCD (Random Words): We computed the ratio
#nodes/#leaves for the trie for the dictionary containing
all i-tuples of the 10, 000 English words for each i ≤ 5.
The typical value for the ratio (i.e. at 4 words) is 2.417
meaning that JIT yields a modest increase in the work that
an attacker must to to crack an XKCD style password.

Cracking Dictionary: The cracking dictionary was an-
alyzed in the same manner as Rockyou, with the results
shown in Figure 2. We note that the ratio is slightly higher,
closer to 2.4, for this dictionary.

5.4. Just in Time Memory Hard Hashing

In the previous section we saw that an adversary using
a trie attack can obtain near optimal running times when
attacking a JIT hashed function that key stretching via
iterated hashing. The main vulnerability that allows this to
happen is the fact that standard hashing results are easily
stored in memory and referenced, producing a trie that can
easily be stored entirely in memory on any standard home

Figure 2. Average number of nodes added to pwd trie over time

computer. However the results are much different when
using a memory hard hashing function rather than using
a standard iterated hashing function.

Memory hard functions are functions that require the
user to dedicate a set amount of memory to computing a
function in addition to performing the computation cost, or
at the very least to suffer an extreme runtime penalty if
they do not want to store the function in memory. Several
of these memory hard functions, such as SCRYPT, have
a tunable memory use parameter that allows the user to
specify how much memory they would like the hashing
function to take up. We note that if a user were to simply
select a value that a reasonable computer would have, such
as using 1GB of memory, we already require more memory
to calculate a single hash than it took to store the entire trie
under the iterated hashing scheme. The question arises as to
just how much would it cost to run an offline attack against
a JIT password hash that used a memory hard function.
To accomplish this we first introduce the notion of graph
representations of MHFs, graph pebbling and cumulative
complexity.

The Black Pebbling Game. One of the main tech-
niques for analyzing iMHF is to use pebbling games played
on graphs. First introduced by Hewitt and Paterson [53] and
Cook [35] the (sequential) black pebbling game (and its rel-
atives) have been used to great effect in theoretical computer
science. Some early applications include space/time trade-
offs for various computational tasks such as matrix multi-
plication [87], the FFT [78, 87], integer multiplication [85]
and solving linear recursions [33, 79]. More recently, peb-
bling games have been used for various cryptographic ap-
plications including proofs of space [42, 76], proofs of
work [39, 66], leakage-resilient cryptography [40], garbled
circuits [51], one-time computable functions [41], adaptive



security proofs [51, 57] and memory-hard functions [49, 7,
4, 8].

The black pebbling game is played on a fixed DAG in
rounds. At each round, denoted Pi ⊆ V , certain vertices
are considered to be pebbled if they are contained in Pi.
The goal of the game is to pebble all sink nodes of G
(not necessarily simultaneously). In the first round we set
P0 = ∅. Pi is derived from the previous configuration
Pi−1 according to two simple rules. (1) A node v may
be pebbled (added to Pi) if, in the previous configuration
all of its parents were pebbled, i.e., parents(v) ⊆ Pi−1.
In this parallel pebbling game we allow for any number
of pebbles to be placed in a single round, while in the
sequential version only one pebble may be placed at each
round. (2) A pebble can always be removed from Pi. A
sequence of configurations P = (P0, P1, . . .) is a pebbling
of G if it adheres to these rules and each sink node of G is
contained in at least one configuration.

Cumulative Complexity When running a pebbling
game on a DAG we have the concept of cumulative com-
plexity. In this model we are thinking of each pebble as
some unit of memory, and each round as a unit of time. Cu-
mulative complexity of a DAG G, CC(G), and a pebbling
sequence P = P0, P1, . . . , Pk is a measure of the space time
complexity of the pebbling. To model memory usage in a
JIT MHF we slightly modify the standard cost definition
to match the realities of MHF implementations. In a MHF
placing a pebble involves filling an array of size m over m
steps. During the placement we use 1+2+. . . = m2

2 units of
memory over the entire placement process. When keeping
a pebble on the graph, we keep m units of memory filled
for the m steps it will take to fill up a new pebble, meaning
each pebble costs m2 to keep around for an additional
round. Note that in the original definition of cumulative
complexity the graph being used represents nodes as blocks
of memory in a memory hard function and the edges as the
dependencies required to fill that block. For JIT hashing the
graph represents a different point of view. Each node does
not represent a single memory block, but rather represents
the state that the JIT hashing function is in once a sequence
of characters has been entered. For each character entry the
JIT function represents the filling of m blocks of memory
rather than a single block in the original definition. It
is this distinction that leads to these modifications in the
definition of cumulative complexity. Essentially, rather than
a single node representing a single operation, it represents
the sequence of operations required to update the JIT state
from the previous state to a new state.

With these definitions in place we can now define the
cumulative complexity of a sequence of pebbling moves P :

CC(P ) =

k∑
i=0

((
m2

2
|Pi \ Pi−1|

)
+
(
m2 |Pi−1 ∩ Pi)

∣∣)
To distinguish between parallel and sequential pebbling

games we will denote the cumulative complexity CC||(P )
for parallel pebbling and CC(P ) for sequential pebbling.

Next, we define the cumulative complexity of an entire
graph. Denote the set of all possible pebbling sequences
PG (resp. P ||G for parallel pebbling).

CC(G) =min
P∈PG

CC(P ) , and CC||(G) =min
P∈P ||

G

CC(P ) .

With parallel pebbling cumulative complexity
(CC||(G)) being defined in the same way when parallel
pebbling has been used.

5.5. Cumulative Cost for JIT Hashing

In JIT hashing we have a window of size w that only
allows us to select dependencies from the previous w − 1
memory blocks. Recall that there is a trie representing the
list of passwords that an adversary wants to try, with each
node representing the addition of a new character. To create
our JIT pebbling graph we start with this base trie. For each
node, any node at distance at most w−1 may depend on it.
To represent this for each node in the graph we add an edge
to each of its descendants up to distance w−1. We set our list
of sink nodes to be each node that corresponds to a password
that is being guessed (e.g. in the path 1-2-3-4-5-6 we may set
the nodes for 5 and 6 to be sink nodes, as they correspond to
common passwords). We denote TD,w as the directed acyclic
graph created in this manner using a dictionary D to form
the base trie and windows size w. From this graph we derive
two bounds on the cumulative complexity of running a brute
force attack on a JIT hashed password. The upper bound on
time is derived using a parallel pebbling argument while the
similar lower bound is derived using a sequential pebbling
game.
Notation: Given a node v ∈ TD,w we use height(v) (resp.
depth(v)) to denote the height (resp. depth) of a node in the
tree TW,v e.g., a leaf node is defined to have height 1 and
the root node is defined to have depth 0.

Theorem 1. For a parallel attacker with unbounded mem-
ory we have

CC||(TD,w) = |TD,w|
m2

2

+
∑
h>1

∑
v: height(v)=h

(
m2 min{h− 2, w − 2}

)
For a sequential (memory bounded) adversary we have

CC(TD,w) ≥

∑
d

∑
v:depth(v)=d

m2 min{d− 1, w − 1}


− |TD,w|

m2

2

Proof. (sketch) Consider the graph TD,w under the parallel
black pebbling game. Let t be the height of the root node.
We first observe that the there is a simple legal parallel



pebbling strategy P ∈ PTD,w
with

CC||(P ) ≤ |TD,w|
m2

2

+
∑
h>1

∑
v: height(v)=h

(
m2 min{h− 2, w − 2}

)
.

In particular, we set P0 = ∅ and we set Pi = {v : t+w−i ≥
height(v) ≥ t + 1 − i}. To see that the pebbling is legal
we observe that Pt contains all leaf nodes in TD,w and that
Pi+1 \ Pi = {v : height(v) = t − i} and that therefore
parents(Pi+1\Pi) ⊆ {v : height(v) = t−i} ⊆ parents(Pi).
Furthermore, since Pi+1 ∩ Pi = {v : t + w − i − 1 ≥
height(v) ≥ t+ 1− i}, we have CC||(TD,w) ≤ CC(P ) =

t∑
i=1

((
m2

2
|Pi \ Pi−1|

)
+
(
m2 (Pi−1 ∩ Pi)

))

=
∑
h

∑
v: height(v)=h

(
m2

2
+m2 min{max{h− 2, 0}, w − 2}

)

= |TD,w|
m2

2

+
∑
h>1

∑
v: height(v)=h

(
m2

2
+m2 min{h− 2, w − 2}

)
Note that if a node v is at height 1 (e.g., a leaf) or 2 then
we keep a pebble on that node for exactly one round (total
cost m2/2). If a node v is at height > 2 then we keep a
pebble on that node for exactly min{h−2, w−2} additional
rounds after we initially place the pebble (total cost m2/2+
m2 min{h− 2, w − 2}).

To see that CC||(TD,w) ≥ CC(P ) we note that in any
legal pebbling of TD,w we must place a pebble on each node
in TD,w at some point and that the total cost of placing
these pebbles on each node for the first time is at least
|TD,w|m2/2. After we first place a pebble on node v we
must keep a pebble on node v for an additional min{w −
2,max{h − 2, 0}} steps to pebble the min{w − 1, h − 1}
children of node v. The total additional cost is m2 min{w−
2,max{h−2, 0}}for each node v. Therefore, CC||(TD,w) ≥∑
h

∑
v: height(v)=h

(
m2

2
+m2 min{max{h− 2, 0}, w − 2}

)
.

Now consider an arbitrary sequential pebbling strategy
and in particular consider the unique round iv during which
we first place a pebble on node v. We note that during
round iv − 1 we must have pebbles on all of v’s parents,
thus |Piv−1| ≥ |parents(v)| ≥ min{w − 1, depth(v)− 1}. It

follows that

CC(P ) ≥

(∑
v

m2 min{w − 1, depth(v)− 1}

)

− |TD,w|
m2

2

=

∑
d

∑
v:depth(v)=d

m2 min{d− 1, w − 1}


− |TD,w|m2/2 .

Under the sequential black pebbling game a similar
approach works. In this case rather than the height of
each node consider the depth of each each node, which is
the distance to the root of the trie. For each node realize
that you must pay the initial pebbling cost and also pay
min{w − 1, d− 1} to keep its parents in the trie. Thus we
gain a similar bound for the sequential pebbling game:

To give some perspective we calculate the pebbling
complexities for several password lists, including rockyou,
xkcd-style passwords, and a cracking password list from
Openwall, designed for use with John the Ripper[37]. We
look at the advantage in terms of the CC of the JIT pebbling
graph and the work required to calculate all passwords using
memory hard hashing but not a JIT model i.e. each password
requires only m2/2 work to compute. We specifically define
our advantages as adv||(D,w) and adv(D,w) under parallel
and sequential models for a dictionary of passwords D with
a JIT hashing algorithm using a window of size w as

adv||(D,w) =
CC||(TD,w)

m2|TD,w|/2

adv(D,w) =
CC(TD,w)

m2|TD,w|/2
.

This can be thought of intuitively as the amount of work
necessary for the attacker to check all passwords in the
dictionary when passwords are protected with JIT divided
by the work the attacker must perform when passwords
are protected by a standard memory hard function with
equivalent authentication delay.

XKCD (Random Words) For XKCD passwords we
use a semi-theoretical approach to calculate the cumulative
complexity. First we divide the trie for a single word into a
list of nodes by height/depth. For height, we can get the next
largest XKCD trie’s height list by multiplying the current
list of heights by 10,000 (as there are 10,000 copies of
this trie in the next largest trie). We add on the heights
for the newly added nodes for the new first word, with all
of the heights increased by the max height of the single
word trie. This process can be continued to produce the
height list for larger XKCD tries, which is sufficient to
allow calculation of parallel cumulative complexity. Find-
ing the depth lists follows a similar strategy, but is more
complicated. Depth must take into account the depth of the



List adv||(D,w) adv(D,w)
Rockyou 6.028 13.260

Cracking(1k) 10.100 15.542
Cracking (10k) 7.057 10.654
Cracking (100k) 3.048 6.068

Cracking (∼ 5 mill) 9.154 12.468
XKCD (4 word) 11.674 25.399

TABLE 2. ADVANTAGES OF JIT HASHING WITH SELECTED
DICTIONARIES

location where each recursive tree begins. For all advantage
calculations we assume that certain parameters have been
set according to reasonable assumptions about available
hardware and the results from the user study in Section
4.6. For the assumptions we assume that the user has set
up their function to use 2GB of memory, and use 200MB
per character. We assume that they allow 3 deletions, which
sets our window to be 2GB/200MB − 3 = 7 = w. We
also assume that the same amount of memory would have
been used without JIT hashing, giving identical m2 values
for each. The calculations based on these parameters can be
seen in Table 2.
Empirical Distribution We again analyze the complexity
using the Rockyou password list. In this case we are able
to calculate the entire trie and feed the results into our
formula. In this case we find that JIT offers an advantage
of over 6 in the parallel pebbling model and over 13 under
sequential. Exact number are in Table 2. The Rockyou leak
consisted of primarily low-value accounts, yet it remains the
largest plaintext password leak as of this time, and provides
valuable insight into cracking attempts against these types
of accounts.

Cracking Dictionary To model higher value accounts
we use a general cracking dictionary designed by Openwall
for use with John the Ripper [37]. We computed advan-
tages using cracking dictionaries of size 1k, 10k, 100k,
and roughly 5 million (whole dictionary). Our analysis
shows that JIT can increase work by roughly an order of
magnitude.

6. Implementation

A basic implementation of Just In Time hashing was
created as a version of Argon2 - The winner of a Password
Hashing Competition held from 2013-2015. [3][12] Argon2
is an open source memory-hard hashing function that runs
in either a data-dependent (Argon2d), data-independent (Ar-
gon2i), or hybrid (Argon2id) mode. This implementation
specifically contains a method to introduce characters into
Argon2 on the fly. To modify Argon2i to run in JIT mode we
needed to find a place to add in a character after a specified
amount of time. To do this we modify the stage where
two blocks are XORed together and passed into Blake2b.
Whenever a character must be added, we take the character
(currently as a byte, although this method is easily modified
to work with larger character sizes) and XOR it with the

first byte of the previous input block. The result of this is
XORed with the second block from the iMHF dependencies
and run through the same XOR, Blake2b, XOR process as
the current version of Argon2. Once a character has been
entered, Argon2 can be computed as normal for a set amount
of blocks until it is time to wait for the next character.

For single-thread Argon2 an array of length m is de-
clared and divided into a specified number of blocks. The
first block is filled using the parameters (and optional salt)
passed into the Argon2 function and the block is hashed
using the Blake2b hash function [10]. At each successive
stage in the first pass the next block is filled by XORing the
previous block with another block chosen according to the
iMHF dependencies defined. Once the XOR is completed,
the block is hashed with Blake2b and XORed once more
with the input to Blake2b. In further passes the dependencies
are permitted to select blocks further ahead in the array, as
long as they were filled during the last pass and not the
current pass. The implementation introduces a few new pa-
rameters to Argon2 that the JIT mode requires. In JIT mode
there are two significant parameters to set. The first of these
is the number of blocks that each character corresponds to
while running the function. This is tunable to any number,
and is the way that running time per character is set. The
second parameter is the number of permitted backspaces
the algorithm should permit. This parameter, combined with
the per-character block number, is how the window is de-
termined by the algorithm. Once a number of permitted
backspaces is set the window for permitted dependencies
is set to w = m−blocks_per_char ∗max_num_del.
As this is a proof of concept the prototype implementa-
tion currently supports a very basic β = 0-tolerant k-
limited JIT hashing function i.e. it requires correct in-
put. The code for the implementation is publically avail-
able at (https://github.com/JustInTimePwdHash2017/Just-
In-Time-Hashing). For a more detailed description of the
implementation please refer to the full version of this paper.

7. Discussion

7.1. Usability advantages

A great benefit of JIT hashing is that, from a user’s
perspective, there is nothing new to learn. So long as the
system has been implemented correctly most users should
expect to be able to authenticate with no detectable delay. In
a case when a user does notice a delay this would be because
they are either typing much faster than expected, such as
faster than 95% of users, or because they have deleted a
significant amount, but not all, of the characters that they
entered. In these cases while there is a delay it is not a very
significant delay, and should only last for a few seconds
while the algorithm restarts computation from the beginning
to catch up with the user.

From a developer’s perspective JIT hashing will require
some modification to their existing authentication systems.
Current password hashing functions are set up to take the



entire password at once, while JIT is a streaming algorithm.
Developers would need to modify their existing systems
to accept passwords one character at a time, which may
vary from simple to complex depending on the current
systems they are working with. Beyond modification to be
a streaming algorithm, the replacement of the function itself
would be quick, only requiring the developer to import the
function and set a few additional parameters.

7.2. Client vs Server-Side

In earlier sections we described JIT Hashing as a client-
side hashing algorithm. The reason for this is that a naive
implementation for a server-side version could include sev-
eral serious security or usability risks. For example, a
naive implementation may send (encrypted) characters to
the server one at a time. An adversary could eavesdrop in
this scenario to learn the exact length of a user’s password.
One way to address this issue would be to have the client
send an encrypted packet every few miliseconds whether
or not a character was typed. A second consideration is
that of sever resources. Since JIT hashing involves extra
work any server side implementation must also consider the
potentially increased risk of denial-of-service attacks.
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Appendix

Corollary of Theorem 1

Theorem 1 showed the general form of computing par-
allel and sequential pebbling complexities of tries based on
password dictionaries. The following corrolary is for the
specific case that all passwords are uniformly random and
of length t, i.e. pwd ∈ Σt.

Corrolary. 1.1
With all passwords of the same length we can say that

the number of nodes with height h is |Nh| = |Σ|t−h and
that the number of nodes of depth d is |Nd| = |Σ|d.

Begin with the definition of parallel cumulative complex-
ity:

CC||(TD,w) = |TD,w|m2/2

+
∑
h>1

∑
v: height(v)=h

(
m2 min{h− 2, w − 2}

)
As we have a complete trie of height t we can split this

sum into the two components generated by the min function.

CC||(TD,w) = |TD,w|
m2

2

+

w∑
h=2

∑
v∈height(h)

m2(h− 2)

+

t∑
h=w+1

∑
v∈height(h)

m2(w − 2)

As the inner sum is now a sum of constants we rewrite
it as a product

CC||(TD,w) = |TD,w|
m2

2

+

w∑
h=2

|Σ|t−hm2(h− 2)

+

t∑
h=w+1

|Σ|t−hm2(w − 2)

Factoring out terms and applying bounds from complete
tries of length t to limit the sums gives

CC||(TD,w) = |TD,w|
m2

2

+ |Σ|tm2

(
w∑
h=2

|Σ|−h(h− 2) +

t∑
h=w+1

|Σ|−h(w − 2)

)

Which can now be evaluated to a closed form expression,
giving

CC||(TD,w) = |TD,w|
m2

2

+m2|Σ|t ·
|Σ|−w−1

(
|Σ|w − |Σ|2(w − 1) + |Σ|(w − 2)

)
(|Σ| − 1)

2
s

+m2|Σ|t (w − 2)|Σ|−t−w(|Σ|t − |Σ|w)

|Σ| − 1

It is possible to perform a similar set of steps with
sequential pebbling. The main difference is that rather than
the number of nodes at a height being |Σ|t−h we instead
have |Σ|d. Substituting this change into the formula we can
follow the same beginning steps until we reach the split
sums, which work out to

CC(TD,w) ≥

(
w∑
d=1

|Σ|dm2(d− 1) +

t∑
d=w+1

|Σ|dm2(w − 1)

)
− |TD,w|m2/2

Which evaluates to



CC(TD,w) = m2

(
|Σ|
(
(w − 1)|Σ|w+1 − w|Σ|w + |Σ|

)
(|Σ| − 1)

2

)

+m2

(
|Σ|(w − 1)(|Σ|t − |Σ|w)

|Σ| − 1

)
− |TD,w|

m2

2

For an example we take alphanumeric passwords of
length 6 with window size 7 i.e. |Σ| = 62, w = 7, t = 6 and
calculate the advantages. In this case we find a negligible
advantage (1 + ε) for parallel pebbling and an advantage of
9.13 with sequential pebbling. While interesting, we note
that uniform passwords are not a realistic model for actual
user-chosen passwords, and that the results found in the
main body of this paper are more useful to evaluate JIT
in practice.

Extended implementation details

This appendix assumes some familiarity with the im-
plementation and specifications of Argon2, which are avail-
able online at https://github.com/P-H-C/phc-winner-argon2.
Several changes in addition to those mentioned in Section
6 were added to the Argon2 code. First, we want to note
that this implementation is meant as a proof of concept,
and that additional work would be required to make the
implementation work under all Argon2 modes of opera-
tion. For now the only mode of operation that supports
JIT hashing is Argon2i, with other modes being disabled
if the JIT mode is activated. We also disable multi-lane
versions of Argon2i. While originally done to simplify the
proof-of-concept prototype we also note that recent work
has shown that the parallel implementation of Argon2 has
issues that need to be resolved [5]. Character addition is
accomplished within the compression function Z, which
takes two blocks and combines them to produce an output.
During most stages of computation the compression function
works exactly as specified in the Argon2 documentation.
During character addition a slight modification is made to
the inputs to this function. The previous block (A) has the
new character ci XORed with the first byte. While we are
working with standard ASCII characters for now, we note
that this can easily be extended as far as anyone would like,
and supports as many types of characters as can fit into the
specified block size. A diagram of character addition is seen
in Figure 3, which is modified from Figure 3 in the original
Argon2 paper [14].

Error handling. To safeguard against improper use
of JIT hashing with the current implementation we extend
the input checking and error reporting sections of code.
Although we do not consider this a significant change to
the code, we mention it so that those interested in extending
the implementation are aware that these sections may require
modification to reactivate certain features of Argon2.

Dependency window. Any implementation of JIT
hashing that wishes to maximize usability must have the

Figure 3. Character addition in JIT Argon2i

ability to revert to previous states. The current master branch
of the provided repository represents a 0-tolerant k-limited
JIT function, however we plan to add support for β ≥ 1
tolerant JIT functions in the near future, which will appear
at a branch of the main repository as work continues. The
dependency window is being implemented by modifying the
edge distribution functions in core.c and ref.c, where
we are able to limit the chosen additional reference block.
This works in a manner similar to the window limit imposed
in the parallel version of Argon2, where edges are forbidden
to be taken from the same slice in a different lane. In this
version this is done to ensure deterministic results, however
the same method serves to limit the edge distribution to a
window in just in time hashing.

Client vs Server Side Implementation

One limitation of JIT hashing is that is only particularly
useful on a user-side machine. We specifically make use of
the time that the user is spending typing their password to
hide the time it takes to do the additional key stretching. So,
while the user may not be aware of the fact that quite a bit
of extra key stretching is taking place, it is still happening in
the end. A server would not have the benefit of typing time
to hide this extra key stretching; they must bear the full brunt
of the extra computation. For a larger server, this can rapidly
become a problem for a server, as they will have to provide
enough computing resources to handle this extra stretching.
If a server was not already willing to do the amount of
key stretching that JIT hashing would require with standard
password hashing then it seems unlikely that they would



be willing to do it under this scheme. An additional issue
with trying to implement JIT hashing on a server is the
leakage of password length. To take advantage of the JIT
method a server would need to receive characters one by
one and run the computation on their own side while the
user is still typing. Not only does this introduce uncertainty
in the timing through network latency, but it also exposes
the user to a man in the middle or eavesdropping attacks,
where an adversary would be able to count the number of
messages sent from the user to the server to determine the
length of their password. This additional information can be
used by the adversary to optimize their cracking attempts,
both offline and online.

So, when using JIT hashing it is likely that it would
somehow be implemented on the user side. For example,
with a password manager such as LastPass, KeePass, or a
browser password manager, a user may want to select to
store their passwords in a JIT manner. When they want to
enter a password for some website, they can either enter
a master password or some password they have decided to
use for that site. While typing the JIT hashing system is run,
and at the end they have a hash that they can use as their
password in the website. From there, it can be sent over the
usual secure methods to the website where it is hashed yet
again by the server and compared to their password records.

Optimizing Guess Order

In most of our analysis we focused on an attacker who
wants to check every password in a dictionary. Placing a
bound on the expected work for an adversary who would like
to strategically order password guesses (e.g., it makes sense
to check the most popular passwords such as ‘123456’ and
‘password’ before checking less popular, but still common,
passwords like ‘monkey1’) is more difficult. In the previ-
ous analysis an assumption was made that the adversary
is working with a uniform distribution of passwords. In
reality, the distribution of passwords is not uniform, and
may be quite different even from website to website. To
begin, we find an upper bound on the work an adversary
would need to do under this scheme. As before, assume that
the cost for each hashing step, including key stretching, is
W = C(H) = 1. In addition, assume that the length of
the i’s most common password, πi, is given by the function
L(πi). An adversary may follow a strategy of trying the
top n passwords. In the worst case for the adversary each
password corresponds to are completely disjoint. In such a
case the upper bound for the adversary’s work to check the
n most common passwords (Wn) is:

E(Wn) =

n∑
i=1

L(πi) ∈ O(n ∗maxi(L(πi))

Their lower bound is a case where the top n passwords are
all consecutive subsequences of each other. In this case the
first password has a cost of L(πi), and each other password
has a cost of 1 to extend the password. This gives the lower

bound:
E(Wn) ∈ Ω(n)

Just In Time Hashing without Memory Hard-
ness

In theory the adversary need only run one hashing
operation per password that they want to try. However this
is under the assumption that the adversary is attempting
every single possible password that can be generated. The
question remains how this scheme performs in practice,
and what sort of bounds can be seen for known password
data sets. To investigate the performance of JIT hashing in
practice we construct a trie from the Rockyou password
set. The chart below details how much work an adversary
would need to do depending on how many passwords they
are going to try. We calculate the work that an adversary
is expected to do by taking the Rockyou password list and
inserting each new password into a trie. After inserting
each password, we record the number of nodes that had to
be added to the trie, which corresponds to the number of
hashing steps that would need to be done to calculate the
value that belongs in each new node.

This figure reveals some interesting information about
JIT hashing. First, note that early on the adversary’s perfor-
mance approaches the optimal amount of work required. The
adversary gains the largest advantage (least work per pass-
word) when they are checking 1.14 million passwords, with
an average of 1.139 hashing steps required per password
at the curve’s minimum point. As the adversary continues
attempting more passwords their expected average work per
password increases and stabilizes at a value of roughly 1.50
hashing steps required per password. If we assume that a
fairly standard hashing function like SHA-256 or BCRYPT
is being used then the expected amount of memory needed
to store this trie structure is lower bounded by about 700MB
of memory.

One fact we would like to note about the graph is that the
number of hashing steps shown in this graph correspond to
JIT hashing steps, not the number of standard hashing steps
that would be required for a normal password. JIT hashing
steps differ in that they have been run through key stretching
for an amount of time based on user password typing habits.
As we have previously seen from the user study this can
mean that a few hundred miliseconds of key stretching can
be performed. Even the time spent on a single keystroke
can outpace the amount of key stretching being deployed
in practice. Take as an example JIT hashing implemented
with hash iteration with the time per character set to 183ms
(non mobile 5th percentile time). Even if an adversary only
needed to calculate a single stage for each password this still
outpaces the key stretching used in leaks such as Dropbox
[69], where BCRYPT with 28 iterations were used. Quick
tests using a laptop with a 1.70 GHz processor showed that
this can be calculated in roughly 10-15ms.

We see different results when applying different rules
for passwords. For example, Randal Munroe, author of the



webcomic XKCD, suggests that users should pick passwords
that are secure yet easy to remember [71]. Specifically he
estimates that simply be selecting four random common
words users can select easily remembered secure passwords.
For our analysis we assume that these passwords are truly
chosen at random from a list of the 10,000 most common
words in English. This gives us a possible search space
of 104

4

= 1016 possible keys. When taking the trie-based
approach each stage of 10,000 words can be compressed
into 24163 nodes. Carrying this out with all possible 4
word combinations gives a total trie size of 2.15 × 1016

nodes. This method also is a reasonable description of other
suggested password creation schemes, such as the Person
Action Object (PAO) scheme suggested by Blocki et al [21]
as a way to create secure passwords that are much easier
for users to remember. In this scheme users are presented
with two images, a location and a person, and are asked
to envision that person at that location performing some
action on an object. For example, a user may be shown a
picture of Albert Einstein and a Beach, and be asked to
remember the words ”Kissing” and ”Piranha”. When they
return to a site to log in, they will be shown the picture of
Einstein and the beach and are required to remember the
password kissingpiranha. As these passwords are also made
up of concatenated common words, we use the same method
that is used to estimate XKCD-style passwords to estimate
the strength of JIT hashing for PAO style passwords. To
generalize, note that we have a trie of size 24163 per word
that is in the trie, and 10,000 terminal nodes within that
trie that represent a word. Thus, if we would like to see the
strength of passwords generated using the n most common
words concatenated together m times, we note that the trie

would have to be of size
m−1∑
i=0

cni, where c is the size of

the trie that is generated by the n most common words.
A sample table for the first few values of this function for
n = 10000 are shown below.

Final key stretching

In the hash iteration mode being described it has cur-
rently been assumed that a version of JIT hashing was being
used that performed a total of n rounds of key stretching
total. When applying this model and a strategic approach
to cracking can be obtained ( 1.14 hashing stages per
password). As already discussed before the first additional
advantage we have is that each of these hashing stages can
be set to be as long as the average time delay between
users’ keystrokes, which may be more than the amount of
key stretching than would otherwise be done. The second
additional advantage than can be gained is to introduce the
method of final key stretching. As stated earlier, with this
method we first calculate the hash of the password Π, H(Π),
and then run this result through additional rounds of key
stretching to obtain Hr(H(Π)). A key fact of the earlier
hashing stage analysis is that the expected average work per
password is to obtain H(Π). Once this has been obtained,
we have what can be considered a new random input for

the hashing function H . At this point we can treat the result
of the JIT hashing stage as any other password, and apply
known key stretching methods to it in a way that further
increases the difficulty of computing the function. In this
case, however, the adversary gains no additional advantage
by using a trie based attack. There is no relation between
each successive iteration of hashing at this stage in the
same way that there was during the JIT stage, which is
what allowed the adversary to gain their advantage through
the trie attack. When running the simulated trie attacker
with final stretching added in the curve shifts upwards by
a number of hashing steps equivalent to the amount of
additional key stretching introduced.
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Perito. “Adaptive Password-Strength Meters from
Markov Models”. In: ISOC Network and Distributed
System Security Symposium – NDSS 2012. San Diego,
CA, USA: The Internet Society, 2012.

[32] Claude Castelluccia et al. “When Privacy meets Se-
curity: Leveraging personal information for password
cracking”. In: arXiv preprint arXiv:1304.6584 (2013).

[33] Ashok K. Chandra. “Efficient Compilation of Lin-
ear Recursive Programs”. In: SWAT (FOCS). 1973,
pp. 16–25.

[34] Rahul Chatterjee et al. “pASSWORD tYPOS and
How to Correct Them Securely”. In: 2016 IEEE Sym-
posium on Security and Privacy. San Jose, CA, USA:
IEEE Computer Society Press, 2016, pp. 799–818.
DOI: 10.1109/SP.2016.53.

[35] Stephen A. Cook. “An Observation on Time-storage
Trade off”. In: Proceedings of the Fifth Annual ACM
Symposium on Theory of Computing. STOC ’73.
Austin, Texas, USA: ACM, 1973, pp. 29–33. DOI:
10.1145/800125.804032.



[36] Nick Cubrilovic. RockYou Hack: From Bad To Worse.
2009. URL: https : / / techcrunch . com / 2009 / 12 /
14 / rockyou - hack - security - myspace - facebook -
passwords/.

[37] Solar Designer. John the Ripper password cracker.
2006.

[38] Diskcryptor. URL: https://diskcryptor.net/.
[39] Cynthia Dwork, Moni Naor, and Hoeteck Wee. “Peb-

bling and Proofs of Work”. In: Advances in Cryptol-
ogy – CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621.
Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, 2005,
pp. 37–54.

[40] Stefan Dziembowski, Tomasz Kazana, and Daniel
Wichs. “Key-Evolution Schemes Resilient to Space-
Bounded Leakage”. In: Advances in Cryptology –
CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841.
Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, 2011,
pp. 335–353.

[41] Stefan Dziembowski, Tomasz Kazana, and Daniel
Wichs. “One-Time Computable Self-erasing Func-
tions”. In: TCC 2011: 8th Theory of Cryptography
Conference. Ed. by Yuval Ishai. Vol. 6597. Lecture
Notes in Computer Science. Providence, RI, USA:
Springer, Heidelberg, Germany, 2011, pp. 125–143.

[42] Stefan Dziembowski et al. “Proofs of Space”. In:
Advances in Cryptology – CRYPTO 2015, Part II.
Ed. by Rosario Gennaro and Matthew J. B. Robshaw.
Vol. 9216. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany,
2015, pp. 585–605. DOI: 10.1007/978-3-662-48000-
7 29.

[43] Paul Erdoes, Ronald L. Graham, and Endre Sze-
meredi. On Sparse Graphs with Dense Long Paths.
Tech. rep. Stanford, CA, USA, 1975.

[44] Antminer Distribution Europe. Antminer S9. http: / /
www. antminerdistribution . com / antminer - s9/ (Re-
trieved November 13, 2016).

[45] Adam Everspaugh et al. “The pythia prf service”. In:
24th USENIX Security Symposium (USENIX Security
15). 2015, pp. 547–562.

[46] Sascha Fahl et al. “On the ecological validity of a
password study”. In: Proceedings of the Ninth Sym-
posium on Usable Privacy and Security. ACM. 2013,
p. 13.

[47] Niels Ferguson. AES-CBC+ Elephant diffuser: A disk
encryption algorithm for Windows Vista. 2006.
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